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Tracking vegetation phenology 
across diverse biomes using Version 
2.0 of the PhenoCam Dataset
Bijan Seyednasrollah   1,2,3*, Adam M. Young   1,2, Koen Hufkens   4,5, Tom Milliman   6, 
Mark A. Friedl   7, Steve Frolking   6 & Andrew D. Richardson1,2

Monitoring vegetation phenology is critical for quantifying climate change impacts on ecosystems. 
We present an extensive dataset of 1783 site-years of phenological data derived from PhenoCam 
network imagery from 393 digital cameras, situated from tropics to tundra across a wide range of plant 
functional types, biomes, and climates. Most cameras are located in North America. Every half hour, 
cameras upload images to the PhenoCam server. Images are displayed in near-real time and provisional 
data products, including timeseries of the Green Chromatic Coordinate (Gcc), are made publicly 
available through the project web page (https://phenocam.sr.unh.edu/webcam/gallery/). Processing is 
conducted separately for each plant functional type in the camera field of view. The PhenoCam Dataset 
v2.0, described here, has been fully processed and curated, including outlier detection and expert 
inspection, to ensure high quality data. This dataset can be used to validate satellite data products, to 
evaluate predictions of land surface models, to interpret the seasonality of ecosystem-scale CO2 and 
H2O flux data, and to study climate change impacts on the terrestrial biosphere.

Background & Summary
Phenology is broadly defined as the timing of recurring of biological events1. Vegetation phenology exerts signifi-
cant control over seasonal changes in ecosystem structure and function2,3. Key examples of this influence include 
the role of vegetation phenology in dictating the timing and magnitude of ecosystem carbon uptake4,5, as well as 
seasonal shifts in energy and water fluxes between the surface and the atmosphere6–8. Vegetation phenology is 
also sensitive to climate variability. In temperate and boreal forest ecosystems, phenology is predominantly driven 
by air temperature9–11, while in warm, arid grassland ecosystems, phenology responds strongly to the timing and 
magnitude of precipitation events12,13.

Standardized and publicly-available phenology datasets can provide a key source of information to aid sci-
entists and land managers in documenting—and anticipating—the impacts of climate change on terrestrial eco-
systems14,15. A range of vegetation phenology datasets are available, varying in spatial and temporal extent and 
resolution16. On-the-ground observations of individual organisms have been made by citizen science observers 
for decades, and contributed to databases such as the U.S. National Phenology Network17. At much broader 
spatial scales, satellite-based remote sensing platforms (e.g., Moderate Resolution Imaging Spectroradiometer 
(MODIS), Landsat, and Sentinel 2) provide time-series of land-surface greenness (e.g., normalized difference 
vegetation index), allowing for characterization of vegetation phenology across the earth’s entire surface18,19. 
However, landscape heterogeneity is unresolved under relatively course pixel resolutions provided by satellites 
sensors (e.g., ≈500 meters in MODIS), potentially confounding phenological signals20,21. Over the last decade, 
a complementary approach has been developed to monitor vegetation phenology: near-surface remote sensing 
using high-frequency digital repeat photography16,22–25. While both airborne and ground-based observations 
have their own strengths, limitations and uncertainties, this so-called “phenocam” approach can serve as a bridge 
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across scales, providing continuous temporal coverage of phenological change at the organism-to-ecosystem 
level, with comparatively small uncertainties26.

Digital repeat photography offers an automated and cost-effective way to characterize temporal changes in 
vegetation16. Briefly, digital cameras, mounted overlooking the vegetation of interest, are used in time-lapse mode 
to record images throughout the day, from sunrise to sunset. Information about vegetation color—most com-
monly, “canopy greenness”—is extracted from the imagery, and used to quantify phenological changes. Specific 
phenophase transition dates, e.g. corresponding to the onset of spring green-up, can be identified from the sea-
sonal trajectory of canopy greenness. Image analysis can be conducted for individual organisms or at the canopy 
scale. For more information, see refs16,22,27,28.

The PhenoCam network (http://phenocam.sr.unh.edu) was established in 2008. PhenoCam, which focuses on 
terrestrial ecosystems of North America, is one of several networks worldwide to leverage near-surface remote 
sensing for tracking of vegetation phenology. Similar networks include the European Phenology Camera Network 
(EuroPhen)29 and the Japanese Phenological Eyes Network (PEN)30. Phenocams are also being deployed as part of 
the NEON (National Ecological Observatory Network) and LTAR (Long Term Agricultural Research) networks 
in the USA, ICOS (Integrated Carbon Observation System) in Europe, TERN (Terrestrial Ecosystem Research 
Network) and the Australian Phenocam Network in Australia, and the e-Phenology project in Brazil16,31–34.

The previously-released PhenoCam Dataset v1.028 is a curated and publicly available (CC0 Public Domain 
Dedication) data set that includes both digital camera imagery (https://doi.org/10.3334/ORNLDAAC/1560)35 and 
data derived from that imagery (https://doi.org/10.3334/ORNLDAAC/1511)36. This initial public release of data 
from PhenoCam included imagery through the end of 2015 from 130 cameras, comprising almost 750 site-years 
of data28. Here, we describe a major update—v2.0—to the PhenoCam Dataset, with two significant improvements. 
First, coverage has been substantially increased. The new dataset includes imagery through the end of 2018 from 393 
cameras, comprising 1783 site-years of data (see Fig. 1). Second, data and imagery have been screened to exclude 
cameras programmed for “grey world” automatic white–balancing (AWB), as AWB can negatively impact the qual-
ity of the derived time series. In addition, we also present here an analysis of the representativeness of the current 
distribution of PhenoCam network cameras, to identify ecoregions and climate zones that are under-represented.

Methods
Details on camera installation and configuration protocols, site classification, and image and data processing 
routines have been previously documented by Richardson, et al.28. Here we provide a brief summary.

Each PhenoCam camera is classified into one of three classes: Type I, Type II or Type III. Type I cameras (406 
cameras) follow a standardized protocol, and site personnel are actively engaged as PhenoCam collaborators, e.g. 
providing camera maintenance and troubleshooting as required. For Type II cameras (70 cameras), there is some 
deviation from the standard protocol (e.g., non-standard camera brand or model), but site personnel are still 
actively engaged. For Type III cameras (52 cameras), there is some deviation from the standard protocol, and no 
active collaboration of personnel on-site.

Fig. 1  Spatial distribution of PhenoCam data across ecological regions of North America. Background map 
illustrates USA Environmental Protection Agency Level I Ecoregions1,51. Data counts have been aggregated to 
a spatial resolution of 4°, and the size of each circle corresponds to the number of site-years of data in the 4 × 4° 
grid cell. Sites in Hawaii, Puerto Rico, Central and South America, Europe, Asia and Africa (total of 88 site 
years) are not shown.
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All cameras in the PhenoCam network record three-layer JPEG images, from which we extract information 
about the mean intensity of each of the red, green and blue (RGB) color channels, calculated across a user-defined 
region of interest (ROI). The ROI corresponds to the vegetation under study. While there are a variety of ways in 
which this color information can be used3,37, the Green Chromatic Coordinate (GCC) is a commonly-used metric 
which has been applied successfully in many ecosystems16,22:
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where RDN, GDN and BDN are the average red, green and blue digital numbers (a measure of intensity) across the 
ROI, respectively. Similarly, the red and blue chromatic coordinates are defined as normalized red and blue digital 
numbers. The red chromatic coordinate has been shown to be particularly well-suited to characterizing the tim-
ing of peak autumn colors in many deciduous forests38.

While a single image per day would be generally sufficient to document phenological changes in most ecosys-
tems, it is typical for cameras in the PhenoCam network to upload an image every 15 or 30 minutes. This ensures 
high quality data by minimizing data discontinuity in cases of unfavorable weather (rain or snow), adverse illumi-
nation conditions (clouds or aerosols), or short-term power outages. Following previously-developed methods22, 
we use the sub-daily GCC time-series (calculated for each image) to generate 1-day and 3-day “summary product” 
GCC timeseries. The 1-day and 3-day time series were obtained from the 90th percentile of canopy greenness at 
1-day and 3-day intervals, respectively22. The 1-day time series have finer temporal resolution, whereas the 3-day 
time series generally have less high-frequency noise. From the summary product time series, we then calculate 
phenological transition dates corresponding to the start of each “greenness rising” phenological phase, and the 
end of each “greenness falling” phenological phase. Uncertainties are quantified for all transition date estimates. 
In Richardson, et al.28, we erroneously indicated that a spline-based method was used to detect outliers in the 
greenness time-series data. The method we used was locally weighted scatterplot smoothing (i.e. LOESS).

Data Records
The PhenoCam Dataset v2.0 consists of five different Data Records. Data Record 1 contains general metadata for 
each camera site, whereas Data Records 2 through 5 have been calculated for specific ROIs from each camera. For 
example, Data Record 2 contains the files used for image processing steps, i.e. ROI mask files, and information 
about the range of images over which these should be applied. Data Record 3 contains time-series of color-based 
statistics (e.g., chromatic coordinates), calculated for each image in the archive. Data Record 4 contains “sum-
mary product” 1-day and 3-day time-series for a variety of phenologically-relevant color-based metrics. Data 
Record 5 contains phenological transitional dates (i.e., phenophases) obtained from the 1-day and 3-day sum-
mary time-series. The data records are organized as follows for each camera site.

<sitename>
└─── data_record_1 (contains general metadata for each camera site)

•	 <sitename>_meta.json
•	 <sitename>_meta.txt

└───data_record_2 (contains the ROI list files and image mask files used for image processing)
•	 <sitename>_ <veg_type> _ <ROI_ID_number> _roi.csv
•	 <sitename>_ <veg_type> _ <ROI_ID_number> _ <mask_index> .tif

└─── �data_record_3 (contains time series of ROI color statistics, calculated for each image in the archive, 
using data_record_2)

•	 <sitename>_ <veg_type> _ <ROI_ID_number> _roistats.csv
└─── �data_record_4 (contains time series of ROI color summary statistics, calculated for 1 and 3 day 

aggregation periods from data_record_3)
•	 <sitename>_ <veg_type> _ <ROI_ID_number> _1day.csv
•	 <sitename>_ <veg_type> _ <ROI_ID_number> _3day.csv

└─── data_record_5 (contains phenological transition dates, calculated from data_record_4)
•	 <sitename>_ <veg_type> _ <ROI_ID_number> _1day_ transition_dates.csv
•	 <sitename>_ <veg_type> _ <ROI_ID_number> _3day_transition_dates.csv

Here, <sitename> is the name of each camera site, < veg_type > is a two-letter code defining the type of 
vegetation for which data have been processed (see Table 1), and < ROI_ID_number > is a unique identifier to 
distinguish between multiple ROIs of the same vegetation type for a given site. Together, these five data records 
are contained within Seyednasrollah39, and are derived from the imagery in Milliman40.

The structure of the data records in the PhenoCam Dataset v2.0 is identical to that of the PhenoCam Dataset 
v1.0, and users of the Dataset v2.0 are directed to the user guide (https://daac.ornl.gov/VEGETATION/guides/
PhenoCam_V2.html) and our previous data descriptor28 for an explanation of the headers and columns in each 
data record.

Technical Validation
Efforts to maintain quality control.  The PhenoCam image archive and derived data products are reg-
ularly reviewed by the PhenoCam project team (the authors of this Data Descriptor) to maintain the quality of 
the dataset. This consists of visual inspection of the imagery for each site, and of the GCC time series data derived 
from the imagery and displayed in near-real time on the project web page. Imagery from each PhenoCam is also 
checked for field of view shifts, interruptions to data continuity, and camera misconfigurations. Should any issues 
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be identified, site contacts are notified by email, and asked to investigate and implement corrective measures if 
possible. In the case of field of view shifts, ROI masks are adjusted or redrawn as needed, and the imagery is repro-
cessed to ensure that the effects of field-of-view shifts are minimized28.

We previously presented extensive documentation of the steps taken to ensure that data derived from 
PhenoCam imagery are of the highest quality28. This documentation included analyses of independent 
data sources. For example, we demonstrated excellent agreement between both direct observations of veg-
etation phenology and phenocam-derived metrics, as well as between vegetation indices derived from 
radiometrically-calibrated measurements of surface reflectance (e.g. with narrow-band, tower-mounted sensors) 
and phenocam-derived vegetation indices such as GCC.

Here we report more recent efforts (1) to identify and exclude data and imagery from cameras erroneously set 
to auto white balance; and (2) to assess the spatial representativeness of the PhenoCam network in the context of 
the biological and climatological variability of ecosystems across North America.

Auto white balancing.  In digital photography and image processing, “white balancing” is the practice of 
adjusting digital numbers for each color channel in order to produce a neutral image (i.e. the “grey world” model) 
for given red (R), green (G), and blue (B) values. This can be useful under varying conditions of illumination, 
with the intended effect of rendering white and grey tones correctly41. Therefore, most digital cameras (particu-
larly consumer-grade “point-and-shoot” cameras) perform some sort of automatic white balance (AWB) “cor-
rection.” The outcome may appear more pleasant to the human eye, as the adjusted colors correspond more 
closely to human perception of the scene. While this could compensate for changing illumination conditions in 
PhenoCam images, the AWB correction often results in color inconsistency as the scene changes, for example 
as leaves emerge in spring, or as the sky color changes from grey to blue. As a result, the chromatic coordinates 
obtained from AWB images may not be suitable for quantifying vegetation phenology: the data may be noisy42, 
or even wrong.

Figure 2 shows an example of how AWB can affect both the digital images themselves, and the extracted GCC 
time-series, using imagery from the Snipe Lake PhenoCam site. In 2011, the Snipe Lake camera was set to fixed 
white balance, whereas in 2017 the camera was set to AWB. The purple cast of the sky, visible in the 2017 image 
(Fig. 2a), is the direct result of AWB compensating for the greenness of the foreground vegetation. The white 
balance setting also influences the derived GCC time series, which is not only noisier for the 2017 (AWB) imagery 
than the 2011 (non-AWB) imagery, but also leads to mischaracterization of vegetation seasonality: the rise in 
GCC in March 2017 is due to snowmelt, rather than vegetation greening up. These artifacts are the product of 
AWB counteracting changes in scene and illumination by adjusting the color sensitivity of the imaging sensor so 
that across the entire image, the mean color is grey, and each of the red, green, and blue chromatic coordinates is 
approximately equal (0.33). The lack of any seasonal patterns in the whole-image chromatic coordinates in 2017 
contrasts sharply with the seasonality evident in 2011 (Fig. 2c), and provides confirmation that the camera is 
configured for AWB using the “grey world” method.

The PhenoCam configuration protocol specifies that all cameras should be set to fixed white balance. On the 
StarDot cameras that are used at Type I sites, this involves setting the color balance to “manual” and adjusting 
the color skew values to custom settings (R = 385, G = 256, B = 330). This configuration is implemented by the 
PhenoCam Installation Tool (PIT; http://khufkens.github.io/phenocam-installation-tool/).

Because of the negative impact of AWB on PhenoCam imagery and data products, we have implemented sev-
eral procedures to identify whether a given camera may be recording imagery using the “grey world” AWB model. 
For standard PhenoCam cameras (Type I), configured using the PIT, the metadata text file associated with each 

Abbreviation Description
Site-years in 
Dataset v1.0

Site-years in 
Dataset v2.0

AG agriculture 50 226

DB deciduous broadleaf 392 643

DN deciduous needleleaf 4 45

EB evergreen broadleaf 2 28

EN evergreen needleleaf 80 265

GR grassland 121 279

MX mixed vegetation (generally EN/DN, DB/EN, or DB/EB) 5 —

NV non-vegetated 14 —

SH shrubs 46 142

TN tundra (includes sedges, lichens, mosses, etc.) 22 62

UN understory — 18

WL wetland 11 64

Table 1.  Vegetation type abbreviations for ROIs (region of interests), and the corresponding number of site-
years of data in the PhenoCam dataset described here (v2.0). For comparative purposes, the number of site-
years of data in the previous dataset release (v1.0) is also presented. The absence of MX ROIs in the v2.0 data 
release is due to the fact that we have delineated separate ROIs for the plant functional types comprising the 
mixed stand (i.e., separation of EN and DN ROIs). Note that non-vegetated ROIs are not included in the v2.0 
data release.

https://doi.org/10.1038/s41597-019-0229-9
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image reports whether the camera is on manual (i.e. fixed) color balance (“balance = 0”) or AWB (“balance = 1”), 
and these files are scanned regularly to identify cameras which have been erroneously set to AWB.

For non-standard cameras (Type II and Type III), we have developed an ad hoc method to identify potential 
AWB cameras. Briefly, we define the deviation from grey, Δ, as in Eq. 2:
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Here RDN , GDN , and BDN  are the average red, green and blue (respectively) digital numbers, calculated across 
the entire image. As shown for the Snipe Lake imagery in Fig. 2c, Δ tends to be very close to zero when cameras 
are on AWB. We identify images with Δ < 0.02 for more than 30 consecutive days as “AWB suspects” and conduct 
further investigation. In some cases, imagery from cameras not on AWB has low Δ because the image is domi-
nated by neutral tones—when the ground is snow-covered, for example. But, if further investigation leads to the 
conclusion that the camera was likely on AWB, that imagery has been excluded from this dataset. Data from 
roughly a dozen camera sites has been excluded because of concerns about poor-quality data resulting from AWB.

We note that this approach is imperfect; on some cameras, for example, only the brightest pixels are used to 
determine the white balance, and in this case our method would not necessarily work. We are working on the 
development of more general methods to detect AWB imagery.

Comparison of Transition Dates between the PhenoCam Dataset v1.0 and v2.0.  As discussed 
above, the processing steps and data quality of the PhenoCam dataset have been improved from v1.0 to v2.0 but 
the new release of the dataset does not invalidate the previous version. We showed this by comparing 535 rising 

Fig. 2  Qualitative and quantitative effects of Auto-White Balance (AWB) on phenological data. The left and 
right panels show when AWB was off and on at the Snipe Lake PhenoCam site (60.6°N, 154.3°W, tundra), 
respectively: (a) sample images taken on the same day (summer solstice) of the year in 2011 and 2017, (b) full-
year green chromatic coordinates extracted from an ROI representative of vegetation greenness, and (c) the red, 
green and blue chromatic coordinates (RCC, GCC and BCC) and the deviation from grey (Δ) extracted from the 
whole image.

https://doi.org/10.1038/s41597-019-0229-9
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and 577 falling seasonal cycles that were common between the two versions (Fig. 3). We compared the rising and 
the falling 10%, 25% and 50% transition dates between the two datasets, based on the 3-day 90th percentile GCC 
timeseries. The intercomparison showed a strong agreement (R2 > 0.99 for all the 10%, 25 and 50% transition 
dates) between v1.0 and v2.0. Median absolute error was only 1 day for all the 10%, 25 and 50% transition dates. 
Root mean square deviation (RMSD) was 3.9, 3.6 and 4.3 days for the 10%, 25 and 50% transition dates, respec-
tively. We identified less than 1% of the transition dates were the difference was more than 20 days. The small 
discrepancies between the two datasets may be caused by several factors, including updated masks, and newly 
available data since the last release. For example, the revised masks for howland1 EN 2000 resulted in a shift of 22 
days in transition 50% of year 2008, because the old mask had contaminated with a deciduous signal. In another 
instance, the 2015 end-of-season transition dates for turkeypointenf39 EN 1000 shifted more than two weeks, 
caused by the properly constrained winter baseline with the additional data for 2016 onward.

Representativeness of the PhenoCam Network.  Cameras in the PhenoCam network are widely dis-
tributed across North America, and the over-arching objective of the network is to sample the diversity of eco-
systems and climate zones across the continent. Cameras located at sites with a range of different vegetation types 
(Table 1), including agriculture (226 site years), deciduous broadleaf (643 site years), deciduous needleleaf (45 site 
years), evergreen broadleaf (28 site years), evergreen needleleaf (265 site years), grassland (279 site years), shrub 
(142 site years), tundra (62 site years), understory (18 site years), and wetland (64 site years).

To more comprehensively investigate the degree to which PhenoCams are distributed across the biotic and 
abiotic variability of ecosystems in North America, we use two approaches. First, using the Level II Ecoregion 
classification of North America (https://www.epa.gov/eco-research/ecoregions-north-america), we identified 
those areas where coverage is lowest. From about 30°N to 55°N, virtually every Level II ecoregion has at least 
three (and in many cases substantially more) PhenoCams in it (Fig. 4a). Ecoregions of interior Alaska, central 
and far northern Canada (much of this area is sparsely vegetated43 and also relatively inaccessible), the gulf coast 
of Texas, the southern tip of Florida, and most of Mexico emerge as poorly-represented in this analysis. These are 
areas that should be targeted for further expansion of the network.

Second, using the Whittaker Biome Classification44,45, we examined the distribution of PhenoCam sites 
across global climate-space (Fig. 4b). Mean annual temperature at PhenoCam sites spans almost 40 °C, rang-
ing from −12.3 °C to 25.8 °C, while mean annual precipitation varies 30-fold, from just over 100 mm to over 
3000 mm. Among the biomes corresponding to this climatic variability, boreal forest, temperate forest, temperate 
grassland desert, temperate rain forest, tropical forest savanna, and woodland/shrubland biomes are generally 
well-represented by the current distribution of PhenoCam network sites. However, the climate representativeness 

Fig. 3  Comparison of transition dates between the PhenoCam dataset v1.0 and v2.0. The intercomparison 
showed a strong agreement between the two versions.

https://doi.org/10.1038/s41597-019-0229-9
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of the network would benefit from the installation of more cameras in subtropical desert, tundra, and tropical 
rain forest biomes.

Fig. 4  Representativeness of the PhenoCam cameras. (a) Distribution of PhenoCam sites across North 
America, with Level II Ecoregions colored by the number of PhenoCams per region; and (b) Distribution of 
PhenoCams across the global vegetation biomes defined by the Whittaker classification. Ecoregions boundaries 
are obtained from Ecoregion Level II of United States Environmental Protection Agency (https://www.epa.gov/
eco-research/ecoregions-north-america).
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Usage Notes
The curated PhenoCam Dataset v2.0 is permanently and publicly available through the Oak Ridge National Lab 
(ORNL) DAAC (Distributed Active Archive Center for Biogeochemical Dynamics) data repository (https://doi.
org/10.3334/ORNLDAAC/1674). We have also developed an interface (http://explore.phenocam.us/) to facili-
tate data exploration and visualization, from which the user can also download data on a site-by-site basis. All 
imagery and data (updated in near-real time, and including data from sites where the data record is shorter than 
six months, or the data are not considered to be high enough quality, for inclusion in a curated data release) are 
also available through the project web page (http://phenocam.sr.unh.edu).

Software Applications
The PhenoCam team has developed several software application and packages to facilitate extraction and process-
ing of data from PhenoCam imagery. Code for each of these tools is made available on an open-source basis, for 
reuse and development by the community.

xROI.  xROI is an open-source R package to extract time-series data from large sets of digital images. With a 
graphical user interface, xROI provides functionality to delineate ROIs, to detect data discontinuities (FOV shifts, 
clouds, etc.), and to derive high-quality color-based statistics (digital numbers, chromatic coordinates) from 
stacks of images. The xROI software can be used to extract data from PhenoCam imagery for custom ROIs, or 

Fig. 5  Haze degree estimated by hazer R package. (a) Haze degree values for different fogginess at the 
Point Reyes PhenoCam site located at 123.02°W and 37.99°N, and (b) distribution of haze degree across all 
PhenoCam sites (including sites not included in the dataset). On panel b, x-axis indicate PhenoCam sites sorted 
by their median haze degree values.
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from imagery not included in the PhenoCam archive. While the package is available from the R Comprehensive 
Archive Network (CRAN), the source code (https://github.com/bnasr/xROI) is open under the GNU Affero 
General Public License (AGPLv3) and can be downloaded from refs46,47. For more details see Seyednasrollah  
et al.48.

Hazer.  hazer is an open-source R package for detecting foggy or hazy images. Haze statistics are calculated 
from the frequency distribution of RGB digital numbers across the image. The getHazeFactor function returns the 
“haze degree” value, varying from 0 to 100%. High haze degree values indicate high probabilities of haze or foggi-
ness (Fig. 5a). We consider images with haze degree > 40% to be foggy or hazy; the distribution of the haze degree 
value across all PhenoCam sites is shown in Fig. 5b. While the haze degree values are used for quality check, the 
hazy images are not excluded from the data release v2.0. The package also presents additional functionalities to 
obtain brightness, darkness and contrast matrices for an image. Hazer is open source under the GNU Affero 
General Public License (AGPL-v3)49.

Phenocamr.  The phenocamr R package facilitates the retrieval and post-processing of PhenoCam time 
series50. The post-processing of PhenoCam data includes outlier removal and the generation of data products, 
in particular the phenological transition dates as included in this dataset. The package is available from the R 
Comprehensive Archive Network (CRAN) while the source code is open under the GNU Affero General Public 
License v3.0 and available from https://github.com/khufkens/phenocamr.
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