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A B S T R A C T   

The biological carbon pump has been estimated to export ~5–15 Gt C yr� 1 into the deep ocean, and forms the 
principal deep-sea food resource. Irregular, intense pulses of particulate organic carbon (POC) have been found 
to make up about one-third of the overall POC fluxes at a long-term deep-sea research station influenced by 
coastal upwelling of the California Current, Station M (34�500N, 123� W, 4000 m depth). However, the drivers of 
these pulses have been challenging to quantify. It has long been recognized that ocean currents can result in 
particles being advected while sinking to the point of collection by a sediment trap. Thus, a sediment trap time 
series can incorporate material from a dynamic catchment area, a concept sometimes referred to as a statistical 
funnel. This concept raises many questions including: what are the day-to-day conditions at the source locations 
of the sinking POC? And, how might such ‘ocean weather’ and related ecosystem factors influence the intense 
variation seen at the seafloor? Here we analyzed three-dimensional ocean currents from a Regional Ocean 
Modeling System (ROMS) model from 2011 to 2017 to trace the potential source locations of particles sinking at 
1000, 100, and 50 m d� 1 from an export depth of 100 m. We then used regionally tailored satellite data products 
to estimate export flux of POC from these locations. For the 100 m d� 1 speed, the particles had origins of up to 
~300 km horizontal distance from the sediment trap location, moored at Station M at 3400 m depth., and nearly 
1000 km for the 50 m d� 1 speed. Particle tracking indicated that, there was considerable inter-annual variation 
in source locations. Particle source locations tended to originate from the east in the summer months, with higher 
export and POC fluxes. Occasionally these locations were in the vicinity of highly productive ocean features 
nearer to the coast. We found significant correlations between export flux of organic carbon from the estimated 
source locations at 100 m depth to trap-estimated POC fluxes at 3400 m depth. These results set the stage for 
further investigation into sinking speed distributions, conditions at the source locations, and comparisons with 
mechanistic biogeochemical models and between particle tracking model frameworks.   

1. Introduction 

The biological carbon pump (BCP) is a complex set of processes that 
provides critical ecosystem functions and services including the 
sequestration of carbon dioxide from the atmosphere into the deep 
ocean where it can be removed from atmospheric climate influence for 
tens to thousands of years (Khatiwala et al., 2012; Fine et al., 2017). 
Importantly, the BCP is a critical regulator of biogeochemical rates and 
food resources for life in the deep ocean and on the seafloor, which make 

up ~97% of the oceans volume (e.g. Smith et al., 2018; Grabowski et al., 
2019). Sustained observations have revealed that there can be order of 
magnitude variability in the year to year flux of organic carbon in the 
form of ‘marine snow’ and related detritus sinking to abyssal depths 
(Lampitt et al., 2010; Smith et al., 2018; Conte et al., 2019). These 
episodic variations are not well represented in ocean biogeochemical 
models and may be a source of considerable uncertainty in simulations 
of ocean carbon sequestration. This is partly because observing them 
requires high-resolution sensing and sampling over multi-year scales. In 
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many such global biogeochemical models the flux attenuation efficiency 
terms are either fixed, are allowed to vary according to mean temper
ature, and/or oxygen concentration derived mainly in spatial terms (e.g. 
Cram et al., 2018; Marsay et al., 2015), or are driven by a mineral ballast 
framework (e.g. Armstrong et al., 2001; Yool et al., 2013). Seafloor 
ecological models also generally have input terms that rely on a flux that 
is transferred vertically (e.g. Yool et al., 2017; Durden et al., 2017). 
Conditions at the origin of sinking particles set the initial sinking speed 
and remineralization rate of particles, which may then vary before 
arriving at particular sampling locations and depths. Using tools that can 
track particles from surface to seafloor, forwards or backwards in time, 
can help reveal insights into the connections between surface remotely 
sensed properties and deep-sea time-series observations. Moreover, such 
insights will likely improve indicators of ecosystem conditions in a va
riety of applications at the scales of resource management policy 
implementation, such as for marine protected areas. 

Since 1989, Station M has been a site for long-term biogeochemical 
and ecological research in the deep sea, including the fluxes of POC and 
Sediment Community Oxygen Consumption (SCOC). Results from the 
site have shown how seasonal upwelling and interannual climate vari
ation relate to changes in surface ocean productivity, export flux and 
ultimately to changes in deep-sea POC fluxes and dependent commu
nities (e.g. Smith et al., 2014; Ruhl et al., 2014). For example, the El 
Ni~no Southern Oscillation (ENSO) can relate to unusual daily conditions 
driving POC fluxes that are lower (during El Ni~no) or higher (during La 
Ni~na) than average. This has been linked to variations in upwelling, the 
introduction of new nutrients, and net primary production and ecolog
ical shifts in surface ocean communities (e.g. Smith et al., 2014; Lilly and 
Ohman, 2018). Other examples of such ‘pelagic-benthic coupling’ have 
been found in many studies including in the Arctic (Soltwedel et al., 
2016), the central and northeast Atlantic (Lampitt et al., 2010; Conte 
et al., 2019), the Gulf of Mexico (Wei et al., 2012), continental margins 
(Thomsen et al., 2017) and the oligotrophic Pacific (Ruhl et al., 2008). 
At the Porcupine Abyssal Plain (PAP) - Sustained Observatory POC flux 
and variations of deep ecosystems have been linked to variations in the 
North Atlantic Oscillation through variability in primary productivity 
and surface ocean ecology (e.g. Henson et al., 2012). 

Pulse events (i.e. � 2 standard deviations [sd]) at Sta. M have been 
shown to account for about one-third of overall particulate organic 
carbon (POC) fluxes (Smith et al., 2018). The Martin-curve (sensu Martin 
et al., 1987) model of POC remineralization and flux estimates of POC 
flux to abyssal depths reproduced the background flux well at Sta. M 
(Smith et al., 2018). However, the relatively episodic pulse fluxes 
showed major discrepancies with satellite-derived estimates, where the 
overall Martin-curve estimated POC flux reaching ~3400 m depth was 
~50% lower than the trap estimates. Such a mis-match could have 
important implications for estimating the depth of carbon sequestration. 
In making this calculation, the export flux was estimated from satellite 
data for a fixed circle over the site of 100 km radius using the algorithm 
of Kelly et al. (2018). This approach makes the implicit assumption that 
sinking flux would have come from this area. 

The concept of the ‘statistical funnel’ frames the time-series of ma
terial collected in sediment traps as coming from a dynamic catchment 
area where horizontal advection dominates the movement of sinking 
particles (Siegel and Deuser, 1997). Thus, the use of a fixed spatial 
integration area could miss potential particulate flux inputs coming from 
outside of it or dampen variation by averaging over large areas. Previous 
studies that simulated catchment areas and source locations of sinking 
particles have found that they can come from areas with contrasting 
conditions such as specific productivity features, coastal or offshore 
waters, or the presence of sea ice (e.g. Siegel et al., 2008; Hartman et al., 
2010; Wekerle et al., 2018). By tracking particle trajectories across a 
range of sinking speeds, we can investigate if/how events from a more 
dynamic range of source location can account for the occasional 
mis-matches in estimated vs. sediment trap sampled POC fluxes to the 
trap depth. Indeed, particle tracking can reveal the broader range of 

conditions that may be related to the kind of episodic pulses of POC flux 
described above. 

Here we seek to understand the trajectories that connect day-to-day 
variations in surface ocean conditions, i.e. ocean weather, to deep 
sediment trap time series. Specifically, we examine ocean weather in 
terms of daily ocean currents in a three dimensional reanalysis model 
(Moore et al., 2013), as well as daily satellite estimations of export flux 
(EF, here defined as export from 100 m depth) as determined by the new 
algorithm of Kahru et al. (this volume). We used these tools to address 
the following research questions: What are the likely source locations of 
EF for sinking particles reaching the deep sediment trap at Sta. M? And, 
how well does EF at these source locations relate to deep sediment trap 
samples of POC flux and SCOC? We then discuss how this first exami
nation of particle tracking at Sta. M reveals new insights into how 
episodic events of POC flux at 3400 m depth might be driven by specific 
daily scale features of ocean circulation and EF and how they accrue into 
long term variation, i.e. ocean weather into ocean climate. We discuss 
future research directions to investigate further the role of physical, 
biogeochemical, and ecological variations in driving intense POC flux 
variations by taking advantage of tools in ocean circulation and 
biogeochemical models, satellite observations and in situ data. 

2. Methods 

2.1. Overall approach 

We used a combination of modelled currents and particle tracking, 
satellite ocean color, and in situ sampling and sensing in the setting of the 
California Current. Respectively, these tools helped us to trace the 
possible source locations and sinking pathways of POC fluxes to Sta. M 
(34�500N, 123� W, 4000 m depth). We then correlated these model and 
satellite estimated POC fluxes to empirical POC flux and seafloor com
munity oxygen consumption observations. 

2.2. Modeling ocean currents in three dimensions 

Ocean currents were obtained from an ocean state estimate of the 
California Current System built on the Regional Ocean Modeling System 
(ROMS; Shchepetkin and McWilliams, 2004). The model domain ex
tends from Mexico to Washington State (30 N–48 N) and offshore to 134 
W at 1/10-degree horizontal resolution and 42 terrain-following s-levels 
(Veneziani et al., 2009). The model data are available through the 
Central and Northern California Ocean Observing System (CeNCOOS). 
The model is forced at the surface by fields derived from the Coupled 
Ocean-Atmosphere Mesoscale Prediction System (COAMPS; Hodur 
et al., 2002; Doyle et al., 2009) and at lateral boundaries by output from 
the HYbrid Coordinate Ocean Model (HYCOM; Chassignet et al., 2007). 
The state estimate is obtained using an incremental form of the ROMS 
4-dimensional variational data assimilation system (Broquet et al., 
2011; Moore et al., 2011a, b) and available physical oceanographic data, 
including satellite derived sea surface height, sea surface temperature, 
and sea surface salinity, as well as in situ temperature and salinity from 
gliders and the Argo program. The model is run using the k-ω turbulence 
closure scheme for vertical mixing and in a series of sequential (k ¼
kinetic energy and ω ¼ the specific rate of dissipation of k), 4-day 
assimilation cycles each with 1 outer loop and 10 inner loops. Instan
taneous model fields on daily intervals were used for calculations here. 

2.3. Tracking particles 

We used three sinking speeds representing nominally slow (50 m 
d� 1), medium (100 m d� 1) and fast sinking flux (1000 m d� 1). The speed 
of 100 m d� 1 is justified from previous research on sinking speeds 
inferred from time lagged cross correlations between climate, upwelling, 
net primary production at the site (e.g. Smith et al., 2008). Similar 
findings have been found by Billett (1983) and Lampitt (1985). The 50 
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and 1000 m d� 1 speeds were chosen to investigate variations that might 
relate to particles sinking slower in relation to smaller particles, or 
faster, potentially in relation to the intense pulse fluxes seen at the site 
(e.g. Smith et al., 2018). Such fast sinking has been estimated from 
Chaetognanth, Pteropod and Salp fecal pellets (Bruland and Silver, 
1981; Madin, 1982; Yoon et al., 2001; reviewed in Turner, 2015), all of 
which occur in the study region. 

The OpenDrift particle tracking python module (Dagestad et al., 
2018) was used to track particle trajectories from their settling location 
at a deep sediment trap, backwards to their potential source location. 
Sets of 100 particles that were randomly seeded at 3400 m depth at 
longitude � 123.00�E, 34.83�N on a daily basis. A random radius of 
1000 m around the starting point was used. The Euler method was used 
for equation solutions. At each step, model data are interpolated to the 
advected particle’s trajectory. The model was run ‘backwards’ using a 
negative time step. The Source location was determined when the par
ticles reached 100 m depth in this ‘backwards’ mode. Trajectories were 
computed for 10 days using the 1000 m d� 1 speed, 40 days using the 
100 m d� 1 speed and 70 days using the 50 m d� 1 speed. Trajectory 
positions (latitude, longitude, and depth) are output for each day of the 
run. 

2.4. Export flux (EF) estimation 

Satellite-derived estimates of export flux of carbon (EF, mg C m� 2 

day� 1) were produced at daily intervals and 4 km spatial resolution 
(Kahru et al., this volume). Although ocean color products such as 
chlorophyll-a (Chl-a) are typically not available on a daily basis due to 
frequent cloud cover, daily estimates of net primary production (NPP, 
mg C m� 2 day� 1) are possible as gap-free, daily satellite-derived 
photosynthetically active radiation (PAR, Einstein m� 2 day� 1) esti
mates are available. In the algorithm of Kahru et al. (this volume), PAR 
was assumed to drive the daily variations in NPP while other compo
nents of the NPP model were assumed to change more slowly. Either 5- 
day interpolated Chl-a data or daily optimally interpolated products (sea 
surface temperature; SST) were additionally used. EF was estimated 
from NPP using a modification of the Kelly et al. (2018) algorithm 
(Kahru et al., this volume). The EF algorithm is an empirical fit to a 
regional in situ dataset of EF measurements including from near surface 
sediment traps and isotopic study (Stukel et al., 2019). Although the 
depth at which export occurs depends on mixing structure, the nominal 
export depth is 100 m set in part by the near surface sediment trap 
depth. Compared to the original Kelly et al. (2018) algorithm, the al
gorithm used here has a higher export efficiency (EF/NPP) and a wider 
dynamic range as it was fitted to a more diverse dataset including sta
tions from active mesoscale features such as filaments and eddies. 

2.5. POC flux sampling 

We measured POC flux using McLane sequencing sediment traps 
moored at two depths: 600 and 50 m above bottom (mab). The collec
tion time for each cup was typically ten days. Prior to deployment, the 
trap cups were filled with 5% buffered formalin. Upon trap recovery, 
zooplankton ‘swimmers’ were removed, and ¾ of the sample was freeze- 
dried for analysis in duplicate for total carbon (PerkinElmer or Exeter 
Analytical elemental analyzer, University of California Santa Barbara 
Marine Science Institute Analytical Lab) and inorganic carbon (UIC 
coulometer). These measurements were then corrected for salt content 
using AgNO3 titration and used to calculate particulate organic carbon 
flux. We created a single time series of sediment trap sampled POC flux 
from a composite of the 600 and 50 mab series for use in this study. We 
primarily use data from the 600 mab trap (3400 m depth) when avail
able. The 3400 m depth is therefore the depth in the ROMS model from 
which particles are back tracked. When 600 map trap data were not 
available, the time series was infilled from the 50 mab trap where 
possible based on the linear relationship of POC flux between these traps 

from 1989 to 2017. Further details of sample processing are provided in 
Smith et al. (2018). 

2.6. Sediment community oxygen consumption 

A benthic rover (Rover II) was used to estimate Sediment Community 
Oxygen Consumption (SCOC) using a pair of respiration chambers that 
were inserted into the sediment for approximately two day periods 
during its deployment from a few months to up to about one year (Smith 
et al., 2016). Optodes were used to measure changes in oxygen over time 
in the chambers, which were compared to a reference optode outside the 
chambers. This provided replicate SCOC estimates with a frequency of 
about two days while it was deployed. Results are presented in oxygen 
consumption equivalent terms of mg C m� 2 d� 1. 

2.7. Analytical approach 

The location and time when particles reached a 100-m depth was 
recorded, here generalized as the EF depth. EF values for each of these 
points was then recorded for that location and time. Satellite-derived EF 
estimates for each of these 100 points were then recorded for that 
location and time. Daily average values were then computed for each of 
the 100 tracked particles. Two spatial integrations of EF for these daily 
average values were calculated at the estimated source locations: 50 and 
100 km radius circles, giving a total of six independent series (three 
sinking speeds for each of two spatial area integrations). Given that the 
flux seen at the trap is a result of particles sinking at a range of speeds, 
we also created a series of different composite weightings of the slow, 
medium and fast speed EF source locations. For the composites, we 1) 
examined a form of pulse intensity weighted composites EF set by the 
standard deviation (σ) of POC flux at the trap, where the fast sinking 
location dominated at the time of the highest σ, and slow sinking at the 
time of the lowest σ, and 2) vice versa. For 3), an average EF that equally 
valued each of the speed estimates, and a set that simply used the highest 
of slow, medium or fast sinking EF values from the source locations, was 
also created. In total there are six series at single speeds and eight series 
using composites of the three speeds (Table 1). 

EF and POC flux data were examined at both daily and monthly 
scales. Months with at least 15 daily values were retained for a monthly 
correlation analysis. We have used the non-parametric Spearman rank 
correlation (rs) to quantify correlations between EF from the various 
source location areas and composite weightings, and POC flux, exam
ining the sinking speed and spatial integration series independently and 
as the three composite weighting of the three speeds. To account for 
serial autocorrelation, a correction for the degrees of freedom was 
applied to estimate the p values as described by Pyper and Peterman 
(1998). A Spearman rank correlogram was also generated to identify 
which parts of the time series were most correlated, which used a 
13-month moving window. 

3. Results 

3.1. Source locations 

The source locations of particles sinking at 50 and 100 m d� 1 were 
not surprisingly spread over a much greater area than those sinking at 
1000 m d� 1 (Figs. 1–3). The maximum spread in the 50 m d� 1 source 
locations was nearly 1000 km in its longest dimension, which ran along 
the California coastline. The particles generally originated from offshore 
waters, but did occasionally originate from near the coast. The 100 m 
d� 1 source locations were nearly 300 km in both the latitudinal and 
longitudinal dimensions. Throughout each of the years examined there 
were coherent variations in the basic tendency of the source location as 
indicated by the monthly coloring in the location charts. The 100 m d� 1 

sinking particles also showed some considerable inter annual differences 
where, for example, 2013 particles tending to originate from locations to 
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the northwest, and from late 2015 into early 2016 particles originated 
more often from the west. Examples of the closest coastal approaches 
occurred in Mar. 2011, Jan. 2014, and Nov. 2017. 

3.2. Daily EF, SCOC and POC flux 

EF had both notable seasonal and interannual variations, where high 
peaks were notably reduced or absent from 2015 to 2016 depending on 
the speed (e.g. Fig. 4a,b,c). Examination of the time series plots for each 
of the sinking speeds separately reveals when (and vial location data 
where) there was close correspondence (or not) to sediment trap esti
mated POC flux and related SCOC. The slower speeds often had higher 
values, in part, because locations could more frequently approach the 
higher productivity nearer to shore. POC flux from the integrated cup 
samples had a variance with peaks of up to about 12 standard deviations 
above the mean of 11.99 mg C m� 2 d� 1 for the study period. The daily 
SCOC was generally less variable with occasional peaks that tended to be 
more consistently in summer than POC flux. 

3.3. Monthly time series of EF, SCOC and POC flux 

Correlations of the monthly averaged time series of SCOC with the 
various EF estimates found that the correlations ranged from 0.51 to 
0.62. (Table 1, Fig. 5). Similarly, correlation between POC flux and the 
EF estimates were between 0.36 and 0.55, and generally lower than with 
SCOC. While the coefficients show that there are some significant con
nections, they are sufficiently similar to preclude conclusive identifica
tion of any single speed or composite of speeds as distinctly linking the 
surface ocean and deep-sea carbon cycling time series. The coefficients 
were affected, in part, by the fact that the early part of the time series 
showed a relatively ‘decoupled’ relationship between EF and the deep- 
sea variation in SCOC and POC flux, particularly around 2012 
(Fig. 5d). The period of highest correlation was in 2016 and 2017. 

3.4. Seasonality in source locations and seafloor dynamics 

Seasonally, the average source location was most easterly in June for 
the slow sinking speed and July for the medium sinking speed 
(Fig. 6a–f). The variance in the faster speeds was relatively little by 
comparison. The highest EF values were notably in July, whereas the 
POC flux and SCOC here generally highest from June to September 
(Fig. 6g–i). 

4. Discussion 

4.1. Particle settling from the California Current to Sta. M 

The results here provide insights into the variability in source loca
tions that can arise from different sinking speeds of marine snow par
ticles at Sta. M. Not surprisingly, the extent of the slower sinking speed 
locations was much greater than the fast sinking speed. Source locations 
tending towards the east can bring them closer to highly productive 
coastal waters, upwelling jets and filaments. However, this movement in 
source location has considerable variation from interannual to daily 
scales, with indications of seasonality. 

The results corroborate other studies that have found that source 
locations for deep-sea particulate fluxes can come from more than 100 
km away. For example, investigations into the source locations of sur
face waters arriving at the Porcupine Abyssal Plain (PAP) site in the 
Northeast Atlantic using a sea-surface oriented tracking model have 
found that sources were highly variable by year with origins coming 
from nearly 1000 km distance over 90 days (Hartman et al., 2010). 
Using a combination of satellite altimeter, ship board acoustic Doppler 
velocity data, modeling and drifting sediment traps, Siegel et al. (2008) 
estimated that deep-moored traps, like those at Sta. M could have inputs 
coming from hundreds of km away for slower sinking speeds. Wekerle 
et al. (2018) estimated source locations in the Fram Strait and found that 
sinking speeds on the order of 100 m d� 1 can result in particles coming 
from specific distant sea ice features that are thought to influence flux 
and vary strongly from year to year. 

In the California Current Ecosystem (CCE), studies using modelled 
surface currents have traced upwelling events to primary production 
and the growth and distribution of krill patches as waters translate from 
nearshore to offshore over time (Messi�e and Chavez, 2017). A detailed 
process study combining field observations and three-dimensional 
ROMS modeling in the area overlying Station M found that subduction 
of particles at ocean fronts can augment sinking to enhance vertical POC 
flux (Stukel et al., 2017). This subduction has also been linked to sub
stantial horizontal advection that complicates interpretations of export 
efficiency estimation and thus estimates of EF (Kelly et al., 2018). 

The results here provide examples of how specific events of ocean 
weather and longer term variations can accumulate over monthly and 
longer timescales to drive variation in deep-sea carbon fluxes. Like other 
eastern boundary current systems, the California Current is known to 
have various scales of ecological forcing factors including ENSO, up
welling, and the formation of jets, filaments and eddies of high biolog
ical productivity moving offshore. Many of the intense peaks in EF can 
be traced to specific net primary production features originating at the 

Table 1 
Correlations between sediment trap POC flux, rover chamber estimates of SCOC, and various estimations of EF from source locations resulting from 50, 100 and 1000 
m d� 1, including 50 and 100 km radius integrations of EF from the source locations, as well as averages using different weighting factors. The p-values have been 
corrected issues arising serial autocorrelation using the approach of Pyper and Peterman (1998) to adjust the degrees of freedom.  

Variables SCOC n effective n p-value POC flux n effective n p-value 

SCOC – – – – 0.46 39 16.6 0.076 
POC flux 0.46 39 16.6 0.076 – – – – 
EF 50 km, 50 m d� 1 0.46 49 19.9 0.046 0.39 58 23.6 0.065 
EF 100 km, 50 m d� 1 0.45 49 20.8 0.044 0.38 58 24.6 0.067 
EF 50 km, 100 m d� 1 0.62 49 16.5 0.010 0.36 58 19.5 0.130 
EF 100 km, 100 m d� 1 0.61 49 16.1 0.012 0.40 58 19.1 0.086 
EF 50 km, 1000 m d� 1 0.48 49 16.2 0.059 0.55 58 19.1 0.015 
EF 100 km, 1000 m d� 1 0.54 49 15.3 0.040 0.48 58 18.1 0.045 
EF 50 km, average of speeds 0.57 49 15.6 0.025 0.48 58 18.4 0.042 
EF 100 km, average of speeds 0.57 49 15.8 0.027 0.46 58 18.7 0.057 
EF 50 km, weighted for peaks from slow flux 0.51 48 17.1 0.038 0.44 58 20.6 0.052 
EF 50 km, weighted for peaks from fast flux 0.51 48 14.2 0.061 0.53 58 17.1 0.028 
EF 100 km, weighted for peaks from slow flux 0.50 48 17.7 0.043 0.41 58 21.4 0.063 
EF 100 km, weighted for peaks from fast flux 0.55 48 14.2 0.042 0.49 58 17.1 0.046 
EF 50 km, highest EF of the three speeds 0.53 49 16.1 0.035 0.48 58 19.0 0.037 
EF 100 km, highest EF of the three speeds 0.54 49 16.7 0.032 0.45 58 19.7 0.055  
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coast and advecting offshore. In cases where there is apparent weak 
correspondence between EF and source locations and deep-sea POC and 
SCOC flux, we must recognize the limitations of EF estimation form 
satellite where deep chlorophyll maxima and other issues add error, as 
well as error in sediment trap and oxygen consumption estimation. 
Interannual forcing in the region also includes the influence of a rela
tively unusual phenomenon of large scale surface ocean warming over 
the greater eastern North Pacific Ocean, also known as the ‘Warm Blob’ 
that occurred from autumn 2014 to early 2016 (Bond et al., 2015; 
G�omez-Ocampoa et al., 2018). Its effects on the surface ocean conditions 
in the California Current included increased stratification, decreased 
chlorophyll, primary production and phytoplankton abundance 
(G�omez-Ocampoa et al., 2018). Source location EF values were consis
tently lower during this time as reflected in the 100 km composite for the 
highest values of the two speeds (Figs. 3 and 4). The POC flux values at 
abyssal depths also were consistently low for much of 2014 and 2015, 
although some gaps in the record do exist. The effects of the ‘Warm Blob’ 
may also have extended through to changes in the community compo
sition of abyssal fauna (Kuhnz et al., this volume). 

4.2. From initial Sta. M findings to improved understanding of the BCP 

A key question arises from our findings and approach: does tracing 
possible source locations improve the correspondence between sediment 
trap variation and estimates of flux derived from satellite EF and the 
remineralization model of Martin et al. (1987)? We used the equation fz 
¼ fz0(z/z0)� b, where z0 is export depth (here 100 m depth), fz0 is flux at 
export depth (average EF from the source locations of the three sinking 
speeds), and fz is flux at depth z (here 3400-m depth), and the coefficient 
of flux attenuation (b). The b term here is set by the equation of Marsay 
et al. (2015), were b ¼ 0.062(x) þ 0.303 and x is the median temperature 
for the upper 500 m of the water column (~7.7 �C at Sta. M, b ¼ 0.78). 
For this study period of 2011–2017, the model estimated POC flux 
averaged 7.69 mg C m� 2 d� 1 whereas the trap estimated POC flux value 
was 12.19 mg C m� 2 d� 1, a difference of 37%. As was found in Smith 
et al. (2018), the flux corresponded well over time except during some of 

Fig. 1. Sta. M source locations for particles reaching a trap at 3400 m depth, 
sinking from 100 m depth at 50 m d� 1. The colors indicate months of arrival at 
trap from January to December 2013–2017 as indicated in the graphical legend. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 2. Sta. M source locations for particles reaching a trap at 3400 m depth, 
sinking from 100 m depth at 100 m d� 1. The colors indicate months of arrival at 
trap from January to December 2013–2017 as indicated in the graphical legend. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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the highest trap estimates (Fig. 5e). 
Further investigation using particle tracking and other tools will be 

needed to arrive at more conclusive findings on the role of particle 
sinking speed and other factors in controlling the BCP. Various combi
nations physical, biogeochemical and ecosystem features present several 
potential forms of trajectory for sinking particles (e.g. Boyd et al., 2019), 
some of which can be understood through the kind of modeling done 
here. Variation in particle size, material density, shape and water tem
perature could all play important roles in sinking speed (e.g. Marsay 
et al., 2015; Giering et al., 2017). The modification of particles in terms 
of aggregation/disaggregation and consumption and repackaging by 
zooplankton all add complexity to particle sinking dynamics (e.g. Burd 
et al., 2010; Wilson et al., 2013; Cavan et al., 2018). Future work could 
explore the importance of sinking speeds and changes with time and 
depth more comprehensively. This could include setting of sinking speed 
distributions through models such as that described in Siegel et al. 
(2014). Additional formulations could look to account for the influence 
of strong gradients at fronts, eddy kinetic energy, and temperature, 
which can relate to productivity, metabolic rates and remineralization 
(e.g. Marsay et al., 2015), as well as viscosity (Taucher et al., 2014). 

Such examinations can also compare biogeochemical fluxes in 

outputs from ocean biogeochemical models, such as the Model of 
Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidifica
tion (MEDUSA, Yool et al., 2013) or the North Pacific Ecosystem Model 
for Understanding Regional Oceanography (NEMURO, Kishi et al., 
2007; Fiechter et al., 2014). Global climate model estimates of ocean 
carbon sequestration are influenced by remineralization depth (Kwon 
et al., 2009), which itself is partially determined by particle sinking 
speed. Clearer accounting for the spatio-temporal aspects of the phys
ical, biogeochemical and ecosystem development process is beginning to 
help both in the interpretation of field data and its comparison to model 
data. For example, estimates of deep particulate carbon fluxes that are 
derived based on steady state assumptions of remineralization rate or 
sinking speed likely add considerable error (e.g. Giering et al., 2017). 
Vertical profiles of particle flux with depth in reality have a mix of 
historical influences that may extend well prior to the conditions 
observed at the time of collection. For example, the remnants of a spring 
bloom may take several weeks or more to sink. The influences of 
zooplankton may take even longer to manifest from their initiation, 
particularly for larger zooplankton that may take longer to grow. Sink
ing speed distributions may change over time with modification of 
particles via remineralization and interaction with zooplankton over 
time and depth. 

Debate about the importance of smaller and larger particles in 
contributing to POC fluxes and carbon sequestration persists. This is 
partly because the various BCP attributes that are thought to be 
important are very rarely measured concurrently, and never over a 
seasonal bloom and carbon export cycle in high resolution (e.g. Burd 
et al., 2010; Briggs et al., 2011; Giering et al., 2017; Bol et al., 2018; 
Cavan et al., 2018). This uncertainty, in turn, limits how we might 
constrain a distribution of sinking speeds and related factors in modeling 
POC fluxes. 

Blooms of diatoms and other larger phytoplankton, sinking 
zooplankton and their exuve, have regularly been associated with pulses 
of sinking POC flux (e.g. Alldredge and Gotschalk, 1989; Briggs et al., 
2011, Smith et al., 2014, 2018). Some studies have suggested that in the 
upper mesopelagic, most sinking POC flux may be coming from slow 
sinking or small particles (Alonso-Gonz�alez et al., 2010; Durkin et al., 
2015; Villa-Alfageme et al., 2016; Baker et al., 2017). Optical and other 
approaches are maturing that offer promise to help quantify particle size 
and type distributions with depth over time, in various oceanographic 
settings (e.g. Lombard, 2019). Such data will be critical to help frame 
and constrain new formulations to improve model realism in quantifying 
sinking flux. 

Monroy et al. (2019) also investigated particle sinking trajectories, in 
their case by seeding the model domain with a uniform particle distri
bution and running the sinking trajectories forward in time. This 
revealed that slower particles formed relatively non-uniform distribu
tions that, when moving horizontally over time, could produce variation 
in fluxes without changes in the source flux of particles. This could help 
explain some of the intense pulse events observed at Sta. M, where fluxes 
might be driven to peak in relation to one of these patches of higher 
concentrations of sinking particles passing horizontally by a trap over a 
period of days or more. The initiation of a forward running particle 
tracking framework for the California Current will help constrain the 
degree to which that might be important in driving the pulses of POC 
flux at Sta. M. 

4.3. Understanding error in model trajectories 

Current data used in the models are gridded. The model includes a 
vertical velocity component and velocity values between grid points are 
calculated using interpolation techniques, which leads to approxima
tions. Using a deterministic and mechanistic approach in this context 
will always yield the same result and assumes the current data and 
interpolation strategy to be perfect. This approach may not account well 
for the site’s natural variability in the velocity field. There is therefore a 

Fig. 3. Sta. M source locations for particles reaching a trap at 3400 m depth, 
sinking from 100 m depth at 1000 m d� 1. Note that the spatial extend is less 
than in Figs. 1 and 2. The colors indicate months of arrival at trap from January 
to December 2013–2017 as indicated in the graphical legend. 
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degree to which the model did not fully described currents in the region. 
This mechanistic approach can be a source of error in the trajectories of 
the sinking particles. A Monte-Carlo method approach introducing local 
variability to the interpolated values could produce a collection of 
possible currents in the region. The trajectory for each particle can be 
calculated using this collection of possible currents until they intercept a 
reference depth (e.g. the base of the mixed layer). This Monte-Carlo 
approach yields a cloud of points which define a source region (Espi
nola, 2018). Each of the intercepts has the same probability to be the real 
source for the particle. However, the point density gives the probability 
that a particle has originated within that region. 

Additionally, the model assumes a constant vertical sinking speed 
with respect to the surrounding water masses. This is unlikely to reflect 
the speed of a particle sinking through the majority of the full-ocean 
water column (McDonnell and Buesseler, 2010). Particle trans
formation processes might either increase or decrease particle density, 
these complex transformations occur as the particles sink (Alldredge and 
Gotschalk, 1989; Armstrong et al., 2001; Boyd and Newton, 1999; Burd 
et al., 2010; Mayor et al., 2014; Robinson et al., 2010; Shanks and Trent, 
1980; Stemmann et al., 2004). Particle remineralization is a part of these 
transformation processes, however, remineralization might also influ
ence the particle size-class distribution within the flux. Slow particles 

that are remineralizing quickly might disappear before they can even 
reach the sediment trap. Some of the particles observed in sediment trap 
sampling have likely been modified in the water column. 

4.4. Particle tracking in ocean condition indicators 

Marine resource and ecosystem managers require information that is 
relevant for the time and space scales where management is applied. 
This often translates to large marine protected areas, sanctuaries and 
industrial lease areas that can cover areas from a few km2 to vast areas of 
seafloor covering more than 100,000 km2. These areas can experience 
remote influence over time (Robinson et al., 2017). The model and 
satellite tools used here allow for the estimation of transfers of organic 
carbon food resource from the surface ocean to deeper depths and the 
seafloor over these large scales. Such tools may help resolve questions 
about what drives the observed heterogeneity in seafloor ecology 
(Morris et al., 2016; Snelgrove et al., 2018). Model particles can be 
seeded at the nominal expert depth across a large study domain and then 
assigned a nominal sinking speed(s) and remineralization rates, to trace 
exported flux to depth. While there are considerable unknowns associ
ated with sinking speed, remineralization rates and related issues, basic 
metric(s) for change in available energy to support ecological functions 

Fig. 4. Daily Sta. M time series of SCOC at the seafloor, POC flux at 3400 m depth and EF at 100 m depth at potential origins based on a) 50, b) 100 and c) 1000 m 
d� 1 sinking speed. The EF series has been time shifted into the future to its corresponding trap arrive time, which is 66 days for 50 m d� 1, 33 days for m d� 1, and 3 
days for the m d� 1 speed. 
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and services will likely prove valuable. Food resources at depth can then 
be used to drive ecological models with metrics integrated over one or 
more spatial domains, habitat areas, time periods or other segmenta
tions to address management needs. For example, it will be critical to 
have environmental data to support the interpretation of change over 
time and disentangle anthropogenic impact from natural change. 
Spatio-temporal estimates of available food resources are critical to this. 
The tools used here provide a potential means to trace changes at depth 
to specific ocean weather and/or climatic conditions. 
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from the 3400 m depth sediment trap and SCOC at the seafloor. The EF series has been time shifted into the future to its corresponding trap arrive time, which is 66 
days for 50 m d� 1, 33 days for m d� 1, and 3 days for the m d� 1 speed. Panel d) plots the Spearman rank correlation coefficients between EF and POC flux, and EF and 
SCOC for a 13 month moving window over the time series. Panel e) shows the POC flux record from the sediment trap sampling along with the equal weighting 
average EF flux from the three sinking speeds with a Martin curve model applied to estimate flux at the trap depth (see section 4.2). 
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