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Clustered regularly interspaced short palindromic repeats 
(CRISPR)–Cas12b is a newly emerged genome engineer-
ing system. Here, we compared Cas12b from Alicyclobacillus 
acidoterrestris (Aac), Alicyclobacillus acidiphilus (Aa), 
Bacillus thermoamylovorans (Bth) and Bacillus hisashii (Bh) 
for genome engineering in rice, an important crop. We found 
AaCas12b was more efficient than AacCas12b and BthCas12b 
for targeted mutagenesis, which was further demonstrated 
in multiplexed genome editing. We also engineered the 
Cas12b systems for targeted transcriptional repression 
and activation. Our work establishes Cas12b as the third 
promising CRISPR system, after Cas9 and Cas12a, for plant  
genome engineering.

In recent years, CRISPR–Cas9 (ref. 1) and Cas12a2, as RNA-guided 
endonuclease systems, have become leading sequence-specific 
nucleases (SSNs) in plant genome engineering3. Cas12b (formerly 
C2c1), a class 2 type V-B CRISPR system4, was recently demon-
strated as a new SSN for mammalian genome editing5,6. Similar to 
Cas12a (formerly Cpf1, a class 2 type V-A system), Cas12b prefers 
T-rich protospacer adjacent motifs (PAMs) and generates staggered 
ends of DNA double-strand breaks5–9. Similar to Cas9 (a class 2 type 
II system), Cas12b requires a CRISPR RNA (crRNA) and a trans-
activating crRNA, which can be combined as a single guide RNA 
(sgRNA), for DNA targeting7–9. By contrast, Cas12a only requires 
a crRNA. Hence, Cas12b is more amendable than Cas12a with 
versatile guide RNA engineering3. In addition, Cas12b is smaller 
than Cas9 and Cas12a in protein size5,6. In human and mouse 
cells, AaCas12b can barely tolerate single base pair mismatches 
in the protospacer, suggesting it has high targeting specificity5.  
For these reasons, it is desirable to develop Cas12b systems for plant 
genome engineering.

Structures for DNA targeting complexes of AacCas12b and 
BthCas12b have been recently resolved7–9. We decided to test 
AacCas12b, AaCas12b and BthCas12b for their capability in plant 
genome editing. Since AaCas12b shares high sequence identity 
with AacCas12b7 (Supplementary Fig. 1), the AacCas12b sgRNA 
scaffold was used for both AacCas12b and AaCas12b7,8. Similarly, 
a BthCas12b sgRNA scaffold was used for BthCas12b9. These 
Cas12b DNA coding sequences were codon-optimized for rice, a 
major crop and test platform in this study. We adopted the dual 
Polymerase II (Pol II) promoter expression system and hammerhead 
virus–hepatitis delta virus dual ribozyme guide RNA processing  

system that we established for CRISPR–Cas12a10,11 (Fig. 1a). 
Previous in vitro assays established PAMs as TTN (N = A, T, G, C) 
for AacCas12b5 and ATTN for BthCas12b12. We targeted two sites 
in OsEPFL9 and OsGS3 with GTTG and ATTC PAMs, respectively. 
To quantify the editing efficiencies of Cas12b nucleases, expression 
vectors were transfected into rice protoplasts. AaCas12b resulted in 
an editing efficiency over 10% at both sites, higher than AacCas12b 
(~5%) (Fig. 1b). BthCas12b displayed very low editing efficiency 
(Fig. 1b). AaCas12b, AacCas12b and BthCas12b mainly generated 
4–14 base pair (bp) deletions (Fig. 1c,d and Supplementary Fig. 2),  
which are larger than those induced by Cas9 (1–3 bp)13. These dele-
tions occurred about 12–24 nucleotides distal to the PAM sites  
(Fig. 1e,f and Supplementary Figs. 2 and 3), consistent with the stag-
gered double-strand breaks generated in this region5,6. Targeting an 
additional site in OsPDS with AacCas12b further confirmed this 
editing pattern (Supplementary Fig. 4).

To further investigate the PAM requirements for AacCas12b and 
AaCas12b in planta, we targeted a series of VTTV (V = A, C, G) PAM 
sites and assessed editing activity in rice protoplasts. While both 
AacCas12b and AaCas12b showed editing activity at five out of six 
ATTV sites, AaCas12b is generally more efficient and resulted in over 
50% mutation frequencies at ATTA-01 and ATTC-01 sites (Fig. 1g  
and Supplementary Fig. 5). Among two additional GTTG PAM 
sites, both AacCas12b and AaCas12b resulted in high editing effi-
ciency (50%–60%) at one site (GTTG-01) but failed at the other site 
(GTTG-02) (Fig. 1g and Supplementary Fig. 5). Further testing sug-
gested AaCas12b could edit CTTG and GTTC PAM sites (Fig. 1h 
and Supplementary Fig. 6). However, both Cas12b variants largely 
failed at an additional three CTTG and two GTTC PAM sites, as well 
as three CTTC and two GTTA PAM sites (Supplementary Fig. 7).  
Unlike Cas12a10, AacCas12b and AaCas12b could barely edit six 
VTTTV PAM sites tested (Supplementary Fig. 8). Interestingly, 
AaCas12b could edit a TTTTV PAM site with ~20% mutation fre-
quency (Fig. 1h and Supplementary Fig. 6). Together, our data dem-
onstrate that AaCas12b and AacCas12b are potent SSNs for targeted 
mutagenesis in rice and they generally recognize VTTV PAMs, with 
more preference for ATTV and GTTG PAMs. Our observation is 
largely consistent with the observations of PAM requirements for 
Cas12b orthologs in human cells5,6.

Initial comparison of three Cas12b orthologs suggested that 
AaCas12b is superior to AacCas12b and BthCas12b for targeted 
mutagenesis in rice. We assessed targeting specificity of AaCas12b 
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Fig. 1 | Comprehensive analysis of three CRISPR–Cas12b systems for genome editing in rice protoplasts. a, Illustration of the dual Pol II promoter system 
for expression of Cas12b and sgRNA. Note the sgRNA is flanked by hammerhead (HH) and hepatitis delta virus (HDV) ribozymes for precise processing. 
NLS, nuclear localization signal; tNOS, NOS terminator. b, Comparison of mutation frequencies by AacCas12b, AaCas12b and BthCas12b at two target 
sites. c,d, Comparison of deletion sizes by AacCas12b and AaCas12b at the OsEPFL9-sgRNA02 site (c) and the OsGS3-sgRNA02 site (d). e,f, Comparison 
of deletion position by AaCas12b at the OsEPFL9-sgRNA02 site (e) and OsGS3-sgRNA02 site (f). PAM and protospacer sequences are circled and 
underlined, respectively. g, Comparison of mutation frequencies by AacCas12b and AaCas12b at 10 sites with ATTV, CTTA and GTTG PAMs. h, Targeted 
mutagenesis by AaCas12b at an additional three PAM sites. i,j, Off-targeting analysis with mismatch (MM) sgRNAs at the OsEPFL9-sgRNA02 site (i) and 
Os12g24050-sgRNA01 site (j) by AaCas12b. k, Comparison of protospacer length for targeted mutagenesis at the OsEPFL9-sgRNA02 site by AaCas12b. 
Data of b–h were generated from high-throughput sequencing while data of i,j were generated from RFLP analysis. Mean values of two biological replicates 
were shown for b–f. Mean values of three biological replicates were shown for g–k. Error bars represent standard deviations.
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by using six crRNA protospacer sequences of OsEPFL9-sgRNA02 
that carry double mismatch nucleotides (at positions 1–2, 5–6, 
9–10, 13–14, 17–18 and 19–20). These six constructs were com-
pared with the on-target control construct in rice protoplasts. The 
mutation frequency data suggested that all these mismatched nucle-
otides had completely abolished editing activity at the target site 
(Fig. 1i and Supplementary Fig. 9). Similar results were obtained by 
targeting an independent site with Os12g24050-sgRNA01 (Fig. 1j),  
suggesting that AaCas12b is a highly specific SSN in rice cells. 
Interestingly, a recent study in human and mouse cells suggests that 
AaCas12b, unlike Cas9 and Cas12a, could barely tolerate single base 
mismatches at nearly every position of the protospacer, supporting 
its high specificity5. We further shortened the length of the proto-
spacer of OsEPFL9-sgRNA02 and found that AaCas12b completely 
lost editing activity with protospacers of 18 nucleotides and shorter 
(Fig. 1k and Supplementary Fig. 9). While further study is war-
ranted, this result is in sharp contrast to Cas9 and Cas12a, which 
generally still possess nuclease activity with 17–18-nucleotide pro-
tospacers2,14. Together, our data suggest that AaCas12b is a highly 
specific SSN for plant genome editing.

We next sought to generate rice mutants by Cas12b. Both 
AacCas12b and AaCas12b constructs targeting the OsEPFL9-
sgRNA02 site were transformed into rice calli by Agrobacterium. 
Analysis of 22 individual T0 transgenic lines for AacCas12b revealed 
eight lines which carried monoallelic mutations at the target site, 
representing a 36.4% mutation rate (Fig. 2a). Consistent with the 
protoplast data, AaCas12b had a higher mutation rate of 54.2% as 
13 out of 24 T0 lines were mutants and 6 lines carried biallelic muta-
tions (Fig. 2b). The mutations in these edited lines were predomi-
nantly large deletions (Fig. 2a, b and Supplementary Fig. 10). These 
results demonstrated that both AacCas12b and AaCas12b can effec-
tively generate stable mutants in rice.

A major advantage of the CRISPR system is its flexibility of mul-
tiplexing. We constructed a multiplexed Cas12b system based on 
dual Pol II promoters and a hammerhead–sgRNA–hepatitis delta 
virus array10 (Fig. 2c). We decided to simultaneously target three 
rice genes with three sgRNAs: OsROC5-sgRNA02, OsEPFL9-
sgRNA02 and OsGS3-sgRNA02. Two multiplexing constructs 
based on AacCas12b and AaCas12b were made for rice stable trans-
formation. For each construct, we analysed 24 independent T0 
lines. For AacCas12b, 1 line (Line 17) carried a monoallelic muta-
tion at the OsROC5-sgRNA02 site; 12 (50%) lines had mutations 
at the OsEPFL9-sgRNA02 site and 3 lines had biallelic mutations; 
6 (25%) lines had mutations at the OsGS3-sgRNA02 site and none 
carried biallelic mutations (Fig. 2d). Among them, 4 (lines 1, 17, 20 
and 22) are double mutants (Fig. 2d). These mutations were first 
identified by restriction fragment length polymorphism (RFLP) 
assays and later confirmed by Sanger sequencing (Supplementary 
Fig. 11). For AaCas12b, none of the 24 T0 plants assayed carried 
mutations at the OsROC5-sgRNA02 site, consistent with the low 
editing activity for this sgRNA in protoplasts (Fig. 1h). However, 
AaCas12b resulted in very high mutation rates at both OsEPFL9 and 
OsGS3 genes: at the OsEPFL9-sgRNA02 site, 16 (66.7%) T0 lines 
were mutants and 7 lines had biallelic mutations; at the OsGS3-
sgRNA02 site, 17 (70.85%) T0 lines were mutants and 11 lines had 
biallelic mutations (Fig. 2e). Impressively, 16 lines were double 
mutants and 7 were biallelic double mutants (Fig. 2e). These muta-
tions, including a 118-bp large deletion, have been further validated 
by Sanger sequencing (Supplementary Fig. 12). To assess off-target 
effects in T0 lines, we randomly selected two double mutants each 
generated by AacCas12b and AaCas12b. In both cases, sequenc-
ing of 7–8 top putative off-target sites of OsEPFL9-sgRNA02 and 
OsGS3-sgRNA02 revealed no off-target mutations (Supplementary 
Figs. 13 and 14). Taken together, we have successfully demonstrated 
multiplexed genome editing by generating combinational mutants 
with highly specific AacCas12b and AaCas12b.

We previously established CRISPR interference (CRISPRi) sys-
tems in plants based on Cas9 and Cas12a, which recognize NGG 
(for SpCas9) and TTTV (for AsCas12a and LbCas12a) PAMs, 
respectively10,15. As Cas12b orthologs have different PAM require-
ments, repurposing them for CRISPRi may expand the targeting 
range for plant transcriptional repression. We introduced single 
amino acid mutations at RuvC-I (D570A), RuvC-II (E848A) and 
RuvC-III (D977A) in AacCas12b and the corresponding mutations 
in AaCas12b and BthCas12b (Fig. 3a). Assessment of these protein 
variants of AacCas12b and AaCas12b in rice protoplasts revealed 
that they indeed lost nuclease activity (Fig. 3b,c and Supplementary 
Fig. 15). We chose three of these deactivated Cas12b (dCas12b) 
proteins, AacCas12b-D570A, AaCas12b-D570A and BthCas12b-
D573A, to test CRISPRi in rice cells. We targeted the rice gene 
Os04g39780 by focusing on three PAMs: ATTC, CTTG and GTTG. 
For each PAM, we designed three sgRNAs that target either the 
promoter or the coding sequence (Fig. 3d and Supplementary  
Fig. 16a). The resulting 27 CRISPRi constructs were tested in rice 
protoplasts and the target gene expression was quantified by quan-
titative PCR with reverse transcription (qRT–PCR). Three out of 
nine dBthCas12b constructs resulted in transcriptional repression  
(Fig. 3e–g), indicating BthCas12b could not robustly bind to the 
target DNA, consistent with the genome editing data (Fig. 1b). Both 
dAacCas12b and dAaCas12b induced transcriptional repression 
at nearly every target site with variable repression levels (25–75%)  
(Fig. 3e–g). Interestingly, targeted binding of dCas12b to the pro-
moter region and the coding sequence can both robustly repress 
the target gene expression (Fig. 3e–g). We further fused three cop-
ies of SRDX repressor domain to the C termini of the dCas12b 
proteins and generated three synthetic transcriptional repres-
sors (Supplementary Fig. 16b). By targeting the CTTG PAM sites 
with the same sgRNAs, we found these dCas12b-SRDX repressors 
resulted in comparable levels of gene repression (Supplementary 
Fig. 16c) to dCas12b (Fig. 3f). The data suggest that the CRISPRi 
effects are predominantly contributed to by transcription interfer-
ence through dCas12b binding, rather than through chromatin 
modifications by the SRDX repressor.

To our knowledge, to date there has been no successful report of 
Cas12a transcriptional activation systems in plants. We previously 
reported an improved Cas9-based transcriptional activation system 
that used an engineered sgRNA2.0 scaffold with MS2 aptamers for 
recruiting transcriptional activators16. Such guide RNA engineering 
could be applied to Cas12b, but not Cas12a because Cas12a uses 
very short crRNAs that are incompatible with MS2 aptamer inser-
tions. To establish efficient Cas12b-based transcriptional activation 
systems, we first sought to engineer the sgRNA scaffold to improve 
the overall editing efficiency. We tested AaCas12b genome editing 
with the artsgRNA13 scaffold and three engineered artsgRNA13 
scaffolds with 1–2 MS2 insertions (Supplementary Fig. 17a)17. No 
editing activity was detected with these new scaffolds in rice pro-
toplasts (Supplementary Fig. 17b). However, AaCas12b, when 
coupled with the scaffolds Aa1.2 and Aa3.8 (ref. 5), showed compa-
rable editing efficiencies with the Aac scaffold at four independent 
target sites (Supplementary Fig. 18a,c,d). Recently, an engineered 
Cas12b from Bacillus hisashii (Bh), BhCas12b-v4, was reported 
for genome editing in human cells6. We compared a rice codon-
optimized BhCas12b-v4 with our AaCas12b systems and found 
AaCas12b showed equivalent or even better editing efficiency than 
BhCas12b-v4 (Supplementary Fig. 18a–d). We continued our focus 
on AaCas12b and sought to use engineered sgRNAs to recruit 
more activators for developing Cas12b-based transcriptional acti-
vation systems. Four sgRNA scaffolds (Aac.3, Aa1.2.3, Aa3.8.3 and 
Aa3.8.4) that contained one MS2 aptamer near the 3’ end were first 
tested for genome editing (Supplementary Fig. 19a). Although all 
four modified sgRNA scaffolds led to detectable editing activities at 
two target sites in rice protoplasts, Aa3.8.4 had the highest editing 
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acid mutations used to inactivate Cas12b nuclease activity are indicated. b,c, RFLP analysis of nuclease activity for protein variants of AacCas12b  
(b) and AaCas12b (c) in rice protoplasts. d, Illustration of nine sgRNAs that direct targeted transcriptional repression at Os04g39780. Relative targeting 
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OsGW7 (j) in rice protoplasts. A total of 12 activation systems were tested. A sgRNA was used to direct each Cas12 activation system to the promoter of 
interest (see Supplementary Fig. 20). OsTubulin was used as the endogenous control gene. The gene expression level of the wild type was normalized as 1. 
Treatments denoted by different letters indicate significant differences between them (P < 0.05), as determined by Tukey’s test. All data shown were mean 
values of three biological replicates. Error bars represent standard deviations.
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efficiency at ATTG-02 site (Supplementary Fig. 19b, c). Next, we 
sought to develop Cas12b transcriptional activation systems based 
on these MS2-containing scaffolds. A potent transcriptional activa-
tor, TV18, was fused to the C terminus of dAaCas12b. A dFnCas12a-
TV fusion was also generated for comparison between Cas12a 
and Cas12b. Two potent activators, TV and VPR19, were tested for 
MS2-based recruitment, respectively. A total of 12 transcriptional 
activation configurations based on four general systems were tested 
(Fig. 3h). Two genes, OsER1 and OsGW7, were separately targeted 
for transcriptional activation and in each case only one sgRNA was 
used (Supplementary Fig. 20). Two activation systems resulted in 
significant transcriptional activation, while the other ten systems, 
including dFnCas12a-TV, failed to achieve this (Fig. 3i,j). The dAa-
Cas12b-TV, when coupled with Aa3.8 sgRNA scaffold, resulted in 
three- to fivefold activation of both target genes (Fig. 3i,j). Stronger 
transcriptional activation (five- to eightfold) was achieved with the 
transcriptional system that is based on dAaCas12b-TV and Aac.3 
sgRNA scaffold-mediated recruitment of MS2-VPR (Fig. 3i,j). 
Hence, we demonstrated a potent AaCas12b transcriptional activa-
tion system with simultaneous recruitment of TV and VPR by the 
dAaCas12b protein and engineered Aac.3 sgRNA, respectively.

Our work provided a demonstration for Cas12b-mediated 
genome editing in plants. In eukaryotic cells, we demonstrated 
CRISPRi with dCas12b orthologs. In addition, we developed a 
potent Cas12b transcriptional activation system in plants, demon-
strating that Cas12b, not Cas12a, is more amendable for versatile 
guide RNA engineering. This feature of Cas12b may allow for future 
development of novel prime editing systems, as recently demon-
strated with Cas9 (ref. 20). While Cas12b nucleases often require 
higher temperature for optimal activity5,6, their performance at 
ambient temperature, which is more relevant for plant applications, 
may be improved by both protein engineering and sgRNA engineer-
ing6,17. In conclusion, Cas12b represents another promising CRISPR 
system for plant genome engineering.

Methods
Construction of Gateway compatible CRISPR–Cas12b vectors. Details about 
construction of Gateway modular vectors for Cas12b and sgRNA are available 
in the Supplementary Methods. The oligos and gBlocks in this study were 
summarized in Supplementary Table 1.

Assembly of T-DNA expression vectors. The Cas12b T-DNA expression vectors 
(Supplementary Table 2) were assembled from a single Multi-site Pro LR reaction 
(1–5–2) with the attR1-attR2 destination vector pYPQ203 (Addgene no. 86207), an 
attL1-attR5 Cas12b entry clone and an attL5-attL2 crRNA expression entry clone 
using Gateway LR clonase II (Invitrogen). The detailed procedure is described in 
the Supplementary Methods.

Rice protoplast transformation and stable transformation. The Japonica 
cultivar Nipponbare was used in this study. Polyethylene glycol transfection of 
rice protoplasts was carried out according to our previously published protocol21. 
Rice stable transformation was conducted following the same procedure that we 
published previously21. Both transfection and cocultivation with Agrobacterium 
procedures were carried out at 32 °C.

Mutagenesis analysis. After 48 h of rice protoplast transfection, plant genomic 
DNA was extracted with the CTAB (cetyl trimethylammonium bromide) method. 
Nuclease-induced mutations were generally first detected and quantified by the 
RFLP analysis and followed by high-throughput sequencing. For high-throughput 
sequencing, the genomic regions flanking Cas12b target sites were PCR-amplified 
using barcoded primers. The PCR amplicons were sequenced by Novogene with 
an Illumina HiseqX platform. CRISPRMatch22 was used to analyse the sequencing 
data. Both RFLP and Sanger sequencing were used to genotype individual T0 lines. 
Sanger sequencing results were decoded using DSDecodeM-CRISPR-GE23. Sanger 
sequencing was used to detect possible mutations at putative off-target sites, which 
were predicted by Cas-OFFinder24.

RNA extraction and qRT–PCR analysis. For each sample, 400 μl (2 × 106) of rice 
protoplast cells transfected with 40 μg of plasmids were used for RNA extraction. 
The total RNA was extracted from collected protoplasts 48 h after transfection using 
TRIzol RNA Isolation Reagents (Thermo Fisher Scientific), and genomic DNA from 
RNA samples was cleaved by RNase-free DNase I (New England Biolabs) according 

to the manufacturer’s instructions. Total RNA of 1 μg was used to synthesize the 
first-strand complementary DNA using the SuperScript III First-Strand Synthesis 
System (Thermo Fisher Scientific). qRT–PCR was performed in a CFX96 Touch 
Real-Time PCR Detection System (Bio-Rad) using SYBR Select Master Mix 
(Thermo Fisher Scientific). OsTubulin was used as the internal control, and fold 
changes were calculated by the 2-ΔΔCt method. Three biological replicates and three 
technical replicates were performed for each sample. Primers used for qRT–PCR are 
listed in Supplementary Table 1.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The 29 Gateway compatible vectors for the CRISPR–Cas12b systems are available 
from Addgene: pYPQ290 (no. 129670), pYPQ291 (no. 129671), pYPQ292 
(no. 129672), pYPQ290-D570A (no. 129673), pYPQ290-D977A (no. 129674), 
pYPQ290-E848A (no. 129675), pYPQ291-D573A (no. 129676), pYPQ291- 
D951A (no. 129677), pYPQ291-E827A (no. 129678), pYPQ292-D570A  
(no. 129679), pYPQ292-D977A (no. 129680), pYPQ292-E848A (no. 129681), 
pYPQ290-D570A-SRDX (no. 129682), pYPQ291-D573A-SRDX (no. 129683), 
pYPQ292-D570A-SRDX (no. 129684), pYPQ141-ZmUbi-RZ-Aac (no. 129685), 
pYPQ141-ZmUbi-RZ-Bth (no. 129686), pYPQ141-ZmUbi-RZ-Aa1.2.3 (no. 
136372), pYPQ141-ZmUbi-RZ-Aa1.2 (no. 136373), pYPQ141-ZmUbi-RZ-Aa3.8.3 
(no. 136374), pYPQ141-ZmUbi-RZ-Aa3.8.4 (no. 136375), pYPQ141-ZmUbi-
RZ-Aa3.8 (no. 136376), pYPQ141-ZmUbi-RZ-Aac.3 (no. 136377), pYPQ141-
ZmUbi-RZ-Bh (no. 136378), pYPQ239A (dFnCas12a)-TV (no. 136379), pYPQ292 
(AaCas12b)-D570-TV (no. 136380), pYPQ292 (AaCas12b)-D570-TV-MS2-TV 
(no. 136381), pYPQ292 (AaCas12b)-D570-TV-MS2-VPR (no. 136382) and 
pYPQ293 (BhCas12b_v4) (no. 136383). The high-throughput sequencing data sets 
have been submitted to the National Center for Biotechnology information (NCBI) 
database under Sequence Read Archive (SRA) BioProject ID PRJNA553352. 
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