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The plasma membranes of cells are thin viscous sheets in which some transmembrane
proteins have two-dimensional mobility and some are immobilized. Previous studies
have shown that immobile proteins retard the short-time diffusivity of mobile particles
through hydrodynamic interactions and that steric effects of immobile proteins reduce
the long-time diffusivity in a model that neglects hydrodynamic interactions. We
present a rigorous derivation of the long-time diffusivity of a single mobile protein
interacting hydrodynamically and thermodynamically with an array of immobile
proteins subject to periodic boundary conditions. This method is based on a finite
element method (FEM) solution of the probability density of the mobile protein
diffusing with a position-dependent mobility determined through a multipole solution
of Stokes equations. The simulated long-time diffusivity in square arrays decreases
as the spacing in the array approaches the particle size in a manner consistent with
a lubrication analysis. In random arrays, steric effects lead to a percolation threshold
volume fraction above which long-time diffusion is arrested. The FEM/multipole
approach is used to compute the long-time diffusivity far away from this threshold. An
approximate analysis of mobile protein diffusion through a network of pores connected
by bonds with resistances determined by the FEM/multipole calculations is then used
to explore higher immobile area fractions and to evaluate the finite simulation cell size
scaling behaviour of diffusion near the percolation threshold. Surprisingly, the ratio
of the long-time diffusivity to the spatially averaged short-time diffusivity in these
two-dimensional fixed arrays is higher in the presence of hydrodynamic interactions
than in their absence. Finally, the implications of this work are discussed, including
the possibility of using the methods developed here to investigate more complex
diffusive phenomena observed in cell membranes.
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Effects of immobilized proteins on diffusion of transmembrane proteins 649

1. Introduction
Diffusion of transmembrane proteins in the plane of the plasma membrane of

cells has profound biological implications because many of these proteins are
involved in important signal transduction pathways which affect the cell’s function
(Lodish et al. 2008). Experimental studies suggest that many of these proteins exhibit
complex diffusive behaviour (Tomishige, Sako & Kusumi 1998; Weigel et al. 2011),
including anomalous diffusion (Schütz, Schindler & Schmidt 1997). One confounding
property of these systems is that rates of diffusion of molecules within the plasma
membrane are one or two orders of magnitude lower than those of the same molecules
reconstituted in synthetic lipid vesicles (Fujiwara et al. 2002). Because of the wide
range of intermolecular interactions within and outside the membrane that could affect
diffusion, many hypotheses have been put forth for this effect. These hypotheses
have, in turn, been investigated using different modelling methods. Some of these
hypotheses and methods are worthy of mention here, although they are beyond the
scope of this work.

Molecular dynamics simulations have provided insight into transient lipid–protein
(Niemelä et al. 2010) and protein–protein interactions as well as protein confinement
due to membrane phase separation (Niemelä et al. 2007), all of which may slow the
diffusion of transmembrane proteins considerably. However, these simulations are so
expensive that they preclude one from directly connecting these microscopic effects to
time scales that are experimentally observable. Theoretical and computational methods
that treat the membrane as an elastic sheet (Helfrich 1973) have been used to study
the effects of out-of-plane fluctuations (Brown 2003), membrane curvature (Brannigan
& Brown 2006) and coupling of the bilayer to the underlying actin cytoskeleton (Lin
& Brown 2004). While notable attempts have been made to account for hydrodynamic
interactions of the embedded proteins with the continuum lipid fluid in these models,
they lack a sophisticated description of inter-protein hydrodynamic interactions.
Finally, a host of Monte Carlo and Brownian dynamics simulation methods have
examined the effects of hypotheses related to steric hindrance (Saxton 1994) and
transient binding (Jin, Haggie & Verkman 2007).

One hypothesis for the low rates of transmembrane protein diffusion that we
will investigate here is the presence of transmembrane proteins in the plasma
membrane which are immobilized by the actin cytoskeleton. Interactions between
mobile proteins and immobile proteins may slow the diffusion of the mobile proteins.
These interactions can be of two types: direct thermodynamic interactions between
the proteins, and hydrodynamic interactions mediated through the intervening lipids
in the membrane. Previous studies that treat only hydrodynamic interactions appear
to be able to account for much of the observed decrease in diffusion rates in plasma
membranes (Bussell, Koch & Hammer 1995; Dodd et al. 1995), while those studies
that treat only thermodynamic interactions also appear to account for a modest
decrease in diffusion rates (Saxton 1987, 1990). However, no work thus far has
rigorously combined both of these effects.

To study these interactions, a simplified model is often used in which the proteins
are cylinders with radius a and the lipid bilayer is a thin viscous fluid with viscosity
µ and thickness h. The aqueous phase surrounding the bilayer is a fluid with viscosity
µ′ � µ. Portions of the proteins that protrude into the aqueous fluid are neglected.
These portions do not contribute significantly to hydrodynamic effects because they
induce less stress on neighbouring proteins than the portions within the membrane.
While these protruding portions may contribute significantly to thermodynamic
effects, their shape is highly variable, and we choose to start with the simplest
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FIGURE 1. Important features of a cell membrane. The cell membrane is a thin viscous
fluid with cylindrically shaped proteins embedded within it. Side and top views of the
same membrane are shown here. The lipids form a fluid with viscosity µ and thickness
h. The proteins have height h and radius a. The membrane is surrounded by a fluid with
viscosity µ′�µ.

case, in which only the cylindrical portions within the membrane contribute to
thermodynamic effects. In this work, the only thermodynamic effect we consider
is excluded volume. Although the immobilized proteins are often only transiently
immobilized, and remodelling of the cytoskeleton often changes the structure of the
immobilized proteins, we will assume here that the immobile proteins are permanently
immobilized in a static structure. This model is depicted in figure 1. Starting with
this model, we attempt here to combine the hydrodynamic and thermodynamic effects
of immobile proteins on the diffusion of mobile proteins.

Some important results of previous studies of hydrodynamic interactions in cell
membranes are worthy of mention here. Saffman & Delbrück (1975) and Saffman
(1976) solved the Stokes equations for the self-mobility of a single cylindrical particle
in an infinite viscous sheet. The self-mobility is the velocity with which a particle
moves when acted upon by a force of unit magnitude. Because velocity disturbances
due to a force acting on a two-dimensional (2-D) fluid do not decay (Stokes’ paradox),
physical solutions for the self-mobility can only be attained by including information
about the three-dimensional (3-D) environment in which the membrane is embedded.
Saffman & Delbrück (1975) did so by introducing the aqueous-phase viscosity µ′ on
a length scale λa, where λ = µh/(µ′a) is O(102–103) in a typical lipid bilayer. By
modelling the fluid flow as strictly 2-D on a small length scale (a) and including the
3-D flow in the aqueous phase on a larger length scale (aλ), and after asymptotically
matching the two solutions, these authors showed that the diffusivity of the single
cylinder is

D0(λ)=m0kbT = kbT
4πµh

[ln λ− γ ], (1.1)

where m0 and D0 are the self-mobility and self-diffusivity, respectively, in the limit
of protein area fraction φ→ 0, kb is the Boltzmann constant, T is temperature and
γ is the Euler constant. The Einstein relation has been used here to compute the
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Effects of immobilized proteins on diffusion of transmembrane proteins 651

self-diffusivity from the self-mobility. Because of the simplicity of the interactions
modelled here, the self-diffusivity is isotropic and independent of time.

The rotational diffusivity Dr,0 of one particle in an infinite domain is more
straightforward because the velocity disturbance from a torque decays in two
dimensions. The rotational mobility mr,0 is the angular velocity of a particle when
acted on by a torque of unit magnitude. Saffman (1976) showed that the rotational
diffusivity is

Dr,0 =mr,0kbT = kbT
4πµha2

. (1.2)

Others have built on these results to include hydrodynamic interactions between
multiple particles. Bussell, Koch & Hammer (1992) found the short-time diffusivity of
two mobile proteins in an infinite domain. Here, the diffusivity obtained from solving
the Stokes equations is called a short-time diffusivity, Ds, because it is valid on small
time intervals when the changes in interparticle spacing are negligible. It accounts for
hydrodynamic effects only. Bussell, Hammer & Koch (1994) used these results with
ensemble averaging techniques to estimate the long-time diffusivity for all-mobile
dilute suspensions. Dodd et al. (1995) derived the hydrodynamic mobilities for
randomly arranged cylinders in a periodic domain, used a novel method to match this
result with an outer solution for a fully random unbounded array with aqueous-phase
hydrodynamic interactions, and performed ensemble averages to provide accurate
short-time diffusivities for non-dilute bilayers. In that work and here, non-overlapping
random arrangements are obtained through Brownian dynamics simulation with
hard-core potentials between the cylinders. The long-time diffusivity, DL, accounts for
both the hydrodynamic and thermodynamic effects of other proteins. Brady (1994)
used observations about the limiting behaviour of the short- and long-time diffusivities
of all-mobile suspensions of spheres near their maximum packing fraction to propose
that hydrodynamic effects do not change the ratio DL/Ds. This factorization, in which
only hydrodynamic interactions affect Ds and only thermodynamic interactions affect
DL/Ds, appears to be in agreement with experimental literature on 3-D colloidal
suspensions (Medina-Noyola 1988; Brady 1994). In their calculation of the long-time
diffusivity of transmembrane proteins in all-mobile membranes, Bussell et al. (1994)
and Dodd et al. (1995) made use of this relation by computing only hydrodynamic
effects on Ds and only thermodynamic effects on DL/Ds, and multiplying the results
together. The thermodynamic effects in these works involved excluded volume only.

The hydrodynamic effect of immobilized proteins on mobile proteins has also been
studied. This case is qualitatively different from the case of all-mobile suspensions
because the immobile proteins form a fixed bed which causes velocity disturbances to
decay (Brinkman 1949). This decay occurs over a length scale λBa = aφ−1/2

I , where
φI is the area fraction of immobile particles. At typical immobile area fractions
in plasma membranes, λB is much smaller than λ, and interactions with the fixed
bed are the primary mechanism for decay of velocity disturbances. Therefore, the
aqueous-phase viscosity can be neglected under these conditions and fluid flows in
the cell membrane can be treated as strictly 2-D. Biologically relevant area fractions
of immobile proteins have been shown to decrease short-time self-diffusivities
considerably (Bussell et al. 1995; Dodd et al. 1995) and may account for the lower
diffusivities observed in plasma membranes compared to reconstituted membranes
that do not contain immobilized proteins. More recently, Oppenheimer & Diamant
have presented theories for correlated diffusion between two mobile proteins in
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free-standing membranes (Oppenheimer & Diamant 2009), membranes near a solid
substrate (Oppenheimer & Diamant 2010) and membranes with immobile inclusions
(Oppenheimer & Diamant 2011). All of this previous work on partially immobile
suspensions has treated hydrodynamic effects, and thus short-time diffusivity, only.
A separate body of literature exists in which only thermodynamic effects on DL/Ds
have been investigated (Saxton 1987, 1990; Nicolau, Hancock & Burrage 2007;
Niehaus et al. 2008; Zhou 2009). Others have proposed that the same factorization
into thermodynamic and hydrodynamic parts that Brady (1994) derived for the
long-time diffusivity in all-mobile suspensions also holds for diffusion in fixed beds.
Good agreement has been found between a 3-D effective medium theory which makes
use of this factorization and experimental results for the diffusion of macromolecules
in agarose gels (Johnson et al. 1996). In the context of transmembrane protein
diffusion, the effect of immobile proteins on the long-time self-diffusivity of mobile
transmembrane proteins has been computed by assuming that this factorization is
valid in partially mobile membranes. Bussell et al. (1995) and Dodd et al. (1995)
multiplied the short-time diffusivities they computed from hydrodynamic interactions
only with ratios DL/Ds computed from thermodynamic interactions only. In the
present study, it will be seen that this factorization is not accurate in partially
mobile membranes, and indeed the conditions that led Brady (1994) to propose it in
all-mobile 3-D suspensions do not apply to 2-D fixed beds.

Phillips, Deen & Brady (1989) developed a rigorous method to study the long-time
diffusivity of spherical macromolecules in a fibrous medium. In that work, a mobile
sphere was placed in a periodic square lattice of immobilized spheres arranged as
bead-and-string fibres. The short-time diffusivity of the mobile macromolecule at
different positions within the unit cell was computed using the methods of Stokesian
dynamics (Brady & Bossis 1988). These authors computed long-time diffusivities
based on the short-time diffusivities using a formalism developed by Brenner (1980)
and adapted for mobile particles of non-zero size by Brenner & Adler (1982). In
this formalism, the probability density of a tracer particle within a spatially periodic
porous medium is considered.

As part of a non-steady-state tracer analysis using the moments method of Aris
(1956), Brenner (1980) introduced a vector field, B, arising from a trial solution
for the first-order moment of the probability density. For the specific case of no
average fluid or tracer velocities, B can be interpreted physically by relating it to
the concentration, c, of tracers in the medium. A vector concentration field, C, can
be defined by relating the concentration field to the average concentration gradient
across the unit cell, ∇〈c〉:

c=C · ∇〈c〉. (1.3)

Here, the angled brackets denote an ensemble average. Brenner (1980) carried out a
steady-state analysis of pure molecular diffusion in the same system and showed that
C and B could be trivially related as follows:

C=−B+ const. (1.4)

Using this formalism, a concentration drop across the unit cell can be specified in
terms of B. In the case of one mobile particle, as in Phillips et al. (1989) or the
present study, this concentration can be interpreted as the concentration of isolated
non-interacting mobile particles. The concentration drop results in a flux of mobile
particles across the unit cell, and Fick’s first law can be used to define and compute
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a long-time diffusivity for the isolated mobile particles. Phillips et al. (1989) used this
method to calculate the long-time diffusivity of a single spherical macromolecule in a
square array of bead-and-string fibres as a function of the spacing between the fibres.

In this paper, we describe a method to combine hydrodynamic and thermodynamic
effects to compute the long-time self-diffusivity of isolated mobile proteins in a
square periodic unit cell with randomly arranged immobile proteins. We make
use of a technique similar to that of Dodd et al. (1995) to compute short-time
diffusivities and the formalism developed by Phillips et al. (1989) to use these
short-time diffusivities to compute long-time diffusivities for a single mobile circular
disk in a periodically replicated unit cell with immobile disks. Long-time diffusivities
as a function of immobile area fraction for a relatively small system size are presented.
We show that hydrodynamic interactions affect DL/Ds and that hydrodynamic and
thermodynamic interactions must be computed together to accurately calculate DL.
We also describe an approximate network analysis that can be used to calculate the
long-time self-diffusivity for larger numbers of particles and thereby access diffusion
properties close to a percolation threshold at φI ≈ 0.22. This method is based on a
suggestion by Sung & Yethiraj (2006, 2008) in a study of transmembrane diffusion
without hydrodynamic interactions in which the random array of immobile particles is
replaced by a network of pores and bonds identified by Voronoi tessellation. We then
use our rigorous diffusion calculation to estimate the resistance to diffusion through
the gap between a pair of immobile proteins. The approximate method can then
be used to accurately estimate long-time diffusivities for the large systems needed
to approximate the diffusivity in an unbounded random array near the percolation
threshold.

The organization of this paper is as follows. In § 2, we describe the scheme
presented in Dodd et al. (1995) to compute short-time diffusivities, but with
modifications to describe near-field hydrodynamic interactions more conveniently.
In § 3, we develop the method to compute long-time self-diffusivities (§ 3.1). After
posing and solving a lubrication problem for the long-time diffusivity of a single
mobile protein diffusing through a small gap between two immobile proteins (§ 3.2),
we present long-time self-diffusivities for isolated mobile proteins diffusing in square
arrays of immobile proteins for different unit-cell sizes and show their correspondence
to the lubrication result (§ 3.3). We then turn to random arrays of immobile proteins.
First, the approximate network method is described in § 4. In § 5, we use the finite
element method (FEM)/multipole calculations and network analysis to compute
the long-time diffusivity in arrays with a range of unit-cell sizes and eventually
estimate the long-time diffusivity as a function of immobile area fraction in infinite
arrays of immobile proteins. In § 6, we show that the finite-size scaling of the
long-time self-diffusivity near the percolation threshold appears to be consistent with
the prediction from percolation theory. Finally, in § 7, we show that the ratio of
the long-time self-diffusivity to the spatially averaged short-time self-diffusivity is
significantly higher in the presence of hydrodynamic interactions, invalidating the
previously held assumption that hydrodynamic and thermodynamic interactions can
be computed separately in these suspensions. In the conclusion (§ 8), we discuss
some implications of our results and possible applications of the methods introduced
here to the study of transmembrane protein diffusion.

2. Computation of short-time diffusivity
To compute short-time diffusivities, we must first calculate hydrodynamic interactions

between an arbitrary arrangement of N cylinders of equal size immersed in a thin

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

28
 A

ug
 2

01
9 

at
 1

9:
00

:2
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
59

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.592


654 R. R. Singh, A. S. Sangani, S. Daniel and D. L. Koch

viscous sheet with periodic boundary conditions. In this work, Np 6 N cylinders are
mobile, while the remaining cylinders are considered immobile. All cylinders are
rigid. We compute short-time diffusivities in a manner similar to Dodd et al. (1995).
We start with a truncated multipole expansion using the method of Sangani & Yao
(1988) and add near-field interactions to the resulting resistance matrix. Our scheme
for adding near-field interactions differs from that of Dodd et al. (1995), but the
multipole expansion scheme is the same. Nevertheless, we present both parts of the
method here for clarity and completeness. Our method treats both translational and
rotational motion. However, we only discuss translational diffusion in subsequent
sections because our newer methods do not add to the understanding of rotational
diffusion put forth in Dodd et al. (1995).

2.1. Multipole expansion
To describe the multipole expansion technique, we closely follow the treatment of
Sangani & Yao (1988). The governing equations are

∇p=µ∇2u, (2.1)
∇ · u= 0, (2.2)

where p is pressure, µ is viscosity and u is the velocity of the fluid. We will assume
a no-slip boundary condition on the surface of each disk. This can be written as

1
2π

∫ 2π

0
ueilθ dθ =C(l), on ∂D(s), s= 1, 2, . . . ,N,

C(l)=U(s), for l= 0,

= 1
2(aω

(s))(1 e2 − i e1), for l= 1,

= 0, for l > 2.


(2.3)

Here, ∂D(s) is the surface of disk s, U(s) its linear velocity and ω(s)=ω(s)e3 its angular
velocity; and e1, e2 and e3 are orthonormal basis vectors in a Cartesian coordinate
system. We assume that thermodynamic considerations restrict the orientation of the
cylinders in the bilayer so that their longitudinal axes align with the bilayer normal.
We can solve for the velocity components and the pressure in terms of the periodic
Green’s functions S1 and S2:

u1 =U1 +
N∑

s=1

[
B(s)00

∂S1

∂x2
+
∞∑

n=1

1∑
m=0

(
A(s)nm

∂n+1S2

∂xn−m
1 ∂xm+1

2

+ B(s)nm

∂n+1S1

∂xn−m
1 ∂xm+1

2

)]
, (2.4)

u2 =U2 −
N∑

s=1

[
B(s)00

∂S1

∂x1
+
∞∑

n=1

1∑
m=0

(
A(s)nm

∂n+1S2

∂xn−m+1
1 ∂xm

2

+ B(s)nm
∂n+1S1

∂xn−m+1
1 ∂xm

2

)]
, (2.5)

1
µ

p=
N∑

s=1

[
A(s)11

(
4πx1

L2
− ∂S1

∂x1

)
+ A(s)10

(−4πx2

L2
+ ∂S1

∂x2

)
+
∞∑

n=2

1∑
m=0

A(s)nm
∂nS1

∂xn−m−1
1 ∂xm+1

2

]
.

(2.6)

Here U1 and U2 are the components of the mean fluid velocity; Anm and Bnm are
coefficients to be determined through the boundary conditions; and L is the size of
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the unit cell, which is assumed to be square here. Finally, S1 and S2 are evaluated at
x=R(s); S1 and S2 were first defined by Hasimoto (1959) as

Sm(x)= 1
πL2(−4π2)m−1

∑
k6=0

k−2m exp(2πik · x), m= 1, 2. (2.7)

One can solve a Stokes flow problem in the resistance formulation by substituting (2.4)
and (2.5) into (2.3) with a given set of velocities and angular velocities for the
cylinders, and then solving for the coefficients Anm and Bnm. We provide more details
for this procedure in appendix A. The coefficients are related to the force density
moments on the cylinders. The forces and torques on the disks are given by

F(s)
1 =−4πµA(s)11 , (2.8)

F(s)
2 = 4πµA(s)10 , (2.9)

L(s)3 =−4πµ(2B(s)00 + A(s)20 ). (2.10)

Both the expressions for the velocity and the boundary condition can be truncated to
yield a finite set of equations with an equal number of unknowns. We limit the infinite
sum over n in (2.4) and (2.5) to n6 ns, and we limit the values of l in (2.3) to l6 ns.
Thus, the forces and torques on each cylinder can be found by solving this finite set
of linear equations, and the accuracy of the calculation increases with ns.

The forces and torques on just the mobile particles can then be found for each
problem in which only one (mobile) particle experiences translational or rotational
motion (a total of 3Np problems). These couplings can be combined into a resistance
matrix R: [

F
L

]
=−R ·

[
U
ω

]
. (2.11)

Here, F are the forces on the mobile particles only, L are the torques on the mobile
particles, U are the translational velocities and ω are the angular velocities. Matrix R
is a 3Np × 3Np matrix. Its inverse is the mobility matrix:

M = R−1. (2.12)

2.2. Near-field interactions
To reduce computational cost, we choose ns = 4 as in Dodd et al. (1995). However,
these calculations can be inaccurate for small interparticle distances. We correct
for this in a different manner than that in Dodd et al. (1995). We explicitly add
forces and torques from near-field two-particle interactions between particles with
separations smaller than a specified cutoff distance to the resistance matrix. We set
this cutoff distance at 2.4a. For two particles in a force-free suspension, there are three
independent couplings for translational motion (force from normal motion, force from
tangential motion, and torque from tangential motion) and three independent couplings
for rotational motion (torque on the rotating particle, torque on the non-rotating
particle, and the force on either particle). The torque from tangential motion is
equivalent to the force from rotation according to the Lorentz reciprocal theorem,
giving five independent couplings. In addition, the torque on the non-rotating particle
from rotation of the other particle does not exhibit lubrication scaling. We compared

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

28
 A

ug
 2

01
9 

at
 1

9:
00

:2
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
59

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.592


656 R. R. Singh, A. S. Sangani, S. Daniel and D. L. Koch

the values of the remaining four couplings for two particles in a unit cell of size
10 000a for different interparticle distances between ns = 4 and ns = 50. At an
interparticle distance of 2.4a, the maximum deviation from the ns= 50 results, which
we consider exact, is 2.48 % for the force from normal motion. The deviation for
the non-lubrication coupling (torque on one particle from rotation of the second) at
that distance is 5.75 %. We therefore chose 2.4a as the cutoff distance to include
near-field interactions as in Dodd et al. (1995).

When particles are separated by a distance less than 2.4a, we add near-field
contributions pairwise to the existing values in the resistance matrix as follows. All
of the couplings discussed above for two particles were computed and tabulated
for ns = 50 and ns = 4 for a unit-cell size of 10 000a for interparticle distances
between 2.01a and 2.40a in increments of 0.01a. The lubrication scalings of these
couplings with half-gap distance ε, first reported by Bussell et al. (1992), are shown
in table 1. Additional near-field contributions to the resistance matrix were calculated
by using the lubrication scalings to interpolate between the ns = 50 tabulated
values and subtracting a linear interpolation of the ns = 4 tabulated values. These
additional near-field terms are then added to the many-body ns = 4 values from the
multipole expansion. For the torque on a stationary particle from rotation of another
particle, a linear interpolation was used. In our implementation, a separate near-field
resistance matrix is added to the resistance matrix computed from the ns= 4 multipole
expansion:

R = R4 + Rnf . (2.13)

Here, R4 is the many-body resistance matrix computed from the multipole expansion
with ns = 4, and Rnf is the additional near-field contribution to the resistance matrix.
A detailed example of the near-field contribution can be given for one particular
element of the matrix. The force, FN , resulting from normal relative motion of nearby
particles is

FN = F4 + Fnf , (2.14)

Fnf = ε−3/2

0.01( 1
2)a

f50(0.01a)− f4(0.01a) for 2ε < 0.01a,

= f50(2ε)− f4(2ε) for 0.01a< 2ε 6 0.40a and 2ε − b2εc< 10−5,

= ε−3/2 − ( 1
2d2εe)−3/2

(0.005a)−3/2
[ f50(b2εc)− f50(d2εe)]

−
[
ε − ( 1

2d2εe)
(0.005a)

( f4(b2εc)− f4(d2εe))+ f4(b2εc)
]

for 0.01a< 2ε 6 0.40a and 2ε − b2εc> 10−5. (2.15)

Here, F4 is the result from the multipole expansion with ns = 4, Fnf is the additional
near-field contribution addressed in this section, ε is the half-gap width, f50(d) is the
tabulated lubrication force for ns= 50 at a full gap width d, and f4(d) is the tabulated
lubrication force for ns = 4 at a full gap width d. The symbols b c and d e denote
the floor and ceiling functions, respectively.

The resistance matrix is inverted to find the mobility after including near-field
forces and torques. The Einstein relation can then be used to compute the short-time
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Coupling Scaling

Force from normal motion ε−3/2

Force from tangential motion ε−1/2

Torque from tangential motion ε−1/2

Force from rotational motion ε−1/2

Torque from rotational motion (rotating particle) ε−3/2

Torque from rotational motion (non-rotating particle) O(1)

TABLE 1. Lubrication scaling of different resistance couplings with respect to half-gap
distance ε for two cylinders of equal size in a force-free suspension. Adapted from Bussell
et al. (1992).

diffusivities of the mobile particles. This method for including near-field interactions
differs from the method in Dodd et al. (1995). In that method, near-field interactions
are included in two ways. First, additional forces and torques are calculated from the
relevant lubrication problems. Second, a correction to the fluid flow is calculated by
adding lubrication multipoles centred in the middle of the gap between two particles.
The portion of the particle surfaces over which the force density is integrated in the
lubrication problems is a fitting parameter and is different for each lubrication problem.
We sought to avoid the use of fitting parameters in our method. In addition, the
lubrication correction to the fluid flow gives resistance and mobility matrices that are
not symmetric. While this asymmetry does not appear to be consequential for the work
presented in Dodd et al. (1995) or here, a symmetric mobility matrix is convenient
for use in Brownian dynamics simulations because it can be easily interpreted as a
variance–covariance matrix in the relation between viscous dissipation and Brownian
forces arising from the fluctuation–dissipation theorem (Ermak & McCammon 1978).
For these reasons, we chose a different method to include near-field interactions
which we believe to be accurate.

Figure 2 shows a comparison of ensemble-averaged short-time self-diffusivities
calculated using our method with results from Dodd et al. (1995). These short-time
self-diffusivities were computed by generating random arrays of disks with the
indicated numbers of disks at the indicated area fractions, calculating the short-time
diffusivity matrix for the mobile disks in each configuration, and averaging over all of
the translational self-diffusivities (the diagonal elements of the portion of the matrix
which gives couplings for translational motion). At least 100 configurations were
used for each condition. Figure 2(a) shows computed short-time self-diffusivities for
all-mobile suspensions as a function of the number of particles, N, for different total
particle area fractions, φt. The graphs show the expected logarithmic dependence on
N and close agreement between our results and those of Dodd et al. (1995). While
these computed self-diffusivities are not easily interpretable as shown, Dodd et al.
(1995) developed an effective medium theory which gives simple algebraic relations
to renormalize them to include the effects of the aqueous-phase viscosity. The
renormalized mobilities are applicable to reconstituted vesicles, in which there are no
immobilized transmembrane proteins. Figure 2(b) shows short-time self-diffusivities
for suspensions with differing total area fractions and immobile area fractions, φI , as
shown. Again, close agreement between our results and those of Dodd et al. (1995)
is seen. The computed self-diffusivities approach a constant value for large N. This
is because, as previously noted, Brinkman screening in the presence of immobile
proteins allows these strictly 2-D computations to be readily interpretable physically.
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FIGURE 2. Comparison of short-time self-diffusivity to results from Dodd et al. (1995).
Results from the current method are open circles, and results from Dodd et al. (1995)
are open squares. (a) Short-time diffusivities versus total number of disks for all-mobile
suspensions at different total area fractions. (b) Short-time diffusivities versus total number
of disks for partially immobilized suspensions.

There appears to be significant unit-cell size dependence for N < 25. To avoid this
dependence, we restrict all hydrodynamic calculations in this work to unit cells with
N > 25 except in our finite-size analysis in figure 11. We now proceed to use this
multipole calculation as part of a new method to compute long-time diffusivities for
mobile transmembrane proteins.

3. Finite element method to compute long-time diffusivity
3.1. Finite element method

To calculate the long-time diffusivity of one mobile disk in an array of immobile
disks in a square unit cell, we closely follow the treatment of Phillips et al. (1989),
in which the transport properties of a spherical particle in a square lattice of bead-and-
string fibres were investigated. We consider the vector field B, introduced by Brenner
(1980), allowing us to represent a mean concentration gradient for the concentration
of isolated mobile disks. For a system with only hard-core interactions, at steady state,
when the average fluid and particle velocities are zero, the long-time diffusivity can
be computed by solving the following equation for B:

∇ · (Ds(x) · ∇B)= 0, (3.1)

with boundary conditions

[[B]] =−[[x]] and [[∇B]] = 0, (3.2a,b)

on the boundaries of the unit cell in the fluid, where the double-bracket symbol [[ ]]
denotes the difference between the values of its argument at equivalent positions at
opposite sides of the periodic unit cell, and

n · Ds(x) · ∇B= 0, (3.3)
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on the excluded-volume surface of the immobile disks. The excluded-volume surface
is the surface of mobile particle centres when the mobile particle is in contact with
an immobile particle. Here, n is a unit normal vector pointing into the accessible
part of the unit cell, x is a vector specifying position within a unit cell, and Ds(x)
is the short-time diffusivity for a single mobile particle located at x within the
fluid, computed as described in the previous section. The condition (3.2a,b) applies
a specified spatially averaged concentration gradient (of unit magnitude) across the
unit cell. After solving this equation for B throughout the unit cell, described below,
the long-time diffusivity tensor, DL, can be computed from Fick’s law. Adapting the
treatment of Brenner (1980) to particles of non-zero size, equations (1.3) and (1.4)
can be used to calculate the local flux, q, of mobile disks as

q(x)= Ds · (∇B) · ∇〈c〉. (3.4)

A spatially averaged flux, 〈q〉, can be computed from this local flux:

〈q〉 =− 1
Af

∫
∂x0

ds n · qB. (3.5)

Here, Af is the area of the unit cell that is accessible to the mobile particle and
the integral is carried out around the excluded-volume surface of the disks and the
boundaries of the unit cell (∂x0). The differential ds is the scalar arclength along ∂x0.
The divergence theorem and a vector identity invoking the conservation of flux at
steady state then give the following expression for the spatially averaged flux:

〈q〉 =− 1
Af

∫
x0

(∇B)t · Ds(x) · (∇B) dx · ∇〈c〉. (3.6)

Here, the integral is over the area of one unit cell. Now, Fick’s law allows us to define
a long-time diffusivity by relating the spatially averaged flux to the spatially averaged
concentration gradient:

〈q〉 =−DL · ∇〈c〉. (3.7)

This results in the following expression for DL, which is a limiting case of the
expression presented by Brenner & Adler (1982) for continuous-phase transport
only:

DL = 1
Af

∫
x0

(∇B)t · Ds(x) · (∇B) dx. (3.8)

Equation (3.8) weights the short-time diffusivities by their corresponding concentration
gradients. This is different from a simple spatial average over the short-time
diffusivities and accounts for the excluded-volume effects of the immobile disks in
addition to their hydrodynamic effects, which are already included in Ds. As Phillips
et al. (1989) explain, the FEM is convenient to solve the differential equation for B
because the no-flux condition on the immobile particle surfaces given by (3.3) is easy
to implement. An element will automatically satisfy this condition unless another
boundary condition is explicitly specified. We solve (3.1) using a Galerkin FEM with
linear basis functions for triangular elements.
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2´a = H - 4a 2´a = H - 4a

U
2a 2a

x2

x1

a a

(b)(a)

H

H

FIGURE 3. Square array and lubrication geometry. (a) Unit cell for FEM computations
on square arrays. A mobile disk (shown in solid black) diffuses through a square array
of immobile disks (shown with hatched pattern). The unit cell has size H and all disks
have radius a. (b) Geometry for lubrication problem. A mobile disk (shown in solid black)
moves with velocity U through a small gap between two immobile disks (shown with
hatched pattern). All disks have radius a and the centre-to-centre distance between the
immobile disks is H. A half-gap ε is defined such that 2εa=H − 4a.

We first used this method to compute the long-time diffusivity of isolated mobile
disks in square arrays of immobilized disks. Because of the simple geometry of square
periodic arrays, they facilitate quick and easy comparison to a lubrication problem
for the long-time diffusivity of a mobile disk diffusing in a small gap between two
immobile disks. Such a comparison would confirm that our FEM correctly captures
the basic physics we seek to study. Therefore, before describing these FEM results,
we introduce and solve this lubrication problem. We then compare this result to the
FEM results for square arrays.

3.2. Lubrication problem
We carried out a lubrication analysis for a system similar to the square array to
compare to FEM results for small unit-cell sizes. The square array system, discussed
in the next section, is shown in figure 3(a). A mobile disk of radius a diffuses
through gaps between immobile disks of the same radius arranged in a square array
in a 2-D viscous fluid. The centre-to-centre distance between the immobile disks is
H, and a non-dimensional half-gap ε is defined such that 2εa = H − 4a. For ε� 1,
we can carry out a lubrication analysis of this configuration by considering only the
two immobile disks closest to the mobile disk. Because those two disks exhibit the
most profound resistive effect on the mobile disk, such a theoretical analysis would
give the correct leading-order behaviour for the long-time diffusivity, which we could
then compare to the FEM results. The simplified system used for the lubrication
analysis is shown in figure 3(b). Here, a mobile disk diffuses through a gap between
two immobile disks, with H and ε defined analogously to the system in figure 3(a).
The origin of the coordinate system is at the middle of the gap.

To simplify the analysis, we will consider a mobile disk that translates through the
gap without rotation. If the mobile disk has velocity U=Ue1 as shown, and if ε� 1,
then lubrication results from Bussell et al. (1992) can be used to estimate the force
of the fluid on it. The force of the fluid on the mobile disk can be used to estimate
Ds11, the component of the short-time diffusivity from coupling of a force in x1 to a
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velocity in x1. This is the only component relevant for the leading-order behaviour. It
is given to O(ε1/2) (leading order) by

Ds11 = kbT
µh

√
2π

[
1
2
ε
−1/2
a1 + 3

32
ε
−3/2
a1 εx̄2

1 +
1
2
ε
−1/2
a2 + 3

32
ε
−3/2
a2 εx̄2

1

]−1

. (3.9)

The gaps εa1 and εa2 are defined as follows:

εa1 = 1
2ε(1+ 1

4 x̄2
1 − x̄2)+O(ε2),

εa2 = 1
2ε(1+ 1

4 x̄2
1 + x̄2)+O(ε2).

}
(3.10)

In these expressions, x̄1 and x̄2 are non-dimensionalized as follows:

x̄1 = x1/(aε1/2),

x̄2 = x2/(aε).

}
(3.11)

This short-time self-diffusivity can be used as part of a lubrication problem for
the concentration of the mobile species. In this problem, a steady-state concentration
gradient can be applied along the gap in a manner similar to the treatment in the
FEM computations on square arrays. If the gap is small, the concentration will
change significantly along the gap, but will not change significantly across the gap.
Thus, we can assume that the concentration only depends on x1: B1 = B1(x1). This
assumption allows us to make simplifications to the calculation of the long-time
diffusivity to obtain a simple analytical result. Using the scaled coordinate system
described by (3.11), the concentration drop prescribed in the FEM computations can
be modified to give the following conditions on the concentration in the lubrication
problem:

B1 = 0 as x̄1→∞, (3.12)

B1 =H
〈

dB1

dx1

〉
f

, as x̄1→−∞. (3.13)

With these conditions, we are applying a concentration drop equal to the size of the
corresponding square unit cell, which equals the centre-to-centre distance between
the immobile disks. This gives us an averaged gradient of unit magnitude, analogous
to the condition given for the FEM implementation. However, 〈dB1/dx1〉f is the
gradient of the concentration averaged over the fluid portion of one unit cell of the
corresponding square array. It is related to the average of the concentration gradient
over the entire unit cell, 〈dB1/dx1〉, by〈

dB1

dx1

〉
f

= H2

Af

〈
dB1

dx1

〉
= H2

H2 − 4πa2

〈
dB1

dx1

〉
. (3.14)

As noted earlier, we assume that the concentration only depends on x1. Thus, the flux
of the mobile species can be integrated across the gap as follows:

Q=
∫ +aεS

−aεS
Ds11 dx2

dB1

dx1
. (3.15)
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Here, Q is the flux of the mobile species integrated across the gap, and +S and −S
are non-dimensionalized top and bottom excluded-volume surfaces, respectively; S is
given by

S= 1+ 1
4 x̄2

1. (3.16)

Rearranging terms gives a differential equation for the concentration:

dB1

dx1
= Qµh

√
2π

kbTεI2
. (3.17)

Here, I2 is an expression related to the integral in (3.15). It is given by

I2 =
∫ +S

−S

[
1
2

(
1
2

(
1+ 1

4 x̄2
1 + x̄2

))−1/2 + 3
32

(
1
2

(
1+ 1

4 x̄2
1 + x̄2

))−3/2
x̄2

1

+ 1
2

(
1
2

(
1+ 1

4 x̄2
1 − x̄2

))−1/2 + 3
32

(
1
2

(
1+ 1

4 x̄2
1 − x̄2

))−3/2
x̄2

1

]−1
dx̄2. (3.18)

The integrated flux Q can be divided by the unit-cell size H to determine the average
flux throughout the unit cell:

〈q〉 = Q
H
. (3.19)

Solving the differential equation with the boundary conditions gives the following
relation:

〈q〉 = H2

H2 − 4πa2

ε√
2πI3

kbT
µh

〈
dB1

dx1

〉
, (3.20)

where I3 is a definite integral related to I2 by

I3 =
∫ +∞
−∞

1
I2

dx̄1 ≈ 6.29. (3.21)

Now, in analogy to (3.7), we can use Fick’s first law to define a long-time diffusivity,
DL, which is isotropic in a square array:

〈q〉 =DL

〈
dB1

dx1

〉
. (3.22)

This gives the following expression for DL:

DL = H2

H2 − 4πa2

[
ε√

2πI3

kbT
µh
+O(ε2)

]
. (3.23)

For ε� 1, this can be compared to FEM results for diffusion of a mobile disk in a
square array of immobile disks. To leading order, the expression in brackets above is
proportional to ε. This is expected for this lubrication problem: Ds11 is proportional
to ε1/2, and the particle diffuses a distance along the concentration gradient that is
proportional to ε1/2. These two results give an expected scaling of ε1 for DL. However,
to make our lubrication problem consistent with our results for square arrays, we have
retained the factor H2/(H2 − 4πa2). This factor accounts for the excluded volume of
the immobile particles and introduces additional dependence on ε through the unit-cell
size H. Because we have posed this problem as a flux due to a concentration drop,
we can derive similar lubrication results for other geometries simply by changing this
factor.
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3.3. Square arrays of immobile proteins
We calculated the long-time diffusivity of a single mobile particle diffusing in a
square array of immobile particles using the FEM. The accessible fluid portion of
the square unit cell was meshed using the finite element mesh generator Gmsh
(Geuzaine & Remacle 2009) for different unit-cell sizes H. A typical mesh contained
approximately 20 000 nodes. The short-time diffusivity tensor, Ds(x), was computed
at each node in the mesh using the method in § 2. These computations were carried
out on 5 × 5 arrays of immobile proteins with lattice constant H (L = 5H) to
reduce hydrodynamic interactions between the mobile protein and its own periodic
images. This also ensures that backflow generated from particle motion does not
occur through the same gap in which the particle is diffusing. Such a situation would
drastically increase the resistance of the particle and give a different leading-order
behaviour for the lubrication problem. After computing the short-time diffusivities,
the FEM algorithm was carried out to solve (3.1) with the boundary conditions given
in (3.2a,b) and (3.3) for the unit cell. All of these computations were carried out
using MATLAB software (Mathworks, Natick, MA).

Heat maps plotting B1 for two different unit-cell sizes are shown in figure 4. It is
clear from these plots that the drop in B1 across the unit cell is more gradual for
H= 6.0a and occurs over a larger distance than the drop for H= 4.01a. This is to be
expected from the lubrication analysis, according to which the length over which the
drop occurs scales with ε1/2.

The x1-component of the long-time diffusivity due to a concentration gradient in x1,
DL =DL11, was found for different values of H and is plotted versus ε in figure 5(a).
For this problem, DL11 is the only element of interest because DL11 = DL22 due to
symmetry and DL12 = DL21 = 0. The short-time diffusivity components Ds11 and Ds22
were also spatially averaged over the unit cell (denoted as 〈Ds〉) and are plotted in
figure 5(a). As expected, 〈Ds〉 remains non-zero even when DL reaches zero at ε = 0.
This is because there are still pore spaces between the immobilized particles which
are accessible to the mobile particle. Even though these pore spaces are disconnected
(and thus do not support long-time diffusivity), the mobile particle still has non-zero
short-time diffusivity in them. The short-time diffusivities must be averaged according
to (3.8) to give the proper long-time behaviour. The lubrication result derived in the
previous section is also plotted in figure 5(a). The same results are plotted versus
H2ε/(H2 − 4πa2) in figure 5(b) to facilitate better comparison between the FEM
result and lubrication result, which is linear in this plot. There is good agreement
between the lubrication and FEM results for DL. However, the FEM result is slightly
larger than the lubrication result for smaller gap sizes. This may be because we have
accounted for rotational couplings in our FEM calculations, but we have not done
so in our lubrication calculation. Surprisingly, there is agreement between the FEM
results for square arrays and the lubrication results even at large gap sizes.

Polynomial fits for Ds and DL may be useful for experimentalists studying model
systems. These fits are as follows:

Ds =−0.0558ε5 + 0.1503ε4 − 0.144ε3 + 0.0535ε2 + 0.0341ε + 0.0173, 0 6 ε 6 1,

DL = 0.7073ε5 − 1.9314ε4 + 1.9423ε3 − 0.8899ε2 + 0.2282ε, 0 6 ε 6 1.

}
(3.24)

The agreement with the lubrication result gave us confidence that our FEM scheme
accurately incorporated the interactions we desired. Therefore, we used our FEM to
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FIGURE 4. Heat maps of B1 plotted for the fluid region of one unit cell for square arrays
of two different sizes: (a) H = 6.0a and (b) H = 4.01a. The horizontal and vertical axes
show position within the unit cell. The shading of the fluid region represents the value of
B1 according to the adjacent scale bars.
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FIGURE 5. Comparison of FEM results for square arrays with lubrication analysis. Plus
signs are spatially averaged short-time diffusivities from computations. Solid circles are
long-time diffusivities from our FEM implementation. The solid line is the long-time
diffusivity computed from the lubrication analysis.

investigate diffusion through random arrays of immobile disks for different immobile
area fractions, φI . Before examining those results, however, we introduce a network
analysis for random arrays that makes use of our FEM and lubrication results and can
be used to access larger system sizes.

4. Network analysis in random arrays
While the FEM described above is accurate, it is too computationally expensive

to access large system sizes, which are needed to capture the long tortuous paths
by which mobile particles diffuse through random arrays with high immobile area
fractions. To access larger system sizes, we made an abstraction of our diffusion
model that will simplify computations considerably. In this abstraction, we use
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Effects of immobilized proteins on diffusion of transmembrane proteins 665

Voronoi tessellation to construct a network of pore spaces between immobilized
proteins and employ a simple rule to determine the flow rate of mobile particles
along the bonds of the network in the presence of a concentration gradient. This idea
was briefly suggested in the context of transmembrane protein diffusion by Sung &
Yethiraj (2006), but similar approaches have been used to study pressure-driven flow
in porous materials (Charlaix, Guyon & Roux 1987). In our model, a concentration
drop equal to the unit-cell size L is applied across a periodic unit cell of randomly
arranged non-overlapping disks in a manner similar to our FEM approach. In our
treatment here, we will apply the concentration gradient along the x1-direction and
explain how to compute DL11, the component of the long-time diffusivity in x1 due
to a concentration gradient in x1. A similar treatment could be used to compute DL22.

A Voronoi tessellation gives a network of vertices and edges in which all edges are
equidistant between two neighbouring immobile disks and all vertices are equidistant
between three neighbouring immobile disks. The vertices can be interpreted as pore
spaces between the immobile disks, and the edges can be interpreted as bonds between
those pores. Each vertex is bonded to three other vertices. After Voronoi tessellation of
the void space, a simple geometric criterion is applied to determine which bonds are
open: if the centre-to-centre distance between the two immobile obstacles that share
a given bond is greater than 4a, then the bond is considered to be open because a
mobile disk can diffuse through the gap between the immobile disks. All other bonds
are considered closed. After the bond connectivity is determined, the vertices that are
part of a network of bonds which span the unit cell in x1 are isolated and analysed.
For these vertices, the flow rate of isolated mobile particles through a given bond can
be related to the concentrations of the corresponding vertices as follows:

Qmn =−A(ε)1B1, (4.1)

where

1B1 = L+ B1m − B1n for bonds crossing the unit-cell boundary in the x1-direction,
= B1m − B1n otherwise. (4.2)

Here, Qmn is the flow rate of mobile disks to m from n between connected vertices
m and n, B1m (B1n) is the concentration of mobile disks at vertex m (n), and x1m
(x1n) is the x1-coordinate of the vertex m (n), with x1m > x1n. The flow rate through a
bond is the integral of the flux of mobile disks across the gap between two immobile
disks corresponding to that bond. The coefficient A(ε) relates the flow rate to the
concentration drop and is a function of the half-gap ε (defined as in § 3.2) between
the two immobile disks corresponding to the bond. We used FEM results for ordered
arrays to calculate A(ε), described below. The first relation in (4.2) enforces the
concentration drop across the unit cell by adding L to the concentration difference
for these bonds. Because the system is at steady state, the sum of flow rates through
each vertex m is zero: ∑

n

Qmn = 0. (4.3)

Here, the summation is over all vertices n that are bonded to m. Using these relations,
the concentrations at each vertex can be determined. After this is done, the flow rates
for bonds that cross a unit-cell boundary can be added to determine an averaged flux.
The concentration gradient averaged across the entire unit cell must be computed in a
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manner analogous to that of the lubrication problem. In particular, we have specified
a concentration gradient which applies in the accessible part of the fluid phase only,
and we must relate it to the gradient averaged across the entire unit cell:〈

dB1

dx1

〉
f

= L2

Af

〈
dB1

dx1

〉
. (4.4)

Here, just as in (3.14), 〈dB1/dx1〉f is the gradient averaged over the fluid phase only,
and 〈dB1/dx1〉 is the gradient averaged over the entire unit cell. We determine Af by
sampling random points within the unit cell and determining whether any immobile
particles are centred a distance less than or equal to 2a from them. The long-time
diffusivity component DL11 can then be computed from the familiar constitutive
relation:

〈q〉 = 1
L

∑
〈m,n〉

Qmn =DL11

〈
dB1

dx1

〉
=DL11

Af

L2
, (4.5)

where the sum is over all bonds corresponding to vertex pairs 〈m, n〉 that cross a
unit-cell boundary.

4.1. Determination of coefficient A(ε) from FEM calculations
Because random arrays of disks have similar local structure and coordination number
to hexagonal arrays, we felt that we may be able to estimate the coefficient A(ε) in
random arrays by approximating them as hexagonal arrays and systematically varying
ε. This would allow us to conveniently use our FEM to find a simple relation which
would be accurate for higher area fractions of randomly arranged immobilized disks.
We therefore used our FEM to calculate long-time diffusivities of a mobile disk in
hexagonal arrays of immobile disks as a function of the half-gap ε. Arrays of 24
immobile disks were used to compute short-time diffusivities, and a rectangular unit
cell containing two immobile disks was used in FEM computations to calculate DL.
This rectangular unit cell is shown in figure 6.

To compute the coefficient A from these results, we had to determine the
relationship between A, relating a flow rate to a concentration drop, and DL, relating
a flux to a concentration gradient. We did this by carrying out an analysis consistent
with our network analysis (NA) on a hexagonal array. A Voronoi tessellation was
carried out on the unit cell in figure 6, yielding four vertices. The NA above was
then used to apply a concentration drop across the unit cell and calculate the resulting
flow rate. If a concentration drop H is applied along the x1-axis, the flow rate across
the right boundary of the unit cell is

Qhex = AhexH. (4.6)

In this case, all bonds have the same coefficient, Ahex, because they are all the same
width. This flow rate can be divided by the length of the right boundary to give the
average flux of mobile particles:

〈q〉hex =Qhex/(
√

3H)= Ahex/
√

3. (4.7)

Now using (4.5), a diffusion coefficient can be calculated. In this case, the factor
Af /L2 can be calculated analytically and is equal to (

√
3H2− 8π)/

√
3H2. This gives

〈q〉hex =DL,hex

√
3H2

√
3H2 − 8πa2

. (4.8)
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FIGURE 6. Computation of A(ε). (a) Hexagonal array of immobilized disks. The
rectangular unit cell used for FEM computations is outlined in dashed lines. Vertices and
edges corresponding to a Voronoi tessellation of the fluid space are shown as solid lines.
The vertices of one particular unit cell are labelled 1–4. (b) Plot of A as a function of
ε. Solid triangles are FEM results from hexagonal arrays, solid squares are FEM results
from square arrays, and the solid line is the lubrication result.

Equating the previous two expressions gives the following relation between Ahex and
DL,hex:

Ahex =DL,hex
3H2

√
3H2 − 8πa2

. (4.9)

After calculating DL,hex for different half-gaps, Ahex was calculated and is plotted in
figure 6(b). For comparison, coefficients computed from the lubrication analysis and
from FEM results on square arrays are also plotted. Because the lubrication problem
for square arrays was posed as a flow rate induced by a concentration difference (in
the same manner as the NA), the computation of A from DL for it is straightforward.
One must simply remove the extra factor accounting for the excluded volume of
immobilized disks:

Alub = ε√
2πI3

kbT
µh

. (4.10)

Here, Alub is the coefficient A from the lubrication problem. This result applies to
arrays of any geometry and could be adapted to compute DL for other periodic arrays.
A similar procedure can be used to compute the coefficient, Asq, based on FEM results
for square arrays:

Asq =DL,sq
H2 − 4πa2

H2
, (4.11)

where DL,sq is the long-time diffusivity from FEM on square arrays. Figure 6(b) shows
that the result for hexagonal arrays at finite ε is significantly larger than the results
from lubrication and square arrays. A polynomial fit to the results for hexagonal arrays
up to ε = 4, given below, was used as part of the NA on random arrays:

Ahex = 0.00058ε4 − 0.00612ε3 + 0.01813ε2 + 0.03713ε, 0< ε < 4. (4.12)
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FIGURE 7. Heat maps depicting B1 and B2 for one representative random array. One array
of randomly arranged disks with φI = 0.16 and NI = 30 is shown. The circular occlusions
represent both the immobile disks and the excluded area of the mobile disk around them.
Values for (a) B1 and (b) B2 are depicted by the shading of the regions of the unit cell
accessible to the mobile particle according to the adjacent scale bars.

5. Long-time diffusivity in random arrays
5.1. Comparison of finite element method and network analysis

FEM computations for the long-time diffusivity of one mobile protein in random
arrays of immobile proteins were carried out on the small system sizes accessible
with this rigorous method. Unit cells with NI = 35 randomly arranged non-overlapping
disks were generated by randomly inserting the disks into the unit cell and carrying
out Brownian dynamics simulations to move the disks from these positions. The size
of the unit cell was calculated by specifying a particular immobile area fraction φI .
The portion of the unit cell outside of the excluded-volume surface of the mobile
protein was then meshed. A typical mesh contained approximately 100 000 nodes.
After computing the short-time diffusivity for a mobile disk at each node within an
FEM mesh in a random array, equation (3.1) was solved using the FEM previously
described and (3.8) was used to compute the long-time diffusivity of the mobile
disk in the array. For each immobile area fraction, the diagonal elements DL11 and
DL22 were averaged for at least 50 arrays and used to compute the scalar long-time
diffusivity DL.

Random arrays introduce a potential complication into our FEM scheme: the fluid
space accessible to the mobile particle is not completely connected in some random
arrays. In some cases, portions of the fluid space were not spatially connected to all
unit-cell boundaries, making it impossible to determine B at the nodes in those regions
using the specified boundary conditions. We note, however, that ∇B must be zero in
these closed regions, so they do not contribute to the computation of DL except in
the trivial computation of Af . Therefore, these disconnected fluid regions were treated
in a manner similar to excluded-volume regions and were not included in the FEM
computations. Sample heat maps depicting B1 and B2 for one particular random array
are shown in figure 7. Marked changes in B1 and B2 can be seen across multiple
small gaps in the array. These plots show the profound effect of small gaps on the
concentration profile and the long-time diffusivity of the mobile disk.

Figure 8 shows DL computed from FEM as a function of φI . As one would
expect, the long-time diffusivity decreases as the immobile area fraction increases.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

28
 A

ug
 2

01
9 

at
 1

9:
00

:2
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
59

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.592


Effects of immobilized proteins on diffusion of transmembrane proteins 669

0.05 0.10
Immobile area fraction ƒI

0.15 0.20

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

µ
hD

L/
k b

T

FIGURE 8. Long-time diffusivity versus immobile area fraction for random arrays with
NI = 35. Open circles are from the FEM. Open squares are from the NA. Standard errors
with 95 % confidence intervals are shown.

For comparison, for λ=250, which is believed to be a typical value for a lipid bilayer,
equation (1.1) gives D0≈ 0.39kbT/µh. The marked decrease seen in figure 8 is due to
a combination of hydrodynamic and thermodynamic effects from the immobile disks.
However, finite-size effects can be seen close to the percolation threshold at φI ≈ 0.22.
At this immobile area fraction, the long-time diffusivity through an infinitely large
random array would be 0. The small array sizes in these calculations do not account
for the long tortuous paths taken by a mobile particle in an infinite array and thus
give higher long-time diffusivities than in larger arrays.

Using the NA to determine the size dependence of DL at different immobile area
fractions, we found that finite-size effects on the long-time diffusivity are seen at NI =
35 for φI > 0.10. We used the NA to provide accurate results at larger system sizes
by first comparing the results from the two methods for NI = 35. This allowed us to
use the more accurate FEM results to calculate a correction to the results from the
NA to account for the local resistance of the pores. The computations for the NA
were carried out on the same random arrays as those generated for the rigorous FEM
computations. Again, DL11 and DL22 were averaged to compute the scalar long-time
diffusivity DL. These long-time diffusivities are plotted alongside the FEM results in
figure 8. For the results shown, the maximum percentage difference between the two
methods is approximately 15 % at φI = 0.07. This is not surprising because the NA
does not accurately account for resistance to the particle motion within pore spaces
and would therefore become less accurate for larger pore spaces.

We used the FEM results to calculate a correction to the NA results. Such a
correction would ostensibly allow us to scale up to larger system sizes while still
accurately representing the hydrodynamic interactions in the membrane. The ratio
of the FEM result to the NA result for each immobile area fraction was fitted to a
polynomial function. The polynomial function obtained is

g(φI)= 78.204φ3
I − 44.562φ2

I + 5.674φI + 0.9569, 0.07 6 φI 6 0.22. (5.1)
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FIGURE 9. Estimate of long-time diffusivity versus immobile area fraction for infinitely
large random arrays. Open circles indicate that the results were obtained from the FEM.
Open squares indicate that the results are from the approximate method. Standard errors
with 95 % confidence intervals are shown.

For the results obtained by the NA that follow, the scalar long-time diffusivity
computed in the manner described above was multiplied by this correction factor to
obtain more accurate results:

DL = g(φI)DL,NA. (5.2)

Here, DL,NA is the long-time diffusivity obtained from the NA by averaging DL11 and
DL22 for random arrays of immobile proteins.

5.2. Extension to infinitely large arrays
Using the NA with the hydrodynamic correction above, we attempted to compute long-
time diffusivities for a mobile protein in infinitely large random arrays of immobile
proteins. We did so by calculating long-time diffusivities at different system sizes with
fixed φI . The diffusivities were calculated from random arrays generated in the manner
previously described. For each φI and each NI , at least 200 arrays were generated.
For φI 6 0.10, we found that the long-time diffusivity did not change appreciably
with system size above NI = 35. We thus concluded that our FEM results for NI =
35 accurately represented the long-time diffusivity in infinitely large arrays at those
immobile area fractions. For φI > 0.10, we calculated the long-time diffusivity using
the NA for increasing system sizes until the long-time diffusivity stopped changing.
These results are plotted in figure 9.

An empirical polynomial fit to these data may be of use to scientists who wish to
compare experimental data to our model. It is given as follows:

DL = −2459.3φ5
I + 1460.3φ4

I − 344.22φ3
I + 43.466φ2

I − 3.6681φI + 0.1963,
0.02 6 φI 6 0.18. (5.3)

We emphasize again here that this fit is strictly empirical and does not agree with the
asymptotic limits given by Brinkman theory for small φI or by percolation theory near
φI = φI,c (discussed below), respectively.
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FIGURE 10. Long-time diffusivity versus number of immobilized proteins NI for the
indicated immobile area fractions. Standard errors with 95 % confidence intervals are
shown.

As φI increases, the system sizes required to accurately compute the long-time
diffusivity in an infinite array increases dramatically. This is illustrated in figure 10,
which plots DL versus the number of immobilized disks, NI , for a few immobile
area fractions. For larger area fractions, we increased values of NI in factors of 21/2

until the computed long-time diffusivity changed less than 1 % from the value for
the previous system size twice. The maximum immobile area fraction for which we
calculated the long-time diffusivity was φI = 0.18. This required us to access arrays
with NI = 213 = 8192. Similar calculations at φI = 0.19 and φI = 0.20 continued
to show system size dependence up to NI = 8192. The difficulty in computing the
long-time diffusivity for these higher values of φI led us to consider alternatives to
the methods we developed. Sung & Yethiraj (2006, 2008) characterized a critical
immobile area fraction, φI,c≈ 0.22, at which long-range transport of a mobile protein
ceases and the long-time diffusivity becomes zero. Their work suggests that we can
treat φI,c as a percolation threshold and use percolation theory to study the diffusive
properties near φI,c. Percolation theory provides simple scaling laws for properties
such as diffusivity near the percolation threshold. We explored the applicability of
this theory to this system by comparing finite-size scaling results to the relevant
scaling law from percolation theory.

6. Finite-size scaling near percolation threshold
To study the long-time diffusivity at higher immobile area fractions, we investigated

the possibility of using percolation theory to interpret our results for unit-cell sizes that
were too small to provide an accurate direct estimate of DL. Sung & Yethiraj (2006,
2008) carried out Voronoi tessellations of random arrays of immobile circular disks
and analysed the resulting network of bonds between the void spaces of the disks to
determine whether the network could support transport of mobile disks. These authors
identified a percolation threshold at a critical immobile area fraction, φI,c≈0.22, above
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FIGURE 11. Finite-size scaling of DL/ with respect to system size at φI = 0.21. Open
circles indicate that the results were obtained from the FEM. Open squares indicate that
the results are from the NA. The solid black line and the dashed line are linear fits to
the FEM data and the NA data, respectively, with fixed slope =−0.975. Standard errors
with 95 % confidence intervals are shown.

which long-range transport is not supported. Their work suggests that our results for
(φI,c − φI)/φI,c� 1 can be interpreted using percolation theory.

Many quantities that characterize a system exhibit power-law scaling at or near the
percolation threshold (Stauffer & Aharony 1994). A correlation length, ξ , characterizes
the size of clusters of obstacles to diffusion. When the system size, L, is much smaller
than ξ , the long-time diffusivity exhibits power-law scaling with system size at fixed
φI:

DL = kL−η/ν, L� ξ . (6.1)

Here, η and ν are universal scaling exponents. In two dimensions, η ≈ 1.3 and
ν = 4/3. To test the validity of this relation, we examined the finite-size scaling of
our diffusivity results at φI = 0.21. We computed long-time diffusivities for different
system sizes using the NA method. We also carried out FEM computations for
system sizes accessible with that method. For each unit-cell size, diffusivities were
computed from between 200 and 400 random arrangements. The results are plotted
on a log–log scale in figure 11. Linear fits with fixed slope of −η/ν ≈ −0.975
are shown for both sets of data. Our datasets show agreement with the prediction
from percolation theory, indicating that percolation theory may provide an adequate
framework to analyse long-time diffusion for values of φI for which we cannot access
the long-time diffusivity using the NA method. According to the fits, the coefficient in
(6.1) is k= 0.0712 for the FEM calculations and k= 0.0683 for the NA calculations.

7. Hydrodynamic effects on DL/〈Ds〉
Finally, to gain insight into the nature of hydrodynamic interactions (HIs) in

this problem and to compare our results for DL in random arrays with those of

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

28
 A

ug
 2

01
9 

at
 1

9:
00

:2
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
59

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.592


Effects of immobilized proteins on diffusion of transmembrane proteins 673

1.0(a)
0.9

0.8

0.7

0.6

0.5

0.4

0.3

D
L/

¯D
S˘

0.2

0.1

0 0.1
´

0.2

1.0(b)
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2
Immobile area fraction ƒI

FIGURE 12. Effect of hydrodynamic interactions on the ratio of long-time to short-time
diffusivity. (a) The ratio DL/〈Ds〉 is plotted versus gap size for square arrays of immobile
particles. The solid line is the lubrication result without hydrodynamics, the open circles
are FEM results without hydrodynamics, the solid squares are lubrication results with
hydrodynamics, and the solid circles are FEM results with hydrodynamics. (b) Plot of
DL/〈Ds〉 versus immobile area fraction for random arrays. Solid circles show FEM results
with hydrodynamic interactions, and open circles show FEM results without hydrodynamic
interactions. The solid line is dilute theory. Standard errors with 95 % confidence intervals
are shown.

Bussell et al. (1995) and Dodd et al. (1995), we examined the effect of hydrodynamics
on the ratio DL/〈Ds〉. Bussell et al. (1995) and Dodd et al. (1995) assumed that HIs
do not change this ratio in order to obtain their results. Figure 12 shows plots of
DL/〈Ds〉 as a function of gap size for square arrays (figure 12a) and as a function of
immobile area fraction for random arrays (figure 12b).

In figure 12(a), for FEM results with HIs, spatially averaged short-time diffusivities,
〈Ds〉, were calculated for a given unit cell by choosing random points within the fluid
portion of each of the arrays, computing the short-time diffusivity for a mobile disk
placed at these points, and averaging over the diagonal elements, Ds11 and Ds22, of
each short-time diffusivity. The long-time diffusivities were then divided by these
spatially averaged short-time diffusivities to give the ratio plotted in the figure. The
lubrication result for DL given by (3.23) was also divided by 〈Ds〉 to obtain an
expression for DL/〈Ds〉 by lubrication analysis. For FEM results without HIs, the
ratio was computed for the same square unit cells by setting the short-time diffusivity
at each node in the mesh equal to the identity tensor and proceeding with the FEM
calculation. For square arrays, the same approach was used in the lubrication analysis
to give the following analytical estimate of the ratio in the absence of HIs:

DL

〈Ds〉 = ε
1/2/π=

(
1
2

(√
π

φI
− 2
))1/2

/π. (7.1)

Corresponding results for random arrays are shown in figure 12(b). For this case, in
the dilute limit φI � 1, an analysis similar to Maxwell’s calculation of the effective

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

28
 A

ug
 2

01
9 

at
 1

9:
00

:2
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
59

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.592


674 R. R. Singh, A. S. Sangani, S. Daniel and D. L. Koch

conductivity of a composite suspension can be used to obtain an estimate of the ratio
which is valid without HIs (Zimmerman, Chen & Cook 1992):

DL

〈Ds〉 = 1− 4φI. (7.2)

This expression is also plotted in figure 12(b) as a solid line. The FEM result without
HIs agrees with the dilute theory for small φI but becomes significantly lower than
the result from dilute theory at larger φI as the structure of the immobile obstacles
makes the possible diffusion pathways of the mobile disk more tortuous.

Interestingly, for both square and random arrays, the ratio DL/〈Ds〉 with HIs is
significantly higher than the result without HIs. This suggests that the HIs between
the immobile disks and the mobile one affect the manner in which the thermodynamic
interactions between the immobile disks and the mobile one manifest in these systems.
Therefore, it is inappropriate to treat hydrodynamic and thermodynamic interactions
separately and later combine their effects to estimate the long-time diffusivity in these
colloidal systems, as done by Bussell et al. (1995) and Dodd et al. (1995). This result
differs significantly from the corresponding result in three 3-D all-mobile colloidal
suspensions. In such systems, Brady (1994) presented rigorous arguments to show
that the long-time diffusivity could be computed by considering only hydrodynamic
effects on 〈Ds〉 and only thermodynamic effects on DL/〈Ds〉 and multiplying these
results together. Others have applied this approach to 3-D suspensions with immobile
occlusions and have shown agreement with experimental results for diffusion of
macromolecules in agarose gels (Johnson et al. 1996; Phillips 2000). However, we
do not know of any rigorous arguments put forth for this factorization between
hydrodynamic and thermodynamic effects in partially immobile suspensions.

Our results thus show that hydrodynamic effects on the long-time diffusivity in
partially immobile 2-D colloidal suspensions differ markedly from those in all-mobile
3-D suspensions. This difference would ostensibly be due to either the stronger HIs
in 2-D suspensions or the presence of immobile particles (or both). Bussell et al.
(1994) computed the short-time diffusivity and the long-time diffusivity of proteins
in all-mobile cell membranes and showed that HIs decrease the effect of hard-core
thermodynamic interactions in slowing the long-time diffusivity of the mobile disks.
This result is qualitatively similar to the result we have found in partially immobile
cell membranes here and suggests that the difference between the system we have
treated and an all-mobile 3-D colloidal suspension arises from the stronger HIs seen
in 2-D suspensions (or quasi-2-D suspensions in the case of the system treated by
Bussell et al. (1994)).

8. Conclusion
We have determined the long-time diffusivity of a single mobile transmembrane

protein in cell membranes with randomly arranged immobile transmembrane proteins.
Treating the proteins as cylinders embedded within a thin viscous fluid, we computed
the hydrodynamic and thermodynamic effects of the immobilized cylinders on the
diffusion of the mobile cylinder. As expected, the long-time diffusivity decreases
with the area fraction of immobile proteins, φI . According to our analysis, long-time
diffusion appears to be arrested near φI = 0.22, consistent with previous analyses of
random arrays which do not account for hydrodynamics. Our methods limit us to one
mobile protein and prevent us from examining the effect of other mobile proteins
on the long-time diffusivity of a mobile protein. Because it has been shown that the
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presence of immobile proteins reduces the short-time diffusivity much more than the
presence of similar fractions of mobile proteins (Dodd et al. 1995), we believe that
our results apply in real cell membranes which contain multiple mobile proteins.

These results required the deployment of several complementary methods. We used
a rigorous multipole expansion method to compute the short-time diffusivity of a
mobile protein at an arbitrary location in a square unit cell with arbitrarily arranged
immobile proteins. We then used these short-time diffusivities as part of an FEM to
compute the long-time diffusivity in square arrays of immobile proteins as a function
of the gap distance between the immobile proteins. After describing a lubrication
analysis for the long-time diffusivity in square arrays valid at small gap distances,
and showing agreement between results from our FEM and the lubrication analysis,
we proceeded to develop an approximate NA which allowed us to access larger arrays
of immobile proteins. We used the FEM and NA to estimate the long-time diffusivity
of a mobile protein in an infinite array of immobile proteins. We were able to access
system sizes large enough to obtain long-time diffusivities for immobile area fractions
as large as φI = 0.18. Finally, we showed that finite-size scaling of the long-time
diffusivity close to the percolation threshold at φI,c ≈ 0.22 agrees with the prediction
from percolation theory.

Empirical polynomial fits to our results for diffusivities in square and random arrays
were provided for those who may find them convenient for comparison. We summarize
them again here.

Square arrays:
Ds =−0.0558ε5 + 0.1503ε4 − 0.144ε3 + 0.0535ε2 + 0.0341ε + 0.0173, 0 6 ε 6 1,
DL = 0.7073ε5 − 1.9314ε4 + 1.9423ε3 − 0.8899ε2 + 0.2282ε, 0 6 ε 6 1.
Random arrays:
DL =−2459.3φ5

I + 1460.3φ4
I − 344.22φ3

I + 43.466φ2
I − 3.6681φI + 0.1963,

0.02 6 φI 6 0.18.


(8.1)

This work has interesting physical implications. Remarkably, the ratio of the
long-time diffusivity to the short-time diffusivity, DL/〈Ds〉, is larger with our
hydrodynamic model than in the absence of hydrodynamic interactions. This is
different from the behaviour found in all-mobile 3-D suspensions (Brady 1994). Our
work points to an interesting interplay between hydrodynamic and thermodynamic
interactions that may make it impossible to decouple the two interactions in
transmembrane protein diffusion. This interplay may result from the strength of
the hydrodynamic interactions in two dimensions. Our result suggests that other work
which has attempted to treat hydrodynamic and thermodynamic interactions separately
(Bussell et al. 1995; Dodd et al. 1995) may not accurately capture their combined
effect on transmembrane protein diffusion. Nevertheless, our work reinforces an
important result from that previous work: the profound effect that hydrodynamic
interactions with immobilized proteins play in slowing the diffusion of mobile
transmembrane proteins. Our results show that biologically relevant concentrations
(φI ≈ 0.10) of immobile proteins could slow the long-time diffusivity of a mobile
protein by up to an order of magnitude. Hydrodynamic effects account for much
more of this drop than excluded-volume effects.

The work described here can be extended in a number of directions to more
accurately capture the properties of real cell membranes. For example, one could
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examine heterogeneities in the distribution of immobile proteins. Such heterogeneities
appear to be important in diffusive phenomena such as hop diffusion (Fujiwara et al.
2002). In addition, the effect of mobile proteins on other mobile proteins could be
examined using dynamic simulation. The modification we have introduced to compute
short-time diffusivity tensors which are symmetric would allow us to use this method
in dynamic simulations in a manner similar to simulation methods for 3-D colloidal
suspensions (Ermak & McCammon 1978; Brady & Bossis 1988; Grassia, Hinch &
Nitsche 1995; Banchio & Brady 2003). These simulation methods would also allow
us to include more exotic thermodynamic interactions than the simple hard-core
interactions investigated here. Finally, the agreement of our finite-size scaling results
with percolation theory opens the possibility to use percolation theory to explore
other aspects of diffusion in random arrays near φI,c. Near the percolation threshold,
it is known that subdiffusive behaviour is seen on length scales much smaller than
the correlation length which characterizes the structure of immobile proteins. This
behaviour transitions to diffusive behaviour on length scales larger than the correlation
length. The cross-over time is the approximate time at which the diffusive mode
switches from subdiffusive to diffusive. Our methods would allow us to estimate
cross-over times as a function of φI . This would be valuable in light of the numerous
experimental reports of anomalous diffusion in cell membranes and model membrane
platforms (Schütz et al. 1997; Ratto & Longo 2003; Przybylo et al. 2006; Skaug,
Faller & Longo 2011; Weigel et al. 2011).
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Appendix A
Section 2 briefly explains the method of Dodd et al. (1995) to compute short-time

diffusivities for random arrangements of circular disks in a periodic unit cell by
multipole expansion. We give more details here.

The Green’s functions S1 and S2 are related to each other by

∇2S2 = S1, (A 1)

where S1 satisfies the relation

∇2S1(x)= 4π

 1
L2
−
∑
r0,n

δ(x− r0,n)

 , (A 2)

in which r0,n are the lattice vectors.
When the coefficients A(s)nm and B(s)nm given in (2.4)–(2.6) correspond to the disk n

around which integration takes place in (2.3) (when s = n), the terms from those
coefficients are singular. The fluid velocity can be split into a singular part and a
regular part:

u= us + ur. (A 3)
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The integrals in (2.3) can be carried out for the regular contribution ur using the
following formulae from Sangani & Yao (1988):

1
2π

∫ 2π

0
ur(x) cos lθ dθ

= 1
2
(1+ δl0)

al

l!

[(
∂

∂x1

)l

− l
4

(
∂

∂x1

)(l−2)

∇2 + a2

4(1+ l)

(
∂

∂x1

)l

∇2

]
ur(x(n)),

(A 4)
1

2π

∫ 2π

0
ur(x) sin lθ dθ

= 1
2

al

l!

[(
∂

∂x1

)l−1 (
∂

∂x2

)
− l− 2

4

(
∂

∂x1

)(l−3) (
∂

∂x2

)
∇2

+ a2

4(1+ l)

(
∂

∂x1

)l−1 (
∂

∂x2

)
∇2

]
ur(x(n)). (A 5)

Here the integration is assumed to be around the surface of a disk centred at x= x(n).
The singular terms must be integrated separately.

The mean velocity components U1 and U2 depend on whether all of the disks are
mobile. When all of the disks are mobile, the forces applied to the disks are balanced
by a pressure drop across the unit cell, and U1 and U2 are defined to be zero. In
applications to reconstituted membranes, the mean velocity is then determined by the
renormalization and matching to the outer solution discussed in Dodd et al. (1995).
When some of the disks are immobile, there is no pressure drop across the cell and the
net force on all of the disks must be zero. In this case, U1 and U2 are unknowns and
must be found by including two extra equations in addition to the boundary conditions:
the sum of the forces in the x1- and the x2-direction must be zero.

A.1. Derivatives of S1 and S2

To carry out the method above, one must calculate the derivatives of S1 and S2
with respect to x1 and x2. We briefly describe two methods for calculating these
derivatives. These are similar to previous treatments by Sangani & Behl (1989) and
Sangani, Zhang & Prosperetti (1991). Because all derivatives of S1 satisfy the Laplace
equation, all derivatives ∂p

1∂
q
2 S1 = (∂p+q/∂x p

1 ∂xq
2)S1 and ∂

p
1∂

q
2 S2 = (∂p+q/∂x p

1 ∂xq
2)S2 can

easily be calculated from the derivatives for which q = 0 or 1. Therefore, we only
describe the method to calculate derivatives for which p= n and q= 0 or p= n− 1
and q= 1.

A.1.1. Ewald summation
The method of Ewald is fast and accurate for lower orders of differentiation n =

p + q. We use it for n 6 6. The expression for S1 and S2 can be written as follows
(Hasimoto 1959):

Sm(x) = 1
πτ

(
− 1

4π2

)m−1
πmαm

(m− 1)!

[
τα−1

∑
n

φ−m

(
πr2

n

α

)
− 1

m

+
∑
k6=0

exp(2πik · x)φm−1(παk2)

]
, m= 1, 2. (A 6)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

28
 A

ug
 2

01
9 

at
 1

9:
00

:2
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
59

2

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.592


678 R. R. Singh, A. S. Sangani, S. Daniel and D. L. Koch

Here, τ is the area of the unit cell (equal to L2 in our case), α is a constant, which
we take to be equal to τ , r2

n= |x− r0,n|2, k are the reciprocal lattice vectors, and φν(z)
is the incomplete gamma function, defined as

φν(z)=
∫ ∞

1
ξ ν exp(−zξ) dξ . (A 7)

It is helpful to define other differential operators:

ξ = x1 + ix2, η= x1 − ix2,

∆m = ∂m
ξ + ∂m

η for m> 0,

= 1 for m= 0,
= 0 for m< 0,

∆̃m = i(∂m
ξ − ∂m

η ) for m> 0,

= 0 for m 6 0.


(A 8)

Now we have

∂n
1 S1 =1S1 + n

4
4π

τ
δn2, n > 0,

∂n
1 S2 =1S2 + n

4
∆n−2S1 + n(n− 1)

32
4π

τ
δn4, n > 0,

∂n−1
1 ∂2S1 = 1̃S1, n> 0,

∂n−1
1 ∂2S2 = 1̃S2 + n− 2

4
∆̃n−2S1, n> 0.


(A 9)

Now the differentiation can be split into regular and singular contributions:

∆nSm =∆nSreg
m +∆nSsing

m ,

∆̃nSm = ∆̃nSreg
m + ∆̃nSsing

m .

}
(A 10)

The regular contributions are

∆nSreg
m =

(
− α

4π

)m−1
[[∑

n6=0

(π

α

)n
∗ 2rn

n cos(nθn)φ−m+n(−1)n
]

+
[α
τ

2πn cos(θkn)kn exp
(

2πi
(

k · x+ n
4

))
φm−1(παk2)

]
+ b
]
,

b=− ln
π

α
− γ − 1 for m= 1 and n= 0,

=−4π

α
− 1

2
for m= 2 and n= 0,

∆̃nSreg
m =

(
− α

4π

)m−1
[[∑

n6=0

(π

α

)n
∗ 2rn

n sin(nθn)φ−m+n(−1)n
]

+
[α
τ

2πn sin(θkn)kn exp
(

2πi
(

k · x+ n
4

))
φm−1(παk2)

]]
.



(A 11)
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The singular contributions are

∆nSsing
1 =−2 ln r for n= 0,

= 2(n− 1)!(−1)nr−n cos(nθ) for n > 0,

∆̃nSsing
1 = 2(n− 1)!(−1)nr−n sin(nθ) for n > 0,

∆nSsing
2 = 1

2 r2(1− ln r) for n= 0,

= 2r cos θ
(

1
4 − 1

2 ln r
)

for n= 1,

= 1
2 r−n+2 cos nθ (n− 2)!(−1)n+1 for n > 2,

∆̃nSsing
2 = 2r sin θ

(
1
4 − 1

2 ln r
)

for n= 1,

= 1
2 r−n+2 sin nθ(n− 2)!(−1)n+1 for n > 2.



(A 12)

Substituting the expressions in (A 11) and (A 12) into (A 10) and then into (A 9) allows
one to find the derivatives of S1 and S2.

A.1.2. Direct summation
A direct lattice sum can be employed for higher orders of differentiation using the

following expressions:

∂
p
1∂

q
2 S1(r)=−2

∑
r0,n

∂
p
1∂

q
2 ln s, n= p+ q> 2, (A 13)

∂
p
1∂

q
2 S2(r)=−1

2

∑
r0,n

∂
p
1∂

q
2 s2 ln s, n= p+ q> 4, (A 14)

where s = |r − r0,n|. Singular contributions must be added separately as described in
the previous section.
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