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Abstract—Summary descriptions of subroutines are short (usu-
ally one-sentence) natural language explanations of a subrou-
tine’s behavior and purpose in a program. These summaries
are ubiquitous in documentation, and many tools such as
JavaDocs and Doxygen generate documentation built around
them. And yet, extracting summaries from unstructured source
code repositories remains a difficult research problem - it is
very difficult to generate clean structured documentation unless
the summaries are annotated by programmers. This becomes
a problem in large repositories of legacy code, since it is cost
prohibitive to retroactively annotate summaries in dozens or
hundreds of old programs. Likewise, it is a problem for creators
of automatic documentation generation algorithms, since these
algorithms usually must learn from large annotated datasets,
which do not exist for many programming languages. In this
paper, we present a semi-automated approach via crowdsourcing
and a fully-automated approach for annotating summaries from
unstructured code comments. We present experiments validating
the approaches, and provide recommendations and cost estimates
for automatically annotating large repositories.

Index Terms—mining software repositories, code comment
extraction, crowdsourcing, summarization

I. INTRODUCTION

Summary descriptions of subroutines are short (usually
one-sentence) natural language explanations of a subroutine’s
behavior and purpose in a program [1], [2]. These summaries
are nearly ubiquitous in software documentation, such as in
the headers for methods in JavaDocs [3] or Doxygen [4].
Different studies have for decades verified a conclusion that
summaries of source code, and subroutines in particular,
provide important clues for programmers at several stages of
program comprehension [5]-[8]. In some cases, a summary
is considered the only trustworthy part of documentation [9],
since relatively little text (e.g. “computes a dot product in
parallel”) can give a large insight into the code’s behavior.

There are two strategies employed to obtain summary de-
scriptions: First and foremost is specially-formatted metadata
written by programmers. This strategy is used by docu-
mentation tools such as JavaDocs that automate generation
of e.g. HTML pages for viewing documentation, but has
the disadvantage of leaving almost all the effort of writing
the summaries to human programmers. Therefore, a second
strategy is to automatically generate the summaries based on
patterns learned from big data input. This second strategy
saves significant human effort, but relies on large numbers

(on the order of millions [10]) of high-quality example sum-
maries for learning. These examples are usually extracted
from metadata within large code repositories, but suitable
metadata is scarce. LeClair et al. [11] report only around
5% of Java methods with suitable metadata, and even fewer
suitable for training automatic comment generators. In short,
even automated solutions rely on a large-scale human effort
to generate summary descriptions.

There does exist a large, untapped resource of summary
descriptions in the form of unstructured header comments
found in source code. Unstructured comments are much more
numerous than the well-structured ones in metadata (over 3x
as many in one dataset [10]), but are much longer and more ex-
pansive in scope than short summary descriptions. As we show
later in this paper, these comments nearly always have a short
summary description embedded in them, but the summary
may occur in many locations: surrounded by different text,
commented-out code, or even diagrams or logos as ASCII art.
This situation is especially prominent for languages without
an accepted standard for documentation (e.g. no accepted
standard in C versus JavaDocs in Java). A result is that a vast
majority of research focuses on environments such as Java or
Python in which it is relatively easy to extract examples, while
overlooking more difficult environments such as C or C++.

Therefore, the challenge is to extract these succinct sum-
mary descriptions from unstructured source code comments as
a resource for downstream tasks e.g. to use as training exam-
ples for automatic summary generation. Manually extracting a
summary description from any one function comment is gen-
erally not complicated. Very often the summary is obvious to
even a non-expert reader, since the task often does not involve
interpreting programming concepts, only filtering obviously
unrelated material. The issue is volume: hiring programmers
to annotate a few hundred examples is feasible. Hiring them to
annotate millions is not. Thus a question arises as to whether
non-experts could be enlisted to perform annotation at a lower
cost than experts, or if an automated “keyphrase” extraction
algorithm may be adapted instead.

In this paper, we propose automated and semi-automated
approaches for extracting summaries of subroutines from
unstructured comments. Our work has three components: 1)
We hire professional programmers to annotate 1000 summary
descriptions in C function comments. These annotations are



extremely expensive, but form a kernel of high-quality anno-
tations around which we can verify other approaches. 2) We
hire non-expert workers via Amazon Mechanical Turk [12]
to annotate a further 120000 summary descriptions. These
are less trustworthy than the expert-annotated summaries, but
are far more numerous and less expensive. Finally, 3) we
design an automated approach inspired by NLP literature on
keyphrase detection. We train the approach using the 120000
non-expert annotations and test against the 1000 programmer-
annotated examples. We found quite strong performance of the
automated and semi-automated approaches in our experiments.

Problem Statement The problem we target in this paper
is the extraction of summary descriptions from unstructured
subroutine comments. By “summary descriptions,” we mean a
short natural language explanation of code behavior or purpose
(maximum 12 words, in line with related work [10], which
found that most summary descriptions consisted of fewer than
13 word tokens). By “unstructured subroutine comments,” we
mean the long comments immediately preceding methods in
source code. Consider the examples below paired with an ID
from our downloadable database (Section VII):

o 1641982:
closed

@brief Callback every time the parent window is
(pop from the active window stack)

e 5354964: VarR8FromUI4 (OLEAUT32.219) Convert a VT UI4 to
a VT_R8. PARAMS ulln [I] Source pDblOut [0O] Destination
RETURNS Success: S_OK. Failure: E_INVALIDARG, if the
source value is invalid DISP_E_OVERFLOW, if the wvalue
will not fit in the destination DISP_E_TYPEMISMATCH, if
the type cannot be converted

o 2997854: ADHOC pattern checking Now look for specific
specific sequences that are easy to optimize. Many
of these sequences are characteristic of the compiler
(i.e. it’d probably be a waste of time to apply these
adhoc checks to hand written assembly.)

e 4442858: XXX: use host strnlen if available ?

The summary annotations by professional programmers are
in bold. In the first example, a keyword (“@Qbrief”) is used
to indicate the summary. In the second example, a project-
specific format is used. In the third example, the summary
is buried among other text. And in the final example, there
is no appropriate summary description at all. The problem is
not that any one summary is difficult annotate; the problem is
the volume of different conventions and specific situations for
which it is not feasible to manually craft heuristics.

Practical Applications Our work has two key applications.
First, the model we create can be used to automatically extract
summary comments from existing code, to create neatly-
readable documentation for code that does not have specially-
formatted metadata — in other words, Doxygen or JavaDoc-
like documentation without the extra effort of reformatting a
program’s comments to fit a specified metadata format. This
application is especially useful for large repositories of legacy
code such as the industrial situation described by McMillan et
al. [13]. A second application is in generating large datasets
of code-comment pairs to serve as training data for automatic
code summarization tools such as described by LeClair et
al. [10] and Hu et al. [14]. These code summarization tools
could reach a much wider audience (e.g. C instead of only
Java) if large datasets were available.

II. BACKGROUND AND RELATED WORK

This section covers the key areas of related work and
background technologies from both the Software Engineering
and Natural Language Processing research areas. Mining un-
structured data has a long history in SE research, as attested
by several topic-focused workshops and surveys [15], [16];
at a high level, this paper fits into the tradition of extracting
meaningful snippets of information from unstructured data.

A. Source Code Summarization

The term “source code summarization” was coined around
2009 by Haiduc et al. [1], [17] to describe the task of
generating short descriptions of code. Referring to the pro-
cess as ‘“‘summarization” alludes to a history of work in
Natural Language Processing of extractive summarization of
documents — early attempts at code summarization involved
choosing a set of n important words from code [18], [19]
and then converting those words into complete sentences by
placing them into sentence templates [2], [20]-[22]. A 2016
survey [23] highlights these approaches around the time that
a vast majority of code summarization techniques began to
be based on neural networks trained from big data input [10],
[14], [24]-[27]. These NN-based approaches have proliferated,
but suffer an Achilles’ heel of reliance on very large, clean
datasets of examples of code comments. This paper aims to
reduce the effects of that weakness by vastly increasing the
amount of available data. In addition, our work differs from
these approaches by enabling the extraction of summaries from
existing unstructured comments for e.g. legacy projects.

B. Keyphrase Extraction

Keyphrase Extraction (KE) is the task of locating a phrase
or sentence that summarizes the content of an entire docu-
ment [28], [29]. KE is a subfield of extractive text summa-
rization [30]. In text summarization generally, text of various
lengths is extracted from longer documents, sometimes includ-
ing multiple sentences from various locations of the document.
KE focuses exclusively on short phrases or sentences from
(roughly) paragraph-sized documents. Techniques for KE can
be broadly categorized as either heuristic or neural-based.
Heuristic-based techniques include noun-phrase detection [31],
phrase ranking via network modeling [29], manually-crafted
features [32], and rules based on statistical association among
sentences [33]. Recent surveys by Hasan et al. [34] and Sid-
diqi et al. [35] provide excellent coverage of these approaches.

As in many research areas, heuristic techniques have re-
cently given way to neural-based techniques [36]-[41]. While
it has long been observed that KE techniques vary considerably
across different application domains [42], these techniques
generally follow a similar pattern: model a document in a word
embedding space, highlight key phrases as training data, and
train a neural network (usually a recurrent or convolutional
net) with these highlighted phrases. The idea is that the
network will learn to recognize patterns of words that tend
to indicate the start and end of keyphrases. There is no clear
“best” approach described in the literature; instead, different



approaches have been shown to work in different domains e.g.
Twitter comments [36] versus academic articles [32].

In this paper, rather than recreate a single existing extrac-
tion technique, we synthesize components that seem broadly
effective in several domains — thus, our work is related to all
of these techniques but does not directly “compete” with any
single alternative approach. For example, Marujo et al. [43]
and Zhang er al. [36] crowdsource the annotation of Twitter
data via Amazon Turk in order to obtain training data for
an RNN-based solution. At a high level, this is a similar
strategy to what we employ, except that we have an additional
step of annotation from programming professionals, to ensure
that the data collected by non-experts from Amazon Turk are
consistent with annotations from experts.

C. Crowdsourcing in Software Engineering

Crowdsourcing is not a new concept in software engineer-
ing, though the specific application areas are quite diverse.
Stol et al. [44] provide an excellent look into how crowdsourc-
ing is possible for software engineering tasks. Their situation
is quite different than what we propose: as Stol er al. point
out, Amazon Turk typically involves breaking large tasks into
micro-tasks which tend to be short, repetitive, and require little
domain knowledge. In contrast, Stol et al. hire programmers
via TopCoder to build specific pieces of a larger program.
Likewise, Yan et al. [45] hire programmers in a crowdsourced
process to improve software testing. LaToza and van der
Hoek [46] discuss several similar strategies, involving hiring
many programmers to assist in tasks that are relatively small
in the context of software development.

The crowdsourcing problem in this paper is much more
similar to the problem described in NLP literature for e.g.
keyphrase annotation in Twitter data than to the crowdsourcing
tasks typically described in SE literature. Our task involves
annotating a keyphrase in comments, which is often a simple
matter of filtering formatting but also occasionally involves
some degree of reading comprehension, even if it is not nec-
essary to understand exactly what is being said. For example,
a non-expert can deduce that the phrase “essentially what
this function does is” is a prelude to the summary, even
if the non-expert does not understand the actual behavior
described in the summary. We echo the optimistic sentiment
of Buhrmester et al. [47] that suggests that properly-curated
annotations from crowdsourced microtasks are a source of
good-quality, inexpensive training data.

D. Encoder-Decoder Architecture

Our automated approach is based on an encoder-decoder
model with attention used for Neural Machine Translation
(NMT). This architecture has been used extensively for a va-
riety of tasks, and is thoroughly covered in related work [48]—
[52]. In essence, an encoder-decoder NMT model is trained
using pairs of sequences: an input sequence of word tokens
in some source language, and an output sequence of word
tokens in some target language. The purpose of the “encoder”
is to generate a vector representation of the input sequence,

which the “decoder” may then use to infer an output sequence
one token at a time. The key difference between regular NMT
models and our model is that our model’s output only needs
to identify which words in the input sequence belong in the
summary annotation (see Section IV-D for details).

III. ANNOTATIONS

We performed annotation in three groups in this paper. First,
we created a gold set of 1000 C/C++ function summaries.
Our goal in creating the gold set is to provide a small, high-
quality set of function comments and summaries against which
to evaluate other approaches to extracting summaries. Second,
we created a controlled non-expert set of 20,000 summaries
that were each annotated by five non-experts. Third, we created
an expanded non-expert set of 100,000 summaries that were
annotated by one non-expert each.

A. Corpus Preparation

We prepared a corpus of C/C++ functions based on data
provided by LeClair et al. [53]. LeClair et al. curate a dataset
of around 25,000 C/C++ projects by applying standard pre-
processing techniques such as removal of empty functions and
identifier splitting. To avoid errors and maintain consistency
with related work, we use the preprocessed functions from
their data (around 0.7m functions). We randomly selected 1000
functions for the gold set, 20k for the controlled non-expert
set, and 100k for the expanded non-expert set. In keeping with
recommendations for datasets for code summarization [11],
we ensure that there is no overlap of functions from the same
projects across sets to avoid contaminating the test set with
information from the training set. In other words, if a function
A is from project P, and A is in the gold set, then no functions
from project P will be in either of the non-expert sets.

B. Annotation Interface

We designed an interface to facilitate annotation. A screen
capture of the interface is shown in Figure 1. For each func-
tion/comment pair, we gave annotators an interface displaying
a C function on the left half of the screen and its corresponding
comment on the right. Annotators were asked to highlight a
contiguous span — up to 12 tokens — within the comment that

Prev | Next Comment 30/1000 (#597) Log_out

Spend a moment reading through the function and the comment. Then, highlight the 0-12 words in the comment that most
usefully describe the function's purpose . If you believe there is more useful information than one tag can hold, choose the most
appropriate tag and check the "Multiple Tags?" box. Once you have finished, click submit or press enter to continue. View Demo

Function
(Found in the file mark_rts.c)

Comment

Add the given root structure to the index.
static void add_roots_to_index(struct roots

*P)
{
int h = rt_hash(p -> r_start);

p -> r_next = GC_root_index[h];
GC_root_index[h] = p;
}

You have selected:
Add the given root structure to the index.

Multiple Tags?

Submit

Fig. 1. Screen capture of the annotation interface. Non-expert annotators
completed 21 function summaries on each page, highlighting the summary
in the comment on the right. Experts annotated one function per page. The
summary could be between zero and twelve words.



TABLE I
ANNOTATIONS COLLECTED FROM ALL SOURCES, PRE- AND POST-FILTERING (SEE SECTION III-F).

Set | Annotators | # Functions | Annotations per Function | # Functions after filtering
Gold Set Experts 1,000 5 980

Controlled Set | Non-Experts | 20,000 (+ 1000 Gold) 5 18891 (+ 945 Gold)
Expanded Set Non-Experts | 100,000 (+ 1000 Gold) | 1 (5 for Gold) 97937(+ 980 Gold)

best summarized the function. If a comment was found to
contain no useful summary, the annotators were instructed not
to highlight anything. We provided written instructions and
several examples of comment/summary pairs in an instructions
page that they could reference at any time. The functions ap-
peared exactly as written, while the comments were formatted
for readability. Specifically, the ‘/*” and ‘*/* strings at the start
and end of the comment and extraneous ‘*’ characters were
removed, and we condensed contiguous spans of whitespace
(spaces and tabs) to a single space (new lines were preserved).
As annotators highlighted text, the words highlighted would
appear in a different color beneath the comment to confirm
the selection. If a function required more than 12 tokens to
summarize, or multiple non-contiguous spans, annotators were
instructed to highlight the most appropriate span and tick a
checkbox reading “Multiple Tags?”’!. Once finished, annotators
could click a Submit button to continue to the next tag(s).

C. Gold Set Annotation

We hired five professional programmers via Upwork [54]
to each annotate all 1000 functions in the gold set. The
five programmers worked independently using the interface
described in the previous subsection, and did not know that
others would be annotating the same functions. The result
was 5000 unique annotations (five per function). The average
time required was 5.8 hours per programmer to annotate all
functions. We compensated the programmers around US$30
per hour. Note that at this rate, it is prohibitively expensive
to annotate a large repository of C/C++ functions — it would
cost around 29k hours of programmers time and US$870k to
annotate 1m C/C++ functions.

The length distribution of comments and expert annotations
in the Gold set are shown in Figure 2. There are two key
observations: first, more than half of the comments are longer
than 12 words. This means that a naive summary extraction
approach that only takes the first 12 words would blindly
exclude content from more than half of these comments.
Second, over 20% of the expert’s annotations indicated that
there was no valid summary in a comment, meaning that those
comments may not be good candidates for downstream tasks.

D. Controlled Non-Expert Annotation

We used Amazon Mechanical Turk [12] to recruit non-
expert workers to perform the “microtask” (also known as
a HIT) of reading and annotating a function comment using
the annotation interface described above. We paid five cents

n practice, we found that this checkbox was seldom marked. Therefore,
we don’t discuss the "Multiple tags?” data in the remainder of our analyses,
but we do make the data available in our online appendix (Section VII).

per microtask for each of the 20k functions in the set. We
call this set of annotations “controlled” because we obtain
five unique annotations per function — this redundancy permits
us to answer research questions about the consistency of
the annotations (see Section V-A) and to “vote” together
annotations to create a single annotation of higher quality (see
Section III-G). We also obtained annotations for the 1k gold set
functions, in order to compare the consistency of non-experts
to the professional annotations.

The non-expert workers were not required to have any
prior programming knowledge; as mentioned in Section I, a
key intuition is that summary extraction generally does not
require interpretation of programming concepts, only filtering
of obviously unrelated material. They were informed of the
nature of the task prior to attempting it, and were provided
written instructions and examples. To filter out potential spam-
mers, participants were required to have completed at least 50
prior tasks on AMT with at least a 95% approval rating, as
recommended by Peer ef al. [55].

For the non-experts, the annotation interface showed 21
functions per page instead of one. This increased number of
functions per page was due to restrictions of the Amazon Turk
system combined with the need to include Quality Control
(QC) functions. We include one function from the gold set as
a QC function among the 20 other functions. Note that at the
rate of 25 cents per function (five cents per annotation, times
five annotators), the cost to annotate 1m functions would be
US$250k: quite a lot less than professionals, but an amount
that may still be prohibitively expensive.

E. Expanded Non-Expert Annotation

We used the same process to build the expanded non-expert
annotation set as in the controlled non-expert set. However,
we added a further constraint that the annotators could not
be given the same QC function twice. Since we sought 100k
annotations and only have 1k gold set annotations, it is not
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Fig. 2. Length distribution of comments and annotations in the Gold set.



possible to give a unique QC function for every 20 functions.
To avoid a situation in which an annotator saw a QC function
more than one time, we obtained the annotations in five
groups of 20k functions. After each group, we prohibited any
annotator from previous groups from participating again. Due
to a technical error, the first group was only given a single
QC function, repeated in every set of 21 functions. Therefore,
annotators in the first group were allowed to participate in
one additional round of annotation. At a cost of five cents
per microtask, 100k annotations costs US$5000. One million
annotations would cost US$50,000, approaching a level at
which it may be affordable to annotate an entire large dataset.

F. Dataset Filtering

Some problems occurred during annotation that necessitated
filtering some results from the datasets. These problems are
unfortunately typical of work involving humans via Ama-
zon Mechanical Turk and crowdsourcing systems in general.
Specifically, we found that a small number of comments from
the gold set and non-expert sets included non-comment text,
such as “void /* PRIVATE */” and “putchar(’ ’); /*space out
the next line */”, or contained special characters, causing the
comments to appear incorrectly for the participants. We chose
to filter out these problematic comments and their annotations,
leaving the “1k” gold set with 980 functions, the “20k™ set
with 18811, and the expanded set with 97937.

Upon inspection, we discovered that one of the five expert
programmers produced a significant number of annotations
that were plainly incorrect (e.g. an annotation consisting only
of the word “so,” where the comment clearly contains a
succinct summary). Although the majority of this expert’s
results were in agreement with the others, the presence of
multiple egregious annotations was a cause for concern. To
maintain the quality of the gold set, we chose not to include
any of this annotator’s annotations in our subsequent analyses,
though they are available in our online appendix (Section VII).

Furthermore, we took a number of measures to filter out
spam and other unsuitable results from Mechanical Turk. The
aim here was not to remove all annotations that we deemed to
be “low-quality,” as we wanted our subjective interpretations to
bias the non-expert set as little as possible. Rather, the aim was
to filter out workers who failed to follow the basic annotation
protocols, either by 1) frequently providing plainly incorrect
annotations (e.g. consisting only of the word “the”) or 2)
frequently annotating summaries in comments where it was
clear that no summary existed (e.g. in comments consisting
only of the function signature). Therefore, after collecting the
results from Mechanical Turk, we ran a script to automatically
flag any worker exhibiting one of the following behaviors:

o Averaging less than 50% similarity with the experts on

the QC questions.

« Failing to mark the “No tag?” checkbox at least once.

o Completing submissions in < 120 seconds on average.

The first author manually reviewed the flagged workers and
rejected all submissions from any worker who failed to follow
the basic annotation procedures as described above.

G. Agreement / Voting Procedure

We applied an agreement voting procedure in order to create
a set of unified expert annotations and a set of unified
controlled non-expert annotations. The goal is to create a
single “best” annotation for each situation in which we have
multiple annotations (e.g. four expert annotations for each of
the 1k functions in the expert-annotated gold set).

There is no single accepted procedure for precisely our
situation, though sophisticated strategies exist for related prob-
lems; Zheng et al. [56] survey more than a dozen methods ad-
dressing the “truth inference” problem in crowdsourcing. One
straightforward method would be to take a majority vote on
a word-by-word basis, reconstructing a unified summary from
each token that appeared in the majority of the annotations.
But a problem with that application is that it could result in
annotations that none of the annotators actually selected — an
“average” annotation that doesn’t represent a valid selection.

Instead, our approach works by choosing one annotation
among the set of annotations for each function. Technically,
we calculate a probability P(A|W) for each word w in a
comment either occurring in the annotation (event A) or not.
Then for each annotation (span s in a comment selected by an
annotator) for a function, compute P(S = s) = [[I_, P(4 =
A;|W = i). Finally, we select the span s with the highest
probability as the span for the unified set. It was possible
for multiple spans to “tie” with equal probability. Ties among
expert annotations in the gold set were decided by the first
author, and ties among non-experts were resolved by randomly
choosing one of the tied options, so as not to impart a bias
towards longer or shorter annotations.

IV. AUTOMATED ANNOTATION PREDICTION

We use three automated techniques to predict annotations
given a function comment. All three are of our design, but
are based on a synthesis of related work. Since, to our knowl-
edge, no directly competitive solution exists for annotating
summaries in unstructured function comments, we design two
approaches based on solutions to related problems, in addition
to one baseline heuristic.

A. Baseline: First Twelve Tokens

A naive baseline is to use the first n tokens from the
comment (n=12 in this paper, see end of Section I). While
we do not expect it to perform well in terms of precision,
it serves as an important comparison due to its simplicity as
a heuristic. Plus, it is likely to achieve high recall, since a
majority of summaries occur near the start of the comment
and are less than twelve words long.

B. BiLSTM: Summary from Comment Only

This approach utilizes a bidirectional long short-term mem-
ory (BILSTM) architecture. It represents a synthesis of
state-of-the-art solutions from the natural language process-
ing (NLP) research community. As Section II-B discussed,
keyphrase extraction is an active research area. The problem
is defined as selecting a sentence summary out of a longer



document. In general, the state-of-the-art techniques involve
a neural model in which the document and the summaries
are inputs used to train an encoder-decoder architecture based
on recurrent networks (see Section II-D for a high-level
discussion of this architecture). Nearly all recent techniques
are based on a bidirectional RNN in the encoder and a
unidirectional RNN in the decoder, though several smaller
design decisions make it implausible to create one ‘“best”
approach for every situation. Therefore, we built an approach
that synthesizes several design decisions that appear to be
broadly effective for different problems. We provide details
and justification in the implementation section below.

C. BiLSTM+F: Summary from Comment and Source Code

Our third approach is based on a mixture of NLP and SE re-
lated work that considers a representation of the source code in
addition to the comment. The BiLSTM approach uses only the
comment in order to make a decision about the keyphrase for
that comment. However, the human annotators in Section III
saw both a function’s comment and its source code. Even if the
annotators do not understand the function, different words and
phrases in the code could provide clues about the summary. At
the same time, several recent papers (e.g. [10], [24], [26], [27])
have explored neural-based representations of source code for
the task of summarization. We integrate a recent representation
described by LeClair et al. [10] at ICSE’19 into the BILSTM
approach. Essentially, we augmented the encoder to accept the
function source code as another input alongside the comment,
but otherwise left the BILSTM the same. We call the approach
BiLSTM+F for BiLSTM plus Function code.

D. Model Details and Implementation

To promote clarity and reproducibility, we describe the BiL.-
STM and BiLSTM+F approaches in the context of the Keras
source code that we wrote to implement them (slightly edited
for readability). Because the two approaches are so similar,
we present the code for BILSTM+F, and point out the lines
which are not in BILSTM. All code and related infrastructure
are available in our online appendix (Section VII).

We  train the  encoder-decoder  model  using
comment/function sequences as input (just comments
for BILSTM) and annotations as the output. The annotation
output is a sequence of the same length as the comment.
At each position is one of five values for the word in
the comment at the same position: 1) the word is in the
annotation, 2) it is not in the annotation, 3) start sequence
token, 4) end sequence token, or 5) padding. E.g., for an
input sequence [<s>, a, b, ¢, d, </s>] a sample output vector
might be [3, 2, 1, 1, 1, 4] if the annotation were “b ¢ d.”

The encoder consists of two parts: the comment encoder and
the function encoder. The comment encoder accepts the entire
comment as input and is in both BiLSTM and BiLSTM+F.
Note we use a word embedding space of 100 units length and
vocabulary size of 2000. We established these values based on
related work [10], and by conducting exploratory pilot studies.
This part is a traditional RNN encoder:

enc_com_in = Input (shape=(100,))

enc_com_emb = Embedding (output_dim=100,
input_dim=2000) (enc_com_in)

enc_com = Bidirectional (CuDNNLSTM (100,
return_state=True, return_sequences=True))

enc_com_out, f_h, f ¢, b_h, b_c =
encoder_com(enc_com_emb)

com_state_h = concatenate([f_h, b_h])

com_state_c = concatenate([f_c, b_c])

enc_com_states = [com_state_h, com_state_c]

In BiLSTM+F, we also encode the function source code.
As recommended in related work [10], we use an input length
of 100 tokens, though for space constraints we limit the
vocabulary size to 2000 from 10k (we did not notice significant
performance degradation for this problem domain). Two other
differences from LeClair et al.’s encoder are that 1) we use a
bidirectional RNN instead of unidirectional, and 2) we use an
LSTM instead of a GRU. Again, we chose this architecture
by considering the results of our pilot studies, though we did
not observe major performance differences in the end.
enc_src_in = Input (shape=(100,))
enc_src_emb = Embedding (output_dim=100,

input_dim=2000) (enc_src_in)
enc_src = Bidirectional (CuDNNLSTM (100,
return_state=True, return_sequences=True))
enc_src_out, f_h, f ¢, b_h, b_c =
encoder_src (enc_src_emb)
src_state_h = concatenate([f_h, b_h])
src_state_c = concatenate([f_c, b_c])
enc_src_states = [src_state_h, src_state_c]

Next, we use a unidirectional decoder to represent the anno-
tation. Note that the length of the RNN output vector is double
the encoder’s, to accommodate both directions of the encoder.
Also note that the vocabulary size is only 5. An important
detail to our approach is that we do not attempt to predict every
word of the annotation, despite the overall similarity of our
approach to a seq2seq NMT approach. Instead, we predict one
of five values for each word, as detailed earlier. The advantage
is that the smaller vocabulary size makes the prediction much
easier for the network to learn.
dec_in = Input (shape=(12,))
dec_emb = Embedding (output_dim=100,

input_dim=5) (dec_in)
decoder = CuDNNLSTM (200,
return_state=True, return_sequences=True)
dec_out, _, _ = decoder (dec_emb,
initial_state=enc_com_states)

Next, we implement the attention mechanism described by
Luong et al. [48] to attend output predictions to words in
the encoder. Since we are predicting whether comment tokens
appear in an annotation (and not generating text, as in the
usual NMT use of attention), we do not create a “dictionary”
of output to input words. Instead, the attention mechanism
should help identify words likely to be in the annotation.
com_attn =

dot ([dec_out, enc_com_out], axes=[2, 2])
com_attn = Activation(’softmax’) (com_attn)
com_context =

dot ([com_attn, enc_com_out], axes=[2,1])



We also implement attention over the source code encoding,
though the result of this attention is admittedly harder to
interpret. In general, we expect word occurrence in the source
code to help identify whether a word is in an annotation.
src_attn =

dot ([dec_out, enc_src_out], axes=[2,2])
src_attn = Activation(’softmax’) (src_attn)
src_context =

dot ([src_attn, enc_src_out], axes=[2,11)

Finally, we concatenate the context matrices and create a
fully-connected output layer following standard procedure for
seq2seq encoder-decoder models.

context = concatenate (
[com_context, dec_output, src_context])
context = TimeDistributed/(

Dense (300, activation="relu")) (context)
dec_dense = Dense (5, activation="softmax")
dec_out = dec_dense (context)
train_model = Model (

inputs=[enc_com_in,

outputs=dec_output)
encoder_model = Model (
inputs=[enc_com_in, enc_src_in],
outputs=[enc_com_out, enc_com_states,
enc_src_out])

enc_src_in, dec_input],

Note again that the outputs are not words in a vocabulary;
they are predictions of whether each word in the input com-
ment is or is not in the summary.

V. EXPERIMENTS

This section discusses our experiments, including research
questions, methodology, and other key settings.

A. Research Questions

Our research objective is to evaluate inexpensive non-
expert human annotation and automated machine annotation
as alternatives to expensive annotation by expert humans.
Towards this end, we ask the following Research Questions:

R@Q: How similar are the annotations by individual experts
to the unified set of expert annotations?

RQ> How similar are the annotations by individual non-

experts to the unified set of non-expert annotations?

How similar are the annotations in the unified con-
trolled non-expert set to the unified expert set?

RQs

RQ@Q4 How similar are the annotations in the expanded non-

expert set to the unified controlled non-expert set?
RQs How similar are the annotations in the expanded non-

expert set to the unified expert set?
RQs

How similar are the annotations by the automated
techniques to the unified controlled non-expert set?

RQ7; How similar are the annotations by the automated

techniques to the unified expert set?

RQ1, RQ3, RQs5, and RQ; compare annotations to the uni-
fied expert set, while RQ2, RQ, and RQg compare annotations
to the unified controlled non-expert set. All comparisons are
made using annotations for the set of 945 gold set functions

that were annotated by experts and non-experts and that
remained after the filtering process described in Table I.

Note that in our discussion of these RQs we use the term
“similar” quite generally. In principle, we consider annotations
to be better when they are more similar to the unified set of
expert annotations. See Section V-C for the specific metrics
we use to measure similarity.

The rationale for RQ); is to provide a baseline for under-
standing the similarity of non-experts and machine annotations
to the experts’ annotations. We do not expect the experts to
agree on every annotation. While we use a voting mechanism
(Section III-G) to produce a unified set of expert annotations,
it is difficult to interpret the similarity of non-expert and
automated annotations to this unified set, without knowing
the similarity of the experts to the unified set. Likewise, the
rationale for RQ)2 is to provide a baseline for understanding
the quality of the machine annotations. The rationale for RQ)3,
RQ4, and RQ)s is to evaluate the quality of the two non-expert
human-based alternatives. We expect the unified controlled set
to be of higher quality than the expanded set, but it is possible
that they are quite similar. If they are, then the expanded
procedure provides a much more cost-effective human-based
annotation than the controlled set. Finally, we ask RQg and
RQ7 to evaluate the quality of the automated techniques.
The automated techniques provide an enormous opportunity
to reduce costs, but at an unknown quality penalty.

B. Methodology

Our methodology for answering our research questions is
straightforward: we calculate similarity metrics specified in
the next section for different groups of annotations. For RQ);
and R()2, we report averages of metrics for each annotator to
the relevant unified set. We also report outliers and present il-
lustrative examples. For RQ)3, we directly compare the unified
controlled non-expert set to the unified expert set. For RQ4,
and RQ)s, we compare the expanded non-expert set to the
unified non-expert set and the unified expert set, respectively.
For RQs and RQ7, we compute similarity metrics of each
automated approach to the unified sets.

C. Metrics

To the best of our knowledge, there is no single metric
that fully captures the notion of “similarity” in the context of
this constrained annotation task. While it can be described as
extractive summarization, it differs from similar tasks in that
annotators can elect not to provide a summary. Additionally,
annotators are limited to selecting a single contiguous span of
text of up to 12 tokens, whereas other extractive summarization
tasks generally allow summaries to be built from multiple,
discontiguous spans. Therefore, we use three separate metrics
to capture different aspects of similarity. Specifically, we
measure similarity by framing our task as an extractive sum-
marization task (measured by ROUGE), a binary classification
task (measured by recall, precision, and F1), and a unitization
task (measured by Krippendorff’s unitized alpha). We report
mean scores for all annotations in the test sets.



1) Extractive Summarization: We use two configurations
of the ROUGE metric [57] to directly measure the similarity
between two summaries — ROUGE-1 and ROUGE-L. ROUGE
is a long-accepted metric for evaluating sentence-length sum-
maries of documents. Lin et al. [58] have demonstrated
that summary evaluation based on simple unigram overlap
(ROUGE-1) correlates highly with human judgment.

In addition to reporting ROUGE scores as given in related
work, we report F1 measure for ROUGE-1-NE and ROUGE-
L-NE, which we define as the ROUGE scores for the predic-
tions which are not empty (NE). There are cases in which an
annotator or automated approach predicts no summary when in
fact a summary exists. These cases reduce the ROUGE scores,
but leave open a question about how good the annotations
are when a prediction is made. A desirable characteristic
of an automated approach is to make no prediction instead
of making a poor prediction, so that predictions from the
approach will be trusted. Therefore, we report F1 scores for
these cases. We do not report precision and recall for these due
to space limitations since they do not affect our conclusions,
but they are available in our online appendix (Section VII).

2) Binary Classification: ROUGE metrics can only be
calculated when there is a valid reference string. While they
can compare an empty hypothesis to a non-empty reference
(resulting in a score of 0), they cannot compare a hypothesis
to an empty reference. Therefore, we separately evaluate the
binary classification task of identifying comments that do not
contain valid summaries. To measure classification similarity
between a hypothesis set and a reference set, we report
the conventional precision, recall, and F1 measures (treating
comments without valid summaries as the positive class).

3) Unitization: The task of segmenting continuous data into
mutually exclusive sections, each belonging to a positive class
(a “unit”) or negative class (a “gap”), is known as unitization.
Comparing “summary labels” as “comment unitzations” al-
lows us to incorporate aspects of both previous metrics, as well
as additional information about the “difficulty” of choosing a
correct annotation (i.e. annotators are less likely to choose the
same label given a long comment than given a short comment).

To measure the similarity of different unitizations of the
same data, we use Krippendorff’s alpha, «, a generalized,
chance-corrected measure of inter-annotator agreement [59].
Unlike other agreement metrics that can only measure reli-
ability in the coding of predetermined units, Krippendorff’s
alpha has an adaptation called the “unitized alpha” oy which
is widely used to measure reliability in the unitizations them-
selves [60]-[62]. Metrics from the a family are calculated by
subtracting the chance-corrected level of disagreement (that
is, the ratio of the disagreement observed to the disagreement
expected) from 1. An « score of 1 indicates that annotators
are in perfect agreement (i.e. they have chosen identical
annotations); a score of O indicates a level of agreement
expected by random chance (i.e. there is likely some, but not
much overlap between the annotations); and a score less than
0 indicates worse agreement than is expected by chance (i.e.
there is little, if any, overlap).

D. Threats to Validity

Like all experiments, our work carries threats to validity.
Key threats include: 1) The effect of the voting procedure.
We attempt to mitigate this risk by using accepted agreement
metrics and by studying the similarity of individual annotators
to the unified sets (RQ); and R(Q)3), but a risk remains that a
different voting procedure would cause different results. 2)
Human factors. Any work by human annotators is subject
to human factors such as fatigue, previous experience, and
bias. We attempt to mitigate this with a voting procedure in
the expert and controlled non-expert sets, but a threat still
exists that different participants would yield different results.
3) Source code. We use a large repository of source code, but
it is possible that different code would yield different results.

VI. EXPERIMENTAL RESULTS

We provide results of the experiment described in the last
section to answer our research questions.

A. RQq: Similarity within Gold Set

We found that the experts tended to have a high degree of
similarity with the unified gold set. We created the unified gold
set by choosing the most probable annotation from any one
expert (as described in Section III-C), so it is given that at
least one annotator will “agree” completely with the gold set
for every function. Table II summarizes the ROUGE scores for
all of the five annotators. There was one annotator responsible
for a high proportion of selected annotations and by one
measure could be considered the “best” annotator (93.48% F1
ROUGE-1 score). However, even the annotator with the lowest
similarity with the unified set by the same measure (87.22%
F1 ROUGE-1) was not that different. Manual inspection of
the annotations reveals that many of these cases emerged
from relatively minor disagreements e.g. whether to annotate
“this function processes...” or “processes...” as the summary.
An important conclusion is that similarity measures for RQ;
form a ceiling of expected performance for RQs - RQy: for
example, a ROUGE-1 F1 score in the low 90% range would
be very high for the non-experts and automated approaches,
considering that the experts themselves are in the same range.

B. RQ-: Similarity within Controlled Non-Expert Set

We found that the non-experts in the controlled non-expert
set had a relatively high level of similarity to the unified
controlled non-expert set. In general, similarity is a bit lower
( 5%) than that observed for RQ; (see RQ> line in Table III
and Mean line in Table II), with a notable difference that
the non-experts disagreed much more often about whether
any annotation exists at all (see is-empty column). After
manual inspection of the results, our working hypothesis is
that annotators probably “felt a need” to annotate something in
ambiguous cases, and lacked the expert knowledge necessary
to be confident in leaving an annotation blank. A somewhat
humorous example is the comment for function id 1073101
in the gold set “this is a hack, but I guess that’s what I
writing [sic] anyways.” The experts unanimously agreed that



TABLE II
STATISTICAL SUMMARY FOR RQ1: SIMILARITY OF EXPERT ANNOTATORS TO UNIFIED EXPERT SET.

ROUGE-1 ROUGE-L is-empty unitization
\ P R F1 F1-NE \ P R F1 F1-NE \ P R F1 Qy
Max. 93.24 95.14 9348 96.47 93.64 9530 9393 96.85 90.64 97.13  89.32 | 0.77
Median 9198 91.52 9120 95.78 9221 91.83 91.61 96.24 83.82 9139 8739 | 0.67
Min. 88.64 8691 8722 9524 88.79 87.28 87.61 95.67 76.60 88.04 85.65 | 0.63
Mean 9146 9127 90.77 95.81 91.71 9156 91.19 96.25 83.72 9199 87.44 | 0.69
Stddev 1.98 3.37 2.60 0.52 2.08 3.29 2.63 0.51 5.79 4.66 1.71 0.06
TABLE III
SIMILARITY VALUES FOR RQ2 - RQ5.
ROUGE-1 ROUGE-L is-empty unitization
P R F1 FI-NE | P R F1 FI-NE | P R F1 Qy
RQ2 (mean) 86.92 86.63 86.14 9240 87.22 8697 86.62 9292 75.65 7556  73.75 | 043
RQ3 92.19 88.09 89.07 92.59 92.41 88.79 89.79 9334 8549 7895 82.09 | 0.66
RQ4 84.86 80.72 8152 86.70 85.17 81.51 8238 87.82 70.65 65.67 68.07 | 0.32
RQs 81.22 80.99 79.62 87.87 81.85 81.65 80.62 88.82 66.79 6723 67.01 | 0.35
TABLE IV
SIMILARITY VALUES FOR RQg: AUTOMATED APPROACHES TO NON-EXPERT TEST SET.
ROUGE-1 ROUGE-L is-empty unitization
P R F1 FI-NE | P R F1 FI-NE | P R F1 Qqy
Baseline: 12 Tokens 67.79 9427 7646 N/A 70.89 9405 79.03 N/A N/A N/A N/A -0.43
BiLSTM 72.68 78.09 7394  86.60 7391 78.62 75.18 88.07 55.65 71.50 6259 | 0.36
BiLSTM+F 67.12  71.02 67.63 86.64 68.15 71.60 68.79 88.12 4554 7150 55.65 | 0.19
TABLE V
SIMILARITY VALUES FOR RQ7: AUTOMATED APPROACHES TO EXPERT TEST SET (GOLD SET).
ROUGE-1 ROUGE-L is-empty unitization
\ P R F1 F1-NE \ P R F1 F1-NE \ P R F1 Qqy
Baseline: 12 Tokens 7121 9425 7885 N/A 7392 9404 81.07 N/A N/A N/A N/A -0.52
BiLSTM 76.60 7899 76.81 88.89 7749 79.55 77.79  90.03 59.68 70.81 64.77 | 0.36
BiLSTM+F 7125 71.74 7034 88.04 7197 7243 7134 89.30 51.16  74.16 60.55 | 0.22

no summary exists in this comment (i.e. a blank annotation).
But the unified non-expert set annotation is “this is a hack.”
The connotation of the word “hack™ was a clear signal to the
experts, but not the non-experts.

Consistent with other literature using Mechanical Turk [63],
we observe that many workers who complete only a few
HITs exhibit poor performance, while those who complete
more HITs consistently perform reasonably well, as shown in
Figure 3. Given this variation, it could be misleading to report
a statistical summary of all annotators as we did for RQ, so

we summarize the results as a mean for general comparison
on all metrics in Table III.

A takeaway is that for consistent results, researchers wishing
to obtain consistent results from non-expert crowdsourced
summary annotation may wish to require each worker to
complete a minimum of 200 annotations (10 tasks, recall
each task contained 20 function comments to annotate), as
performance varies considerably below that threshold.

C. RQj3: Unified Controlled Non-Expert to Unified Gold Set

The observed similarity between the unified controlled non-

10| epge . o . expert set and the unified gold set was just slightly below,
§; '.%'.:.ﬂ. Ceeo o o .3 R but generally in line with, the mean similarity between the
084 .'o’.:-':-.: o .__.______. ________________ s individual experts and the unified gold set. Recall that we
g :: o« ° ° asked the non-experts to annotate one function from the gold
E 06l eg ° set for every 20 that they annotated from the controlled set
g - o (Section III-D), resulting in multiple annotations for each
% el ® function, which were condensed into the unified controlled
§ . non-expert set’>. For these gold set functions, the unified
g . controlled set performed nearly as well as any individual
. expert: 89.07% ROUGE-1 F1 vs expert mean 90.77%, 89.79%
ROUGE-L F1 vs 91.19%, etc. (see RQs line in Table IIT and
el i ‘ . . . . Mean line in Table II). The takeaway is that, in aggregate,

0 20 40 60 80 100
FHITs Completed 2Due to the filtering performed on the controlled non-expert set, some
Fig. 3. Performance of individual Mechanical Turk workers in RQ2 as  functions were left only one or two annotations. We expect that comparing

measured by ROUGE-1 F1, compared to the total number of HITs completed
by each worker. The dashed line signifies the mean F1 score.

only the functions voted upon by several annotators would result in higher
agreement with the experts, as demonstrated in related research [56].



a unified set of non-expert annotations is comparable to an
expert annotator in our problem domain.

D. RQy: Expanded Set to Unified Controlled Non-Expert Set

The expanded set achieves slightly lower and more variable
similarity to the unified controlled set than the average of
annotators within the controlled set. Recall that, while the
expanded set consists of one non-expert annotation for each
of 100,000 functions, the gold set QC functions are still
labeled by multiple expanded set annotators, drawn from
the same worker pool as the controlled non-expert set. We
would, therefore, expect comparable performance of individual
expanded set annotators to individual controlled set annotators
on this set of functions. One factor contributing to the lower
reported similarity is that the unified set was selected from
the annotators in the controlled set, so at least one entry will
have 100% similarity, affecting the average. A key observation
is that the variation is largely at the edges of the annotation,
with disagreements like the “this function” example in RQ;.
This factor is observed in comparing the ROUGE-1 scores
to ROUGE-L: ROUGE-1, which measures individual words,
is slightly lower than ROUGE-L, which measures common
sequences. Small differences like these may cause the apparent
inflated disagreement between the expanded set annotations
and the unified controlled set.

E. RQs: Expanded Set to Unified Gold Set

A similar pattern emerges when comparing the expanded set
to the gold set as to the unified controlled set: overall general
agreement is relatively high (ROUGE-L scores compared to
experts in RQ; are about 10% lower) but variation increases at
the edges of the annotations. Whether this variation is tolerable
depends on one’s application: if only a rough annotation
of functions in legacy code is needed for documentation, a
procedure akin to the one we used for the expanded set may
be sufficient, at a very considerable cost reduction compared
to hiring experts (see Section III for cost estimates).

F. RQg and RQ7: Performance of Automated Approaches

We found that the best automated approach was BiLSTM.
The BiLSTM+F model has slightly lower performance, per-
haps due to the model including many more parameters, thus
requiring more data to train: encoding of function sequences
in other literature are trained on millions of examples, versus
the 120k example training set in this paper. Therefore, our
recommendation for this problem domain and dataset size is
to avoid using the function encoder (e.g. use BiLSTM).

BiLSTM also performs significantly better overall than
the baseline heuristic. As expected, the recall scores for the
baseline are quite high: an observation from examining the
gold set is that most of the summaries start in the first few
tokens, and the mean length of an annotation is 6.5 tokens, so
a simple heuristic is likely to capture the correct words from
a majority of comments. However, the problem is precision.
While the ROUGE-1 and ROUGE-L precision is slightly lower
in Tables IV and V, these numbers are only for the comments

containing summaries. The baseline heuristic always creates
a prediction, leading to zero scores for is-empty. This is a
problem because it will introduce a large amount of noise into
the dataset — 22% of the gold set consists of comments with
no summary. This is reflected in the unitization score, which
for the baseline is -0.43 to the unified controlled non-expert set
and -0.52 to the gold set, compared to 0.36 for BILSTM. Note
that the 0.36 unitization score for BiLSTM is comparable to
the 0.35 unitization score of the expanded set to the gold set
(RQ5), which is reasonable considering that a large portion of
the training data for BiLSTM is from the expanded set.
Another factor is that BiLSTM tends to do well in cases
when it makes a prediction, but ROUGE scores are reduced by
empty predictions. For example, the ROUGE-1 and ROUGE-
L Fl compared to the gold set are 88.89% and 90.03%,
respectively, for cases in which BiLSTM makes a prediction
(F1-NE scores in Table V). These scores highlight that most
of the errors are concentrated in cases when BiLSTM does
not make a prediction — the predictions it does make have a
high degree of accuracy, comparable to the similarity of the
unified controlled non-expert set to the gold set (RQs).

VII. CONCLUSION & REPRODUCIBILITY

In this paper, we propose semi-automated and fully-
automated procedures for extracting summary descriptions
from unstructured function comments. We demonstrated that
non-experts from crowdsourcing platforms such as Amazon
Mechanical Turk can in many cases achieve performance
similar to that of experts, at greatly reduced cost. Likewise,
our fully-automated solution (BiLSTM) achieves strong per-
formance, with most of its error concentrated in cases in which
it makes no prediction, when in fact a summary exists. These
results have a direct application for documenting legacy code,
but an even more important long term benefit lies in dataset
generation for training automatic summary generation tools.

We have established that reasonable performance is achiev-
able at a rate of USD$0.05 per annotation via Mechanical Turk
(our expanded set annotations), or even less if coupled with
a fully-automated solution (BiLSTM). Whereas agreement-
based professional annotation of a repository of 1m function
would likely cost up to US$870k (Section III-C), annotation
via crowdsourcing and trained neural models may cost US$50k
or less. In the long run, given that research and proposal
planning is often limited by dataset creation costs, in our view
our findings have a direct benefit to the community in assisting
this planning process.

To assist other researchers and encourage reproducibility,
we provide all raw and processed data as well as scripts and
model implementations in our online appendix:

https://github.com/NoPro2019/NoPro_2019
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