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THESE ARE EXCITIN G times for computational sciences 
with the digital revolution permeating a variety of 
areas and radically transforming business, science, 
and our daily lives. The Internet and the World Wide 
Web, GPS, satellite communications, remote sensing, 
and smartphones are dramatically accelerating the 
pace of discovery, engendering globally connected 
networks of people and devices. The rise of practically 
relevant artificial intelligence (AI) is also playing 
an increasing part in this revolution, fostering 
e-commerce, social networks, personalized medicine, 
IBM Watson and AlphaGo, self-driving cars, and other 
groundbreaking transformations.

Unfortunately, humanity is also facing tremendous 
challenges. Nearly a billion people still live below 
the international poverty line and human activities 
and climate change are threatening our planet and 
the livelihood of current and future generations. 
Moreover, the impact of computing and information 
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technology has been uneven, mainly 
benefiting profitable sectors, with 
fewer societal and environmental ben-
efits, further exacerbating inequalities 
and the destruction of our planet.

Our vision is that computer scientists 
can and should play a key role in helping 
address societal and environmental chal-
lenges in pursuit of a sustainable future, 
while also advancing computer science 
as a discipline.

For over a decade, we have been deep-
ly engaged in computational research 
to address societal and environmental 
challenges, while nurturing the new field 
of Computational Sustainability. Compu-
tational sustainability aims to identify, 
formalize, and provide solutions to com-
putational problems concerning the bal-
ancing of environmental, economic, and 
societal needs for a sustainable future.18 
Sustainability problems offer challenges 
but also opportunities for the advance-
ment of the state of the art of comput-
ing and information science. While in 
recent years increasingly more computer 

and information scientists have engaged 
in research efforts focused on social 
good and sustainability,12,14,16,24,29,31,35 
such computational expertise is far from 
the critical mass required to address the 
formidable societal and sustainability 
challenges that we face today. We hope 
our work in computational sustainabil-
ity will inspire more computational sci-
entists to pursue initiatives of broad so-
cietal impact.

Toward a Sustainable Future
In 1987, Our Common Future, a United 
Nations report by the World Commis-
sion on Environment and Development,a 
raised serious concerns about the state 
of our planet, the livelihood of current 
and future generations, and introduced 
the groundbreaking notion of “sustain-
able development.”

Sustainable development is develop-

a	 United Nations. Our Common Future. Retrieved 
Aug. 25, 2018; http://www.un-documents.net/
our-common-future.pdf

ment that meets the needs of the present 
without compromising the ability of fu-
ture generations to meet their needs.

 key insights
˽˽ Computer science enriches sustainability. 

Computer scientists can and should 
make important contributions to help 
address key societal and environmental 
challenges facing humanity, in pursuit 
of a sustainable future. The new field of 
computational sustainability brings these 
efforts together.

˽˽ Sustainability enriches computer science. 
In turn, working on sustainability problems, 
which involve uncertainty, machine 
learning, optimization, remote sensing, 
and decision making, enriches computer 
science by generating compelling new 
computational challenge problems.

˽˽ Sustainability concerns human well-being 
and the protection of the planet. A large 
group of computer science researchers, 
collaborating with an even larger group 
of domain specialists from social, 
environmental, and natural sciences, 
can drive computational sustainability 
in ways that would not be possible in a 
smaller or less interdisciplinary setting.
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poverty is one of the most challenging 
sustainable development goals. Glob-
ally, over 800 million people live below 
the international poverty line of $1.90 
per person per day.d Rapid population 
growth, ecosystem conversion, and 
new threats due to conflicts and cli-
mate change are further pushing sev-
eral regions into chronic poverty.

The lack of reliable data is a major ob-
stacle to the implementation of policies 
concerning poverty, food security, and 
disaster relief. In particular, policies 
to eradicate poverty require the ability 
to identify who the poor are and where 
they live. Poverty mapping can be very 
challenging, especially in the case of the 
developing countries, which typically 
suffer from large deficiencies in terms 
of data quantity, quality, and analysis 
capabilities. For example, some coun-
tries have not collected census data in 
decades.e To mitigate this challenge, 
Ermon and collaborators are introduc-
ing novel approaches for obtaining large-
scale spatial and temporal socioeco-
nomic indicators from publicly available 
satellite and remote sensing data (Figure 

d	 We used 2013 data since the 2015 survey data 
coverage is too low and considerable Asia data 
are suppressed; http://iresearch.worldbank.
org/PovcalNet/povDuplicateWB.aspx

e	 United Nations. A World That Counts: Mobilizing 
the Data Revolution for Sustainable Development. 
Retrieved June 16, 2018; http://www.undatar-
evolution.org/wp-content/uploads/2014/12/ 
A-World-That-Counts2.pdf

4). The approaches take advantage of 
advances in machine learning and are 
quite effective for estimating a variety 
of socio-economic indicators of pov-
erty, even comparable to the predictive 
performance of expensive survey data 
collected in the field, and are currently 
being used by the World Bank.20

In the arid regions of sub-Saharan Af-
rica, one of the world’s poorest regions, 
migratory pastoralists manage and herd 
livestock as their primary occupation. 
During dry seasons they must migrate 
from their home villages to remote 
pastures and water points. Barrett and 
collaborators are developing models 
for studying well-being dynamics and 
poverty traps associated with migratory 
herders and other populations.5 The 
herders’ preferences are also key in the 
design of policies for sustainable devel-
opment. Unfortunately, such preferenc-
es are often unknown to policymakers 
and must be inferred from data. Ermon 
et al.11 developed generative models 
based on (inverse) reinforcement learn-
ing and dynamic discrete choice mod-
els, to infer the spatiotemporal prefer-
ences of migratory pastoralists, which 
provide key information to policymak-
ers concerning a variety of decisions, in 
particular, the locations for adding new 
watering points for the herders.

Access to insurance is critical since 
uninsured losses can lead to a vicious 
cycle of poverty.5,8 Unfortunately, agri-
cultural and disaster insurance are ei-
ther unavailable or prohibitively expen-
sive in many developing countries, due 
to the lack of weather data and other 
services. To mitigate this problem, the 
Trans-Africa Hydro-Meteorological Ob-
servatory (TAHMO) project is design-
ing and deploying a network of 20,000 
low-cost weather stations throughout 
sub-Saharan Africa.36 This project gives 
rise to challenging stochastic optimiza-
tion and learning problems for optimal 
weather station site selection and for un-
certainty quantification in the sensors 
and weather predictions. For example, 
precipitation, one of the most important 
variables for agriculture, is challenging 
to predict due to its heavy-tailed nature 
and the malfunctions of rain gauges. 
Dietterich and his collaborators are de-
veloping models for detecting instru-
ment malfunctions and also conditional 
mixture models to capture the high vari-
ance of the phenomena. There are other 

The sustainable development goals 
(SDGs)b identify areas of critical impor-
tance for human well-being and the pro-
tection of the planet and seek to inte-
grate and balance the economic, social, 
and environment dimensions for sus-
tainable development (see Figure 1).c

Computational Research 
in Sustainability 
We illustrate some of our computation-
al sustainability research, which has 
focused on three general sustainability 
themes: Balancing environmental and 
socioeconomic needs; biodiversity and 
conservation; and, renewable and sus-
tainable energy and materials. The re-
search is also centered on three broad 
computational themes: optimization, 
dynamical models, and simulation; 
data and machine learning; and, multi-
agent systems, crowdsourcing, and citi-
zen science (noted in Figure 2). This sec-
tion is organized in terms of our three 
sustainability themes, highlighting 
crosscutting computational themes, as 
depicted in the subway lines of Figure 3.

Balancing environmental and so-
cioeconomic needs. The elimination of 

b	 United Nations. Transforming Our World: 
The 2030 Agenda for Sustainable Develop-
ment. Retrieved Aug. 25, 2018; http://www.
un.org/ga/search/view_doc.asp?symbol=A/
RES/70/&Lang=E

c	 United Nations. The Sustainable Development 
Goals Report. Retrieved Aug. 25, 2018; https://
bit.ly/2WbeKNB.

Figure 1. On Sept. 25, 2015, under the auspices of the United Nations and as part of a wider 
2030 Agenda for Sustainable Development, 193 countries agreed on a set of 17 ambitious 
goals, referred to as the Sustainable Development Goals (SDGs), to end poverty, protect 
the planet, and ensure prosperity for all.
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challenges in agriculture, in particular, 
due to market failures and information 
asymmetries—a consistent problem in 
environmental policy.8,23

There are also many challenges 
and opportunities in connection with 
social interventions in the U.S., where 
more than 40 million people live be-
low the U.S. poverty threshold. The 
U.S. also has the highest infant mortal-
ity rate and the highest youth poverty 
rate in the Organization for Economic 
Cooperation and Development, which 
comprises 37 high-income economies 
regarded as the developed countries.f 
For example, Los Angeles County has 
over 5,000 youth between the ages of 13 
and 24 sleeping on the streets or living 
in emergency shelters on any given day. 
In the context of homeless youth drop-
in centers in Los Angeles, Yadav et al.40 
propose novel influence maximization 
algorithms for peer-led HIV preven-
tion, illustrating how AI algorithms 
can significantly improve dissemina-
tion of HIV prevention information 
among homeless youth and have real 
impact on the lives of homeless youth. 
Tambe and Rice35 provide a compila-
tion of other examples of AI for social 
work concerning HIV prevention, sub-
stance abuse prevention, suicide pre-
vention, and other social work topics.

As a final example on balancing en-
vironmental and socioeconomic issues, 
consider the urban landscape, which is 
far more congested than it was 10, 20, or 
50 years ago. There is a critical need to 
provide individualized transportation 
options that have smaller carbon foot-
prints than the automobile. One emerg-
ing alternative is bike-sharing which 
allows for multimodal commute round 
trips, with a great degree of individual 
flexibility, as well as economic, envi-
ronmental, and health benefits. These 
systems have given rise to a host of 
challenging logistical problems, whose 
computationally efficient solution is re-
quired to make this new alternative sus-
tainable. The algorithmic requirements 
for these problems bring together is-
sues from discrete optimization, sto-
chastic modeling, and behavioral eco-

f	 Statement on visit to the U.S. by Philip Alston, 
United Nations Special Rapporteur on extreme 
poverty and human rights (2018). Retrieved June 
16, 2018; http://socialprotection-humanrights.
org/wpcontent/uploads/2018/06/G1812530.pdf

Figure 2. Our research is focused on three general sustainability areas depicted as the 
faces of the triangle. 
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Solutions to problems in each of these areas draw on a combination of three broad computational 
themes, depicted as circles. Each sustainability application creates a transformative synthesis by 
incorporating a combination of computational techniques from any of these themes, while each 
computational technique is in turn applied to a variety of problems.

Figure 3. Subway lines highlight examples of general domain crosscutting computational 
problem classes identified in our research projects, which correspond to subway stops. 
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A junction, where one project appears on multiple lines, shows how one sustainability problem can 
bring together multiple computational problem classes. Similarly, each subway line shows how 
otherwise disparate sustainability applications are related through computational problem classes.
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nomics, as well as mechanism design 
to appropriately incentivize desired 
collective behavior. One striking recent 
success is the crowdsourcing approach 
to rebalancing the shared bike fleet in 
NYC that contributes more to the effec-
tiveness of Citi Bike than all motorized 
efforts (Figure 5); this and other com-
putational challenges in this emerging 
domain are surveyed by Freund et al.17

Biodiversity and conservation. Ac-
celerated biodiversity loss is another 
great challenge threatening our planet 
and humanity, especially considering 
the growing evidence of the impor-
tance of biodiversity for sustaining 
ecosystem services. The current rate 
of species extinction is estimated to 
be 100 to 1,000 times the background 
rates that were typical over Earth’s his-
tory. Agriculture, urbanization, and 
deforestation are main causes of bio-
diversity reduction, leading to habi-
tat loss and fragmentation. Climate 
change and introduction by humans 
of species to non-native ecosystems are 
further accelerating biodiversity loss.28

A fundamental question in biodi-
versity research and conservation con-
cerns understanding how different spe-
cies are distributed across landscapes 
over time, which gives rise to challeng-
ing large-scale spatial and temporal 
modeling and prediction problems.15,25 
Species distribution modeling is highly 
complex as we are interested in simul-
taneously predicting the distribution 
of hundreds of species, rather than a 
single species at a time, as traditionally 
done due to computational challenges. 
Motivated by this problem, Chen et al.7 
developed the Deep Multivariate Probit 
Model (DMVP), an end-to-end learning 
approach for the multivariate probit 
model (MVP), which captures interac-
tions of any multi-entity process, assum-
ing an underlying Gaussian distribu-
tion7 (Figure 6), and scales considerably 
better than previous approaches.

Citizen science programs play a key 
role in conservation efforts and, in par-
ticular, in providing observational data. 
eBird, a citizen science program of the 
Cornell Lab of Ornithology, has over 
450,000 members, who have gathered 
more than 650 million bird observa-
tions, corresponding to over 30,000,000 
hours of field work.34 Furthermore, to 
complement eBird observational data, 
other information sources are exploit-

Figure 4. Transfer learning is an effective approach to model and predict socioeconomic 
indicators in data-scarce regions that takes advantage of satellite images that are globally 
available, updated frequently, and becoming increasingly more accurate. 

The approach first trains a deep convolutional neural network to predict nighttime light intensity 
(a good proxy for economic activity) based on daytime satellite imagery. The model then estimates 
average household expenditures based on expenditure data from the World Bank’s Living Standards 
Measurement Study surveys. This is done via semi-supervised learning, while enforcing spatial 
consistency using a Gaussian process on top of the neural network. The resulting model is 
surprisingly accurate, explains close to 70% of the variation in the data in some countries, and 
outperforms all previous methods including methods based on proprietary phone meta-data (not 
publicly available). This general approach has been adapted for large-scale spatial and temporal 
modeling and prediction of a variety of socioeconomic indicators.20

Input:

Satellite Images

Output:

Poverty Measures

Figure 5. Games for mechanism design.
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(a) The Avicaching game incentivizes citizen scientists to submit bird observations 
from undersampled areas;39 Bike Angels incentivizes NYC bikers to rebalance Citi bikes.17 

Games for mechanism design lead to challenging bi-level stochastic optimization 
and learning problems in which the game organizer must take into account 
the preferences of the agents (citizen scientists, bikers, or poachers) with respect 
to the organizer’s actions, in order to identify the best incentive or protection strategy.

(b) Green security games strategically protect natural resources (forests, fish areas, 
and so on) against poaching and illegal activities.13

Games for combatting poaching and illegal activities

Avicaching and Bike Angels

Green Security Games
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ed. For example, Sheldon and collabo-
rators’ Dark Ecology project33 extracts 
biological information from weather 
data. eBird data, combined with large 
volumes of environmental data and our 
spatiotemporal statistical and machine 
learning models of bird species occur-
rence and abundance, provide habitat 
preferences of the birds at a fine reso-
lution, leading to novel approaches for 
bird conservation.27 The results from 
the eBird species distribution models 
formed the basis for the 2011–2017 U.S. 
Department of Interior’s State of the 
Birds (SOTB) reports.

The SOTB reports are generating 
tremendous interest from conserva-
tion organizations in using species 
distribution results to improve bird 
conservation. A good example is The 
Nature Conservancy’s Bird Returns pro-
gram.27 The program uses reverse com-
binatorial auctions, in which farmers 
are compensated for creating habitat 
conditions for birds by keeping water 
in their rice fields for the periods that 
coincide with bird migrations. This 
novel market-based approach is only 
possible given the fine-grained bird 
habitat preference provided by the 
eBird-based models. Bird Returns has 
been tremendously successful and has 
created thousand of additional acres of 
habitat for migratory birds.

Other challenges concerning quan-
tification and visualization of uncer-
tainty in species prediction, multiscale 
data fusion and interpretation from 
multiple sensors, incorporation of bio-
logical and ecological constraints, and 
models of migration have also been 
addressed.30,32–34 Sheldon and collabo-
rators introduced collective graphical 
models, which can model a variety of 
aggregate phenomena, even though 
they were originally motivated for mod-
eling bird migrations6,32 (Figure 7). 

Citizen science, while a valuable 
source of information for species dis-
tribution modeling, also poses several 
computational challenges with re-
spect to imperfect detection, variable 
expertise in citizen scientists,21 and 
spatial and temporal sampling bias.34,39 
The Avicaching game was developed to 
combat sample bias in eBird submis-
sions (Figure 5).

To mitigate the various habitat threats 
encountered by species, several conser-
vation actions are adopted. For example, 

Figure 6. Multi-entity interactions.

Birds living near
the Human residential

Warblers

Water birds

Birds living in wetlands

Raptors

WoodpeckersBirds living in forest
and pasture

(a) The visualization of the joint distribution of two species 
modeled by the deep multivariate probit model (DMVP), which is a 
flexible generalization of the classic multivariate Gaussian probit 
model for studying correlated binary responses of multiple 
entities. DMVP is an end-to-end learning scheme that uses an 
efficient parallel sampling process of the multivariate 
probit model to exploit GPU-boosted deep neural networks. Chen 
et al.7  provide theoretical and empirical guarantees of 
the convergence behavior of DMVP’s sampling process. 
DMVP trains faster than classical MVP, by at least an order of 
magnitude, captures rich correlations among entities, and further 
improves the joint likelihood of entities compared with 
several competitive models. 

(b) The embedding of the 
multispecies interactions learned 
by DMVP showing species with 
similar habitats’ preferences 
clustered together. DMVP 
can model interactions of any 
multi-entity process, assuming 
an underlying Gaussian 
distribution, as shown also 
for example for multi-object 
detection in computer vision.7

Figure 7. Collective graphical models (CGMs) are a general-purpose formalism for 
conducting probabilistic inference about a large population of individuals that are only 
observed in aggregate. 

The generality of CGMs makes them suitable to model a range of aggregate phenomena, from bird 
migrations (the initial motivating application), to differential privacy.6,32 Formally, CGMs are a probabilistic 
model for the sufficient statistics of a graphical model, for which incomplete and noisy observations are 
available. Sheldon and collaborators have contributed a number of inference and learning algorithms and 
theoretical results about CGMs with surprising connections to the theory of belief propagation, and fast 
message-passing algorithms based on the Bethe entropy. The figure depicts a high-level representation 
of a collective graphical model. Noisy and incomplete observations y (not shown) are made of the 
sufficient statistics through a noise model p(y | n), and the goals are to perform inference by computing 
the posterior distribution p(n | y) and to learn the parameters θ of the individual model.

Individual model
p(x; θ)

Xt location of an individual at time t

Sufficient statistics are population-level counts
that correspond to factors in individual model

n2,3 (i,j) # individuals from i to j at time t, i.e., X2=i X3=j.

Collective graphical model
p(n; θ)

X1 X2 X3 X4

N

n1,2 n2,3 n3,4
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Markov decision process approach for 
tamarisk, using a complex dynamical 
bio-economic model. A challenge is to 
scale up the approach and increase the 
realism of the bio-economic models.

Renewable and sustainable energy 
and materials. Renewables are being 
integrated into the smart grid in ever in-
creasing amounts. Because renewables 
like wind and solar are non-dispatch-
able resources, they cannot be sched-
uled in advance, and alternative genera-
tion methods have to be scheduled to 
make up the difference. The variabili-
ty and uncertainty of renewables have 
also raised the importance of energy 
storage (Figure 8). However, storage is 
expensive, and different storage tech-
nologies and settings are required to 
meet needs such as frequency regula-
tion, energy shifting, peak shifting, 
and backup power. In general, con-
trolling energy systems (generation, 
transmission, storage, investment) 
involves a number of new challenging 
learning and optimization problems.

For example, SMART-Invest22 is a 
stochastic dynamic planning model, 
which is capable of optimizing invest-
ment decisions in different electricity 
generation technologies. SMART-Invest 
consists of two layers. The first is an 
outer optimization layer that applies 
stochastic search to optimize invest-
ments in wind, solar, and storage. The 
objective function is non-convex, non-
smooth, and only available via an expen-
sive-to-evaluate black box function. The 
approach exploits approximate convex-
ity to solve this optimization quickly 
and reliably. The second layer captures 
hourly variations of wind and solar over 
an entire year, with detailed modeling 
of day-ahead commitments, forecast 
uncertainties and ramping constraints. 
SMART-Invest produces a more realistic 
picture of an optimal mix of wind, solar, 
and storage than previous approaches, 
and therefore can provide more accu-
rate guidance for policy makers.

In another example concerning the 
placement of hydropower dams in the 
Amazon basin (Figure 9), Wu et al.38 
propose new exact and approximation 
multi-objective optimization approach-
es, which are key to simultaneously con-
sider different sustainability criteria.

In yet another example, Donti et al.10 
propose task-based model learning, 
which was inspired by scheduling elec-

approaches use AI to better understand 
patterns in wildlife poaching and en-
hance security to combat poaching (for 
example, see Fang et al.14). This work 
is leading to research advances at the 
intersection of computational and be-
havioral game theory and data-driven 
optimization. A notable example of 
this research developed so-called green 
security games (Figure 5) and has led to 
an application tool named Protection 
Assistant for Wildlife Security (PAWS),13 
which has been tested and deployed in 
several countries, including Malaysia, 
Uganda, Botswana, and China.

Finally, we mention non-native in-
vasive species, which invade both land 
and water systems and threaten eco-
systems’ ability to house biodiversity 
and provide ecosystem services. For ex-
ample, the invasion of tamarisk trees 
in the Rio Grande valley in New Mexico 
has greatly reduced the amount of water 
available for native species and for ir-
rigation of agricultural crops. Bio-eco-
nomic models provide a basis for policy 
optimization and sensitivity analysis, 
by capturing the complex dynamics of 
the ecosystem, that is, the processes by 
which the invasive species is introduced 
to the landscape and spreads, as well 
the costs and effects of the available 
management actions. Unfortunately, 
often not much is known about these 
processes. Albers et al.2 demonstrate the 
power of a stylized simulator-defined 

wildlife corridors have been shown to 
be an effective way to combat habitat 
fragmentation. The design of wildlife 
corridors, typically under tight conser-
vation budgets, gives rise to challenging 
stochastic optimization problems. Cur-
rent approaches to connect core conser-
vation areas through corridors typically 
consider the movement of a single spe-
cies at a time. Dilkina et al.9 propose new 
computational approaches for optimiz-
ing corridors considering benefit-cost 
and trade-off analysis for landscape con-
nectivity conservation for multispecies. 
The results demonstrate economies of 
scale and complementarities conserva-
tion planners can achieve by optimiz-
ing corridor designs for financial costs 
and multiple species jointly. Another 
related work integrates spatial capture-
recapture models into reserve design op-
timization. In yet another related effort, 
Fuller and collaborators are developing 
a program focused on Ecuador’s Choco-
Andean Biological Corridor, which com-
prises two of the world’s most significant 
biodiversity hotspots, that integrates 
landscape connectivity for Andean bears 
and other species with economic, social 
and ecological information.

Prevention of wildlife crime is also 
important in conservation. In recent 
years there has been considerable AI 
research on devising wildlife monitor-
ing strategies and simultaneously pro-
viding rangers with decision aids. The 

Figure 8. Robust planning of an efficient energy system to serve a load (building) from a 
wind farm (with variable wind speeds), the grid (with variable prices), and a battery  
storage device is challenging. 

Energy storage provides a smooth, dispatchable flow of energy, matching energy when it is generated 
to loads when they arise. Motivated by his work in energy and other applications, Powell26 proposes 
a unified modeling framework for sequential decision making, covering several distinct fields that 
deal with (sequential) decisions and uncertainty (dynamic programming, stochastic programming, 
stochastic control, simulation optimization, and bandit problems, among others) under a common 
umbrella. In this unified framework, there are four fundamental classes of policies consisting of 
policy function approximations (PFAs), cost function approximations (CFAs), policies based on value 
function approximations (VFAs), and look-ahead policies.

Demand
Wind generation

Electricity prices
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physics constraints; prior knowledge 
based on known patterns from inorganic 
crystal structure databases, as well as hu-
man computation strategies. In addition 
Phase-Mapper uses theory-based models for 
incorporating prior knowledge. Since 
the deployment of Phase-Mapper at 
Caltech’s Joint Center for Artificial Pho-
tosynthesis, thousands of XRD patterns 
have been processed, resulting in the 
discovery of new energy materials, such 
as a new family of metal oxide solar light 
absorbers. Gomes, Gregoire and collab-
orators are developing SARA (Scientific 
Autonomous Robotic Agent; http://bit.
ly/2M8efm9) that encapsulates the sci-
entific method for accelerating materi-
als discovery substantially extending 
Phase Mapper. Finally, we point out a 
related source separation problem—hy-
per spectral plant phenotyping—that is 

tricity generation. Task-based model 
learning is a general approach that 
combines data learning and decision 
making (for example, a stochastic op-
timization problem) in an end-to-end 
learning framework, specifying a loss 
function in terms of the decision-mak-
ing objective. In this approach all com-
ponents are differentiable, and there-
fore it is possible to learn the model 
parameters to improve the closed-loop 
performance of the overall system, 
which is a novel way to train machine 
learning models based upon the per-
formance of decision-making systems.

Finally, we highlight new sustainable 
materials and processes. They provide 
a fundamental basis for solutions to 
some of the most pressing issues in en-
ergy, as well as more general issues in 
sustainability. In many cases, long-term 
solutions will depend on breakthrough 
innovations in materials, such as the 
development of new materials and pro-
cesses for more efficient batteries, fuel 
cells, solar fuels, microbial fuel cells, 
or for CO2 reduction. The high cost of 
conventional single-sample synthesis 
and analysis are driving the scientific 
communities to explore so-called high-
throughput experimentation to accel-
erate the discovery process. This setup 
leads to computational challenges for 
designing and planning the experi-
ments. Furthermore, the data analysis, 
integration, and interpretation process 
are key bottlenecks that are expert-labor 
intensive. Current state-of-the-art ma-
chine learning techniques are not able 
to produce physically meaningful solu-
tions. Efficient computational methods 
are therefore urgently needed for analyz-
ing the flood of high-throughput data to 
obtain scientific insights. A promising 
research direction is the development 
of generative models for unsupervised 
learning and for providing supervision 
using domain knowledge through theo-
ry-based models and simulators.

As an example, in high-throughput 
materials discovery, a challenging prob-
lem is the so-called phase-map identifica-
tion problem, an inverse problem in 
which one would like to infer the crystal 
structures of the materials deposited onto 
a thin film based on the X-ray diffraction 
(XRD) patterns of sample points. This 
problem can be viewed as topic modeling 
or source separation with intricate phys-
ics constraints since the observed diffrac-

tion pattern of a sample point may consist 
of a mixture of several pure crystal pat-
terns, and some of them may not be sam-
pled. The task is further complicated by 
the inherent noise in the measurements. 
Human experts analyze the diffraction 
patterns by taking into account knowl-
edge of the underlying physics and chem-
istry of materials, but it is a very labor-in-
tensive task and often it is very challenging 
even for human experts. This is a good ex-
ample that completely defies the current 
state of the art of machine learning. 
Phase-Mapper,4 is an AI platform that 
tightly integrates results from XRD experi-
mentation with learning, reasoning, and 
human insights, to infer crystal structures 
from XRD data. In particular, Phase-Map-
per integrates an efficient relaxed projec-
tion method for constrained non-nega-
tive matrix factorization that incorporates 

Figure 9. Multi-objective learning and optimization.

In many sustainability problems, it is critical to jointly consider multiple, often conflicting, 
objectives. This is the case for hydropower dam planning in the Amazon basin, with about 350 
new hydropower dams proposed, which will dramatically affect a variety of Amazon ecosystem 
services, such as biodiversity, sediment transport, freshwater fisheries, navigation, besides 
energy production. The Pareto frontier captures the trade-offs between the multiple objectives 
with respect to the different non-dominated solutions. The non-dominated solutions also 
provide valuable information concerning the dams’ ranking. We have developed exact dynamic-
programming algorithms, fully polynomial time approximation schemes (FPTAS), and other 
approaches for computing the Pareto frontier for tree-structured networks, with application to the 
Amazon hydropower dam placement problem. For example, we can now approximate the Pareto 
frontier for the entire Amazon basin (∼ 4M river segments), with respect to three criteria (energy; 
river connectivity, a good proxy for fish migrations and navigation; and sediment production) within 
5% from the true optimal Pareto frontier in about 4 minutes (8 threads); or within 2% in about 1.2 
hours (8 threads). The results, combined with visualization tools, help policymakers make more 
informed decisions concerning multiple criteria and different spatial scales.38

5°0'0"N

0°0'0"

5°0'0"S

10°0'0"S

15°0'0"S

90°0'0"W 80°0'0"W 70°0'0"W

Hydropower Dams in the Amazon Basin

Dam status per capacity (MW)

In operation Planned Under construction

0.2–528

528–2350

2350–11233

0.2–528

528–2350

2350–11233

0.2–528

Elevation (m)
High: 6420

Low: –38
Rivers

528–2350

2350–11233

60°0'0"W 50°0'0"W 40°0'0"W



64    COMMUNICATIONS OF THE ACM    |   SEPTEMBER 2019  |   VOL.  62  |   NO.  9

contributed articles

combination of distinguishing aspects 
that make them unique in scale, impact, 
complexity, and richness, posing new 
challenges and opportunities for com-
puting and information science, leading 
to transformative research directions. 
One of our key goals has been to identify 
classes of computational problems that 
cut across a variety of sustainability (and 
other) domains. Given the universality 
of computational thinking, findings in 
one domain can be transferred to other 
domains. Examples of high-level cross-
cutting computational problem class-
es, some of them depicted in Figure 3, 
include spatiotemporal modeling and 
prediction for bird conservation, pov-
erty mapping, and weather mapping; 
sequential decision making for managing 
(renewable) resources, designing sci-
entific experiments, managing invasive 
species, and pastoralism interventions; 
pattern decomposition with complex con-
straints for phase map identification in 
materials discovery, identification of el-
ephant and bird calls from audio record-
ings, inferring plant phenotypes from 
hyper spectral data and scientific topic 
modeling; active learning (not shown in 
Figure 3), for scientific experimentation 
and sensor placement, including citizen 
science, and crowdsourcing, and games 
for mechanism design for providing in-
centives for citizen scientists, placing 
patrols and drones to combat poaching 
and illegal fishing, or incentivizing bik-
ers to balance bike stations.

We believe that pursuing research in 
core or paradigmatic crosscutting com-
putational problems is a sine qua non 
condition to ensure the cohesiveness and 
growth of computational sustainabil-
ity as a field, so that researchers develop 
general models and algorithms with ap-
plication in different sustainability and 
other domains. Our experience shows 
these core problems naturally emerge out 
of real-world sustainability-driven proj-
ects, approached with the perspective of 
lifting solution methods to produce general 
methodologies, as opposed to only solving 
narrow problem scenarios.

In this article, we focused on com-
putational sustainability research ex-
amples from CompSustNet,g a compu-
tational sustainability research network 
involving a large number of research-
ers. Unfortunately, we are not able to 

g	 http://www.compsust.net/

tackled in Wahabzada37 with probabilis-
tic topic models.

Another area that can benefit dra-
matically from advanced AI and ma-
chine learning methods is the planning 
and design of scientific experiments. 
For example, Fern and collaborators 
are developing novel machine learning 
and constraint budgeted optimization 
techniques to help scientists design 
more efficient experiments for micro-
bial fuels by allowing them to efficiently 
explore different nano-structures.3 They 
employ Bayesian optimization with re-
source constraints and production ac-
tions and have developed a new general 
Monte Carlo tree search algorithm with 
theoretical guarantees. This work also 
led to a large-scale empirical evaluation 
of Bayesian optimization algorithms, 
which was motivated by the confusing 
landscape of results in Bayesian opti-
mization. The study involved imple-
menting a number of top algorithms 
within a common framework and us-
ing cloud resources to run compari-
sons on a large number and variety 
of test functions. The main result of 
the study was to show the well-known 
Bayesian optimization heuristic—ex-
pected improvement—performed as 
well as any other approach in general 
and often won by significant margins. 
This includes beating methods such 
as the arguably more popular upper 
confidence bound (UCB) algorithm. 
The study found that algorithms such 
as UCB, which require setting a pa-
rameter for controlling exploration, 
are very sensitive to the parameters, 
making them difficult to apply widely. 
Expected improvement is parameter-
free and appears to be quite robust. 
Krause and collaborators also apply 
Bayesian optimization for maximum 
power point tracking in photovoltaic 
power plants.1

As a final example, Grover et al.19 
model the search for the best charging 
policy for the Li-ion battery chemistry 
as a stochastic multi-arm bandit with 
delayed feedback. They found poli-
cies (functions for making decisions 
based on state variables) that consid-
erably outperform current policies (by 
up to 35% in experimentation time).

Computational Synergies
We have highlighted how computation-
al sustainability problems encompass a 

Citizen science 
programs play  
a key role in 
conservation 
efforts, particularly 
in providing 
observational data. 
eBird, a citizen 
science program 
of the Cornell Lab 
of Ornithology, 
has over 450,000 
members,  
who have gathered 
more than 650 
million bird 
observations.
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include many other exciting research 
contributions and computational chal-
lenges raised by sustainability ques-
tions, as identified in computer science, 
engineering, and social and natural 
sciences. Examples include the role of 
large-scale distributed systems and sen-
sor networks, the Internet of Things, 
cyber-physical systems, cyber security, 
privacy, fairness, accountability, trans-
parency for advanced computational 
systems, and also fundamental com-
putational concepts such as reliability, 
modeling the hierarchical structure of 
socio-technical systems, and human-
in-the-loop systems and intuitive, 
user-friendly interfaces. We also only 
touched on some of the 17 U.N. sustain-
able development goals. We point the 
reader to the increasing number of con-
ferences and journals that are now start-
ing to include tracks, workshops, and 
special issues focusing on tackling sus-
tainability and societal issues, bringing 
together different computing and infor-
mation science areas (HCI, systems, AI, 
and algorithms, among others).

Planning for a sustainable future en-
compasses complex interdisciplinary 
decisions for balancing environmental, 
economic, and societal needs, which 
involve significant computational 
challenges, requiring expertise and re-
search efforts in computing and infor-
mation science and related disciplines. 
Computational sustainability aims to 
develop new computational methodol-
ogies to help address such environmen-
tal, economic, and societal challenges. 
The continued dramatic advances in 
digital platforms, computer software 
and hardware, sensor networks and the 
Internet of Things continue to provide 
significant new opportunities for accel-
erating the pace of discovery to address 
societal and sustainability issues. Com-
putational sustainability is a two-way 
street: it injects computational ideas, 
thinking, and methodologies into ad-
dressing sustainability questions but 
it also leads to foundational contribu-
tions to computing and information 
science by exposing computer scien-
tists to new challenging problems, 
formalisms, and concepts from other 
disciplines. Just as sustainability issues 
intersect an ever-increasing cross-sec-
tion of emerging scientific application 
domains, computational sustainabil-
ity broadens the scope and diversity of 

computing and information science 
while having profound societal impact.
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