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Abstract

We define an easily verifiable notion of an atomic formula having
uniformly bounded arrays in a structure M. We prove that if T is a
complete L-theory, then T is mutually algebraic if and only if there
is some model M of T for which every atomic formula has uniformly
bounded arrays. Moreover, an incomplete theory T' is mutually alge-
braic if and only if every atomic formula has uniformly bounded arrays
in every model M of T

1 Introduction

The notion of a mutually algebraic formula was introduced in [1], and the
notions of mutually algebraic structures and theories were introduced in [3].
There, many properties were shown to be equivalent to mutual algebraicity,
e.g., a structure M is mutually algebraic if and only if every expansion (M, A)
by a unary predicate has the non-finite cover property (nfcp) and a complete
theory T' is mutually algebraic if and only if it is weakly minimal and trivial.
Whereas these characterizations indicate the strength of the hypothesis, they
do not lead to an easy verification that a specific structure is mutually alge-
braic. The purpose of this paper is two-fold. Primarily, we obtain equivalents
of mutual algebraicity that are easily verifiable. Most notably, we introduce
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the notion of a structure or a theory having uniformly bounded arrays and
we prove that for structures M in a finite, relational language, M is mutually
algebraic if and only if M has uniformly bounded arrays. This result plays
a key role in [4], where the authors describe the growth rates of hereditary
classes of structures in a finite, relational language. The other purpose is to
develop a ‘Ryll-Nardzewski characterization’ of mutual algebraicity, which is
accomplished in Theorem 6.1. A theory 7' is mutually algebraic if, for every
restriction to a finite sublanguage, for every model M and integer n, there
are only finitely many quantifier-free n-types over M that support an infinite
array.

2 Preliminaries

Let M be any L-structure and let ¢(Z) be any L(M)-formula. We say that
©(Z) is mutually algebraic if there is an integer k such that for any proper
partition 7 = Z°7 (i.e., each of Z,7 are nonempty) M = VZ3I<*5p(Z,7).
Then, following [3], a structure M is mutually algebraic if every L(M)-formula
is equivalent to a boolean combination of mutually algebraic L(M )-formulas,
and a theory T is mutually algebraic if every model of T is a mutually
algebraic structure. The following Theorem, which has the advantage of
looking only at atomic formulas, follows easily from two known results.

Theorem 2.1. Let M be any L-structure. Then M is mutually algebraic if
and only if every atomic formula R(Z) is equivalent to a boolean combination
of quantifier-free mutually algebraic L(M)-formulas.

Proof. First, assume M is mutually algebraic. The fact that every
atomic R(Z) is equivalent to a boolean combination of quantifier-free mutu-
ally algebraic L(M)-formulas is the content of Proposition 4.1 of [2]. For
the converse, let M A*(M) denote the set of L(M)-formulas that are boolean
combinations of mutually algebraic formulas. This set is clearly closed un-
der boolean combinations, and is closed under existential quantification by
Propositon 2.7 of [3]. Thus, if we assume that every atomic formula is in
MA*(M), it follows at once that every L(M)-formula is in M A*(M), hence
M is mutually algebraic.

We will obtain a slight strengthening of Theorem 2.1 with Corollary 7.4(2).
Whereas Theorem 2.1 placed no assumptions on the language, the main body



of results in this paper assume that the underlying language is finite rela-
tional. In Section 7 we obtain equivalents to mutual algebraicity for struc-
tures in arbitrary languages.

Henceforth, for all results prior to Section 7, assume L has finitely
many relation symbols, finitely many constant symbols, and no
function symbols.

For L as above, fix an integer n so that every atomic formula is at most
n-ary. As every quantifier-free type p(w) is determined by its family of re-
strictions {p[z,: W; a subsequence of w of length at most n}, choose a specific
n-tuple Z = (z1,...,2,) of distinct variable symbols. Throughout, we con-
centrate on understanding spaces of quantifier-free types p(Z), where T is a
non-empty subsequence of 7.}

Fix an L-structure M. For a non-empty subsequence * C Zz and a subset
B C M, let QF(B) denote the set of all quantifier-free L-formulas ¢(Z, b)
whose free variables are among 7 and b is from B. Whereas we require
T to be a subsequence of Z, there are no limitations on the length of the
parameter sequence b. By looking at the subsets of M'¢® they define, we
can construe QF.(B) as a boolean algebra. Let Sz(B) denote its associated
Stone space, i.e., the set of quantifier-free z-types over B that decide
each ¢ € QF_(B). As usual, each of the Stone spaces Sz(B) are compact,
Hausdorff, and totally disconnected when topologized by positing that the
sets {U,z5 @ ¢(T,b) € QFx(B)}, where U ;5 = {p € Sz(B) : »(Z,b) € p},
form a basis. Moreover, because L is finite relational, it follows that each
Sz(B) is finite and every p € Sz(B) is determined by a single ¢(%,b) € p
whenever B is finite.

Definition 2.2. Fix a non-empty  C Z, a subset B C M and an integer m.
An Z-type p € Sz(B) supports an m-array if there is a pairwise disjoint
set {d; : i < m} of (distinct) realizations of p in M. p supports an infinite
array if M contains an infinite, pairwise disjoint set of realizations of p. For
each finite D C M, let Nz ,,(D) be the (finite) number of p € Sz(D) that
support an m-array.

The following definition is central to this paper, and forms the connection
with [4]. A local formulation, which relaxes the restriction on the language
is given in Section 7.

'The presentation of free variables in a type is delicate, owing to the fact that ‘mutual
algebraicity’ is not preserved under adjunction of dummy variables.



Definition 2.3. A structure M in a finite, relational language has uniformly
bounded arrays if there is an integer m > 0 such that for every non-empty
T C Z, there is an integer N such that Nz,,(D) < N for all finite D C M.

When such an N exists, we let NZ7 denote the smallest possible such N.

It is easily seen that the properties described above are elementary. In
particular, if m and the (finite) sequence (N27 : T C Z) witness that M has
uniformly bounded arrays, then the same m and sequence (N2 : T C %)
witness that any M’ elementarily equivalent to M also has uniformly bounded
arrays. Because of this, we say that a complete theory T in a finite, relational
language has uniformly bounded arrays if some (equivalently all) models M
of T" have uniformly bounded arrays.

3 Supportive and array isolating types

Throughout this and the next few sections, fix a complete theory T in a finite,
relational language L. Also fix an Nj-saturated model M of T', which is a
‘monster model” in the sense that all sets of parameters are chosen from M.
The reader is reminded that all formulas and types mentioned are quantifier-
free.

Definition 3.1. For T a subsequence of Z and B countable, Supp4(B) is
the set of all p € Sz(B) that support an infinite array. Let Supp(B) be the
disjoint union of the spaces Suppz(B) for all subsequences T C Z.

Lemma 3.2. Suppose T is a subsequence of Z, B is countable, and p € Sz(B).

1. The type p € Supp(B) if and only if for every m € w and every
0(Z,b) € p, there is an m-array of solutions to 6(T,b).

2. If p has infinitely many solutions, then there is a (possibly empty)
proper subsequence T, C T and a realization @ of p such that tp((@ \
a,)/Ba,) supports an infinite array, where @, is the subsequence of @
corresponding to T,.

Proof. (1) is easily seen by compactness. For (2), choose an infinite
set {@; : ¢ € w} of distinct realizations of p. If some infinite subset forms
an array, then take T, = () and p itself supports an infinite array. If this
is not the case, then by the A-system lemma, there is an infinite I C w, a



non-empty subsequence T, of T and a fixed root 7 such that (@;), = 7 and
a; Na; =7 for distinct i,j € I. Then tp((a; \ 7)/BT) supports an infinite
array whenever ¢ € [.

It follows from Lemma 3.2(1) that Supp(B) is a closed, hence compact
subspace of Sz(B). If we endow Supp(B) with the disjoint union topology
(i.e., U C Supp(B) is open if and only if (U NSuppy(B)) is open in Suppz(B)
for every T C Z) then Supp(B) is compact as well.

When our base set is a countable model, Supp(M) is easily identified.

Lemma 3.3. If M < M is countable, then p € Sz(M) supports an infinite

array if and only if (x; # a) € p for all x; € T and all a € M. In particular,
ifeN M = (), then tp(c/M) € Supp(M).

Proof. Clearly, if (z; = a) € p for any z; and any a € M, then p
does not support a 2-array. For the converse, choose any realization ¢ of
p with N M = (. To show that p supports an infinite array, we employ
Lemma 3.2(2). Choose any 6(,h) € p (so h is from M). We will construct
an infinite array of solutions to #(%, k) inside M. The construction is easy
once we note that for any finite subset F' C M, ¢ is a witness in M to

3z(0(z, h) A /\/\xl#a

T, €T acl

As M < M, we have some d € M@ realizing 0(T, h) disjoint from F.

Next, we explore extensions of types p € Supp(B). By compactness, it
is easily seen that whenever B C B’ are countable, then every p € Supp(B)
has an extension to some g € Supp(B’). Abusing notation somewhat, let
Supp(M) denote the set of global types with the property that every re-
striction to a countable set supports an infinite array. An easy compactness
argument shows that every p € Supp(B) has a ‘global extension’ to some
p € Supp(M). In general, a type p € Supp(B) has many such global exten-
sions, but we focus on when this is unique.

Definition 3.4. A quantifier-free formula ¢(Z,€) is array isolating if there
is exactly one global type p € Suppz(M) with ¢(7,€) € p. Call a global type
p € Suppz(M) array isolated if it contains some array isolating formula. Let
AIz(M) denote the set of array isolated global Z-types and let AI(M) be the
disjoint union of Alz(M) over all subsequences T C z. For p € AI(M), p|B
denotes the restriction of p to a type in Supp(B).
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The following Lemma is immediate. We will get a stronger conclusion in
Section 5 under the additional assumption that Suppz(M) is finite.

Lemma 3.5. Suppose p € Suppz(M) is array isolated as witnessed by the
array isolating p(T,€). Then any q € Sz(B) containing ©(T,€) is either equal
to p|B or does not admit an infinite array.

Proof. 1If ¢ # p|B supported an infinite array, then any global extension
q 2 ¢ would be distinct from p. This contradicts ¢(Z, €) being array isolating.

Definition 3.6. Say that p € Alz(M) is based on B if pNQF4(B) contains an
array isolating formula (7, €), the interpretation ¢™ € B for every constant
symbol, and, moreover there is an infinite array {@; : i € w} C B%®®@ of
pairwise disjoint realizations of ¢(Z,€).

Clearly, if p is based on B, then it is also based on any B’ O B. If B is
a model, then the second and third clauses are redundant, that is:

Lemma 3.7. If M < M, p € Alz(M) and p N QFZ(M) contains an array
isolating formula ¢(T,€), then p is based on M.

Proof. As M <M, every ™ € M. Now, fix an array isolating formula
o(Z,e) € pN QFZ(M) and we recursively construct an infinite array of real-
izations of (7, €) inside M as follows. First, let By = € and let py = p|Bo.
As the language L and By are finite, pg is isolated by a formula over By. As
M < M, choose a realization @y of py inside M. Then put B; = By U {ap},
let p; = p|By, and continue for w steps.

There is a tight analogy between array isolated types p based on B and
strong types over B in a stable theory, but in general they are not equivalent.
Indeed, as we are restricting to quantifier free types, a typical restriction p|B
is not even a complete type with respect to formulas with quantifiers. We
show that every p € AI(M) is B-definable for any B on which it is based.

Lemma 3.8. Suppose p(T,€) is an array isolating formula and 0(%,y) €
QF(0). There is an integer m = m(o(T,€),0) such that for all d € M),
exactly one of p(T,€) A O(Z,d) and o(T,€) A —0(Z,d) admits an m-array.

Proof. As ¢(7,€) admits an infinite array, at least one of the two for-
mulas will as well. However, if such an m did not exist, then for each m there
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would be a tuple d,, such that both o(Z,€) A(Z, d,,) and ¢(Z,e) A—0(Z, d )
admit an m-array. Thus, by the saturation of M, there would be a tuple d
such that both ¢(Z,e) AO(T,d ) and (T, e) A —ﬂ(x, d’) admit infinite arrays,
contradicting (T, €) being array isolating.

Definition 3.9. Fix any p € Alz(M) and any set B on which it is based.
Choose an array isolating formula (7, €) € pNQF4(B) and an infinite array
{@; : i € w} C B®® of realizations of (7, €). For any 6(7,7) € QF(0) let

dpxé z y \/ /\9 au

se( M) 1€s
where m = m(p(T,€),0) is chosen by Lemma 3.8.

Visibly, d,70(7,7) € QF;(B). Its relationship to 6(7,7) and p is ex-
plained by the following Lemma.

Lemma 3.10. Suppose p € AI(M) is based on a countable set B and ¢(T,€)
and {@; : i € w} are chosen as in Definition 3.9. The following are equivalent
for any 0(z,7) € QF(0) and any d € M's®:

1. M | dp70(T, d);
2. 0(z,d) € p;
3. For all countable B', p|B' U{0(%,d)} supports an infinite array; and

4. The partial type p|B U {0(%,d)} supports an array of length m =

m(e(Z,€),0).

Proof. (1) = (2): As M = d,70(7, d), some m-element subset of {a; :
i < 2m} is an m-array of realizations of (%,€) A 6(Z,d). By choice of
m, Lemma 3.8 implies that ¢(7,€) A 0(%,d) supports an infinite array, so
0(z,d) € p.

(2) = (3): Choose any countable B’. If §(Z,d) € p, then as p|B’' U
{6(z,d)} is a countable subset of p, it supports an infinite array.

(3) = (4): Trivial.

(4) = (1): Assume that M = =d,z0(7, d). Then some m-element subset
of {@; : i < 2m} witnesses that o(%,€) A —0(T,d) supports an m-array.
By Lemma 3.8, ¢(7,€) A 0(Z,d) cannot support an m-array. Consequently
p|B U {0(%,d)} cannot support an m-array (and thus cannot support an
infinite array).



4 Free products of array isolated types

Throughout this section, T is a complete theory in a finite, relational lan-
guage and M is an Ny-saturated model, from which we take our parameters.

In this section we describe how to construct a ‘free join’ of array iso-
lated types. Suppose T, 7 are disjoint, non-empty subsequences of z, p(7) €
Alz(M), and q(y) € Al;(M). We show that there is a well-defined r(Z,7) €
Suppz; (M) constructed from this data. We begin with lemmas that unpack
our definitions.

Lemma 4.1. Suppose p(T),q(y) are as above and B is a countable set on
which both p and q are based. For any 6(%,5,b) € QFz(B) and any ©
realizing p|B,

0(¢,7,b) € q|Bc if and only if  dqyd(T,7y,b) € p|B

Proof. First, assume 6(¢,7,b) € q|Be. Then q|B U {0(c,7,
hence it supports an infinite array. By Lemma 3.10 applied to 6(c,
taking d := ¢b),

b)} C q,
y,b) (ie.,
M | dqg0 (e, 5, b)

Taking w to be a sequence of variables for b, since dq70(T, Y, ) € QF (B),
b is from B, and € realizes p|B, we conclude that dqy6(Z,7,b) € p|B.

The converse is dual, using =6 in place of 6.

Lemma 4.2. Suppose p(T),q(y) are as above and B is a countable set on
which both p and q are based. For any 0(%,7,b) € QF.. ;(B) and any ¢,c

realizing p|B, 0(¢,7,b) € q|Be if and only if 0(¢,7,b) € q|Bc

Proof. By Lemma 4.1, each statement is equivalent to dqf(T,7,b) €
p|B, which does not depend on our choice of ¢.

Extending this,

Lemma 4.3. Suppose p(T),q(y) are as above and B is a countable set on
which both p and q are based. For any 0(Z, y, b) € QF.. ;(B) and any ¢,¢

realizing p|B, for any d realizing q| B¢ and d realizing q| BT, the following
three notions are equivalent:

1. M| 0z, d,b);



2. M = dpT[dgyf(Z,7,b)]; and
3. M= 6(c,d ,b).

Proof. Because of the duality in the statements, it suffices to prove
(1) & (2). First, assume (1) holds. As d realizes q|B¢, we infer 0(¢,7,b) €

q. So, by Lemma 3.10, M = dqg0(¢,y,b). As dqyf(7,7,b) € QFg(B)

and ¢ realizes p|B, we conclude that dqy6(7,7,b) € p and hence M =

dp®|dqyf(Z,7,b)]. Showing that (—1) implies (—2) is dual, using =6 in place
of 6.

We now define the free product of array supporting global types.

Definition 4.4. Suppose 7,7 are disjoint subsequences of zZ, p € Alz(M)
and q € Al7(M). Then the free product r = p x q is defined as

r(7,7) := {0(7,9,0) € QF (M) : M |= dp[dqy0(T, 7, )]}

Because of Lemma 4.3, r(Z,7) is also equal to the set of all 6(Z,7,b) €
QF (M) such that for some/every B on which both p and q are based and
b is from B, for some/every ¢ realizing p|B and for some/every d realizing
q|B¢ we have Ml |= 6(¢, d, b). Tt is easily seen from this characterization that
r(Z,Y) € Suppz(M).

Next, we show that the free join is symmetric. We begin with a Lemma.

Lemma 4.5. Suppose T,y are disjoint subsequences of Z, p(T) € Alz(M),
q(y) € Alz(M). Then for every countable set B on which both types are based,
for every € realizing p|B, d realizing q|B, and for every 6(Z,7,b) € QF(B)
such that M |= (¢, d, b),

0(z,d,b) € p|Bd if and only if  0(¢,y,b) € q|B¢

Proof. Assume by way of contradiction that 6(z,d,b) € p|Bd, but
0(¢,7,b) & q| B¢, with the other direction being dual.

Write 6 as 0(%,y,w). As both p and q are based on B, choose array
isolating formulas ¢(7,€) € QFz(B) and ¢(y,€') € QF;(B) for p and q, re-
spectively. Let m = max{m(¢(z,€),0(Z;yw)), m((y,€),0(y;7w))}. (Note
the different partitions of 6.)

As B is countable, choose infinite arrays {¢; : i € w} and {d; : j € w} for
p|B and q|B, respectively. By Lemma 4.1 we have that 6(%, d;,b) € p|Bd;
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for each j and that 6(¢;,y,b) € q|B¢; for each 7. By passing to infinite
subsequences, we may additionally assume these sets are pairwise disjoint
(ie, &N Ej = () for all 4,j). Choose a number K >> m. Form a finite,
bipartite graph with universe C U D, where C = {¢; : i < K} and D = {d; :
j < K} with an edge E(¢;,d;) if and only if M = 0(¢;, d;,b). We will obtain
a contradiction by counting the number of edges in two different ways.

On one hand, because 6(¢;,7,b) € q|B¢;, q|B U {0(¢;,5,b)} does not
support an infinite array for each ¢;. By our choice of m, it cannot support
an array of length m either. Because any m-element subset of D is an array
of length m, we conclude that for every ¢;, there are fewer than m many Ej
such that M = (¢, d;). Thus, the number of edges of the graph is bounded
above by K'm. On the other hand, for any d;, as p|BU{0(%,d;,b)} supports
an infinite array, q|B U {=0(Z,d;,b)} cannot support an infinite array, hence
cannot support an array of size m. Thus, the edge-valence of each Ej is at
least (K —m), implying that our graph has at least K (K —m) edges. As K
is much larger than m, this is a contradiction.

Corollary 4.6. Suppose T,y are disjoint subsequences of Z, p € Alz(M), and
q € AI;(M). Then p xq=qxp. That is, for any set B on which both p,q
are based and for any 0(T,7, W) € QF z5(0), the formulas dpT[dgyd (T, 7, W)]
and dgyldpT0(Z, 7, w)] in QF4(B) are equivalent.

Proof. Choose any 6(Z,%,b) € p x q with b € M'®™. Choose any
countable set B containing b on which both p and q are based. Choose ¢
realizing p|B and d realizing q|B¢. By the equivalent definition of p x q,
(¢, d) realizes p x q, hence Ml |= (¢, d,b). Thus, by Lemma 4.5, € also realizes
p|Bd. Hence (¢,d) also realizes q x p, so 0(Z,7,b) € q x p as well.

5 Finitely many mutually algebraic types sup-
porting arrays

We continue our assumption that M is an X;-saturated model of a complete
theory T in a finite, relational language. We begin by recording two con-
sequences of Supp.(M) being finite. Note that simply by adding repeated
elements to tuples, Supp;(M) being finite implies Suppz (M) finite for all
non-empty subsequences 7' C T.
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Lemma 5.1. FizT C Z and assume that Suppz(M) is finite. Then Suppz(M) =
Alz(M) and, moreover, every p € Alz(M) is based on every M < M.

Proof. As Suppz(M) is always a closed subspace of Sz(M), it is com-
pact. Thus, if it is finite, every p € Supp (M) is isolated. For the moreover
clause, write Suppz(M) = {p1,...,pn} and choose array isolating formulas
©i(Z, ;) for each p;. By repeated use of Lemma 3.8, let m* be the maximum
of all m(p;(7,€;), R(7,y)) among all p;, € Suppz(M) and all atomic R € L.
Then M is a model of the sentence

Jw; ... Jw,[{:(T,w;) : 1 <i < n} are pairwise inconsistent and,
for all atomic R € L, for all Z, and for all 1 < i < n, exactly
one of ¢;(Z,w;) N R(Z,z) and ¢;(T,w;) A ~R(T,Z) supports an
m*-array].

Thus, any M < M also models this sentence. Choose witnesses €7, ... €} from
M. Then, for each ¢, there is a unique type in Sz(M) containing ¢;(7,€})
and supporting an infinite array. By a second use of M < M, each ¢;(7,€})
array isolates a global type p € Suppz(M). As |Suppz(M)| = n, we conclude
that every p € Supp.(M) is array isolated by some L(M )-formula. In light
of Lemma 3.7, it follows that each p is based on M.

As a consequence of Lemma 5.1, if Suppz(M) is finite and M < M is
countable, then every p € Sz(M) that supports an infinite array contains
an array isolating formula, hence has a unique supportive extension p €
Supp,(M). Thus, for any extension ¢ € Sz(M¢) of p, either ¢ = p|M¢ or else
g does not support an infinite array. In fact, even more is true.

Definition 5.2. A type ¢ € Sz(M?¢) has a finite part if there is some non-

empty  C 7 and some 0(Z',¢, h) € ¢ for which M |= 3<°7'(7', ¢, h).
Lemma 5.3. Suppose Suppz(M) is finite and M < M is countable. For any
p € Suppz(M), if a type q € Sz(M¢) extends p|M but ¢ # p|M¢, then q has
a finite part.

Proof. We argue by induction on lg(Z), so assume that the statement
holds for all proper 7 C Z. By way of contradiction, choose p € Supp(M),
and ¢ € Sz(M¢e) with p|M C q, ¢ # p|M¢, but ¢ has no finite part. We will
obtain a contradiction to Lemma 3.5 by showing that ¢ supports an infinite
array. Toward that goal, choose any 0(%,¢ h) € ¢. By Lemma 3.2(1), it
suffices to find an infinite array of realizations to (%, ¢, h).
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As ¢ has no finite part, by taking ¥ = T, ¢ has infinitely many realiza-
tions. Thus, by Lemma 3.2(2), there is a proper subsequence Z,, C T and
a realization @ of ¢ such that tp((a \ @,)/M¢ca,) supports an infinite array.
Trivially, if 7, is empty, then this type is ¢ itself, ¢ supports an infinite array.
So we assume 7, is non-empty. Write T = y 7, and for clarity, write 7 for
@, and b for (@\7),s0a=>b"T.

Let ¢*(7) := tp(b/Mer). We know that b "7 realizes ¢ whenever b realizes
q*. Let p*(y) € Suppy(M) be any global type extending ¢*. As Suppy(M) is
finite, by Lemma 5.1 p* is based on M. Choose an array isolating formula
©(7,€) € p* with & from M, along with an infinite array {b; : i € w} C M@
of realizations of (7, €). As ¢(7,€)A0(¥,7,¢,h) € ¢*, Lemma 3.8 implies that
all but finitely many b; realize 6(¥,7,¢, h), so by elimination and reindexing,
assume they all do.

On the other hand, let ¢,(Z,) := tp(7/M¢). As g does not have a finite
part, neither does ¢,. As T, is a proper subsequence of T, our inductive
hypothesis implies that g, must support an infinite array. Let {7; : j € w} be
such an array. Note that as tp(7;/Me) = tp(F/M¢c) and 0(b;, Tu, 7, h) € qu, it
follows that 6(b;, 7;,¢, h) holds for all 4, j € w. From this, as both {b; : i € w}
and {7, : j € w} are infinite arrays, it is easy to meld subsequences of these
to produce an infinite array {by7s : k € w} of realizations of (7, %, ¢, h).

Next, we add mutual algebraicity to the discussion of supportive and
array isolating types.

Definition 5.4. For 7 C Z non-empty, a global, supportive type p € Supp(M)
is quantifier-free mutually algebraic (QMA ) if p contains a mutually algebraic
formula ¢(7) € QFz(M). Let QMA (M) denote the set of QMA types in
Suppz(M). Let QMA (M) be the (finite) disjoint union of the sets QMA(M).

The goal of this section will be to deduce consequences from QMA (M)
being finite.

Lemma 5.5. If QMA_(M) is finite, then every p € QMA_(M) is array
isolated, i.e., p € Alz(M).

Proof. Fixanyp € QMA_(M). Choose a mutually algebraic (T, €y) €
p. For each q € QMA_ (M) distinct from p, choose a formula ¢q4(7,€q) €
p \ q. Then the formula (7, €p) A /\(H,ép ©q(T,€q) array isolates p.
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Definition 5.6. Fix any non-empty T C Z. A partition P = {Z1,...,T,} of
T satisfies (1) each T; non-empty and (2) Every x € T is contained in exactly

one 7;. For w C {1,...,r}, let T, be the subsequence of T with universe
U{7i : i € w}.

For ¢ € (M)'$® | a partition P of Z naturally induces a partition {¢,, ..., ¢}
of ¢. For w C{1,...,7}, ¢, is the subsequence of ¢ corresponding to T,,.

Definition 5.7. Fix any 7 C %, any countable M < M, and ¢ € (M\ M)'s®).
A mazimal mutually algebraic decomposition of € over M is a partition P =
{Z1,...,@,} of T for which the induced partition {¢,...,¢.} of € satisfies the
following for each i € {1,...,r}:

e G; realizes a mutually algebraic formula ¢(7;) € QF; (M); but

e For any proper extension 7; C u C 7, the subsequence d of ¢ induced
by @ does not realize any mutually algebraic formula ¢ (@) € QFz(M).

Lemma 5.8. For any T C Z and every countable M =< M, every ¢ € (M \
M@ admits a unique mazimal mutually algebraic decomposition over M.

Proof. First, by Lemma 3.3, both tp(¢/M) and tp(¢' /M) for any sub-
sequence ¢ C ¢ support infinite arrays. Next, as every formula ¢(z) in one
free variable is mutually algebraic, every singleton ¢ € ¢ realizes a mutually
algebraic formula. For each x € ¥, choose a subsequence T; of T containing
x such that ¢; realizes a mutually algebraic formula in QF; (M) and is maz-
imal i.e., there is no proper extension ' 2 T; for which ¢ realizes a mutually
algebraic formula in QF.(M). Clearly, {Zy,...,%,} covers T. The fact that
it is a partition follows from the fact that if Z;, T; are not disjoint and ¢(7;),
Y(T;) are each mutually algebraic, then their conjunction (¢ A ¢)(Z;z;) is
mutually algebraic as well (see e.g. Lemma 2.4(6) of [2]).

It is easily checked that if {¢;,...,¢.} is a maximal mutually algebraic
decomposition of ¢ over M, then for any w C {1,...,r}, the subset {¢; : i €
w} is a maximal, mutually algebraic decomposition of ¢, over M.

We are now able to state and prove the following.

Proposition 5.9. Suppose that QMA(M) is finite. Then, for every subse-
quence T C Z, every p € Suppz(M) is equal to a free product ¢ = p1 X -+ X p,
of types from QMA(M). In particular, each Suppz(M) is finite.
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Proof. As the whole of QMA (M) is finite, choose a finite D such that
for every T C Z and every q € QMA_(M), there is a mutually algebraic
formula v(7) € g N QF4(D). Choose a countable M < M with D C M.

We prove the Proposition by induction on 7, i.e., we assume the Proposi-
tion holds for all proper subsequences T’ of T and prove the result for 7. To
base the induction, first note that if x € Zz is a singleton, then as every for-
mula p(z) is mutually algebraic, every q € Supp, (M) is also in QMA (M),
which we assumed was finite.

Now, suppose T is a subsequence of z, 1g(Z) > 2, and the Proposition
holds for every proper subsequence T’ of Z. In particular, as Suppy (M) is
finite, Lemma 5.1 implies that each q € Supp,,(M) is based on M and is also
in AI(M).

Choose any q* € Suppz(M). Towards showing that q* is a free product of
types from QMA_(M), choose any ¢ € (M \ M)2® realizing q*|M. Suppose
the partition P = {Zy,...,Z,} of T yields the maximal, mutually algebraic
decomposition ¢, ... ¢, of ¢ over M.

There are now two cases. First, if » = 1, then tp(¢/M) contains a mu-
tually algebraic formula, so q* € QMA (M) and we are finished. So as-
sume r > 2. As notation, for each 1 < j < r, let w; be the subsequence
Ti...Tj—1Tj41... T, of T and let 3]- be the corresponding subsequence of ¢.
As each Ej is a proper subsequence of ¢, our inductive hypothesis implies that
tp(d,; /M) contains an array isolating formula. Let q; be the (unique) global
extension of tp(d,;/M) to Alg,(M). By our inductive hypothesis again, each
q; = (P1 X ...Pj—1 X Pj+1 X ...Py). As each p; is also array isolated, by
iterating Lemma 4.5 finitely often it follows that there is a unique supportive
type r*(Z) which is equal to q;(w;) x p;(T;) for every 1 < j <.

In light of the characterization of free products following Definition 4.4,
in order to conclude that q* = q, X p, = r*, it suffices to prove the following
Claim.

Claim. d, realizes q,|Mé,.

Assume this were not the case. We obtain a contradiction by showing
that the whole of tp(¢y,...,¢. /M) contains a mutually algebraic formula
©(T). As tp(d,/M) = q,|M, but tp(d,/M¢,) # q,|M¢,, Lemma 5.3 allows
us to choose a maximal subsequence ¢, of d, and 6,(Zy, ., b,) € tp(c,/M¢,)
(b, from M) with only finitely many solutions. As tp(¢;/M) is mutually
algebraic for each i, it follows from the maximality of u that there is a non-

empty subset w C {1,...,r — 1} such that ¢, = ¢,. To ease notation, say
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w={1,...,s} for some s < r — 1. We argue that s = r — 1. If this were
not the case, then {¢i,...,¢,¢.} would be a maximal mutually algebraic
decomposition over M of the subsequence ¢, " ... "¢, ¢, whose corresponding
variables T ... Z,Z, form a proper subsequence of Z. Thus, by our inductive
hypothesis, tp(¢; ...¢s¢./M) would equal (p; X -+ X ps X p,)|M, which is
contradicted by the formula 0,(Zy, ..., %, T, b,) € tp(Ci ... Cs¢,/M). Thus,
we conclude that s = r — 1. Hence, 6,(w,,¢,b,) has only finitely many
solutions.

Next, choose any j < r. Now the presence of the formula ¢, implies that
q* # r*, hence q* # q; X p;. From this, it follows that tp(d;/Me;) # q;|Me;.
So, arguing just as above but replacing r by j throughout, we conclude there
is a formula §;(%, b;) € tp(¢/M) for which §;(w;;¢;b;) has only finitely many
solutions.

Thus, if we choose a mutually algebraic formula ~; € tp(¢;/D) for each
7 < r, we conclude that the formula

QO(fl, e ,TT,Bl .. ET) = /\ (’}/j(f]> A\ 5j(mj7fj75j))
J<r

is mutually algebraic with free variables T and is in tp(¢/M ). This contradicts
our assumption that tp(¢/M) was not mutually algebraic. This completes
the proof of the Claim as well as the Proposition.

Conclusion 5.10. If QMA(M) is finite, then so is Supp(M). Moreover,
for any T C Z, any countable M < M, and any ¢ € (M \ M)'$@  tp(c/M)
is determined by the mazimal mutually algebraic partition P = {Zy,...,T,}
and the corresponding set {p1,...,p,} of QMA; (M) types.

6 Mutual algebraicity and unbounded arrays

The whole of this section is devoted to the statement and proof of Theo-
rem 6.1. It can be construed as a kind of ‘Ryll-Nardzewski theorem’ for
Stone spaces of quantifier-free types.

Theorem 6.1. Suppose T is a complete theory in a finite, relational lan-
gquage, all of whose atomic formulas have free variables among Z, and let M
be an Ny-saturated model of T'. The following are equivalent.

1. T has uniformly bounded arrays;
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2. For all subsequences T C Z, Suppz(M) is finite;

3. For all subsequences T C Z, every global supportive type p € Supp(M)
15 array isolated;

4. Whenever M < N are models of T, for all subsequences T C Z, there
are only finitely many types in Sz(M) realized in (N \ M)®@®;

5. For all models M and all subsequences T C Z, only finitely many types
in Sz(M) both contain a mutually algebraic formula and support an
infinite array; and

6. T is mutually algebraic.

Proof. We begin by showing that (2) < (3) < (4). Fix any non-empty
subsequence T C Z. The key observation for showing (2) < (3) is that if
X is any compact, Hausdorff space, then X is finite if and only if every
element a € X is isolated. Suppose that (2) holds. To establish (3), note
that Supp;(M) as a subspace of Sz(M), the Stone space of all quantifier free
types is closed, and hence compact. As (2) implies it is finite as well, every
p € Supp,(M) must be isolated in the subspace, hence array isolated.

Verifying that (3) = (2) uses the converse of this. Fix T C Z. Applying
(3) to the model M yields that every element of Suppz(M) is isolated. As
Supp(M) is compact and Hausdorff, it must be finite.

(2) = (4) is easy. Assume (2). It suffices to prove (4) for all countable
M =< N. As M is Ny-saturated, we may assume N =< M. But now, by
Lemma 3.3, for any ¢ € (N \ M)'$@ tp(¢/M) supports an infinite array. As
any p € Suppz(M) extends to some p € Supp(M), there are only finitely
many such types.

Next, suppose (2) fails. Choose T C Z and a countable, infinite Y C
Suppz(M). For each pair p # q, choose a formula ¢pq(7,€pq) € p\g. Choose
a countable M < M containing {€,q : p # q € Y'}. Thus, {p|M : p € Y}
is a countably infinite set of types, each of which support an infinite array.
As M is N;-saturated, each such p|M is realized by some ¢ € M@, That
cN M = () follows from the fact that p|M supports an infinite array.

Continuing on, we consider (2) = (5). It suffices to prove this for M
countable, and we may assume M < M. As any p € Sz(M) supporting an
infinite array has an extension to Suppz(M), (5) follows from (2).

(5) = (2) is immediate from Conclusion 5.10.
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(2) = (1). By (2), for each T C Z, let N(T) := |Suppz(M)|. As (2) = (3),
every p € Supp(M) is array isolated. For each T C Z and each p € Supp-(M),
choose an array isolating formula ¢, (7,€,) € p and let D C M be finite and
contain all e, for all p € Supp(M). It is easily seen that for every T C Z and
every countable D C B C M, Sz(B) has exactly N(Z) types that support
an infinite array. Moreover, each such ¢ € Supp;(B) has a unique restriction
q|D € Supp(D) and a unique extension q € Supp(M).

Towards finding an appropriate m as in Definition 2.3, fix T C Zz and
partition each atomic R(Z) € L as R(Z,w). For each p € Supp;(M) with
array isolating formula ¢, (7,€,) € p, let m(p,T) be the maximum of the
2|L| numbers m(yp (7, €p), £R(Z,w)) obtained by Lemma 3.8. That is, apply
the Lemma 2|L| times, once for each R € L, and once for each R for R € L.

The point is that if B is countable, D C B C M, and ¢ € Sz(B) contains
some (T, €, ) and supports an m(p, T)-array, then for every R(Z,b), R(Z,b) €
q if and only if ¢, (T, €,) A R(Z,b) supports an m(p,T)-array if and only if
¢p(T,€,) A R(T,b) supports an infinite array if and only if R(Z,b) € p. Thus,
q<P.

On the other hand, let 6(7Z) := A{-¢p(T,€) : P € Suppz(M)}. Since
there is no ¢ € Sz(D) with 6 € ¢ that supports an infinite array, compactness
yields an integer m*(7) such that no ¢ € Sz(D) with 6 € ¢ supports an m*(7)-
array. Clearly, for any B O D, no ¢ € Sz(B) with 6 € ¢ could support an
m*(T)-array either.

Choose an integer m that is greater than all m*(Z) and all m(p,Z) for
T C Z and p € Suppz(M). Combining the statements above, we see that for
any countable B D D and any T C Z, exactly N(T) types in Sz(B) support
m-arrays. Thus, M (and hence T by elementarity) has uniformly bounded
arrays.

(1) = (2) is also easy. Assume 7" has uniformly bounded arrays. Choose
m and (N2 7 C Zz) from the definition. To establish (2), we claim that
|Suppz(M)| < N2iT, for each T C Z. To see this, fix T C 7 and assume by
way of contradiction there is a finite Y~ C Suppz(M) with Y| > N2 . For
each pair p # q from Y, choose some ¢pq(7,€pq) € P\ q and let D C M
be finite, containing all these épq. Thus, the set {p|D : p € Y'} are distinct
elements of Sz(D). As each restriction p|D supports an infinite array, each
supports an m-array, contradicting our definition of N7

Thus, conditions (1)—(5) are equivalent.

(6) = (5): Suppose T' is mutually algebraic. Then by Theorem 3.3 of
3], T is weakly minimal, trivial, has nfcp, and moreover, any expansion of
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any model of T" by unary predicates also has an nfcp theory. By way of
contradiction, fix M, ¥ C Z, and an infinite set of distinct mutually algebraic
types {p; : i € w} C Suppz(M). As there are only finitely many permutations
of T, we may assume that for distinct 7, j € w, no permutation of a realization
of p; realizes p;. As the language is finite relational, choose the set F of L-
formulas as in Proposition A.2. By the pigeon-hole principle and relabelling,
choose an L-formula (7, w) € F such that for every i € w, there is h; €
M'®®@) such that (T, h;) € p; and ¢(Z, h;) is mutually algebraic. Note that
since T has nfcp, there is an M-definable formula (@) such that for any
h e M'®® M = pu(h) if and only if o(Z,7) is mutually algebraic.

Let M = M be |M|"-saturated. We will obtain a contradiction by
constructing an expansion Mt = (M, U,V,W) by unary predicates that
has the finite cover property. From the saturation of M, choose k-tuples
(@ : i € w,j < i} (where k = 1g()) such that @ realizes p;(T) but
acl(Mal) N acl(Mdg,/) — M unless i = ' and j = j'. Let A = JU{@ :
i€w,j<i}andlet B={b:icw j<i}bethesubset of A consisting of
the ‘first coordinates’ i.e., b! = (@), for all 4, ;.

Let MT be the expansion of M by interpreting UM" = A, VM = B, and
WM™ = M. Let

P(T) := AU(@ AT | AW(w) A (W) A (T, )]

Note that M™ |= P(@) for all i € w, j < i. Also, if b/ € B and M* =

)

P(b],az,...ax), then by mutual algebraicity, {as,...,ar} C acl(Ma!), so

(b, ag, ..., a) is a permutation of @. Let ¥’ = (z2,...,2%), ¥ = (Y2, -, Yk),
and put

E(z,y) := I3 [P(x, T )Py, T)A(YO € W) )\ R(z, T, W) <> R(y, ¥, 0)]

E is an M*-definable equivalence relation on B = V" and Mt |= E(b/, bg,l)
if and only if ¢ = ¢/. Thus, E has arbitrarily large finite classes, which
contradicts Th(M™) having nfcp.

Remark 6.2. The implication (6) = (5) above really relies on counting
quantifier-free mutually algebraic types that support infinite arrays. As an
example, Th(Z, S) is mutually algebraic, but there are infinitely many mutu-
ally algebraic formulas ¢, (z,y), each of which support infinite arrays. Take

(2, y) =320 .. 3za[(x = 20) A (Y = 20) A N2y S (205 Zns1)]-
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(2-5) = (6): We assume all of (2-5) and prove that 7" is mutually alge-
braic by way of Theorem 2.1. Choose an N;-saturated Ml = T". As QMA (M)
is finite, choose a finite D C M so that every p € QMA(M) contains a
mutually algebraic formula in QF (D), and choose a countable M < M with
D CM. Fixz C Z and let

Bz := {all L(M)-formulas ¢(T) that are equivalent to boolean
combinations of quantifier-free mutually algebraic a(Z’) for some
T C 7).

Note that since y = y is mutually algebraic and ¢(T) := «(T)AA\,cpnw ¥y =y
is equivalent to «(T’), we can construe every quantifier-free, mutually alge-
braic «(7') as an element of Bz.

Claim 1. If ¢,@ € M"®® satisfy ¢(¢) <+ ¢(¢) for every ¢ € Bz, then
tp(c/M) = tp(¢ /M)

Proof. First, as z = m is mutually algebraic for each x € T and m € M,
it suffices to show this for all ¢,& € (M \ M)®@®. In this case, as ¢,¢ agree
on all quantifier-free, mutually algebraic L(M)-formulas «(z,) for 7, C 7,
it follows that ¢ = ¢,...¢, and @ = @ ...¢. have corresponding maximal
mutually algebraic decompositions over M, and moreover, by our choice of
D, tp(¢;/M) = p|M if and only if tp(c,/M) = p|M for every 1 < i < r and
every p € QMA(M). Thus, tp(¢/M) = tp(¢ /M) by Conclusion 5.10.

Claim 2. Every 0(7) € QF4(M) is equivalent to some ¢(T) € Bsz.
Proof. Fix 0(7) € QF4(M). We first show that for every € € (M),
there is some 0z(T) € Bz such that M = d¢(€) and

M = VZ(6:(Z) — 0(T)).

To see this, let I'(Z) := {0(7) € Bz : M |= d(e)}. By Claim 1, every € realiz-
ing I'(7) also realizes 0(T), so the existence of () follows by compactness
and the N;-saturation of M. Let A(Z) = {0:(Z) : € € 6(M)}. A second
application of compactness and saturation implies that some finite Ay C A

satisfies
M [= VZ(0(z) — \/ A0(T))
so take p(T) := \/ Ao(T).

That T' = Th(M) is mutually algebraic now follows immediately from
Claim 2 and Theorem 2.1 applied to M.
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7 Identifying mutually algebraic structures and
theories in arbitrary languages

In this section, we use Theorem 6.1 to deduce local tests for mutual alge-
braicity without regard to the size of the language, nor the completeness of
the theory. We begin by noting, either by Lemma 2.10 of [3] or deducing it
from Lemma 2.1, that ‘mutual algebraicity’ is an elementary property, i.e.,
if M is mutually algebraic, then any elementarily equivalent M’ is mutually
algebraic as well.

Lemma 7.1. Suppose Ly C L are finite relational languages, M is an L-
structure, and My is its reduct to an Lg-structure.

1. If D C M 1is finite, every Lo-type p € Supp%O(D) has an extension to
an L-type q O p with q € SuppZ(D).

2. If M has uniformly bounded arrays, then so does M.

Proof. (1) Choose an infinite array {@; : i € w} C (M;)'®@ of re-
alizations of p. As both D and L are finite, there are only finitely many
L-types in Sz(D), so there is an infinite subsequence {@; : ¢ € I} such that
tpy(@;/D) = tpy(a;/D) for all i,j € I. Then tp,,(a;) for any ¢ € I is as
required.

(2) Assume that M has uniformly bounded arrays. Let M be an N;-
saturated model of Th(M) and let M be the reduct of M to Ly. So M is
an Nj-saturated model of Th(My). Suppose every L-atomic formula has free
variables among Z. By applying Theorem 6.1 to Th(M), SuppZ (M) is finite
for all subsequences T C Z, and by a second application of Theorem 6.1 to
Th(My), it suffices to establish the following Claim:

Claim. For each Z C Z, [SuppZ®(M)| < |SuppZ(M)|.

Proof. FixZ C Z, and assume that SuppZ(M) = {q; : i < N'}. In order
to establish the Claim, it suffices to prove that for every finite D C M, every
Lo-type p € Suppé0 (D) is a subset of some q;. To see this, choose any finite
D C M, and any p € SuppZ®(D). By (1), there is some L-type ¢ D p with
q € SuppZ(D). Since ¢ has an extension to some q; € SuppZ(M), it follows
that p C q; for some 7 < N.
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Definition 7.2. For L an arbitrary language, fix any atomic L-formula R(Z).
Let Lg := {R, =}, which is visibly finite relational. Given an L-structure M,
let My denote the reduct of M to an Lg-structure. We say R has uniformly
bounded arrays in M if the Lg-structure Mz has uniformly bounded arrays.

Theorem 7.3. The following are equivalent for an L-structure M in an
arbitrary language L:

1. M is mutually algebraic;
2. Every atomic R(Z) has uniformly bounded arrays in M;
3. For every atomic R(Z), the reduct Mg is mutually algebraic.

Proof. The equivalence of (2) and (3) follows by applying Theorem 6.1
to each of the (finite relational) Lg-theories Th(Mpg).

For (3) = (1), in order to prove that M is mutually algebraic, by Theo-
rem 2.1, it suffices to prove that every atomic R(Z) is equivalent to a boolean
combination of mutually algebraic formulas. Fix an atomic R(Z). By (3) and
Theorem 2.1 applied to Mg, R(Z) is equivalent to a boolean combination of
quantifier-free mutually algebraic Lg(M)-formulas. As a mutually algebraic
formula in Mg is also mutually algebraic in M, the result follows.

Finally, assume (1). To obtain (2), fix an atomic R(Z). By Theo-
rem 2.1, choose a finite set {¢1(Z1,€1), ..., ©r(Tk, €)} of mutually algebraic,
quantifier-free L-formulas for which R(Z) is equivalent in M to some boolean
combination (so each T; is a subsequence of Z). Expand L to L', adding
new lg(;)-ary relation symbols U; and let M’ be the definitional expansion
interpreting each U; as ¢;(M,€;). Let Ly = {Uy,..., U}, L = Lo U {R},
and let My, M¥ be the reducts of M’ to Ly and LE, respectively. Note that
My and M{* have the same quantifier-free definable sets, and that the reduct
of Mé? to LR is MR'

As each Lg-atomic formula is mutually algebraic, it follows from Theo-
rem 2.7 of [3] that M, is mutually algebraic. As L is finite relational, by
applying Theorem 6.1 to Th(My), My has uniformly bounded arrays. Since
My and M have the same quantifier-free definable sets, we conclude that
ME also has uniformly bounded arrays. As L{ is finite relational, it follows
from Lemma 7.1 that Mg has uniformly bounded arrays as well.

The following Corollary now follows easily. Clause 2 is a slight strength-
ening of Theorem 2.1.
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Corollary 7.4. Let L be an arbitrary language.
1. The reduct of a mutually algebraic L-structure is mutually algebraic.

2. If M is mutually algebraic, then every atomic R(Z) is equivalent to a
boolean combination of mutually algebraic, quantifier-free Lg-formulas.

Proof. (1) Let M be any mutually algebraic L-structure, let Ly C L be
arbitrary, and let My be the reduct of M to Ly. Fix any atomic R(Z) € Ly.
Applying Theorem 7.3 to M gives Mg mutually algebraic. As this holds
for all atomic R € Ly, a second application of Theorem 7.3 implies M is
mutually algebraic.

(2) is also by Theorem 7.3.

Finally, we consider incomplete theories. The following Corollary follows
immediately from Theorem 7.3, as by definition, an incomplete theory T is
mutually algebraic if and only if every model M |= T is mutually algebraic.

Corollary 7.5. A possibly incomplete theory T in an arbitrary language is
mutually algebraic if and only if for every M |= T, every atomic R(Z) has
uniformly bounded arrays in M.

A A basis of mutually algebraic formulas

Lemma A.1. Let T be an arbitrary L-theory, 1g(Z) = k, and suppose that
0(z) == )\ (@) A )\ ~B;(T;)
i€s jeu

is mutually algebraic and supports an infinite array, with each o;(T;), B(T;)
mutually algebraic and each T;,T; a subsequence of T. Then there is a subset

So C S of size at most k such that | J;cs, Ti = T and 07(T) = N\cg, i(Ti) is
mutually algebraic.
Proof. Form a maximal sequence (ig,...,%,_1) from S such that for

each j < m, T;, is properly partitioned by U,.; Ti,, i.e., To; N U,; Ti, # 0
and T, \ U,.; T, # 0. As lg(x) = k, m < k. Take Sy = {i; : j < m}, let
T = Ujeg, Ti- By iterating Lemma 2.4(6) of [2], 0*(ZTm) = Nieg, i(Ti) is
mutually algebraic, so to complete the proof it suffices to prove that z,, = 7.
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Suppose this were not the case, i.e., write T = T,,," 7 with 7 # (). Choose
an infinite array {a, : n € w} of realizations of §(7). Let b = @[y and, for
every n € w, let ¢, = (@,z,,)"b. It suffices to prove the following Claim, as
it contradicts 6(T) being mutually algebraic.

Claim. 0(c,) holds for cofinitely many n.

Towards the Claim, we first show that «;(¢,[z,) holds for every i € S and
n € w. To see this, fix i € S. By the maximality of the sequence defining
So, either T; C T, or T; N Ty, = 0. If T; C Ty, then (¢, [z, ) holds because
Cnlz, = Gnlz, and @, realizes §(7). On the other hand, if T; N Z,, = (), then
Cnlz, = bz, = oz, and @ realizes 0(T).

To finish the proof of the Claim, it suffices to show that for any 5 € U,
—Bj(Cnlz,) holds for cofinitely many n. Write 7; = "y with 7’ = Z; N7y,
and ¥ = T; \ Tp,, and again we split into cases. If ¥ =0, i.e., T; C T,,, then
Cnlz;, = Gnlz,, 50 2f3;(Culz,) since 0(ay,). If 7' = 0 then ¢, [z, = 5[@ = aglz,,
so again —f3;(C, [z, ) since 6(ap). Finally, if both 7’ and 7’ are non-empty, 7' "7’
is a proper partition of ;. Let b= l_)[gf. As (3;(7;) is mutually algebraic,
choose an integer s such that 3=°7'3; (7’ b). As {C,]w : n € w} are disjoint,
there are at most s n’s for which f;(c, [f/,l_a/) holds, hence —3;(¢,[z;) holds
for cofinitely many n.

The following Proposition reaps the benefit of a finite, relational language.

Proposition A.2. Suppose M is mutually algebraic in a finite, relational
language with every atomic formula having free variables among Z. There is
a finite set F = {@;(T;,w;) : i < m} of quantifier-free L-formulas such that
for every T C Z and every p € Suppz(M) that contains a mutually algebraic
formula, there is some p; € F and & € M8 such that ;(T, ;) € p and is
mutually algebraic.

Proof. First, by Theorem 2.1, there is a finite set B = {J;(Z;, &) :
i < n} of mutually algebraic L(M)-formulas such that every atomic R €
L is equivalent to a boolean combination of formulas from B. It follows
that for every T C z, every v(Z) € QF4(M) is also equivalent to a boolean
combination of B-formulas. Let k = 1g(Z) and let By denote the (finite) set
of < k-conjunctions of formulas from B, ie., By = {ABy : By € B and
|Bo| < k}. Let

F ={p@ w):7 CZand ¢(7,h) € By for some h € M@}
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To see that F is as desired, fix T C Z, p € Suppz(M) containing a
mutually algebraic formula v(7), and a realization @ of p. Write 7(7) as
a disjunction \/ 6, where each 6, is a conjunction of B-formulas and their
negations. Let 6(Z) be one of the conjuncts for which #(a) holds. Then
0(T) € p and since 6(T) - v(T), 6(T) is mutually algebraic. Write

0x) = N\ oi(@,e) n N\ —0;(F;.))
ics jeu

with each 0;(7;, €;), 6;(7;, €;) € B, hence mutually algebraic. Apply Lemma A.1
to 0(7), obtaining Sy € [S]=" as there. Thus, p(7, h) := A;cq, 0i(Ti &) € p
and is mutually algebraic. Visibly, o(Z, h) € By, so o(Z,w) € F as required.
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