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ABSTRACT
A “dialogue act” is a written or spoken action during a conversa-
tion. Dialogue acts are usually only a few words long, and are often
categorized by researchers into a relatively small set of dialogue
act types, such as eliciting information, expressing an opinion, or
making a greeting. Research interest into automatic classification
of dialogue acts has grown recently due to the proliferation of Vir-
tual Agents (VA) e.g. Siri, Cortana, Alexa. But unfortunately, the
gains made into VA development in one domain are generally not
applicable to other domains, since the composition of dialogue acts
differs in different conversations. In this paper, we target the prob-
lem of dialogue act classification for a VA for software engineers
repairing bugs. A problem in the SE domain is that very little sample
data exists – the only public dataset is a recently-released Wizard
of Oz study with 30 conversations. Therefore, we present a transfer-
learning technique to learn on a much larger dataset for general
business conversations, and apply the knowledge to the SE dataset.
In an experiment, we observe between 8% and 20% improvement
over two key baselines.
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1 INTRODUCTION
A dialogue act (DA) is a written or spoken action taken during
a conversation. For example, an utterance “turn left at the next
light” is an instruction, versus a request for information such as
“when should I turn?” Dialogue acts are important components of
discourse modeling, and have been studied for decades: first in
sociology [5, 37] and later in computational linguistics [36]. DAs
are “the minimal unit of linguistic communication” [37] and are
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key to both automated comprehension and generation of natural
language dialogue.

Dialogue act classification refers to the automated labeling of
utterances with the appropriate DA types. It is a well-studied prob-
lem that has largely followed the history of other areas of applied
machine learning: early attempts involved manually-curated feature
sets based on word usage [2], later enhanced by knowledge of rela-
tionships between DA types such as common conversation flows [6].
Today, state-of-the-art performance on large datasets is achieved by
neural network-based architectures [13, 20, 22].

Interest in DA classification has ballooned due to the proliferation
of automated virtual agents (VAs) such as Siri, Cortana, and Alexa.
One of the first tasks a VA must perform is classification of a human
conversation participant’s utterance into a dialogue act; it must know
whether it is e.g. being given an command or being asked a question
before it can craft a sensible reply. And for many VAs, large and
context-appropriate datasets exist to train strong classifiers [39]. For
example, a designer of a VA for appointment scheduling could draw
on a dataset with many thousands of utterances [11].

But this straightforward approach is not available for many spe-
cialty applications where datasets are rare and expensive. As Gan-
gadharaiah et al. [16] pointed out, “methods that achieve state of the
art performance on synthetic datasets perform poorly in real world
dialog tasks.” Likewise, Kang et al. [21] emphasize that methods
trained on datasets in one domain tend not to generalize well to
problems in other domains, since the number and composition of
dialogue act types differ dramatically.

In this paper, we target the problem of dialogue act classification
for virtual agents in the domain of software engineering (SE). Specif-
ically, we envision building a VA to assist software engineers during
debugging: the imagined situation is that a programmer receives
a bug report, and has questions about the codebase in which the
bug occurs. A VA is desirable in this situation because debugging
is often assigned to junior programmers who are learning a new
codebase [7] and may have more questions than senior colleagues
can handle [35].

Wood et al. [44] have found that discourse structure is quite
different in SE compared to the in other domains; unfortunately,
datasets in this domain are expensive to create. The only relevant
public dataset, released by Wood et al. [44], required over a year of
effort and many thousands of dollars in recruitment and technology
costs. Even so, it involves only 30 participants and a few thousand
utterances – generally speaking, it is not enough to train a state-of-
the-art system.

Therefore, we propose a transfer learning architecture to “learn
what we can” from an available, large dataset and apply it to the

https://doi.org/10.1145/3387940.3391487
https://doi.org/10.1145/3387940.3391487


ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Andrew Wood, Zachary Eberhart, and Collin McMillan

specialized SE VA problem we target. Our approach works by com-
bining two encoders: a “global” encoder trained with a large corpus
of generic conversations, and a “local” encoder trained with the
limited SE domain-specific data.

We evaluate our approach against two baselines: 1) a recent ap-
plicable approach from related literature trained only on the limited
available domain-specific dataset, and 2) the same algorithm trained
with data from a large corpus of generic conversations. We select a
subset of dialogue act types as a target set, since not all types are of
equal value for a VA to recognize. Experimental results show that
our approach outperforms the baselines by 8% and 20% on the target
dialogue act types.

2 PROBLEM AND SCOPE
The long-term vision of this paper is an automated virtual agent
for software engineers during debugging. A recent book by Rieser
and Lemon [32] outlines an accepted process for designing natural
language dialogue systems. The book’s recommendation is to start
with Wizard of Oz (WoZ) experiments to collect simulated data, then
study the data to learn and predict the dialogue act types, followed by
reinforcement learning to optimize response strategy, and language
generation to produce comprehensible replies.

A recent paper by Wood et al. [44] released one of the only exper-
imental WoZ datasets in the field of software engineering designed
for building VAs. The paper reports a manual identification of the
DA types, and a method for automatically predicting them. The au-
tomatic method is a simple bag-of-words SVM-based text classifier,
which the paper states is only intended to establish a baseline.

We pick up where Wood et al. [44] left off, using the SE WoZ
dataset. Following the process recommended by Rieser and Lemon,
we have attempted to build an effective dialogue act classifier based
on the published state-of-the-art. However, in pilot studies we found
results similar to Gangadharaiah et al. [16] and Kang et al. [21]; the
latest technology often does not achieve usable results in practice.

In our view, there are two reasons for the relatively low state-of-
the-art performance: first, the size of the available data is limited
in our application, compared to the large synthetic datasets used in
many papers on dialogue act classification. The neural algorithms
used in recent papers are notorious for requiring tens of thousands
or more examples for training for good results in text classification.
The WoZ dataset we use is not even one tenth as large.

Second, the discourse structure in the dataset we use is quite
different, meaning that the DA classification accuracy levels reported
for large synthetic datasets do not apply. The majority of papers on
dialogue act classification report an overall accuracy for all classes.
For example, Chen et al. [13] report a remarkable 91.7% accuracy,
versus 90.9% for a baseline on a standard dataset. However, the
performance can vary considerably for different dialogue act types.
In our situation, we care a lot more about acts denoting information
requests (given that we seek to answer questions) than we do about
greetings or opinions. Also, it is important for us to distinguish
differences such as a request for information and a request for an
assessment. But dialogue act types associated with these are among
the worst performers in the approach taken by Chen et al. [13].
Therefore, despite reporting high (90%+) overall accuracy, “off-the-
shelf” approaches are not necessarily suitable for this domain.

Table 1: Selection of closely-related projects targeting Dialogue Act
Classification.

Project Year W M H N P

Andernach [2] 1996 x x
Reithinger and Klesen [31] 1997 x x
Stolcke et al. [40] 2000 x x x
Serafin et al. [38] 2003 x
Grau et al. [19] 2004 x x
Ang et al. [4] 2005 x x
Surendran and Levow [41] 2006 x x
Geertzen et al. [17] 2007 x x
Zimmermann [45] 2009 x x
Boyer et al. [9] 2010 x
Tavafi et al. [42] 2013 x x
Blunsom et al. [8] 2013 x x x
Milajevs and Purver [28] 2014 x x x
Khanpour et al. [22] 2016 x x
Ji et al. [20] 2016 x x x
Lee and Dernoncourt [25] 2016 x x
Liu et al. [26] 2017 x x x x
Kumar et al. [24] 2018 x x x x
Chen et al. [13] 2018 x x x x

3 BACKGROUND / RELATED WORK
This section summarizes the history of research on classification of
dialogue acts and interactive natural language systems for software
engineering.

3.1 Dialogue Act Classification
Table 1 summarizes the key related work on Dialogue Act Clas-
sification. Related work can be broadly categorized along the five
dimensions in the table. Column W indicates whether the classifier
uses words in the dialogue as features. M indicates whether the clas-
sifier uses manually-crafted features other than words (but which
may be based on words, e.g. length). H indicates whether the history
of previous dialogue acts in a conversation is used to predict the
current act type. N indicates whether the approach is based on neural
nets. P indicates whether the approach is post-hoc, that is whether it
predicts all act types for a whole conversation, rather than one act at
a time (i.e. ongoing conversations).

Observations include: 1) nearly all related work uses the words in
a dialogue act as features for classification in one way or another;
some projects rely on a bag-of-words representations, and others
use n-grams or sequence-based representations (e.g. as provided
by a recurrent neural network). 2) A clear shift from manually-
crafted features to neural net-based approaches begins around the
year 2013. This shift reflects the trend across many areas of NLP
and AI research, as a recent survey by Chen et al. points out [12].
And, 3) several studies have found that history of previous dialogue
act types in a conversation improves classification performance.

The neural net-based approaches can be further classified as ei-
ther post-hoc or online. A post-hoc approach retroactively labels
every utterance in an entire conversation, in contrast to an online
approach which labels a “current” dialogue act given some conver-
sation history. The approach taken by Kumar et al. [24] takes an
entire dialogue as input, using recurrent “sentence level” layers that
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output to another recurrent “conversation level” layer that ultimately
produces predictions for every utterance in a conversation. This
structure is useful in post-hoc analysis, but does not fit the need for
predictions in VAs, which must classify dialogue acts as soon as they
are received.

3.2 Software Engineering Virtual Agents
Virtual Agents to assist software engineers during development have
been envisioned for decades [43], but the recent proliferation of vir-
tual agents for general tasks (e.g. Siri, Cortana, Alexa) has reignited
research towards that vision [33]. Key related work includes Why-
Line by Ko and Myers [23], which attempts to explain program
behavior; TiQi by Pruski et al. [30], a dialogue system for database
queries; and a natural language dialogue system by Escobar-Avila et
al. [15] to accompany video tutorials. Most recently, Bradley et
al. [10] designed a virtual agent that performs various tasks for pro-
grammers, and Wood et al. [44] simulated a virtual agent for bug
repair in a WoZ experiment.

4 MODEL DESIGN
This section describes our model design. A key component of our
model is the “dual encoder” design, in which one encoder is trained
using a large source dataset of generic conversations, while another
is trained on a small, specialized target dataset of conversations in
the target domain. For our purposes, the target domain is software
engineering debugging virtual agents, for which we use the small
dataset provided by Wood et al. [44], and the source dataset is the
AMI business conversation corpus provided by McCowan et al. [27].

4.1 Overview
Figure 1 shows an overview of our model. At a high level, it re-
sembles many attentional encoder/decoder NMT systems, though
many practical details differ. Of note, it makes use of two encoders:
a global encoder and a local encoder. We train these encoders sepa-
rately to provide the model with both an extensive knowledge base
from a broad domain and the specialized knowledge available in the
target domain.

During training, we first provide the global encoder (area 1) with
every word sequence in the large source dataset. We train that en-
coder based on the label for each dialogue act (area 2), and we save
all of the weights learned by that encoder.

We then train the local encoder (area 3) on the target dataset. To
do so, we first reload the weights learned by the global encoder
and set that encoder as not trainable. We then send the each word
sequence in the target dataset through both encoders. The global
encoder is not trainable at this point, and creates a representation
based on the source dataset alone. The local encoder’s initial state is
set equal to the final state of the global encoder (area 4).

Next, we attend each state in the local encoder to states in the
global encoder (area 5). The intent is to identify states where the
global and local encoders are similar (i.e. where global knowledge
is relevant to the local situation) while attenuating other states (i.e.
less relevant global knowledge).

We create a context vector by concatenating the attended global
states to the local states (area 6). We then use one fully-connected
layer per concatenated state (area 7) to determine how to combine the

Figure 1: Overview of our model. See text in Section 4.1 for
discussion of labeled areas.

global and local state (i.e. which should be used for classification).
Finally, we flatten the output of these layers into a single vector and
prepare for the final classification (area 8).

During inference, we provide a word sequence to both encoders,
discard the output at area 2, and use only the output at area 8 as the
final prediction.

4.2 Model Details
Given a corpus of utterances C = {u j}k

j=0 composed of k utterances,
where each utterance is a sequence of words u j = {w jn}l

n=0 that
has a maximum utterance size l, we can construct a vocabulary
VC for corpus C such that |VC| = m and contains the top m most
frequent words in C. We define our DA classification problem f as
predicting a single DA type pi out of d DA types given an utterance
ui. We construct the solution as a decision function that computes
the probability distribution over all potential DA types given an
utterance u j:

f = {Prpi|u j}d
i=0 (1)

Specifically, our base models compute this decision function using
an embedding function e to map each word into a continuous vector
space e : wi ∈ VC → R1×n, a Long-Term-Short-Memory (LSTM)
Recurrent Neural Network (RNN), and an output softmax layer.
Formally, we can divide this decision function into two discrete
parts: the encoder containing the embedding function and RNN
encoder with q encoding dimensions, and the predictor containing
the softmax layer. Given learnable encoder parameters Φenc and
learnable predictor parameters Φpred , the base decision function can
be expressed as (for an utterance u j):

henc,t ,cenc,t = (2)
fenchenc,t−1,cenc,t−1,eu jt ,Φenc

f = so f tmaxhenc,|u j |,Φpred (3)
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where so f tmaxvk =
eyk

j
ey j returns a probability distribution, and

henc,t and cenc,t are the LSTM encoding and context of the sequence
over time t.

We use two corpora: a large source corpus C1 and a smaller target
corpus C2, which have separate vocabularies VC1 and VC2 that share
some common words Voverlap. The source corpus is significantly
larger than the target corpus, or |C2| ≪ |C1|. We considered four
decision functions, each building on the previous one, designed to
minimize cross entropy loss over the target corpus.

Our first decision function is trained on a single corpus using only
the architecture described above, and it can be directly expressed by
equations (2) and (3). We use this simple decision function as our
baseline method in Section 6.

Our second decision function uses the same architecture. How-
ever, it trains on both corpora: it is trained on the target corpus
immediately after training on the source corpus. This can be ex-
pressed as conditioning the function for the target corpus f2 with the
function learned for the source corpus f1. Since these architectures
share all learnable parameters, we can express f2 as:

h2,enc,t ,c2,enc,t = (4)
f2,ench2,enc,t−1,c2,enc,t−1,eu jt ,Φ2,enc|Φ1,enc

f2 = so f tmaxh2,enc,|u j |,Φ2,pred |Φ1,pred (5)

Our third decision function introduces the “dual-encoder” archi-
tecture. It is defined over the target corpus f2 conditioned upon the
encoding function for the source corpus h1,enc,t . It uses two sepa-
rate LSTM RNNs that do not share trainable parameters. In fact, the
global encoder cannot be trained when the local encoder is trained on
the target corpus. The initial state of the local encoder is the output
state of the global encoder that encoded the same input sequence:

h1,enc,t ,c1,enc,t = (6)
f1,ench1,enc,t−1,c1,enc,t−1,e1u jt ,Φ1,enc

h2,enc,t ,c2,enc,t = (7)
f2,ench2,enc,t−1,c2,enc,t−1,e2u jt ,Φ2,enc|h1,enc,|u j |

f2 = so f tmaxh2,enc,|u j |,Φ2,pred (8)

The decision function first encodes the utterance u j using the
global encoder f1,enc, and then encodes u j again using the local
encoder conditioned on the global encoder.

The final decision function uses the complete architecture shown
in Figure 1. The local and global encoder relationship is the same as
described in the previous decision function; however, an additional
attention mechanism is introduced between the encoder and predictor
sections. This model collects all global and local encoder states for
a sequence, sends them through the attention mechanism, and uses
the flattened output of the attention mechanism as the input to the
prediction softmax layer:

h1,enc,t ,c1,enc,t = (9)
f1,ench1,enc,t−1,c1,enc,t−1,e1u jt ,Φ1,enc

h2,enc,t ,c2,enc,t = (10)
f2,ench2,enc,t−1,c2,enc,t−1,e2u jt ,Φ2,enc|h1,enc,|u j |

wattn = {so f tmaxh1,enc,t ⊙h2,enc,t}
|u j |
t=0 (11)

cattn = {wattn,t ⊙h1,enc,t}
|u j |
t=0 (12)

aattn = (13)
cattn,1,1, ...,cattn,q,1, ...,cattn,1,q, ...,cattn,q,q

f2 = so f tmaxaattn,Φ2,pred (14)

We direct readers to the dualencattendlstmwe.py file in our on-
line appendix (Section 8) for an implementation in Keras [14].

5 DATA PREPARATION
We used two datasets for this paper: 1) the AMI business meeting
corpus [27], which served as the source dataset and 2) a corpus
of Wizard of Oz conversations for software debugging [44], which
served as the target dataset. We chose to use the debugging corpus
because it is one of the few available datasets in the target domain.
There were several suitable candidates for the source dataset, such
as the TRAINS corpus [1], the Switchboard corpus [18], and the
MapTask corpus [3]. We ultimately chose to use the AMI corpus
because of its relatively large size, broad range of topics, thorough
documentation, and prior use in the SE domain [34].

The AMI corpus was transcribed from over 100 hours of meeting
recordings and contains over 100,000 utterances. The AMI corpus
was both segmented and annotated by its authors. The authors pro-
vide a thorough guide, but in brief, the process involves human
evaluators reading transcripts of the conversations and selecting a
continuous sequence of words by one speaker (an utterance), and
then labeling that sequence with one dialogue act type. The authors
developed a set of 14 dialogue act type labels, which they used to
label all utterances in the corpus. The dialogue act types are “generic”
in that they are applicable to a wide variety of conversations.

The debugging corpus comprises 30 WoZ dialogues between
human developers and simulated virtual agents, and it contains a
total of 2243 written dialogue turns. Wood et al. annotated each
message with a dialogue act types specific to the SE domain (e.g.
“API Question”).

The segmentation and annotation processes used to generate the
source and target datasets must be identical for our transfer learning
approach. To that end, we hired two human annotators to indepen-
dently segment and annotate all 30 debugging dialogues using the
AMI dialogue act types. Both annotators had at least two years of
programming experience and followed the published AMI annota-
tion guidelines. Because the annotators independently segmented
the dialogues, they did not always end up annotating the same ut-
terances (e.g., one annotator may have segmented a message into
two utterances, while the other considered the entire message to be
one utterance). On the utterances that they did both annotate, their
annotation agreement (as measured by Cohen’s kappa statistic) was
0.42, indicating moderate agreement. Additionally, because there
were two annotators, we could not automatically resolve disagree-
ments in segmentation or annotation (e.g., by taking a majority vote).
Therefore, we include both annotators’ segments and labels in the
target dataset.

We observe that the composition of dialogue acts in the two
datasets is quite different, as depicted in Figure 2. Some DA types
are in roughly the same proportion, such as Inform and Assess,
but others, such as Elicit-Inform, are far more common in the SE
domain-specific dataset.

This observation is important because some dialogue act types
are much more important for a VA to recognize than others (see Sec-
tion 2 above). In particular, we identify the following five dialogue
act types are the most significant ones for a SE/debugging VA to
classify correctly:
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• Elicit-Inform
– Example: “Is there an event listener on the frame class?”

• Elicit-Offer-Or-Suggestion
– Example: “How should I start?”

• Comment-About-Understanding
– Example: “I am confused”

• Elicit-Assessment
– Example: “Is this incorrect?”

• Elicit-Comment-About-Understanding
– Example: “do you get me?”

These are the most important for our use case for two reasons:
First, these cover the questions asked by programmers of a virtual
agent. We do not care if a system can classify text generated by
the agent itself, because the agent will already know what its own
dialogue act type is. Second, mistakes made in classifying commen-
tary as e.g. Be-Positive are easily recoverable by the VA in a real
conversation, while mistakes in classifying questions can degrade
trust in the system to answer those questions properly. Third, these
dialogue act types closely overlap with the key dialogue act types
uncovered by Wood et al. related to the questions programmers ask
(such as Elicit-Inform and API Question).

6 EXPERIMENT
This section describes the experiment we use to evaluate our model,
as well as relevant metrics and baseline methods.

6.1 Research Questions
Our research objective is to assess the performance of our model
in comparison to competitive baselines. To that end, we ask the
following Research Questions (RQs):

RQ1 What is the baseline performance training and testing with
AMI data?

RQ2 What is the baseline performance training with AMI data
and testing with the SE debugging dataset?

RQ3 What is the baseline performance training and testing with
the SE debugging dataset?

RQ4 What is our model’s performance training with AMI and
SE data, and testing with the SE dataset?

The rationale behind RQ1 is to establish a “reasonable expectation”
for performance given state-of-the-art tools and a large dataset. A key
goal of our model is to transfer knowledge learned on a large generic
dataset to a small, domain-specific dataset, and one simple transfer
approach is to just train on the large dataset. Another straightforward
approach is to train only on the limited domain-specific data we have
available. Our model will need to improve over these approaches to
justify the added complexity of our model, so we ask RQ2 and RQ3
to establish baseline performance and RQ4 to compare our model to
that performance.

6.2 Methodology
Our methodology to answer RQ1 is to randomly split the conversa-
tions from AMI into training/validation/test sets (80%, 10%, 10%),
in order to prevent dialogue acts from the same conversations from
appearing in both the training and test sets. We then train each
baseline using the training set and report results from the test.

Figure 2: The composition of dialogue acts types using the AMI
DA labels. Note that in our experiment we collapse the three
smallest classes into a 15th “other” class due to their tiny size in
the SE-Debugging data.

For RQ2 and RQ4, we combine the training and test sets of AMI
and use both together to train the baseline model (for RQ2) and the
global encoder portion of our model (for RQ4). This combination
maximizes the amount of available data without compromising eval-
uation results (as RQ1 is the only one that tests on the AMI data).
We still hold the validation set aside for model selection.

For the debugging dataset, we were interested in evaluating the
approaches on very small dataset sizes, so we created ten random
subsets containing between 3 and 30 conversations (ranging from
10 to 100% of the dataset). For each subset, we created ten random
training/val/test splits (70%, 10%, 20%), resulting in a total of 100
datasets based on the 30 conversations. We enforced a minimum of
one conversation in validation and testing, so in some cases fewer
than 70% of the conversations were in the training set (e.g. for the
subset with three conversations, the training/val/test sets consisted
of one conversation each).

Finally, for RQ2, we evaluate the baseline by training on the AMI
dataset and testing on each of the 100 test sets from the random splits.
For RQ3, we evaluate the baseline using the training and test sets
from the 100 splits. And for RQ4, we evaluate our model training
on the AMI dataset and the training sets from the 100 splits, and
testing on the test sets from the 100 splits. We report the average
of the ten random splits for at each of the ten sizes of conversation
(e.g., average results for all ten splits of 21 conversations).

6.3 Metrics
We use three standard metrics: precision, recall, and F1-score. We
weight based on class size using the default sklearn [29] settings.

6.4 Baselines
The main baseline we use is based on related work by Khanpour et
al. [22]: a word embedding and LSTM with the word sequence of
the dialogue act as input. We provide an implementation of this
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baseline in file lstmwe.py in our online appendix (Section 8). One
configuration of the baseline is to train with the AMI corpus and test
with the SE debugging corpus (RQ2), which represents a standard
attempt at transfer learning. Another configuration is to train and
test on only the SE debugging corpus (RQ3). We keep parameters
of the model e.g. word embedding dimensions and LSTM output
size identical to the global encoder in our approach (Section 4), to
minimize the number of experimental conditions.

As discussed in Section 3.1, there are many published approaches
for DA classification. Several of the newest are not directly compara-
ble because they are “post hoc” in that they are intended to classify
an entire conversation at once, rather than each dialogue act as it
occurs like a virtual agent would need to do. A consensus of the
others is that a combination of word embedding space and recur-
rent or convolutional layers leads to good performance, leading to
our choice of Khanpour’s approach as a strong baseline to evaluate
transfer learning strategies for our specific problem area.

In pilot studies, we verified a conclusion by Milajevs and Purver [28]
that incorporating history data (i.e. the prior DA types in a conversa-
tion) does not improve performance when combined with text data,
except in post hoc approaches. Therefore, we do not use history data
in our baseline.

6.5 Threats to Validity
As with any study, our experiment carries threats to validity; many
of these threats stem from the data preparation and processing. For
instance, the dialogues in the chosen corpora are not necessarily
representative of all "debugging" and "generic" dialogues, meaning
that different target or source datasets may lead to different results.
The “moderate” agreement between the annotators is another poten-
tial threat, and it implies that this is classification task is difficult
even for humans. Furthermore, by including both annotators’ seg-
ments and labels in the target dataset, we wind up with situations
in which two different labels are associated with identical segments.
This may artificially lower model performance during evaluation, as
the models would not predict different labels for the same segment.
Additionally, models trained on messy datasets (e.g. with incorrect
or contradictory labels) tend to perform worse than those trained
on clean datasets. However, the different models are all trained and
tested on the same datasets and splits, meaning that we can still
directly compare model performance.

Other threats include errors in extracting and parsing the word
sequences, random factors such as a random dataset split in which
the testing set turns out to be “easier” than average, and experimental
parameters that we chose such as the LSTM output size. While we
have taken steps to minimize these threats such as averaging results
of ten splits instead of relying on one, it is possible that large changes
in any of these threats could lead to different conclusions.

7 EXPERIMENTAL RESULTS
In this section we answer our Research Questions, providing our
rationale and supporting data.

7.1 RQ1: Baseline Expectations
The baseline performance when trained and tested on the AMI cor-
pus is a 72.59% precision, 54.88% recall, and 58.90% F1 score, with

Figure 3: Confusion heatmap for RQ1 (top) and RQ4 (bottom).
The row denotes the true label, and the column denotes the pre-
dicted label. Note that we have collapsed three tiny classes to
“other” (see Figure 2).

most errors related to the “other” category, as shown in Figure 3. We
view this as a ceiling on performance expectations for the SE dataset.
Also, we note that these results were very similar for all dialogue act
types and the five target types, unlike in the SE-debugging dataset.

7.2 RQ2: Baseline Transfer Learning
In terms of all dialogue act types, the baseline transfer learning
approach obtains much lower performance than the other approaches
for all dataset sizes six conversations and above (Figure 4). However,
the baseline transfer learning approach performs only slightly worse
than the others when considering only the five target dialogue act
types (Figure 5), meaning that its error rate is higher when classifying
DA types of lower value to us, such as backchannel and stall.

7.3 RQ3: Baseline Direct Training
The F1 score of the baseline direct training approach is similar to
our approach for all dialogue act types, but does not exceed the
baseline transfer learning for the five target types. Precision on the
five target types (Figure 5c) begins to exceed our model for the
two largest dataset sizes, which may imply diminishing returns for
transfer learning at greater dataset sizes.

7.4 RQ4: Our Model’s Performance
The strongest area of performance for our model is in recall on the
five target dialogue act types (Figure 5b), when recall exceeds the
baselines for all dataset sizes six conversations or greater. As shown
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Figure 4: F1 scores for all dialogue act types.

Figure 5: Performance metrics for the five most-important dia-
logue act types discussed in Section 5. X-axis is the number of
SE debugging conversations.

in Figure 3, the approach does struggle with the type elicit-comment-
about-understanding, probably due to the low incidence of that type.
However, a majority of the mistakes for the target DA types are
categorized as one of the other four target types, as opposed to the
lesser-important ones e.g. backchannel.

An important caveat is that the F1 scores for all approaches are
about 20% lower for the five target dialogue act types than for
all types (∼40% versus ∼60%). Nearly all papers on dialogue act
classification report accuracy over all dialogue act types, but some
types are more important than others, and some types are much
“easier” to detect than others.

8 CONCLUSION AND REPRODUCIBILITY
We have presented a technique for transfer learning in dialogue
act classification. For domain-specific applications such as building
virtual agents for program debugging, the available data may be
very small compared to the datasets available for open-topic con-
versations. However, a VA needs to be able to adequately identify
the dialogue act types of user utterances in these specialized con-
versations in order to generate suitable responses. We find that our
proposed model design can transfer knowledge from a large dia-
logue dataset to a smaller domain-specific one, and exceed baseline
performance on classifying high value dialogue act types.

To promote reproducibility and assist future work, we release all
data and source code in an online appendix:

https://tinyurl.com/y83v6v39
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