
J. Fluid Mech. (2019), vol. 877, pp. 1098–1133. c© Cambridge University Press 2019
doi:10.1017/jfm.2019.625

1098

Slender body theory for particles
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This paper presents a theory to obtain the force per unit length acting on a slender
filament with a non-circular cross-section moving in a fluid at low Reynolds number.
Using a regular perturbation of the inner solution, we show that the force per unit
length has O(1/ ln(2A))+O(α/ ln2(2A)) contributions driven by the relative motion of
the particle and the local fluid velocity and an O(α/(ln(2A)A)) contribution driven by
the gradient in the imposed fluid velocity. Here, the aspect ratio (A= l/a0) is defined
as the ratio of the particle size (l) to the cross-sectional dimension (a0) and α is
the amplitude of the non-circular perturbation. Using thought experiments, we show
that two-lobed and three-lobed cross-sections affect the response to relative motion
and velocity gradients, respectively. A two-dimensional Stokes flow calculation is used
to extend the perturbation analysis to cross-sections that deviate significantly from a
circle (i.e. α∼O(1)). We demonstrate the ability of our method to accurately compute
the resistance to translation and rotation of a slender triaxial ellipsoid. Furthermore,
we illustrate novel dynamics of straight rods in a simple shear flow that translate and
rotate quasi-periodically if they have two-lobed cross-section, and rotate chaotically
and translate diffusively if they have a combination of two- and three-lobed cross-
sections. Finally, we show the remarkable ability of our theory to accurately predict
the motion of rings, retaining great accuracy for moderate aspect ratios (∼10) and
cross-sections that deviate significantly from a circle, thereby making our theory a
computationally inexpensive alternative to other Stokes flow solvers.

Key words: slender-body theory, particle/fluid flows, computational methods

1. Introduction
Slender geometries are quite common in the realm of low Reynolds number

fluid mechanics. Many microorganisms such as E. coli (Berg & Anderson 1973),
Chlamydomonas (Bray 2000), Paramecium (Brennen & Winet 1977) or human
spermatozoa (Suarez & Pacey 2006) use slender appendages to navigate through
viscous fluid environments. The orientation distribution of plankton, some of which

† Email address for correspondence: dlk15@cornell.edu
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Slender body theory for particles with non-circular cross-sections 1099

have elongated geometries, in the ocean is known to strongly influence the propagation
of light in the deeper levels which can significantly influence the global carbon
fixation (Guasto, Rusconi & Stocker 2012). Slender particles such as fibres are used
to make fibre-reinforced composites that have enhanced tensile strength and increased
anisotropic thermal conductivity (Tekce, Kumlutas & Tavman 2007). Slender body
theory (Batchelor 1970; Cox 1970; Keller & Rubinow 1976; Johnson 1980) provides
a computationally inexpensive route to study the dynamics of slender particles in
highly viscous flows. However, the influence of the force per unit length generated
by the gradient in the imposed fluid velocity has not been previously embedded in
this theory.

The force per unit length experienced by a slender filament with a circular
cross-section at low Reynolds number, to leading order, is qualitatively similar to
the viscous drag experienced by a long circular cylinder due to its relative motion
with the local fluid velocity. Here, the existence of an additional force per unit
length driven by the gradient in the imposed fluid velocity and its dependence on
the shape of the cross-section is elucidated. In this study, the nature of the velocity
disturbance is understood using a regular perturbation of the inner solution of the
slender body theory (SBT) formulation. An integral equation is derived for the force
per unit length experienced by the slender filament along with its dependence on the
cross-sectional geometry. The force per unit length due to the non-circularity of the
cross-section, has two components, one which is driven by the gradient in the imposed
fluid velocity affecting three-lobed cross-sections (figure 1c) and another driven by
the motion of the particle relative to the fluid affecting two-lobed cross-sections
(figure 1b), a component first presented by Batchelor (1970). The additional force
per unit length driven by the gradient in the fluid velocity is extremely important
in the SBT formulation especially for computing the dynamics and rheology of thin
particles in a linear flow field. A numerical calculation of the inner solution in a
two-dimensional domain is proposed to extend our SBT formulation to particles with
a general cross-sectional shape.

The current theory accurately predicts the resistance to rotation and translation of
slender triaxial ellipsoids retaining accuracy even when the cross-section has a high
aspect ratio (§ 4). In § 5, straight particles with three-lobed cross-sections, illustrated in
figure 1(c), are shown to rotate and translate quasi-periodically in a simple shear flow
(SSF) because of the force per unit length driven by the imposed velocity gradient.
In contrast, a straight particle with a combination of a two- and a three-lobed
cross-section, shown in figure 1(d), can diffuse in space while rotating chaotically.
This work allows for the inclusion of these dynamics which can potentially impact
the rheology of a suspension of straight particles. In § 6, our theory is utilized to
predict the dynamics of rings with non-circular cross-section, and the results remain
accurate for cross-sections that deviate significantly from a circle or have aspect ratios
as low as 10.

Slender body theory (SBT) allows for an approximate solution of the governing
equation modelling a physical phenomenon that is affected by the presence of
bodies which are long and thin. The governing equations of highly viscous flows
(Stokes flow), potential flows and heat transfer have been solved using the SBT
formulation for many applications. Potential flow problems that include animal
locomotion (Lighthill 1960, 1971), force on airship hulls (Munk 1924), force on wings
(Jones 1946) and ship hydrodynamics (Newman 1964, 1970) have been solved using
SBT. Steady state heat transfer in composites (Rocha & Acrivos 1973a,b; Chen &
Acrivos 1976; Acrivos & Shaqfeh 1988; Shaqfeh 1988; Fredrickson & Shaqfeh 1989;
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Outer region, ® ≫ a(s)

Matching region, a(s) ≪ ® ≪ l

Inner region, ® ≪ l

a(s) ¡ O(a0)
ex

ez
ey

ey

ex

rc
®

œ
Local polar

coordinate system

ex

ey

® = a(1 + å2cos(2œ - 2œ02))

ex

ey

® = a(1 + å3cos(3œ - 3œ03))

ex

ey

® = a(1 + å2cos(2œ - 2œ02) +
å3cos(3œ - 3œ03))

(b)

(a)

(c) (d)

FIGURE 1. (Colour online) Local coordinate systems in the particle reference frame and
the perturbed cross-sectional shapes studied here. (a) Local coordinate system for a general
curved body; ez is along the tangent to the filament axis, ex is along the normal and ey
is pointed along the binormal to the centreline of the slender body (rc). (b) Schematic
of a two-lobed shape (S-I), given by ρ = a(1 + α2 cos(2θ − 2θ02)). (c) Schematic of a
three-lobed shape (S-II), given by ρ = a(1+ α3 cos(3θ − 3θ03)). (d) Schematic of a shape,
which is a linear combination of the two- and three-lobed perturbations, given by ρ =
a(1+ α2 cos(2θ − 2θ02)+ α3 cos(3θ − 3θ03)) (S-III shape). ‘a’ the radius of the equivalent
circle is allowed to vary along the centreline of the filament.

Mackaplow, Shaqfeh & Schiek 1994) and transient heat transfer in ground-source
heat pumps (Beckers, Koch & Tester 2015) are a few applications of SBT for steady
state and transient heat conduction respectively. In the realm of highly viscous flows,
problems involving flagellar hydrodynamics (Johnson & Brokaw 1979), structure and
rheology of fibre suspensions (Rahnama et al. 1993; Rahnama, Koch & Shaqfeh
1995; Mackaplow & Shaqfeh 1996, 1998) and separation of racemic mixtures of
screw shaped particles (Kim & Rae 1991) have been solved using existing SBT
techniques for Stokes flow (Batchelor 1970; Cox 1970; Keller & Rubinow 1976;
Johnson 1980).

The basic idea in SBT is to obtain the strength of a line of singularities placed along
the centreline of the slender filament that approximates the field of interest around
the filament far away from the cross-sectional surface, termed as the outer region, i.e.
a�ρ. Here ρ is the radial distance from the centreline of the slender filament, and ‘a’
is a measure of the cross-sectional size of the particle at a certain location along the
centreline of the slender body as shown in figure 1(a). The singularity for a potential
flow problem is a point source of mass, for a heat transfer problem a point source
of heat and for a Stokes flow problem a point force. The strength of the singularities
is found by matching the field approximated in the outer region, termed as the outer
solution, to a field obtained from the inner region (i.e. ρ � l, where l is the length
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Slender body theory for particles with non-circular cross-sections 1101

of the slender filament). Placing higher-order singularities along the centreline of the
slender filament gives a better estimate of the field of interest. For a Stokes flow
problem, which is the main topic of discussion in this paper, these singularities would
include doublets, rotlets, sources, stresslets and quadrupoles (Johnson 1980).

In Stokes flow, the force per unit length exerted by the body on the fluid (i.e. the
strength of the singularity) is derived at each point along the centreline of the slender
body in terms of the motion of the particle and the imposed fluid velocity. The length,
‘l’, an appropriate velocity and the fluid viscosity are used to non-dimensionalize all
variables throughout this paper unless mentioned otherwise. The force per unit length
exerted by a slender body on the fluid, which is due to relative motion of the particle,
and fluid, can be expressed as a series in ε = 1/ ln(2A) (Batchelor 1970; Cox 1970),
where A= l/(a0) is the aspect ratio of the particle and a0 is the characteristic value of
a(s). The first term in this series arises only due to the local relative velocity between
the particle and the fluid and is O(ε) (Batchelor 1970; Cox 1970). Cox (1970) was
the first to demonstrate that the force per unit length is affected at O(ε2) by the
centreline curvature (see equations (6.2) and (6.3) of his paper). Keller & Rubinow
(1976) gave an integral equation for the force per unit length which can be iteratively
solved to obtain higher-order corrections to the force per unit length with errors of
O(εN), where N is an integer such that N > 2. Johnson (1980) produced an integral
equation for the force per unit length with errors of O(1/A2) which also included the
effects of the ends of the slender body (equation (19) of his paper). Johnson (1980)
also described a method to incorporate the effect of centreline curvature in the inner
solution (equation (31) of his paper).

Batchelor (1970) showed that the cross-sectional shape of the particle first affects
the force per unit length at O(ε2), the same order of importance as the centreline
curvature of the body. Batchelor (1970) described how the force per unit length for an
arbitrary cross-section can be found by solving for the longitudinal velocity field due
to an equivalent circle of a certain radius, and the transverse velocity field due to an
equivalent ellipse of certain dimensions and orientation. Batchelor (1954) provided the
method to obtain the equivalent circular cylinder by solving the harmonic equation for
the flow along the longitudinal direction. Batchelor (1970) described the procedure to
obtain an equivalent ellipse by solving the biharmonic equation for the velocity field
in the transverse plane around the cross-sectional shape in question.

Cox (1971) was the first to account for the effect of the gradient in the imposed
velocity of a linear flow field on the force and torque acting on a slender cylinder with
tapered ends, which was oriented such that the imposed velocity field at the particle
centreline is exactly zero. Cox placed a force and dipole per unit length along the
centreline of the body to approximate the velocity field in the outer region, while
Keller & Rubinow (1976) employed a stresslet and rotlet per unit length for the same
purpose. Singh et al. (2014) discuss the equivalence of these two formulations by
showing that the variation of the force per unit length leads to a net stresslet and
a rotlet on a slice of the particle. The rotlet per unit length can lead to a finite torque
on the particle whereas a variable stresslet per unit length, which occurs when the
particle cross-section varies along the longitudinal direction, can lead to a finite force
acting on the particle of O(ε2/A2). A straight circular cylinder with a constant cross-
section cannot experience a force per unit length at this orientation if the cross-section
is circular. However, the force per unit length due to the velocity gradient can be
non-zero if the cross-section is non-circular. This force per unit length, which will be
O(ε/A) as explained in § 3, can lead to a net force of O(ε/A) acting on the particle.

In this paper, the additional O(ε/A) contribution to the force per unit length
in addition to Batchelor’s correction of O(ε2) is derived in § 3. This calculation
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1102 N. S. Borker and D. L. Koch

is especially important when considering motion of force and torque-free slender
particles in SSF. In such scenarios, Batchelor’s correction tends to zero for certain
particle orientations, while Cox’s (1971) correction predicts a much smaller effect on
the particle rotation rate. Thus, both previous theories lead to an incorrect qualitative
behaviour for particle geometries such as straight cylinders with elliptic cross-sections
(Yarin, Gottlieb & Roisman 1997) or rings with three-lobed cross-sections (Singh,
Koch & Stroock 2013) in SSF.

2. SBT solution for circular cross-section
In this section, the velocity disturbance created by a slender particle with a circular

cross-section, when placed in a fluid moving with a velocity u∞ in the absence of
the particle is described. This calculation will be used to obtain the effect of the
cross-sectional shape in § 3. The slenderness parameter or the aspect ratio (A= l/(a0)),
is defined as the ratio of the half-length of the filament (l) and a measure of the radius
of the cross-section (a0). The radius of the cross-section, a∼O(a0), is allowed to vary
along the longitudinal direction of the slender body. The position vector is denoted
by r and rc denotes the position of the centreline of the slender filament. A local
coordinate system (ex, ey, ez) is chosen based on the tangent (ez), normal (ex) and
binormal (ey) to the centreline of the slender body, as shown in figure 1(a), and is
mathematically given by

ez =
∂rC

∂s
, ex =

1
κ

∂2rC

∂s2
, ey = ez × ex, (2.1a−c)

where ‘s’ denotes the arc length along the centreline and κ is the local curvature of
the body centreline. A local polar coordinate system (ρ–θ ), as shown in figure 1(a), is
defined in the ex–ey plane, where θ is measured from ex and ρ is the normal distance
from the centreline. The far-field fluid velocity is denoted by u∞, which is allowed
to vary with r. The velocity on the particle surface (r= rs) is given by

u(r= rs)=U+ω× rs = (U+ω× rc)+ω× (rs − rc), (2.2)

where U and ω are the particle velocity at the origin (r = 0) and angular velocity
of the particle, respectively. These definitions are valid for any cross-sectional shape.
The rest of this section describes the slender body theory solution for a circular cross-
section of radius ‘a’. The force per unit length and all the unknown constants in the
inner solution, which are required for the perturbation analysis in § 3, are obtained in
this section.

2.1. Velocity field in the inner region (ρ� 1)
Any curved slender body with O(1) curvature appears locally as a straight infinite
cylinder to a first approximation. The velocity field in the inner region is obtained
by assuming flow over an infinite cylinder. Thus, the flow along and transverse to the
cylinder is solved separately. Any coupling between these flows arises due to curvature
and finite aspect ratio of the particle and leads to algebraic O(1/A2) corrections to
the velocity disturbance (Johnson 1980) which are not discussed here. The functional
form of the flow in the transverse plane is obtained by solving a two-dimensional
Stokes flow problem that satisfies the no-slip condition on the particle surface. The
far-field boundary condition is applied later while asymptotically matching the velocity
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Slender body theory for particles with non-circular cross-sections 1103

fields from the inner and outer regions to obtain any unknowns. The solution to the
biharmonic equation (∇4ψ = 0) is used to obtain the functional form of the velocity
field in the plane transverse to the slender dimension. The two-dimensional velocity
field is obtained from the definition of the streamfunction, i.e. uρ = ρ−1 dψ/dθ and
uθ =− dψ/dρ. The solution around a circular cross-section of radius ‘a’ in terms of
the streamfunction (ψ) in polar coordinates is given by

ψ

a
=

(
ψ̃

a

)
+ [B cos(θ)+ B̂ sin(θ)]

[(ρ
a

)
−

(ρ
a

)−1
− 2 ln

(ρ
a

) (ρ
a

)]
+ [(U+ω× rc) · (ex sin(θ)− ey cos(θ))]

[(ρ
a

)−1
+ 2

ρ

a
ln
(ρ

a

)]
− (ω · ez)a ln

(ρ
a

)
, (2.3)

where ψ̃ is the streamfunction that approaches the streamfunction of the imposed flow
field for ρ� a, while satisfying the zero-velocity boundary condition on the particle
surface. B and B̂ are obtained by matching this velocity field to the one from the outer
region and depend on the force per unit length acting on the slender body, the imposed
flow field and the particle velocities (U and ω). The velocity in polar coordinates in
the inner region is given by

uρ =
1
ρ

∂ψ

∂θ
=

1
ρ

∂ψ̃

∂θ
+ [−B sin(θ)+ B̂ cos(θ)]

[
1−

(ρ
a

)−2
− 2 ln

(ρ
a

)]
+ [(U+ω× rc) · (ex cos(θ)+ ey sin(θ))]

[(ρ
a

)−2
+ 2 ln

(ρ
a

)]
, (2.4)

uθ = −
∂ψ

∂ρ
=−

∂ψ̃

∂ρ
+ [B cos(θ)+ B̂ sin(θ)]

[
1−

(ρ
a

)−2
+ 2 ln

(ρ
a

)]
+ [(U+ω× rc) · (ex sin(θ)− ey cos(θ))]

[(ρ
a

)−2
− 2− 2 ln

(ρ
a

)]
+ω · eza

(ρ
a

)−1
. (2.5)

The velocity along the longitudinal direction is obtained by assuming negligible
change in pressure along the longitudinal direction (i.e. ∇2uz = 0). The velocity field
along a slender filament with circular cross-section is given by

uz = ũz + E ln
(ρ

a

)
+ (U+ω× rc) · ez +

(ρ
a

)−1
(ω · exa sin(θ)−ω · eya cos(θ)), (2.6)

where ũz is the velocity field that approaches u∞ · ez for ρ/a� 1, and equals zero on
the particle surface, E is obtained by matching the inner region velocity field to the
outer solution and depends on the imposed flow field, the particle velocities (U and ω)
and the force per unit length on the filament. The overall error in (2.4)–(2.6) is the
larger of O(1/A2) and the order of errors in B, B̂ and E, determined by matching the
inner velocity field to the outer solution.
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1104 N. S. Borker and D. L. Koch

2.2. Velocity field in the outer region (ρ� a(s))
In the outer region, the velocity disturbance due to a slender filament is approximately
captured by a suitable choice of Stokeslet distribution along the particle centreline (rc)
(Cox 1970). A Stokeslet is a point force solution to the Stokes equations. The velocity
disturbance created by a line of force per unit length is given by

u(r)≈ u∞(r)+
1

8π

∫
rc

ds′
(

I
|r− r′|

+
(r− r′)(r− r′)
|r− r′|3

)
· f (r′), (2.7)

where r is the point at which the velocity is evaluated, r′ takes all values along the
centreline and ds′ is the elemental length along the centreline of the slender body.
Equation (2.7) has errors of O(1/A2). As r′→ r, the integrand in (2.7) diverges as
ln(ρ). This diverging part of the integral in (2.7) is separated from the rest of the
integral as shown by Keller & Rubinow (1976) and the resulting equation for ρ� 1
is given by

u(r) ≈ u∞(r)−
1

4π
(I+ ezez) · f (r)

[
ln
(ρ

2

)
− ln

(
s(1− s)

a(s)

)]
−

1
4π

f · ezez

+
1

4π
f · eρeρ +

1
8π

∫
rc

ds′
[(

I
|rc(s)− rc(s′)|

+
(rc(s)− rc(s′))(rc(s)− rc(s′))

|rc(s)− rc(s′)|3

)
· f (r′)−

(
I

|s− s′|
+

ezez

|s− s′|

)
· f (r)

]
, (2.8)

where eρ is the radial vector in the ex–ey plane. The integral on the right-hand side
of (2.8) is shown to have a finite limit by Keller & Rubinow (1976). The ln(ρ) term
in (2.8), matches the ln(ρ) of the inner solution in (2.4)–(2.6) and also corresponds
to the velocity disturbance produced by an infinite cylinder with the same force per
unit length at each point.

2.3. Matching region (a� ρ� 1)
The velocity produced from the inner solution for ρ� a, should asymptotically match
the velocity field from the outer solution for ρ�1 as the velocity field cannot abruptly
change in this matching region (i.e. a� ρ � 1). Matching the velocity fields from
the inner and outer solutions, using (2.4)–(2.6) and (2.8), yields the constants in the
inner solution, B̂= (U + (ω × rc)) · ex + fx/8π, B=−(U + (ω × rc)) · ey − fy/8π and
E=−4fz/8π, and leads to an integral equation for the force per unit length given by

f (r)
8π
=
ε

2

(
I−

ezez

2

)
·

{
U+ω× rc − u∞(rc)−

1
8π
(I− 3ezez) · f (r)

−
1

4π
(I+ ezez) · f (r) ln

(
s(1− s)

a(s)

)
+

1
8π

∫
rc

ds′
[(

I
|rc(s)− rc(s′)|

+
(rc(s)− rc(s′))(rc(s)− rc(s′))

|rc(s)− rc(s′)|3

)
· f (r′)−

(
I

|s− s′|
+

ezez

|s− s′|

)
· f (r)

]}
. (2.9)

The leading-order force per unit length f = 4πε(U+ω× rc−u∞(rc)) · (I− ezez/2)(1+
O(ε)), suggests that a slender filament of any arbitrary cross-section experiences an
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Slender body theory for particles with non-circular cross-sections 1105

O(ε) viscous drag equal to the viscous drag per unit length experienced by a long
cylinder due to its motion relative to the local fluid velocity. The higher-order terms in
(2.9) include the additional drag due to the relative motion of the particle and the local
velocity as well as a contribution that comes from the velocity disturbance created by
the particle itself.

3. SBT solution for non-circular cross-sections
In this section the O(αε/A) force per unit length exerted by the filament for a

slightly non-circular cross-section is derived along with the O(αε2) correction to
the force per unit length derived by Batchelor (1970). Here, α is the perturbation
parameter that quantifies the degree of non-circularity. The cross-sectional shapes
that trigger these respective contributions are obtained from thought experiments.
Finally, a strategy to extend our perturbation analysis to particles with α ∼ O(1) is
demonstrated towards the end of this section.

3.1. Regular perturbation of the inner solution
A slightly non-circular cross-section can be described by ρ = a(1+ αh(s, θ)), where
α � 1, h(s, θ) is a smooth and bounded function periodic in θ with a period of
2π/N, where N is any positive integer, such that max |h(s, θ)| ∼O(1) and |∂h/∂s| ∼
O(1). The derivative ∂h/∂θ cannot be zero, as that corresponds to a larger circular
cross-section, thereby only changing the particle aspect ratio. The inner velocity field
obtained in § 2 will be modified to satisfy the no slip boundary condition at the new
surface, ρ = a(1 + αh). The additional velocity field in the transverse plane (ex–ey
plane), is described using a streamfunction (αψ ′), such that ψ ′ ∼ O(1) for ρ/a ∼
O(1). Here, ψ ′ is given by an equation of the same form as (2.3), but with different
constants from those obtained for ψ . The terms in ψ ′ corresponding to a decaying
velocity field with increasing values of ρ/a can be obtained by satisfying the no-slip
boundary condition at O(α) for the velocity obtained using the streamfunction (ψ +
αψ ′). These constants will depend on h, ψ̃ , B, B̂ and U and ω all of which are
either known or obtained from the analysis done for a slender filament with a circular
cross-section in § 2. The non-decaying terms in ψ ′ used during the matching process
are given by

αψ ′ = α
[
−(C′ cos(θ)+D′ sin(θ))

((ρ
a

)
ln
(ρ

a

))
+ (B′ cos(θ)+ B̂′ sin(θ))

((ρ
a

)
− 2 ln

(ρ
a

) (ρ
a

))
. . .
]
, (3.1)

where C′ and D′ are constants that are obtained by satisfying the no-slip condition
on the particle surface, ρ = a(1 + αh), while B′ and B̂′ are obtained by matching
with the outer solution and play the same role as B and B̂ played in the analysis
for a circular cross-section. The ‘. . .’ in (3.1) corresponds to the additional terms in
the streamfunction necessary to satisfy the no-slip boundary condition on the particle
surface that do not participate in the matching process. The corresponding terms in
the fluid velocities used in the matching solution are given by

αu′ρ = α
[
(C′ sin(θ)−D′ cos(θ))

(
ln
(ρ

a

))
+ (−B′ sin(θ)+ B̂′ cos(θ))

(
1− 2 ln

(ρ
a

))
. . .
]
, (3.2)
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1106 N. S. Borker and D. L. Koch

αu′θ = α
[
(C′ cos(θ)+D′ sin(θ))

(
1+ ln

(ρ
a

))
+ (B′ cos(θ)+ B̂′ sin(θ))

(
1+ 2 ln

(ρ
a

))
. . .
]
. (3.3)

From (3.2) it can be easily seen that C′ and D′ do not enter the uρ boundary condition
at O(α). The constants C′ and D′, which occur in the uθ boundary condition, are given
by

C′ =
1
π

∫ 2π

0
dθ cos(θ)

×

− d
dα

(
−
∂ψ̃

∂ρ

∣∣∣∣∣
ρ=a(1+αh(s,θ))

)
α=0

+ 4h(θ)
[
−

fx

8π
sin(θ)+

fy

8π
cos(θ)

] ,

(3.4)

D′ =
1
π

∫ 2π

0
dθ sin(θ)

×

− d
dα

(
−
∂ψ̃

∂ρ

∣∣∣∣∣
ρ=a(1+αh(s,θ))

)
α=0

+ 4h(θ)
[
−

fx

8π
sin(θ)+

fy

8π
cos(θ)

] .

(3.5)

The first terms in the integrands of (3.4) and (3.5) are of O(1/A) and are related
to the force per unit length driven by the gradient in the imposed fluid velocity as
will be explained in 3.2. The remainder of the O(ε) terms in the integrand of (3.4)
and (3.5) occur due to the velocity disturbance created by the force per unit length
of the unperturbed circular cross-section and are thereby driven by the motion of the
particle relative to the local fluid velocity.

The function h(s, θ) is expanded as a Fourier series to understand the effect of the
cross-sectional shapes that affect C′ and D′. Here, h(s, θ) is given by

h(s, θ)=
∞∑

m=1

hm(s) cos(m(θ − θ0m)), (3.6)

where coefficients hm, and θ0m, for m = 1, 2, . . . , are constants obtained using
the orthogonality of cos(m(θ − θ0m)). The effects of the Fourier modes of h can be
summed up to get the overall effect of the shape as the analysis is done at linear order
in α. The cross-sectional shape, ρ = a(1+ αhm cos(mθ −mθ0m)), corresponding to the
mth Fourier mode has an m-fold rotational symmetry and m-lobes where one of the
lobes makes an angle of θ0m with ex. The first Fourier mode only changes the position
of the cross-section without distorting the shape at linear order in α. Thus, particles
with only the first Fourier mode can be studied using the SBT formalism explained
in section two, by redefining the particle centreline so that it passes through the new
centre of the cross-section. The other Fourier modes can affect the force per unit
length in a non-trivial way. Substituting (3.6) in (3.4) and (3.5), suggests that only the
second Fourier mode will affect C′ and D′ at O(ε). The corresponding cross-sectional
shape ρ= a(1+αh2 cos(2θ − 2θ02)) is approximately an ellipse of eccentricity

√
4αh2

whose major axis is at an angle θ02 as shown in figure 1(b). The Fourier modes
of a shape that affect C′ and D′ at O(1/A) depend on the specific nature of ψ̃ as
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Slender body theory for particles with non-circular cross-sections 1107

can be seen by substituting ρ = a(1 + αh) in the expression for (−∂ψ̃/∂ρ). If the
imposed velocity field has terms that scale with ρN , for N > 1, then the (N − 2)th,
(N)th and (N + 2)th Fourier modes of h will affect C′ and D′ (equation (S 1.4)
in the supplementary material, available at https://doi.org/10.1017/jfm.2019.625). If
N = 1, which corresponds to a linear imposed velocity field, then only the third
Fourier mode will affect the O(1/A) term in (3.4) and (3.5) and the corresponding
three-lobed cross-sectional shape is given by ρ = a(1 + αh3 cos(3θ − 3θ03)) which
is shown in figure 1(c). If the imposed fluid velocity changes on the length scale
of the particle cross-sectional size, then the contribution of the terms in ψ̃ which
scale with ρN+1 to C′ and D′ will be O(1/AN), which is algebraically smaller than
the contribution to C′ and D′ due to a linear flow field for N > 2. Therefore, in the
remainder of the paper the focus is only on a linear flow field, i.e. ψ̃ grows as ρ2.
In this case, the cross-sectional shapes shown in figure 1(b–d) can affect the force
per unit length due to non-circularity.

Thought experiments are presented using two-dimensional Stokes flow problems to
gain physical insight into why only the second and third Fourier mode perturbations
to a circle change the force per unit length acting on a long cylinder. Consider a
two-dimensional obstacle, whose shape is a second Fourier mode perturbation to
a circle, that is placed in a uniform flow field. This body experiences a lift force,
unless the imposed fluid velocity is along one of its two axes of symmetries as shown
in figure 2(a). The third and higher Fourier mode perturbations to a circle have at
least a twofold rotational symmetry in a two-dimensional space. An N-fold rotational
symmetry means that the shape looks the same after rotating it by any integer multiple
of 2π/N. These cross-sections cannot generate a lift force in a two-dimensional (2-D)
uniform flow along at least two non-colinear directions, n1 and n2 as shown in
figure 2(b), due to fore–aft symmetry. Thereby such a cross-section should experience
no lift for all cross-sectional orientations by linear superposition. This is analogous
to our result obtained earlier that only slender particles with cross-sections with a
second Fourier mode perturbation to a circle will experience an additional force per
unit length.

To gain insight into the force per unit length driven by the gradient in the imposed
fluid velocity, consider a cross-section placed in a general linear flow field and
note that at O(α) the influence of the Fourier mode perturbations can be linearly
superimposed. Only the extensional component of the flow influences the force per
unit length, f̆ . Using the linearity of Stokes equations, f̆ is given by

f̆ = ξ1E∞ : nknknk + ξ2E∞ · nk, (3.7a)

where E∞ is the straining tensor of the linear flow field and nk = [cos(2πk/n),
sin(2πk/n)] with k = 0, 1, . . . , (n − 1) being the orientations along the lines of
symmetry of the nth Fourier mode perturbation to the circle (n > 2). Choosing
E∞ =

[
0 1
1 0

]
, f̆ can be written as

f̆ =


(

2 cos2

(
2π

n
k
)
ξ1 + ξ2

)
sin
(

2π

n
k
)

(
2 sin2

(
2π

n
k
)
ξ1 + ξ2

)
cos
(

2π

n
k
)
=

[
0
ξ2

]
k=0

, (3.7b)

where the second equality gives the value f̆ at k= 0. f̆ as per (3.7b) can be identical
and non-zero for ∀k ∈ {0, 1, . . . , (n− 1)} only for the third Fourier mode perturbation
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U1
U1

U2
U2

F = R1U1

F = R2U2
R2 ≠ R1

F1 = RU2

F1 = RU1

F = aR1U1 + bR2U2
∴ F = R1U · n1n1 + R2U · (I - n1n1)

F = aRU1 + bRU2
∴ F = RU

U = aU1 + bU2

U = aU1 + bU2

(U1 · n1 = |U1|) (U1 · n1 = |U1|)

(U2 · n2 = |U2|)(U2 · n1 = 0)

n1

n1

n1

n3

n1

n2

n3

n1

n2

n3

n1

n2(a) (b)

Finite lift force on
the particle

Zero lift force on
the particle

FIGURE 2. (Colour online) Schematic of thought experiments to intuitively understand
the importance of the second Fourier mode perturbation to a circle. (a) Finite lift on a
second Fourier mode perturbation of a circle. (b) Zero lift force on a cross-section with
a three-lobed cross-section which is obtained from the third Fourier mode perturbation to
a circle. This zero lift is true for the third and any higher Fourier mode perturbation to
a circle.

to a circle. Identical values of f̆ for any other Fourier mode perturbation would require
ξ1 = ξ2 = 0 implying f̆ = 0. This implies that at linear order in the perturbation
parameter, the force per unit length is only affected by the third Fourier mode
perturbation. One can get a visual picture for the existence of f̆ = [0 ξ2], using our
linear perturbation analysis for u′θ . For E∞ =

[
0 1
1 0

]
, the perturbation to the tangential

velocity α3u′θ =−α3(4 cos(2θ) cos(3θ)) is required to satisfy the no-slip condition on
the particle surface. The direction of u′θ shown in figure 3, suggests that u′θ points
along −ey for θ ∈ {(0, π/6), (π/4, 3π/4), (5π/6, 7π/6), (5π/4, 7π/4), (11π/6, 2π)}
and points along ey for the remaining narrow portions of angular space. A net average
velocity along (−ey) is required to satisfy the no-slip boundary condition which leads
to the force f̆ = (0, ξ2) along that direction.

The additional terms in the longitudinal velocity field used during the matching
process are given by

αu′z = αe′0 + αE′ ln
(ρ

a

)
+ · · ·, (3.8)

where e′0 is obtained from the no-slip boundary condition and E′ is determined by
matching the inner solution to the outer solution in a similar manner to obtaining E.
Substituting ρ = a(1 + αh) in (2.8), it can be shown that there is no term of O(α)
which does not depend on θ , and therefore e′0 is zero.
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u∞ = E∞ · r

(u�
œ · ey) > 0

(u�
œ · ey) < 0

å3u�
œ

ex

ey

FIGURE 3. (Colour online) Direction of the perturbation to the tangential velocity on the
particle surface α3u′θ = −α3(4 cos(2θ) cos(3θ)) necessary to satisfy the no-slip condition
suggesting a need for a force along ey.

The velocity field in the inner region for a cross-section given by ρ = a(1 + αh),
which could be obtained from (2.4) to (2.6), (3.2), (3.3) and (3.8), is given by

uinner
i = ui + αu′i, (3.9)

where i= {ρ, θ, z}.

3.2. Matching the inner and outer velocity field for a slightly non-circular
cross-section

Due to the linearity of Stokes equations, the additional force per unit length that arises
from the perturbation of the circular cross-section must be of the form (αf ′), where
| f ′| is at most O(ε2). The outer velocity disturbance created by f ′ should also have a
form similar to the velocity disturbance created by f , i.e.

u′(r) ≈ −
1

4π
(I+ ezez) · f ′(r)

[
ln
(ρ

2

)
− ln

(
s(1− s)

a(s)

)]
−

1
4π

f ′ · ezez +
1

4π
f ′ · eρeρ

+
1

8π

∫
rc

ds′
[(

I
|rc(s)− rc(s′)|

+
(rc(s)− rc(s′))(rc(s)− rc(s′))

|rc(s)− rc(s′)|3

)
· f ′(r′)−

(
I

|s− s′|
+

ezez

|s− s′|

)
· f ′(r)

]
. (3.10)

The complete velocity field, u+ αu′, is obtained by combining (2.8) and (3.10). On
matching the velocity fields from the inner and outer region, f ′ is given by the integral
equation
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f ′(r) =
ε

2

(
I−

ezez

2

)
·

(
C′

2
ey −

D′

2
ex −

1
8π
(I− 3ezez) · f ′(r)

−
1

4π
(I+ ezez) · f ′(r) ln

(
s(1− s)

a(s)

)
+

1
8π

∫
rc

ds′
[(

I
|rc(s)− rc(s′)|

+
(rc(s)− rc(s′))(rc(s)− rc(s′))

|rc(s)− rc(s′)|3

)
· f ′(r′)−

(
I

|s− s′|
+

ezez

|s− s′|

)
· f ′(r)

])
. (3.11)

Here, f ′ can be iteratively obtained with errors of O(εN+1) or errors of O(εN/A) if
h2 = 0, where N > 2; f ′ does not have a component along the longitudinal direction
at linear order in α. This can be understood on matching the O(α) terms in the inner
and outer velocity fields in u′z, which results in E′ being identically zero.

The integral equation for the net force per unit length, f net = f + αf ′ is given by

( f net)

8π
=
ε

2

(
I−

ezez

2

)
·

{
U+ω× rc − u∞(rc)+ α

(
C′

2
ey −

D′

2
ex

)
−

1
8π
(I− 3ezez) · ( f net)−

1
4π
(I+ ezez) · ( f net) ln

(
s(1− s)

a(s)

)
+

1
8π

∫
rc

ds′
[(

I
|rc(s)− rc(s′)|

+
(rc(s)− rc(s′))(rc(s)− rc(s′))

|rc(s)− rc(s′)|3

)
· ( f net(r

′))−

(
I

|s− s′|
+

ezez

|s− s′|

)
· ( f net(r))

]}
, (3.12)

where C′ and D′ are obtained from (3.2) and (3.3), respectively, and have contributions
of order ε and/or 1/A depending on the shape of the cross-section. The governing
integral equation can be completely solved to get the value of the force per unit length
correct to O(εN) + O(αεN+1) + O(αεN/A), where N is an integer greater that unity.
Solving for the force per unit length to O(ε) + O(αε2) + O(αε/A), equation (3.12)
simplifies to

f + αf ′ = 4πε(U+ω× rc − u∞(rc)) ·
(

I−
ezez

2

)
+ 2πεα(−D′ex +C′ey). (3.13)

Equation (3.13) suggests that the force per unit length experienced by a slender
filament due to non-circularity of the cross-section is affected at O(αε2) due to the
velocity disturbance of the unperturbed circular cross-section and at O(αε/A) due to
the gradient in the imposed fluid velocity.

3.3. Extending the analysis to a general cross-sectional shape (α ∼O(1))
Here, a numerical calculation to determine the velocity disturbance by any cross-
section is elucidated which can be used as the matching solution for SBT. This
calculation involves the solution to the flow past an obstacle with the same shape as
the particle cross-section in a two-dimensional domain with a size, ρ∞, that is much
larger than the cross-sectional size (ρ∞� a) as shown in figure 4. In this subsection,
the fluid viscosity, a measure of the undisturbed fluid velocity far away from the
obstacle and a length that is of the order of the size of the obstacle are used to
non-dimensionalize any quantity of interest, such as the force per unit length.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

16
 Ju

n 
20

20
 a

t 1
7:

10
:3

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

62
5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.625


Slender body theory for particles with non-circular cross-sections 1111

®

® = ®c

® = ®∞ ≫ a

œ

ey

ex

(1) u · (I - ezez) = 0
(2) uz = 0
(3) uz = 0

(1) t = t∞ -(π®∞)-1 f · e®e®
(2) uz = 1
(3) (™uz/™®) = (e1cos(œ) + ê1sin(œ))/a

FIGURE 4. (Colour online) Schematic of the two-dimensional domain to obtain K and L,
along with the boundary conditions for (1) the 2-D Stokes flow equations in the transverse
plane and the Laplace equation for the longitudinal velocity field ∇2uz= 0 for computing
(2) K zz and (3) Lz.

The apparent hydrodynamic centre of resistance (AHCOR) of the cross-section is
chosen as the centre of the computational domain to avoid a solid body rotation
at large separations from the particle. The AHCOR is defined as the point about
which zero torque is acting on a two-dimensional obstacle translating in a concentric
circular domain of size much larger than the obstacle with the outer boundary
having zero velocity. (AHCOR is similar to the hydrodynamic centre of resistance
for three-dimensional particles, which is defined as the point about which the torque
acting on a body translating in a quiescent fluid is zero (Kim & Karrila 1991).
In a two-dimensional Stokes flow the velocity disturbance due to an obstacle grows
logarithmically with the domain size and therefore a hydrodynamic centre of resistance
based on the above definition cannot be defined in the same manner.)

Consider a stationary obstacle experiencing a force per unit length f placed in a
fluid with an imposed velocity of u∞ · (I − ezez). The velocity field at the outer
boundary is obtained from the asymptotic form predicted by SBT according to (2.8)
and (3.11). This asymptotic form of the imposed fluid velocity in the region ρ� a is
given by

u= u∞ +
2f
8π
·

[
− ln

(ρ
a

)
(I+ ezez)+ (eρeρ − 0.5(I− ezez))+ K

]
+ L, (3.14)

where K is a second-order tensor that depends only on the geometry of the particle
cross-section and L is a vector that arises due to the gradient of the imposed fluid
velocity and therefore depends both on the geometry of the particle and u∞. The
tensor K is symmetric (Batchelor 1970), such that K iz = K zi = 0 for i= {x, y}, due to
the decoupling of the longitudinal and the transverse flow fields around a long slender
body. The corresponding pressure for this velocity field in the region ρ� a is given
by

p=
4

8πρ
f · eρ . (3.15)
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1112 N. S. Borker and D. L. Koch

In (3.14), K and L are to be determined as part of the solution and therefore the
velocity field at the outer boundary for a given f and u∞ cannot be specified a priori.
Instead, the force per unit area t acting on the outer boundary ρ = ρ∞ is specified.
Here t is independent of a, K and L, and given by

t= t∞ −
1

πρ∞
f · (eρeρ), (3.16)

where t∞ is the force per unit area that would act on the outer boundary due to u∞ ·
(I− ezez) in the absence of the obstacle.

The values of a and K ij for i, j = {x, y} are obtained by solving the 2-D Stokes
equations with no slip on the obstacle surface and t=−(1/πρ∞)f · (eρeρ) on the outer
boundary and matching the numerical velocity field to u · (I− ezez) with L= 0 at the
outer boundary. Also, Li for i= {1, 2} is calculated by equating u= (u∞ + L) · (I −
ezez) to the velocity field at the outer boundary obtained from the solution of the 2-D
Stokes equations with no slip on the obstacle surface and t= t∞ at ρ = ρ∞. Further,
uz at the outer boundary obtained from the solution of ∇2uz = 0, with no-slip on the
obstacle and a constant value at ρ = ρ∞, is equated to uz from (3.14) to obtain K zz.
Similarly, uz at the outer boundary obtained from the solution of ∇2uz=0, with no slip
on the obstacle and ∂uz/∂ρ corresponding to a linear vector field u∞ · ez at ρ = ρ∞,
is equated to uz from (3.14) to obtain Lz. For arbitrary cross-sections the 2-D Stokes
flow equations and the 2-D Laplace’s equation can be solved using a finite element
solver such as COMSOL or a two-dimensional boundary element method, by choosing
a ρ∞ which is sufficiently large such that the values of a, K and L do not change on
further increasing ρ∞. The final integral equation for the force per unit length exerted
by a slender filament with an arbitrary cross-section is given by

f (r)
8π
=
ε

2

(
I−

ezez

2

)
·

{
U+ω× rc − u∞(rc)+

1
4π

f (r) · K + L

−
1

8π
(I− 3ezez) · f (r)−

1
4π
(I+ ezez) · f (r) ln

(
s(1− s)

a(s)

)
+

1
8π

∫
rc

ds′
[(

I
|rc(s)− rc(s′)|

+
(rc(s)− rc(s′))(rc(s)− rc(s′))

|rc(s)− rc(s′)|3

)
· f (r′)−

(
I

|s− s′|
+

ezez

|s− s′|

)
· f (r)

]}
. (3.17)

Note that K is related to the tensor K B and ln(kB), which Batchelor (1970) mentions
in (5.5) and (6.1) of his paper respectively, by the relation K B + 2 ln(kB)ezez = K +
(I+ ezez) ln(a/RB), where RB is such that 2πRB is the perimeter of the cross-section.
Batchelor (1970) shows that K B is a symmetric tensor, which implies that K is also
symmetric. The tensor K B has three unknowns such that K B · ez= 0. These unknowns
are written in terms of a and K ij, where i, j = {x, y}, such that K xx + K yy = 0. Also,
K zz= 2 ln(kB)− 2 ln(a/RB) captures the effect of the cross-sectional shape on the force
and velocity field in the longitudinal direction. The influence of the cross-section on
the velocity disturbance in the transverse plane can be decomposed into an isotropic
component ln(a)I and a traceless component K − K zzezez. This length scale ‘a’ which
arises as part of the hydrodynamic calculation is therefore used instead of a purely
geometric length scale RB.
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Slender body theory for particles with non-circular cross-sections 1113

The second order tensor K can be represented in terms of α2, θ02 and K zz and is
given by

K =

−0.5α2 cos(2θ02) −0.5α2 sin(2θ02) 0
−0.5α2 sin(2θ02) 0.5α2 cos(2θ02) 0

0 0 K zz

 . (3.18a)

(α2, θ02), similar to (α2, θ02) of the regular perturbation theory, give the contribution to
the second Fourier mode of the cross-sectional geometry. K zz, which is zero to leading
order in the perturbation analysis, can have a non-zero value for a general cross-
sectional shape. This is because uz can be affected by the details of the cross-section
at O(α2) (see supplementary material S.2 for details). The vector L can represented
in terms of α3, θ03, Lz and the imposed fluid velocity and is given by

L=

2α3(â2 cos(3θ03)− a2 sin(3θ03))

2α3(a2 cos(3θ03)+ â2 sin(3θ03))

Lzxe1 + Lzyê1

 , (3.18b)

where the imposed velocity field (u∞(r)− u∞(rc)) · (I− ezez) is specified in terms of
a streamfunction ψ∞ given by

ψ∞

a
= ã0

(ρ
a

)2
+ (a2 cos(2θ)+ â2 sin(2θ))

(ρ
a

)2
, (3.18c)

and (u∞(r)− u∞(rc)) · ezez is given by

u∞,z = (e1 cos(θ)+ ê1 sin(θ))
ρ

a
, (3.18d)

(α3, θ03), similar to (α3, θ03) of the regular perturbation theory, give the contribution to
the third Fourier mode perturbation. The longitudinal component L · ez is zero in the
linear perturbation analysis but it is non-zero for a general cross-sectional geometry.
The longitudinal component of −L is the longitudinal velocity at which a particle
must translate to avoid a longitudinal force per unit length when it is subjected to a
simple shear flow with the stagnation streamline coinciding with the AHCOR. For the
geometries studied in this paper, L · ez was found to be numerically small compared
to the components of L in the transverse plane.

4. Resistance to motion of a triaxial ellipsoid
In this section our theory is utilized to obtain the Stokes hydrodynamic resistance

tensor of triaxial ellipsoids of semi-axis lengths l1, l2 and l3, such that l3� l1> l2 (3 is
the longitudinal direction, 1 is along the long axis of the elliptical cross-section and
directions, [1, 2, 3] form a right-handed Cartesian coordinate system). By symmetry
of the shape, the force, F and the torque, T acting on the ellipsoid are given as F=
RFU ·U, T=RLω ·ω, where RFU and RLω are 3× 3 diagonal matrices that depend only
on the particle geometry. The values of RFU and RLω for l3/l1� 1 and (l1− l2)/l1� 1
using the perturbation analysis in § 3.2 are given by

RFU
= (8π)

ε(2l3)

2+ ε


1−

α2ε

2+ ε
0 0

0 1+
α2ε

2+ ε
0

0 0
1
2

2+ ε
2− ε

 , (4.1)
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RLω
= (8π)

2l3
3

3
ε

2− ε


1+

α2ε

2− ε
0 0

0 1−
α2ε

2− ε
0

0 0
(2− ε)
ε

(
a
l3

)2

 , (4.2)

where ε = 1/ ln(2l3/a). a and α2 are given by a= 0.5(l1 + l2) and α2 = (l1 − l2)/(2a)
for (l1− l2)� l1. The results of (4.1) and (4.2) match exactly with the values obtained
by Batchelor (1970) (equations (8.7), (8.8) and (8.10) of his paper).

For cross-sections with (l1 − l2) ∼ O(l1), RFU and RLω are determined using
the numerical procedure in § 3.3 and the results retain great accuracy even for
cross-sections with extreme aspect ratio. COMSOL, a finite element solver, was used
to perform the 2-D Stokes flow calculation. The second order tensor K was estimated
with an uncertainty of below 0.1 % when the size of the outer boundary (ρ∞) was
at least 30 times the cross-sectional dimension. Figure 5 shows the deviation of RFU

and RLω predicted by our numerical procedure from the exact result for an ellipsoid
given by Lamb (1932) for a high aspect ratio elliptical cross-section with l1/l2 = 10.
The deviation of the SBT for a circular cross-section from the exact result is also
presented for comparison. Our SBT predicts RFU and RLω better than the SBT results
for a circular cross-section and has errors less than approximately 1 % for l3/l1 & 10.
The high level of accuracy shows the applicability of our methodology to accurately
predict the resistance to motion of slender bodies with arbitrary cross-section.

The value of RLω : e3e3 needs special attention for a straight slender body because
the force per unit length cannot generate a torque about its longitudinal axis. To obtain
the effect of the cross-sectional geometry on RLω : e3e3, a two-dimensional Stokes flow
problem is solved to find the torque per unit length g∝ a2(s) acting on an ellipse with
sides l1 and l2 which is rotating with a unit angular velocity parallel to e3 with the
velocity on the outer boundary set to zero (see figure 3). The torque per unit length
is integrated by accounting for the variation of the cross-sectional size to attain the
total torque on the ellipsoid, and thereby obtain RLω : e3e3 as depicted in figure 5( f ).

5. Translation of a straight slender body in a simple shear flow (SSF)
An axisymmetric straight particle rotates periodically in one of the Jeffery orbits

depending on its initial orientation and has zero cross-stream drift relative to the fluid
velocity at its centre of mass. A straight particle with a three-lobed cross-section
shown in figure 6(a) rotates like a spheroid but translates quasi-periodically across
streamlines with an O(α/A) velocity. A straight particle with a combination of
an elliptic (or two-lobed) and a three-lobed cross-section can rotate chaotically and
translate diffusively. The calculations in this section can be used to extract the motion
of straight fibres in viscous fluids which is important in the manufacturing process of
fibre-reinforced composite materials or paper products. The half-length of the particle,
the shear rate and the fluid viscosity are used to non-dimensionalize variables in this
section.

5.1. Problem formulation and SBT solution
The cross-section of the slender particle studied here is a small perturbation to a circle
given by ρs = a(1 + α3 cos(3θ)), where α3 � 1 is the perturbation parameter and θ
is measured relative to a vector n that is along one of the lines of symmetry of the

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

16
 Ju

n 
20

20
 a

t 1
7:

10
:3

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

62
5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.625


Slender body theory for particles with non-circular cross-sections 1115
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Î
R

2,
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Î
R
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3
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Current SBT
SBT (circle)

FIGURE 5. (Colour online) Variation of resistances, RFU and RLω, with l3/l1 for an
ellipsoid with l1/l2 = 10. (a–f ) Comparison of 1Rk

ij = (Rk
ij − (Rk

ij)exact)/(Rk
ij)exact, the

deviation of different components of RFU and RLω predicted using the current SBT as well
as the SBT for a circular cross-section from the exact result of Lamb (1932) ((Rk

ij)exact).
Here i, j= {1, 2, 3} and k= {FU, Lω}.
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Side view:
longitudinally rectangular

(a)

(b)

Side view:
longitudinally elliptic

Front view
(cross-sectional view)

l

l

s

s

®s = a(1 + å3cos(3œ))

œ0X

p

p

p

n

œJ

¥J

ƒJ

K

2a0

2a0

a(s) = a0

a(s) = a0(1 -(s/l)2)

2a(s)

2a(s)

b

n

Ŷ

X̂

˝̂∞
Ø̂∞

Û∞

FIGURE 6. (Colour online) Schematic of the particle shape and the coordinate system used
in the calculation. (a) Schematic of the slender particle that is longitudinally rectangular
or elliptic. The cross-section of the particle is given by ρs = a(1+ α3 cos(3θ)), where θ
is measured from n. Here, n is along one of the lines of symmetry of the cross-section,
Ŷ is a unit vector in the cross-sectional plane chosen such that Ŷ · Û∞= 0 and X̂= Ŷ× p.
(b) The fixed reference frame is defined along the flow (Û∞), vorticity (Ω̂∞) and the
gradient (Γ̂∞) direction of the SSF. The longitudinal direction of the particle is along p
and a reference vector in the transverse plane is n; p, Ω̂∞, K = p× Ω̂∞, n and Û∞ are
used to define the Euler angles θJ, φJ, ψJ .

cross-section. The second Fourier mode perturbation to a circle does not affect C′ and
D′ for a torque-free particle in a SSF because the force per unit length it produces
satisfies f · (I − pp) = 0. The second Fourier mode perturbation to a circle affects
the torque per unit length g thereby influencing the rotational dynamics of a straight
particle, which is discussed in § 5.3.

The size of the cross-section, ‘a’, either varies with the longitudinal position, s, as
a(s)/a0 = (1− s2)0.5 for a cross-section that is longitudinally elliptic or is a constant
a = a0 for a cylinder. The force per unit length obtained from (3.17), is used to
obtain the linear (U) and angular (ω) velocity of the particle by applying the force-
free (

∫
f net ds = 0) and torque-free (

∫
(sp × f net + g) ds = 0) condition on the particle

respectively. Here, g is calculated by computing the stresses from a transverse velocity
field obtained from the stream function ψ̃ and the velocity field ũz.

The angular velocity ω is not affected by a three-lobed perturbation of a circle at
linear order in α3 and thus, this particle rotates periodically, like a spheroid shown
by Jeffery (1922). This holds true for cylinders with blunt ends and a three-lobed
cross-section. The ends of a blunt cylinder significantly influence ω when the particle
is near the flow–vorticity plane (Cox 1971), which can be computed using the force
generated at the ends of the particle in the transverse direction, Fend. Using linearity
of Stokes flow, and the symmetry of the third and higher Fourier mode perturbations,
g · (I − pp) and p × Fend can be shown to be proportional to E · p × p which is
proportional to ω due to the straining component of a SSF for an axisymmetric
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particle (see supplementary material S2). Therefore, straight particles with α2 = 0, in
addition to circular cylinders shown by Cox (1971), rotate similar to an O(A/

√
ln(A))

aspect ratio spheroid. The exact relationship can be obtained from experiments
or a numerical calculation. For a torque-free straight particle with a three-lobed
cross-section, ω is given by

ω=ω∞ + λJp× (E · p), (5.1)

where λJ is the rotation parameter of the particle that depends only on its geometry.
The rotation parameter λJ = 1 − 2/A2 for a slender particle that is longitudinally
elliptic (Jeffery 1922; Cox 1971) and λJ = 1 − 0.65(ln(A)/A2) for a cylinder, where
the prefactor of 0.65 was obtained by fitting the asymptotic form of Cox (1971) to
the experimental data of Anczurowski & Mason (1968).

Unlike a spheroid or a circular cylinder, a slender particle with a three-lobed cross-
section drifts across streamlines due to the O(α3/A) force per unit length. The drift
velocity of the particle is confined to the plane normal to p, as f net · p= 0. Thus, the
drift velocity of this particle takes the form Up = UxX̂ + UyŶ, where Ux and Uy are
the components of the drift velocity along X̂ and Ŷ respectively and (X̂, Ŷ, p) form
an orthogonal pair such that Ŷ · Û∞ = 0. Ux and Uy are given by

Ux = α3a0U0[E∞ : X̂Ŷ sin(3θ0X)− 0.5E∞ : X̂X̂ cos(3θ0X)], (5.2a)

Uy = α3a0U0[E∞ : X̂Ŷ cos(3θ0X)+ 0.5E∞ : X̂X̂ sin(3θ0X)], (5.2b)

where U0 = 1 for a cylinder and U0 = π/4 for a spheroid, θ0X is the angle made
by X̂ with n and E∞ = 1

2(∇u∞ + (∇u∞)T) is the straining tensor. Here, U for the
longitudinally elliptic particle differs from U of a cylinder by a factor of π/4 due
to the difference in the integral of

∫ 1
−1 ds a(s) for the two cases. Only the results

for a straight cylinder are presented in the following section, since both U and ω are
qualitatively similar for a longitudinally elliptic particle.

5.2. Quasi-periodic translation of particles
The motion of the particle shown in figure 6(a) is calculated by tracking its
centre of mass position and orientation. The orientation is given in terms of the
Euler angles, (θJ, ψJ, φJ), shown in figure 6(b) and defined using the longitudinal
direction of the particle p = (sin(φJ) sin(θJ), cos(θJ), cos(φJ) sin(θJ)), a vector
K = (cos(φJ), 0, − sin(φJ)) that is normal to both p and Ω̂∞ and cos(ψJ) = n · K,
where n is a vector along one of the lines of symmetry of the cross-section as
illustrated in figure 6(a). Here, (n, b, p) and (X̂, Ŷ, p), such that Ŷ · Û∞ = 0, form an
orthogonal set. The angle θ0X in (5.4) equals asin(Ŷ · n). Jeffery (1922) obtained the
time variation of φJ and θJ that is given by

tan(φJ)= Ae tan
(

2π
t
T
+ τ
)
, (5.3a)

tan(θJ)=
AeC√

A2
e cos2(φJ)+ sin2(φJ)

, (5.3b)

where φJ ∈ [0, 2π), θJ ∈ [0, π], C is the orbit constant, τ is the phase angle, T =
2π(Ae+ A−1

e ) is the period of rotation of p and Ae is the effective aspect ratio of the
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particle defined as Ae =
√
(1+ λJ)/(1− λJ). A thin cylinder (A� 1) spends most of

its time such that p is near the flow–vorticity plane (φJ→ π/2). The rate of change
of ψJ is given by

dψJ

dt
=−

1
2
λJ cos(θJ) cos(2φJ). (5.3c)

According to (5.3c), ψJ changes over a time scale of O((1+ (AeC)2)0.5) which varies
with the orbit constant, C, and contrasts from the fixed O(T) time scale over which
θJ and φJ change. Therefore, there are uncountably infinite orbits where ψJ rotates
quasi-periodically while only countably infinite orbits where ψJ has a period that is a
multiple of T . The quasi-periodic rotation of ψJ demonstrates that the (ψJ, φJ) space
is filled completely over time as seen in figure 7(b,c). Discrete peaks in the frequency
spectrum obtained by the fast Fourier transformation ψ̂J is used to establish the quasi-
periodic nature of the system as shown in figure 7(d).

The average velocity of the particle is zero because of the symmetry of the orbits
relative to the SSF. The quasiperiodic translation is quantified using the root mean
square (r.m.s.) velocity of the particle given by

〈(U · ζ )2〉1/2 = lim
N→∞

1
√

NT

√∫ NT

0
(U · ζ )2 dt

 , (5.4)

where ζ ∈ {Ω̂∞, Γ̂∞} and N should be sufficiently large such that the results are
invariant on increasing N. The mean-square velocity can also be obtained by averaging
in the (ψJ, φJ) space given by

〈(U · ζ )2〉 =
∫ 2π

0
dφJ

(
1

2π

)(
Ae(1− λ)

1+ λ cos(2φJ)

) ∫ 2π

0
dψJ

1
2π
(U · ζ )2. (5.5)

The r.m.s. velocity in the gradient (Γ̂∞) and vorticity (Ω̂∞) direction for α3= 0.1 are
shown in figures 8(a) and 8(b), respectively, as a function of C for varying particle
aspect ratios. The r.m.s. velocities computed from (5.5) match the values obtained
from time averaging over 500 tumbling events reaffirming the quasi-periodic nature
of the system. For C→ 0 the particle is symmetric about the flow–gradient plane
and therefore cannot translate in the vorticity direction as evident in figure 8(b). In
this orbit X̂= Û∞ and Ŷ = Γ̂∞ thereby leading to the highest value of Uy among the
orbits as per (5.2). Therefore, 〈(U · Γ̂∞)2〉 is highest when C = 0 and monotonically
decreases with increasing C as seen in figure 8(a). A peak is observed in 〈(U · Ω̂∞)2〉
for C∼O(1/A) before the value plateaus for large C� 1.

These qualitatively new results predicting cross-stream drift due to cross-sectional
asymmetries can be compared to the drift velocities observed for curved fibres (Wang
et al. 2012) and screw-like particles (Kim & Rae 1991). Curved fibres with an aspect
ratio 20 and a curvature of unity migrate in the gradient direction with an average
velocity of 1.7× 10−3 (Wang et al. 2012). The drift velocity of screw shaped particles
is shown to be O(10−4), where the length and time are non-dimensionalized using
the length of the screw along its axis and the inverse of the shear rate, respectively.
(The diameter of the screw was 1, the diameter of the filament was 0.1, and the
screw had two turns.) Both these values which are numerically comparable to the
values in figure 8(a) suggest that the translation of slender bodies caused by cross-
sectional modifications can have a similar magnitude to the effects of the shape of
the centreline.
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FIGURE 7. (Colour online) Trajectory of the orientation of the particle. (a) Orientational
trajectory of p (λJ = 0.98) for various initial conditions specified by the orbit constant, C.
Change in (ψ, φ) during (b) 10 and (c) 103 tumbling events respectively for a cylinder
with A = 20 and C = 0.1. (d) Frequency spectrum obtained from the fast Fourier
transformation of ψJ(t) for C= 0.1 and A= 20.

5.3. Diffusive translation of particles
Chaotic rotation and diffusive translation of a straight particle with a cross-section that
is a combination of an ellipse and a third Fourier mode perturbation to a circle is
demonstrated. The cross-section is given by ρs= (l2

1 cos2(θ − θ02)+ l2
2 sin2(θ − θ02))

0.5
+

aα3 cos(3θ), where l1, l2 are lengths of the semi-major axes of an ellipse such that
l1 > l2, a is the radius of the equivalent circle of the ellipse with semi-axes l1, l2

obtained from the analysis in § 3.3 and α3 is the amplitude of the third Fourier mode
perturbation to the equivalent circle. The cross-section is chosen to be longitudinally
elliptic (i.e. a/a0 = l1/l1,0 = l2/l2,0 = (1 − s2)0.5) with θ02 = 0 as such particles are
known to rotate chaotically when α3= 0 (Yarin et al. 1997). The rotational motion of
such particles can be described using Jeffery’s (1922) equations of motion since the
third Fourier mode perturbation does not alter ω as shown earlier. Yarin et al. (1997)
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FIGURE 8. (Colour online) Particle r.m.s. velocity variation with particle aspect ratio, A,
and orbit constant, C for α3 = 0.1. Root mean square velocity of the particle in (a) the
gradient direction and (b) the vorticity direction averaged over 500 tumbling events. Solid
lines are phase-space integration using (5.5), while the symbols are the results of the time
integration (5.4).

demonstrated chaotic rotation of a particle with α3= 0, l1,0= 2/10 and l2,0= 1/10 (an
ellipsoid). Such a particle with a finite α3= 0.2 would translate diffusively in addition
to rotating chaotically. This particle has a0 = 1.5/10, K is represented in terms of
α2= 0.33, θ02 and K zz= 0; L is represented in terms of α3= 0.20, θ03= 0 and Lz= 0,
according to (3.18). The values α2= 0.33, α3=α3 and θ03= 0 are accurate within 7 %
error for ∀α3 6 0.2 and arbitrary θ02.

The particle motion is obtained using the numerical procedure mentioned in Yarin
et al. (1997) for ellipsoids. The Poincaré map sampled when φJ is a multiple of π
shows the chaotic sea as seen in figure 9(b). A particle whose orientation starts within
the sea will span it after enough time. The simulation was carried out for a time of
104T , where T is the time period of rotation of a spheroid of the same aspect ratio,
A= 1/a0. The diffusivity in the gradient (D33) and vorticity (D22) direction, obtained
from the position of the particle, is given by

Dij =
1
2

lim
t→∞

d
dt
〈ri(t)rj(t)〉. (5.6)

The variation of 〈r3r3〉 with time shown in figure 9(c) suggests a ballistic motion at
short times and a diffusive behaviour for long times with a diffusivity of 4 × 10−5.
The diffusivity in the vorticity direction D22= 6× 10−8 is of much smaller magnitude.
The current case is particularly interesting as the particle is self-dispersive at zero
Reynolds number without Brownian diffusion or inter-particle interactions. This
gradient diffusivity is numerically comparable to the gradient diffusivity of a fibre
of the same length and aspect ratio A due to interparticle interactions when the
dimensional particle number density n∗L∗3

≈ 0.37, where L∗ is the dimensional
length of the particle (Rahnama et al. 1993; Lopez & Graham 2007). Similarly, the
gradient diffusivity of curved fibres with aspect ratios of approximately 20 is O(10−5)
(Wang, Graham & Klingenberg 2014), again of a magnitude similar to the influence
of the cross-section.
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FIGURE 9. (Colour online) Shape and chaotic dynamics of particles. (a) Representative
shape that can rotate and translate chaotically in a SSF. (b) Poincaré map sampled when
φJ is a multiple of π for the shape in (a) with α3 = 0.1, l1,0 = 2/10 and l2,0 = 1/10
that shows the chaotic sea. The closed loops represent trajectories in which (φJ, θJ, ψJ)
change quasi-periodically. A detailed Poincaré map can be seen in figure 6(a) of Yarin
et al. (1997). (c) Variation of 〈r3(t)r3(t)〉 with the time, suggests a diffusive behaviour of
the particle position. (d) A straight rod with an L-shaped, which can rotate chaotically
and migrate diffusively. (e) A straight rod with a Y-shaped cross-section that can
rotate periodically and translate quasi-periodically. These particles can be fabricated using
photolithography (Foulds & Parameswaran 2006) or 3-D printing (Raney & Lewis 2015).
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The orientational dynamics in this section, illustrated for straight cylinders which
are longitudinally elliptic, can be extended to other straight bodies with tapered ends
using results from a complimentary study of Cox (1971). Cox (1971) obtained the
O(1/(ln(A)A2)) torque acting on a stationary body with tapered ends and a circular
cross-section held stationary in the flow–vorticity plane of the simple shear flow. This
torque can be matched with the torque required to rotate the particle in a quiescent
fluid to obtain ω. On applying a regular perturbation of the inner solution of Cox
(1971) one can extend his result to a slightly non-circular cross-section. The details
can be found in Cox (1971) which is discussed in § (S.3) of the supplementary
material.

For a cylinder with blunt edges, which is a more practical case, the analysis of Cox
(1971) breaks down because the ends of the cylinder generate an O(1/A2) torque on
the particle. The torque on a stationary cylinder with blunt ends is equal to 2p ×
Fend, where Fend is the force acting on an end of the particle. For a general shaped
cross-section, one can find a second-order tensor A, such that Fend = A · g. A can
be derived by taking three random orientations and finding Fend from experiments or
numerical solutions of the Stokes equations. The part of ω · (I − pp) driven by the
straining part of the SSF, can be obtained by equating 2p×Fend to the torque required
to rotate a particle in a quiescent fluid 8πω · (I − pp)/(3 ln(A)). The longitudinal
component of the angular velocity ω · p can be obtained by matching the torque due
to g · p to 4πω · pp

∫
ds a2 (Cox 1971). This can allow us to model the rotational

dynamics of straight particles with a general cross-section and blunt edges using the
SBT formulation. This calculation of the orientation dynamics of straight particles is
important in predicting the structure and rheology of fibre suspensions which could
be useful in paper-manufacturing research.

A straight rod with an L-shaped cross-section shown in figure 9(d) has a finite value
of α2 and α3 and thereby rotates and translates chaotically (a non-zero α2 is similar
to an equivalent elliptic cross-section). A straight rod with a Y-shaped cross-section
shown in figure 9(e) has a non-zero value of α3 while α2 = 0 and therefore rotates
periodically and translates quasi-periodically. These rods could be fabricated via multi-
step photolithography (Foulds & Parameswaran 2006) or 3-D printing (Raney & Lewis
2015) opening a pathway to experimentally verify our results and observe interesting
dynamics. Einarsson et al. (2016) measured the rotational motion of non-axisymmetric
particles formed by connecting multiple micro-rods, which can simulate particles with
two- or three-lobed cross-sections. The results presented here demonstrate the nature
of cross-sectional shapes that can be used to control the rotational and translational
dynamics of straight particles in a SSF.

6. Motion of rings in a simple shear flow (SSF)

In this section, the SBT is used to predict the dynamics of rings with non-circular
cross-sections and the results are verified using boundary element method (BEM)
calculations. The influence of the cross-sectional geometry on the rotational and
translational motion of rings is established using analytical expressions. Rings with
cross-sections that have α2 6= 0 rotate and translate periodically with no net migration
over time if the contribution to the third Fourier mode, α3, is below a critical value
that depends on the aspect ratio. On the other hand, rings with a α3 6= 0 can attain
an equilibrium orientation and can drift indefinitely in the gradient direction if the
aspect ratio is above a critical value that depends on α3. Such rings can self-align
without application of external forces or torques, thereby creating a highly anisotropic
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FIGURE 10. (Colour online) Geometry of a ring and the four coordinate systems, namely
the global coordinate system (Û∞, Ω̂∞, Γ̂∞), the particle coordinate system (n, b, p), the
local Cartesian coordinate system (ex, ey, ez) and the local polar coordinate system (ρ, θ)
in the cross-section plane.

structure that can be contrasted with the dispersed particle orientation in a suspension
of rotating particles. Here, the length is non-dimensionalized using the radius of
the ring R. The shear rate of the SSF and the viscosity of the fluid are used to
non-dimensionalize other quantities of interest such as the force per unit length and
the linear and angular velocity of the particle.

6.1. Coordinate system

The global coordinate system is defined along the flow (Û∞), vorticity (Ω̂∞)
and gradient (Γ̂∞) directions of a SSF as shown in figure 10. The coordinate
system relative to the particle is defined along the axis of symmetry, p, a vector
n= (I− pp) · Û∞ and a vector b= p× n. The local coordinate system (ex, ey, ez), is
defined such that ey = p, ez is tangent to the centreline of the ring cross-section, rc,
and ex = ey × ez (normal to the centreline of the ring cross-section). Here, rc is the
separation vector of the centreline of the ring cross-section relative to the centre of
mass (COM) of the ring. The centre of the cross-section is chosen to coincide with the
apparent hydrodynamic centre of the cross-section described in § 3.3. The azimuthal
angle φ, measured from n in the plane of the ring (i.e. n–b plane), determines the
position along the centreline of the ring cross-section. A local polar coordinate system
(ρ–θ ) is defined in the ex–ey plane, where θ is measured from ex and ρ is the normal
distance from rc. The aspect ratio of the ring is A = 1/a, where a is the radius of
the unperturbed circular cross-section.

6.2. Dynamics of rings with slightly non-circular cross-sections
The functional form of the angular velocity (ω) of a ring in an unbounded linear flow
field using the linearity of Stokes flow is given by

ω= 0.5ε :W∞ + λp× (E∞ · p), (6.1)

where p is the particle orientation, W∞ = 0.5(∇u∞ − (∇u∞)T) is the vorticity
tensor, E∞ = 0.5(∇u∞ + (∇u∞)T) is the strain rate and λ is the rotation parameter
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(Jeffery 1922; Bretherton 1962). The drift velocity (U − u∞(rCOM)) of the particle
relative to the fluid velocity at its COM can be written as

U− u∞(rCOM)= η1E∞ · p+ η2( ppp : E∞), (6.2)

where η1 and η2 are the translation parameters that depend only on the particle
geometry (Brenner 1964; Singh et al. 2013). The values of the dynamic parameters of
the particle, λ, η1 and η2 can be obtained by applying the force-free (

∫
f net(φ)R dφ= 0)

and torque-free (
∫
((r − rCOM) × f net(φ) + g)R dφ = 0) conditions on the particle,

where g =
∫

dsc(r − rc) × (σ · ñ) + (rc − rCOM) ×
∫

dsc cos(θ)/A(σ · ñ), σ is the
stress tensor obtained from the solution of the 2-D Stokes equations and ∇2uz = 0
with u = u∞ on the outer boundary and no slip on the particle surface, ñ is the
unit normal to the surface of the particle and dsc is the elemental length along the
cross-sectional contour (see supplementary S.4 for details). For rings, equation (3.12)
can be solved analytically using elliptic integrals to obtain f net with errors of O(1/A2)

(see supplementary material S.4 for details). Here λ, η1 and η2 are given by

λ=−1−
α3 cos(3θ03)

A
+
(ln(8A)− 1.5)

A2
Cλ +O

(
α2

3

A

)
+O

(
α2

2

A

)
+O

(α2α3

A

)
, (6.3)

η1 =−
2
3
α3 sin(3θ03)

A
(ln(8A)− K zz/2− 3)

ln(8A)− K zz/3− 17/6
+O

(
α2

2

A

)
+O

(
α2

3

A

)
+O

(α2α3

A

)
, (6.4)

η2 =
17
12
α3 sin(3θ03)

A
(ln(8A)− 7K zz/17− 99/34)

ln(8A)− K zz/3− 17/6
+

α2 sin(2θ02)

4 ln(8A)− 10

+O
(

α2
2

ln(8A)

)
+O

(
α2

3

A

)
+O

(
α2α3

ln(8A)

)
, (6.5)

where Cλ=A2(
∫

dφg · Ω̂∞)/(2π2)∼O(1), g being the torque per unit length computed
when p= Γ̂∞. Here, K zz is the effect of the cross-sectional shape on the longitudinal
velocity field (ez) as described in § 3.3 and is zero at O(α2) and O(α3). The part of
the value of λ equal to −1 − α3 cos(3θ03)/A, is the contribution due to f net and the
O(ln(8A)/A2) term is the contribution due to g. Both of these terms are crucial for
particles that can self-align in a simple shear flow for which λ+ 1 crosses zero. For a
general cross-sectional shape equations (6.3)–(6.5) can be used if (α2, α3) are replaced
with (α2, α3), where (α2, K zz, α3) are related to K and L according to (3.18). For a
circular cross-section Cλ = 1.5 and this value maintains great accuracy when α2 and
α3 are small.

The values of λ and η2 obtained from (6.3), (6.5) using (α2, α3, K zz) = (0.0975,
0.0945, 0.0) (as obtained using the numerical calculation in § 3.3 instead of (α2, α3)=

(0.1, 0.1)), compare well with the numerical values obtained from BEM described in
Borker et al. (2018) as shown in figure 11. Figure 11(a) shows that λ for shapes S-1
and S-3 are nearly identical and close to the SBT prediction. This result confirms the
prediction of SBT that at linear order in α, λ is only affected by the perturbation
to a circle given by h(θ) = cos(3θ − 3θ03). The dynamic parameters λ and η2 are
accurately predicted because the integral equation (3.12) is solved with algebraic errors
of O(1/A2). For comparison, η2 obtained from the leading-order solution α2/(4 ln(8A))
is only qualitatively accurate as seen in figure 11(b).
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FIGURE 11. (Colour online) Comparison of SBT with the numerical results obtained
from BEM calculations (Borker, Stroock & Koch 2018). Variation of (a) λ and (b) η2,
with aspect ratio, A (solid lines), and verification with the boundary element method
calculations (symbols) for shapes shown in figure 1(b–d). The cross-sectional shape is
defined as ρc = a(1+ 0.1h).

6.3. Dynamics of rings that can self-align in a SSF
The translational and rotational motion of rings with an arbitrary cross-sectional shape
can be specified using (6.1)–(6.5) and requires only the solution of a 2-D Stokes flow
problem mentioned in § 3.3. The time evolution of the orientation and position of a
ring has four qualitatively different states: (i) continuous periodic tumbling without
cross-stream translation (α3 < Cλ(ln(8A) − 1.5)/A, sin(2θ02) = 0, sin(3θ03) = 0),
(ii) continuous periodic tumbling with periodic translation (α3 < Cλ(ln(8A) − 1.5)/A
and (α2 sin(2θ02) 6= 0 or α3 sin(3θ03) 6= 0)), (iii) equilibrium orientation without
cross-stream translation (α3 >Cλ(ln(8A)− 1.5)/A, α3 6= 0, sin(2θ02)= 0, sin(3θ03)= 0)
and (iv) equilibrium orientation with a net translation in the gradient direction of
the SSF (α3 > Cλ(ln(8A) − 1.5)/A, α3 6= 0 and (α2 sin(2θ02) 6= 0 or sin(3θ03) 6= 0)).
Cases (i) and (ii) can be studied using traditional SBT formulations of Cox (1970)
and Batchelor (1970) respectively and are not treated here. The qualitative nature
of ring dynamics in cases (iii) and (iv) cannot be captured using any previous SBT
formulations to the best of our knowledge.

A ring with the cross-section shown in figure 1(c) (S-II shape) shows qualitatively
different rotational dynamics from a ring with a circular or S-I shaped cross-section.
Such rings attain an equilibrium orientation, as shown in figure 12(b), instead
of rotating continuously in Jeffery orbits as shown in figure 12(a). The particle
orientation, p, aligns along one of the two stable nodes ( pSI, pSII) in the flow–gradient
plane which are very close to the gradient direction, as shown in figure 12(b). This
was first shown by Singh et al. (2013) for rings with S-II shaped cross-sections with
θ03 = 0. Rings with an S-II shaped cross-section can in general align for a non-zero
θ03 as evident from (6.3), which can be confirmed based on the physical explanation
of alignment given in Borker et al. (2018).

The critical aspect ratio, A∗, defined as the value of A for which λ = −1, is a
quantity of interest as it is the lowest aspect ratio at which a ring with a given
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C = 16

C → ∞

C = 1/16
C = 1/2
C = 2

C = 16
C → ∞

C = 1/16

C = 1/2
C = 2

-p · Ø̂∞(a) (b) -p · Ø̂∞

p · ˝̂∞ p · ˝̂∞
p · Û∞ p · Û∞

pUII

pUI

pSII

pSI

FIGURE 12. (Colour online) Trajectories traced by the orientation vector of a ring ( p)
(a) with a circular cross-section and an aspect ratio A=R/a= 100 and (b) with the three-
lobed cross section shown in figure 1(c) with α3 = 0.3, θ03 = 0 and A= R/a= 100. This
high value of α3 was chosen to yield a visually apparent difference between the stable
( pSI, pSII) and unstable ( pUI, pUII) nodes.

cross-sectional shape can align. A lower value of A∗ would also mean that the ring
will be less prone to bending and buckling, thus improving the structural integrity
of the particle. Previously, a large number of computationally expensive boundary
element method calculations would have been required to compute A∗. However, the
current theory can be used to calculate A∗ from (6.6) when λ=−1 and is the solution
to the equation given by

1
A∗2

(A∗α3 cos(3θ03)−Cλ(ln(8A∗)− 1.5))= 0, (6.6)

where α3 is obtained from the solution of the 2-D Stokes flow problem mentioned
in § 3.3. Equation (6.6) only requires the solution of two 2-D Stokes flow problems
and a solution to a Laplace’s equation to obtain α3 and Cλ. Figure 13 compares the
prediction of A∗ from (6.6) with the BEM predictions for rings with a cross-section
given by ρ = a(1 + α3 cos(3θ − 3θ03)). The accurate prediction of A∗ suggests that
the current SBT framework can be used as a computationally inexpensive alternative
to search for shapes that can self-align at the least A∗. Furthermore, equation (6.3)
suggests that cross-sections with θ03= 0 (i.e. a fore–aft symmetric shape) and a large
value of α3, should have a smaller A∗ than fore–aft asymmetric shapes. The Y-shaped
cross-section in Borker et al. (2018) which has the lowest reported value of A∗= 8.9
has features similar to the three-lobed cross-section with θ03 = 0.

Rings with S-II shaped cross-sections can migrate across streamlines in the
gradient direction for non-zero values of θ03. These migrating rings could be
deposited by flowing the suspension of particles along a surface allowing one to
control the roughness or scratch resistance of the underlying surface (Isla et al.
2003). This drift velocity is given by η2( ps · Û∞)( ps · Γ̂∞)

2
≈ η2(0.5|1 + λ|)0.5. The

O(α2 sin(2θ02)/ ln(A)) drift due to the second Fourier mode perturbation is O(A/ ln(A))
larger than the drift due to the third Fourier mode perturbation. Therefore, shapes
with θ03→ 0, which increases |λ + 1|, and θ02→ π/4, which maximizes η2, should
generate the highest drift velocities. The cross-section which led to the highest drift
shown in figure 9(a) of Borker et al. (2018) also has a clear resemblance to a shape
which is a combination of the second and third Fourier mode with θ02 =π/4.

Rings with the cross-sections shown in figure 14(a) or 14(b) can align in a SSF
at relatively low aspect ratios (Borker et al. 2018). These rings are of practical
interest due to the ease of fabrication using multi-step photolithography (Foulds &
Parameswaran 2006) or optofluidic fabrication (Paulsen, Di Carlo & Chung 2015),
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10-2 10-1

å3

100

103

102

101

A*

œ03 = 0
œ03 = π/12

FIGURE 13. (Colour online) Variation of the critical aspect ratio, A∗, versus α3 from SBT
(lines) compared with BEM results of Borker et al. (2018) (symbols) for θ03= 0 and θ03=

π/12. α3 lies in the range 0.01 6 α3 6 0.27 for 0.01 6 α3 6 0.9.

which can allow for testing the rheology of a suspension of such particles. Here,
SBT is utilized to predict the dynamics of individual particles and the results are
compared with the numerical predictions obtained using the BEM detailed in Borker
et al. (2018). COMSOL, a finite element solver, was used to perform the 2-D Stokes
flow calculation presented in § 3.3. The values of K and L, which were estimated
with an uncertainty below 0.1 % when the size of the outer boundary (ρ∞) was at
least 50 times the cross-sectional dimension, are reported in table 1. Figures 14(c)
and 14(d) show the variation of λ with A obtained from the BEM calculation and the
corresponding SBT prediction for rings with T-shaped and L-shaped cross-sections,
respectively. The SBT precisely mimics the BEM results even at low aspect ratios
near the critical aspect ratio, A∗, which is possible by using the numerical procedure
in § 3.3 and solving the integral in (3.17) with errors of O(1/A2) using elliptic
integrals (supplementary material S.4). η1 and η2 are zero for a ring with a T-shaped
cross-section due to mirror symmetry about a plane normal to p. Figure 14(e, f ) shows
the accuracy of SBT to predict the variation of η1 and η2 with A for rings with the
L-shaped cross-section. The force per unit length f obtained from (3.17) is also in
excellent agreement with the BEM results for both L and T shaped cross-sections for
A & 10 as shown in figure 14(g,h) by the value of f at φ = 0.2π, p · Ω̂∞ = 0 and
p · Γ̂∞ = cos(0.2π). The dependence of f on φ can be derived using the linearity of
the governing equations (Borker et al. 2018) and the imposed boundary conditions
and is presented in the supplementary material (S.4).

Figure 14(g,h) suggests that our slender body theory accurately predicts f which
can in turn be utilized to simulate hydrodynamic interactions between various rings,
especially the ones that can self-align. This calculation is important for obtaining the
rheology of a suspension of rings and also estimating the influence of surrounding
particles on the self-aligning characteristics of such a ring. A ring aligned near the
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FIGURE 14. For caption see next page.

T-shaped ring (a= 1.055× lT ) (α2, θ02, K zz) (0.0345, 0,−0.05532)
(α3, θ03, Lzx, Lzy) (0.157, 0,−8.1× 10−4, 0)

L-shaped ring (a= 0.5446× lL) (α2, θ02, K zz) (0.1534,−π/4,−0.05512)
(α3, θ03, Lzx, Lzy) (0.1366,−π/12, 1.4× 10−3, 1.4× 10−3)

TABLE 1. Values of K and L for rings with T-shaped and L-shaped cross-sections
represented in terms of (α2, θ02, K zz) and (α3, θ03, Lzx, Lzy).

flow–vorticity plane has weak hydrodynamic interactions with other aligned rings and
therefore the suspension should have a highly anisotropic microstructure, which can
be expected to be retained at higher particle concentrations due to excluded volume
interactions.

7. Conclusion
In this work, a slender body theory is developed for a thin, curved body with

an arbitrary cross-section that allows one to solve for the velocity, pressure and
force per unit length exerted by the particle on the fluid. The derivation is based on
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FIGURE 14 (cntd). (Colour online) Application of current SBT to predict dynamics of
rings with cross-sections which deviate significantly from a circle. (a) A ‘T-shaped’
and (b) an ‘L-shaped’ cross-section proposed in Borker et al. (2018). Rings with these
cross-sections (shaded regions) can align in a SSF at finite aspect ratios. The equivalent
circle obtained from the analysis in § 3.3 is shown using dotted lines. Comparison of λ
versus A variation from BEM for rings with (c) T-shaped and (d) L-shaped cross-sections
with the SBT prediction from (6.3). Comparison of the variation of (e) η1 and ( f ) η2
with A obtained from BEM calculations for rings with an L-shaped cross-section with the
SBT predictions from (6.4) to (6.5). Force per unit length variation with A at φ = 0.2π,
p · Ω̂∞ = 0 and p · Γ̂∞ = cos(0.2π) for a ring with (g) T-shaped and (h) L-shaped
cross-sections. Symbols are results from the BEM calculations, the solid lines are the
corresponding values obtained from the current SBT formulation.

asymptotically matching the velocity field of an infinitely long cylinder in the inner
region to the velocity field due to a line of forces in the outer region. Our theory
accounts for the force per unit length associated with the gradient in the imposed fluid
velocity which previously had not been embedded into SBT formulations. The features
of the cross-sectional shape that display this qualitatively different force per unit
length are described using regular perturbation of the inner solution. A cross-section
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that has two lobes or three lobes (figures 1(b) and 1(c) respectively) will change the
force per unit length by O(ε2) or O(ε/A), respectively. Thought experiments that give
physical insight into the special nature of the two and three-lobed cross-sections were
illustrated. A 2-D Stokes flow problem was formulated that can be numerically solved
to extend our theory to arbitrary cross-sectional shapes which deviate significantly
from a circle. Our analysis also captures the force per unit length driven by the
relative velocity of the particle and the fluid for a non-circular cross-section, which
was first derived by Batchelor (1970).

A slender cylinder that has a significant contribution to α2 and α3, e.g. an L-shaped
cross-section (figure 8d), rotates and translates chaotically, while a cylinder with a
finite contribution to α3 along with α2 = 0, e.g. a Y-shaped cross-section (figure 8e),
rotates periodically and translates quasi-periodically. Our theory accurately predicted
the resistance to translation and rotation for a triaxial ellipsoids even for high aspect
ratio cross-sections as shown by comparison with the exact results of Lamb (1932).
In this case, the current method provides a computationally inexpensive alternative to
other available approaches such as slender ribbon theory (Koens & Lauga 2016) or
boundary element method (Youngren & Acrivos 1975; Kim & Karrila 1991; Pozrikidis
2002). The dynamics of rings with different cross-sectional shapes in a simple shear
flow was used to further validate our theory by comparing the results with boundary
element method calculations of Singh et al. (2013) and Borker et al. (2018). The
perturbation analysis described in this paper could be extended to Stokes flow with
fluid inertia (Khayat & Cox 1989), potential flow (Lighthill 1960, 1971) and heat
transfer (Beckers et al. 2015) to find the impact of the gradients in the respective
background fields. The solution of the respective two-dimensional problem, similar
to the problem described in § 3.3, could be used to extend the result to a general
cross-sectional shape.

The advancement in nano-fabrication shows promise of utilizing micro and
nanoscale objects with high aspect ratio appendages to aid in targeted drug delivery,
material assembly (Sacanna et al. 2013) or water treatment (Gao & Wang 2014;
Soler & Sánchez 2014). These slender micromachines would be subject to velocity
gradients and our current work can be utilized to simulate their dynamics and thereby
learn about optimal propulsion mechanism under a background flow field.

Our theory can also be utilized to understand slender particle dynamics in various
linear flow fields. The results of § 5 suggest that the effects of the cross-section can
have magnitudes similar to the effects of the curvature of the centreline of curved
slender bodies. The current theory can be used to study the motion of straight particles
in a simple shear flow (SSF), which has a rich dynamical structure. A sampling of
such results was presented in § 5 for straight cylinders with mirror symmetry about
the longitudinal direction where the O(α3/A) force per unit length induced a net
translation. The O(α3/A) force per unit length, being proportional to a, will also
induce an O(α3/A) angular velocity to any particle that lacks mirror symmetry
about the longitudinal direction. This O(α3/A) angular velocity, which is important
when the particle is near the flow–vorticity plane, has a much stronger scaling than
the O(ln(A)/A2) contribution from the dipole per unit length. Such particles can
also translate with an O(1) velocity arising from asymmetry along the longitudinal
direction leading to velocities an order of magnitude larger than the ones presented
in § 5. Furthermore, such asymmetric particles that have an additional contribution to
α2 could also rotate and translate chaotically. The motion of straight cylinders can
be explored using the current SBT formalism along with the solution of Cox (1971).
Our work gives insight into the geometry of cross-sections that are important and the
tools to explore the motion of such slender shapes in a shear flow.
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The force per unit length acting on rings with non-circular cross-section, presented
in § 6, can be used to simulate hydrodynamic interactions between multiple rings to
obtain the structure and rheology of a suspension of rings. The particular case of
interest is obtaining the rheology of rings that can attain an equilibrium orientation
in a SSF, which has never been explored. A suspension of such aligned rings has the
possibility of attaining high degrees of anisotropy due to alignment of all particles
in the same orientation, which could be useful to manufacture highly anisotropic
materials. Hydrodynamic interactions between rings can be captured by using (3.12)
or (3.17) with the velocity disturbance produced by other rings included in the u∞
term and solving for the force per unit length up to O(1/ ln(2A)).
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