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HIGHLIGHTS

o Implementation of a new non-Born-Oppenheimer method for atomic quantum-mechanical calculations is described.
® The method enables to predict fine structures of spectral lines corresponding to atomic transitions.

® The method employs all-electron explicitly correlated Gaussian functions.
® Very accurate results are obtained.

ABSTRACT

A general algorithm for calculating an atomic fine structure is developed and implemented. All-electron explicitly correlated Gaussian functions and a finite-nuclear-
mass (FNM) variational method are used in the approach. The leading a relativistic and o (and approximate a*) QED corrections are accounted for (o is the fine-
structure constant). The approach is tested in calculations of P states of the helium and beryllium atoms. The results are compared with experimental data and the
systematic deviations — 0.002 cm ™" and — 0.7 em ™! are found for 3P;_,,,, excitation energies of “He and °Be, respectively.

1. Introduction

Ground and excited states of small neutral and charged atomic
systems have always provided fruitful testing grounds for new quantum
mechanical methods developed for calculating atomic spectral transi-
tions. The testing has been possible due to the availability of very ac-
curate gas-phase experimental spectra of these systems [1]. An im-
portant group of atomic lines are due to splitting of the main lines
resulting from spin-orbit interactions. This splitting that arises from the
interaction of the orbital motion of the electrons with the electronic
quantum mechanical spins gives rise to the fine structure of the spectral
lines. This structure provides a fingerprint which is characteristic to the
states of the atom which have non-zero total orbital angular momenta
and non-zero total spin angular momenta.

In recent years there has been an increasing effort to calculate the
spectral levels of atomic systems with more than three electrons with
high accuracy which is comparable with the accuracy of the experi-
mental measurements. The most accurate calculations for two- and
three-electron atomic systems have been performed with Hylleraas-type
explicitly correlated functions (see, for example, the calculations
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concerning the lithium atom of Yan and Drake [2], as well as the cal-
culations for other two- and three-electron atomic systems [3-7]).
However, extending the Hylleraas approach to atoms with more than
three electrons has been complicated [8] due to difficulties with cal-
culating the Hamiltonian matrix elements. To our knowledge, only the
work of King et al. [8] presented calculations concerning the ground
states of the beryllium isoelectronic series where the Hylleraas ap-
proach with Slater-type basis functions was used.

Another basis functions that has been very frequently employed in
high-accuracy atomic calculations, especially for atoms with more than
three electrons, are all-electron explicitly correlated Gaussian functions
(ECGs) that exponentially depend on the inter-electron distances. For
four- and five-electron atomic systems the use of these basis functions
have enabled to produce the most accurate results ever obtained in
atomic calculations [9-17]. As the algorithms for performing atomic
ECG calculations can be written for an arbitrary number of electrons,
they can, in essence, be used to calculate bound states of any atom.
However, in practice, due to limitations of the present-day computer
systems, even the largest ones, the practical limit for ECG atomic cal-
culations should now be probably placed at 10 electrons (the largest
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published ECG calculations are those for carbon and nitrogen atoms
[18-21]). As the computational time for the variational ECG atomic
calculations scales as the factorial of the number of electrons, extending
the very accurate variational ECG calculations to atoms with more than
ten electrons needs to wait till a new generation of the computer
hardware is developed. Perhaps quantum computers of the future will
provide such capabilities.

The use of ECGs in atomic calculations is advantageous due to the
simplicity of the algorithms for calculating the Hamiltonian and overlap
integrals, as well as integrals involving operators representing the
leading relativistic and QED corrections, with these functions. These
integrals can be analytically evaluated for an arbitrary number of
electrons. Analytical evaluation is also possible for integrals needed to
calculate the derivatives of the total non-relativistic energy with respect
to the Gaussian exponential parameters. Such derivatives, when pro-
vided to the subroutine that carries out the optimization of the
Gaussians, enable to significantly shorten the optimization process.

The drawbacks of using Gaussians in atomic calculations are related
to these functions not satisfying the Kato cusps conditions and decaying
too fast at large distances. However, one can effectively overcome these
drawbacks by using large ECG basis sets and by performing very
thorough variation optimizations of the exponential parameters of the
Gaussians [9-12]. In our atomic ECG calculations, including the cal-
culations presented in this work, the use of the analytical gradient of
the energy determined with respect to the Gaussian exponential para-
meters in the variational energy minimization is key in obtaining high-
quality non-relativistic energies and the corresponding wave functions.
Also, as mentioned, the availability of the gradient considerably ex-
pedites the minimization process.

In this work, the non-relativistic atomic energies obtained within
variational approach are corrected with the use of the perturbation
theory for the leading a® relativistic and a® (and approximate a*) QED
energy corrections. In the approach we use in this work we explicitly
account for the finite mass of the nucleus in the calculations. This ap-
plies to both the non-relativistic variational calculations and the cal-
culations of the relativistic corrections. The nucleus-mass dependency
in the calculations appears in the Hamiltonians (representing the non-
relativistic energy and the relativistic effects) that explicitly depend on
the masses of all particles forming the atom including the mass of the
nucleus. The dependency also appears in the non-relativistic wave
functions which are obtained by solving the secular equations for the
particular isotopes and subsequently used to calculate the corrections.

The non-relativistic Hamiltonian is obtained by separating out the
operator representing the kinetic energy of the center-of-mass motion
from the laboratory-frame non-relativistic Hamiltonian of the atom.
The separation involves replacing the Cartesian laboratory coordinate
system with a new system of coordinates. The first three coordinates in
this new system are the laboratory coordinates of the center of mass and
the remaining coordinates are Cartesian internal coordinates (see the
next section). The finite-nuclear-mass (FNM) approach used in the
present work allows for calculating isotope shifts of the total and
transition energies.

The procedure to calculate the atomic fine structure implemented in
this work is tested in the calculations of °P states of the helium and
beryllium atoms. Details of the procedure are described later in this
work. Ten lowest °P states are considered in the calculations for the
helium atom. For the beryllium atom two lowest °P states are calcu-
lated. The calculations are performed using extended ECG basis sets
allowing for achieving very high accuracy of the results.

As the fine structure of the 3P spectrum of the helium atom was
calculated in a number of works including the works of Drake and Yan
[22], Yerokhin and Pachucki [23] and Alexander et al. [24], their re-
sults are used to validate the approach developed and implemented in
the present work. The fine structure of beryllium was also calculated by
several groups using approaches based on orbital expansions of the
wave functions, but the accuracy of those calculations was significantly
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lower than the accuracy of the results presented in the present work.
Among the previous calculations of the fine structure of the beryllium
3P states one should in particular mention the works of Froese Fischer
and Tachiev [25], Chung and Zhu [26], and Chen [27]. The present
results are compared with the results presented in those papers. The
present results are also compared with the available experimental data
[1]. Although the He and °Be isotopes possess non-zero nuclear spin,
the hyperfine effects are not considered in the present work.

As mentioned, as the present calculations are performed with an
FNM approach, both the non-relativistic energies and the relativistic
corrections explicitly dependent on the mass of the nucleus. With that,
the non-relativistic energy directly includes the adiabatic and non-
adiabatic effects and the relativistic corrections directly include the so-
called recoil effects.

2. The non-relativistic Hamiltonian

The present procedure for calculating the atomic fine structure is
general and can be applied to any atom with any number of electrons.
Let us consider an atom with N particles (i.e. n = N — 1 electrons and a
nucleus). The starting point is the non-relativistic Hamiltonian ex-
pressed in terms of laboratory-frame Cartesian coordinates. Next, an
internal Cartesian coordinate system centered at the atomic nucleus is
introduced. There are 3n internal coordinates. The positions of the
electrons in the internal coordinate system are described by vectors
r;, (i =1, ..,n). As mentioned, the internal coordinates plus the three
laboratory coordinates that describe the position of the center of mass
of the atom form the new coordinate system. Next, the laboratory-frame
non-relativistic Hamiltonian is transformed to this new coordinate
system. When the total Hamiltonian is expressed in terms of the co-
ordinates of the new system it rigorously separates into an operator that
only depends on the center-of-mass coordinates - this operator re-
presents the kinetic energy of the center-of-mass motion - and an “in-
ternal” Hamiltonian that only depends on the internal coordinates. The
form of the internal Hamiltonian is:

~ 1w 1 1 v 5Gd o &Y
fu=-23 v s LS v |+ 3 00, 5 90
o1 Mi Mo ij=1 i1 h i>j=1 Tij
i#j
(€]

where T denotes the matrix/vector transpose, m, is the mass of the
nucleus and g, is its charge, g, i = 1, ..,n, are electron charges, and
u; = mom;/(my + m;) are electron reduced masses (m;, i = 1, ...,n, are
the electron masses). One can see that Hamiltonian (1) describes the
motion of n (pseudo) electrons, whose masses have been changed to the
reduced masses, but their charges are the original electron charges, in
the central field of the charge of the nucleus. This motion is subject to
the Coulombic interactions: Y, q‘;—lq‘ +0 =1 q;—jl, where r; = [rj — 13,
and coupled through the so-called mass polarization term,
— %Z{’Fl (1/mo)VrTi-Vrj. Hamiltonian (1) is used in the present calcu-
L

lations #to obtain the non-relativistic total energies and the corre-
sponding wave functions of the ground and excited states of the atom. It
is also the zeroth-order Hamiltonian in the perturbation-theory calcu-
lations of the relativistic (and approximate QED) energy corrections.

3. Relativistic operators

The leading relativistic corrections of the order of a?(«xc™2) are
considered in the present calculations. The operators representing the
spin-independent components of these corrections that include the
mass-velocity (MV), Darwin (D), and orbit-orbit (OO) terms expressed
in terms of the internal coordinates have the following forms:
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where §(r) is the Dirac delta function, I and g are the nuclear spin and
nuclear g-factor, respectively; £ = 1/4 for half-integer I or £ = 0 other-
wise. The nuclear term « m,? in Darwin correction (3) is negligibly
small in comparison to other neglected energy corrections within pre-
sent approach. The energy corrections originating from the above in-
teractions lead to a uniform shift of all the energy levels, 25*L;, of a
given atomic term, $*L. Similarly, the spin-spin Fermi contact term
(SSP),

87 °
Hssp = =23 >
Cij=1 "

j>i 5)

q;q;
— (si8))d (ry),
m;

although it explicitly depends on spin operators s; of the individual
electrons, it gives the corresponding SSF first-order correction to the
energy that does not split the atomic >*'L terms.

In order to calculate the spin-dependent relativistic corrections of
the order of a? (in the absence of external electric and magnetic fields)
the operators representing the spin-orbit (SO) and spin-spin (SS) in-
teractions need to be considered. First, these operators, originally ex-
pressed in terms of the laboratory coordinates [28], are transformed to
the internal coordinate system. Retaining only terms dependent on the
internal r; coordinates, where i =1, ...,n, and the corresponding s;
electron spin operators, we get:

® The electron spin-spin interaction expressed in the so-called ‘nabla’
form [29]:

~ 1 - w4 1
Hgg = — Z z —L (s,-eri)(sijrj)— ,
¢ m i Mm B (6)

where V;, and V;; operate only on 1/r;. In fact, Hgs operator contains a
part of the Fermi contact term already included in Eq. (5). Thus, by
recoupling the Hqs operator using the tensor operator techniques
[30] and leaving out the contact term, we get the following tensorial
form of the electron spin-spin (non-contact) operator:
(2)
1

(2)
(Isf” x P17 V0 x VD | )=,

—~ 1 - w 49
Hss=—22# N

)

where the tensorial components of the vector operator are related to
its Cartesian counterparts as follows: s{¥ = s, s,_(,ll) = F(sy + isy)/2
(and, by analogy, V{"). The scalar product of the tensor operators of

rank k is defined as T(k)~U(k)) = Zs;k (=147 DUP. The general

coupling of two tensor operators of ranks k; and k, to an operator of
© k1 ka
[160 x ye]P = 31 S

rank K is defined as follows:
<k1q1kzqz [klkz]KQ>Téi‘”U5’;2),
q=-k1 g=—k2 8)

where (k q, k>q,|(kik2)KQ) are the Clebsch-Gordan coefficients and
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Q =-K,—-K + 1, ..,K [30]. In the calculations we use the electron
spin-spin operator, Hss (7), and the contact term, Hssr (5).
® The electron spin-orbit interaction:

~ 1 Q% (1 2\ 1
) Sk'{fm(m—k ) E(r" x pk)}*

k=1
n n
1 . _ 9% 1
l#k
QUq 1 1 2 —
[ G- 20) |
= Hsor + Hson, 9

where it is emphasized that the one-electron operator, Hqo,, and the
two-electron operator, Hgo,, which are parts of the Hyo operator, i.e.
first and second lines of Eq. (9), respectively, have the same scalar-
product structure involving a spin-vector operator and a spatial-
vector operator. Thus, in the tensorial form, the Hyor operator, as
well as the Hyo, operator, take the form of a scalar product of two
tensor operators of rank one [30]. Finally, it is noted that, by taking
the limit of the infinite nuclear mass, m,, the Hyo; and Hso, terms in
Eq. (9) take the form of a sum of the standard spin-orbit and spin-
other-orbit interaction operators, respectively [24,26,29].

4. Basis functions

To test the algorithms for calculating the relativistic corrections
dependent on the electron spins derived in this work atomic P states
with non-zero total spins are considered. This requires calculations of
atomic S and P states (i.e. L = 0 and L = 1 states, respectively), as the
quantities that are compared with the experimental data include S — P
transition energies. To construct spatial parts of the wave functions of
atomic S and P (with My, = 0) states the following explicitly correlated
Gaussian functions are used as the basis functions:

¢IEL:0) — eXp[—l‘T(Ak ® 13)1-], 10
and
=Y = zyexp[—1T(4 ® E)rl, an

respectively, where electron label iy vary from 1 to n. A in (10) and
(11) is an n X n symmetric matrix of the exponential parameters of the
Gaussian, ® is the Kronecker product, L is a 3 X 3 identity matrix, and r
is a 3n vector that has the form:

X1
1'1 N
v} 2.1
r= . = .
I, ’;
n
Zn 12)

We denote (Ay ® L)in (10) and (11) as Ax. As basis functions (10) and
(11) are used to expand wave functions of bound atomic states, they
have to be square integrable. This happens if the Ay matrix is positive
definite. To make it positive definite, Ay is represented in the Cholesky-
factored form as Ay = (I L) ® kL, where L, is an X n lower triangular
matrix. With the L, matrix elements being any real numbers, Ay is al-
ways positive definite. This is an important property because it allows
to use the L, matrix elements as the variational optimization para-
meters and vary them without any restrictions in the (—oo to + )
range. The optimization of these parameters through the variational
energy minimization is performed in the present calculations.
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5. Total wave function

The spatial part of the wave function is a linear combination of the
corresponding basis functions:

@ (r) = cpl ().
‘ ; e a3)

As the basis functions in Eq. (13) are either functions Egs. (10) or (11),
the wave function is an eigenfunction of the total electron orbital an-
gular momentum L ? and its projection £, with M; = 0.

The proper permutational symmetry of the spatial wave function,
@, (r), in the present non-relativistic variational calculations is im-
plemented with the use of the spin-free formalism. In this formalism, an
appropriate symmetry projector is constructed and applied to the spa-
tial parts of the wave function to impose the desired symmetry prop-
erties. The projector, which introduces the desired symmetry proper-
ties, is constructed using the standard procedure involving Young
operators, ¥ [31-33]. The procedure for generating the permutational
symmetry projector was described earlier [34].

For the 'S and 3P states of helium, the symmetry projectors are:
Yis= (1 + Py) and Y3 = (1 - B), respectively. For the s and °p
states of the beryllium atom the symmetry projectors (Young operators)
can be chosen as: Yig= (T — P3)(T — B)(T + Pu)(T + Byy),and
Y3 =1 - P3)(A - Pu — B)(d + P, respectively, where IA’U inter-
changes the spatial coordinates of the i-th and j-th electrons. In the
calculations of the Hamiltonian and overlap matrix elements the per-
mutational projector from the “bra” side of the integral is moved to the
“ket”, e.g. (Yo, [H, |V dy) = (@Llﬁimlf’t?qh),which results in the “ket”
operator to be Y'7. As in the beryllium calculation Y'Y contains
4! = 24 terms, each matrix element is a sum of (at most) 24 different
terms; in fact there are 20 non-vanishing terms.

In principle, the relativistic energy corrections originating from the
spin-independent operators, ﬁMv 2), ﬁD (3), and ﬁoo (4) (also the
electron contact spin-spin interaction operator, (5)) can be calculated
within spin-free approach. However, this is no longer true in the case of
first-order corrections to the energy of *P states due to the (non-contact)
spin-spin and spin-orbit interaction operators. In those cases one has to
use the complete wave function that explicitly includes the electron
spin and spatial components, i.e. [35]:

Yonsrr (0, 1) = A [Qsp15(0) Prag, ()], a4)

where antisymmetrizer A acts on both spatial r and spin o = (o, ...,0,)
electron variables, and Qg (o) is an eigenfunction of the total electron

spin operators, § ? and S,. It should be noted that no permutational
properties are imposed on the spatial function, @, (r). This means that
the permutational projection of the spin-free approach represented by
the appropriate spatial Young operator, Y3, is now absorbed into the
permutational properties of the spin eigenfunction, Qgyg(c). This ei-
genfunction has the following form: Q;;(0) = a(oy)a (o) for a two-
electron triplet state and Q;(0) = V%[oc(crl)ﬁ(az) — B(opa(oy)]
a(os)a(ay) in the case of a four-electron triplet state, where S = Mg = 1.
It is noted that the spin eigenfunctions are expressed here as linear
combinations of the primitive spin functions being simple products of «
and f8 one-electron functions. For practical reasons, the matrix elements
of the spin-dependent operators are calculated for ®(r);-p; -1 spatial
functions, in which the z;, of Eq. (11) is replaced with — (x;, + iyik)/ V2,
where i2 = —1. The first-order corrections to the energy are expressed in
terms of eigenstates |(SL)JM;) of the total angular momentum of the
electrons, J =S + L.

Let us now consider a general case of constructing the total wave
function (14) in the case where the spatial function (13) is obtained
within the spin-free approach for a given spatial Y" Young operator
represented by a two-column Young tableau. The spin function, Qgy, of
(14) is obtained by applying the corresponding spin Young operator,
Y?, to the appropriate primitive spin function. This Young spin operator
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is associated with the two-row Young tableau obtained by the trans-
position of the spatial two-column counterpart [32]. Preferably, the
primitive spin function used, which is assumed to be an eigenfunction
of the S, operator with the Mg = S eigenvalue, is chosen in such a way
that, upon acting on it with the Y° operator, a non-zero spin eigen-
function, Qgg, is obtained (for details see e.g. [32]).

6. Variational calculations

The variational calculations are performed separately and in-
dependently for each state and for each state different basis sets are
generated. In the calculations the linear expansion coefficients, c, in
Eq. (13), of the wave function in terms of basis functions are obtained in
the standard way by solving the secular equation. The nonlinear
parameters (i.e. the L, matrix elements) are optimized through the
variational minimization of the total nonrelativistic energy. As men-
tioned, the analytic energy gradient determined with respect to these
parameters is used in the minimization [34,36].

The growing of the basis set for each state is an intricate process. It
begins with choosing a small starting set of ECGs (for the lowest state
this starting set is generated using Gaussian-orbital guesses obtained
using a standard atomic orbital basis set; for a higher state a basis set
generated for the next lower state is used as the starting set; usually a
small basis set is used as an initial guess). Next, the initial basis set is
optimized and updating of the set starts. The updating involves adding
small groups of functions to the basis set. After a group of functions is
added, the functions of the group are optimized, and, after this is fin-
ished, the whole basis set is reoptimized. Adding functions, optimizing
them, and reoptimizing the whole set is done using the one-function-at-
the time approach. The initial guess for an added function is generated
by randomly perturbing some of the most contributing functions al-
ready included in the basis set and choosing the function that, after
being perturbed, lowers the energy the most. The optimization of a
function is done by variational energy minimization in terms of func-
tion’s non-linear parameters, i.e. the L, matrix elements. The analytic
energy gradient is used in the optimization. Also, at this stage, the iy
index involved in the pre-exponential angular factor in ECGs for the P
states (11) is optimized. This is the only time the optimization of this
index is carried out. After the number of functions in the basis set
reaches a multiple of 100 the whole basis set is reoptimized (one-
function-at-a-time approach is used). Previous atomic calculations
proved this approach to be very effective in generating very good basis
sets.

It is important that in the process of growing the basis set no linear
dependencies between the basis functions appear in the calculation
because such dependencies may destabilize the calculation and lower
its accuracy. If during the optimization of a basis function becomes
linearly dependent with any other function or a group of functions al-
ready included in the basis set, the function is reset to what it was
before the optimization of that functions started.

High-accuracy results of non-relativistic energies and relativistic
corrections obtained with the infinite-nuclear-mass (INM) approach
exist in the literature for the helium atom [2,23,24]. To our knowledge,
high-accuracy calculations of the beryllium 3P states have not been
performed yet.

The variational optimization of the non-linear parameters of the
Gaussians for the helium ground 'S state and for excited ®P states is
carried out in this work using the infinite-nuclear-mass approach, i.e.
the parameters are optimized for “He. In the non-linear-parameter
optimization for the beryllium ground 'S state and the excited P states
the finite-nuclear-mass approach is used. Thus, for beryllium, the total
non-relativistic energies obtained in the calculations include the adia-
batic and non-adiabatic effects resulting from the finite mass of nucleus
of °Be. The basis sets obtained for °Be are used to perform the INM
energy calculations (“Be) without reoptimization of the non-linear
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parameters. As our previous calculations of atomic isotopomers have
shown, reoptimization of the nonlinear variational parameters is not
needed when states of different isotopes are calculated. The adjustment
of the linear expansion coefficients of the wave function in terms of the
basis functions, ¢, through rediagonalization of the Hamiltonian is
quite sufficient for describing the relatively small changes in the wave
function and the energy caused by the change of the nuclear mass.
Analogically, for the helium atom, the basis sets obtained in the INM
optimizations, are used to calculate the non-relativistic energies and the
relativistic corrections for *He and *He.

7. The method used in the calculations

To calculate the matrix elements of ﬁss (7) and ﬁso (9) we first note
that both operators have the general form of a sum of scalar products of
the tensor operators, (T®-U®), where T® and U® act separately on
the spin and spatial variables, respectively. The rank of spin and spatial
parts of Hg is k = 2 and the rank of the respective counterparts of Hyo is
k = 1. The fine structure originating from the first-order corrections to
the energy represented by Hgs and Hyo is calculated in this work with
the use of the general matrix elements (diagonal in terms of the S and L
quantum numbers) [30] as:

y(SLIM; | 3 [T{P ‘“] y(SL>J’M]>
{1
[@S—k)!2S+k+1)!Q2L—k)!QL+k+1)!
=8y Sy (—1)STLH Y )]

S S k
(5 3 5|3
{i}
where the quantity in the curly brackets is the 6-j symbol [30] and y
denotes all quantum numbers needed for the unambiguous identifica-
tion of the atomic state under consideration. Summation Z{i} appearing

k k
by [T{(i}>' UE})]

ySSLL > s
(15)

in the Hss (7) and Hso (9) operators involves summing over electrons.

It should be noted that the off-diagonal matrix elements corre-
sponding to states with different S and L quantum numbers from the
quantum numbers of the considered state are not included in this work.
The matrix element on the right-hand side of Eq. (15) is calculated
between the wave functions defined in Eq. (14), where the anti-
symmetrizer, A, of the ‘bra’ state is moved to the ‘ket’ state leading to
the following general product form of the spin, (s),, and the spatial,
(*)r, matrix elements:

ySSLL| X | TH-U [|yssLe ) = 3 spz Qss | TSP | Qss)o
) Pes,
Dy | USSP | @y
r 1e6)

The first summation on the right-hand side of the above equation runs
over all permutations P = P°P" of the symmetric group Sy; g, denotes
the parity of permutation P. It is noted that, for our choice of total spin
and orbital angular momentum eigenfunctions corresponding the
maximal projections on the z-axis, i.e. with Mg = S and M;, = L, only
the matrix elements of the 0-th component of the corresponding tensor
operators do not vanish. This fact can be shown e.g. with the aid of
Wigner-Eckart theorem [30].

In the next sections the calculation of the spin and spatial matrix
elements is described.

7.1. Spin matrix element

The spin parts of the Hss (7) and Hso (9) operators, i.e.:
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2
7@ (s§ s(l) sD1@ = \/ sV 4 S(I)S(D + sWg (1)
{1}10( ) = [ S ]0 3 56,0 5j,0 \/7[1 —1°j,1 i1 1] a7)
and
T{(S0) = sy, 18)

are expressed in terms of one-electron spin operators (the tensorial
components of the vector operator are defined below the Eq. (7)).
Furthermore, with the aid of the so-called Dirac identity,
S;'sj = %P" - lig [32], the spin part of Hggr (5), as well as of Hgs, can
be expressed 1n terms of elementary permutations P; of the electron
spin variables. If the calculations are performed in the basis of the
primitive spin functions, then:

L(i?) + 1/1\0 _ lPi‘-’),
V6 2’

s 81— (22

19
where + 3 corresponds to the sign of the product of the i-th and j-th one-
electron spin projections within the primitive spin function. Thus, in
order to obtain the spin matrix elements, (+), of Eq. (16), one needs, in
fact, to be able to calculate the matrix elements of products of the
permutation operators, P € S,. In the present work this is done directly
by expressing the triplet spin functions, Qy;(¢), as linear combinations
of the primitive spin fuctions. The explicit forms of these functions are
presented below Eq. (14).

7.2. Spatial matrix element

The spatial matrix element in Eq. (16) expressed in terms of ECG
basis functions takes the following form:
>r (20)

— * LL
DL QL ) = 2 : CykCr.k
. kK

where it is explicitly indicated that the linear coefficients, c, , depend
on the given eigenstate of f;, with the quantum numbers represented
by y. It is also noted that, in the above matrix elements, the basis
functions for L = My = 1 differ from those in Eq. (11) by a prefactor as
it is described below in Eq. (14).

In calculating the radial matrix elements of the Hyo and Hg op-
erators we use the technique described in Ref. [37,38]. This technique
enables reduction of the special parts of the matrix elements.

UfoP" UgioP"

8. Results

Since the focus of the present work are the spin-dependent re-
lativistic effects, no analysis is performed of the individual spin-in-
dependent relativistic «? corrections. These first-order relativistic cor-
rections uniformly shift the 3P_y; , energy levels by:

Ersel}ift = EMV + ED + EOO + ESSF- (21)

In a similar manner the sum of the a® QED corrections shifts the energy
levels by [39,40]:

Eap = gz[ln(a‘z) + 2 lnko] ; <5(ri)> + (ﬁ + 51 )

15

iél <6(rij)> S, Z_: < (,)> 22)

and the (approximate) o QED corrections shift the energy levels by
[40]:

Engep = 722 (% - 21n2) > <5(ri) >

i=1

23

It is noted here that, although the above QED corrections were derived
originally within INM approach, they are calculated here with FNM
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non-relativistic wave function, taking into account the effect of the
mass-polarization term onto the considered QED corrections within a
non-perturbative approach. Furthermore, as it is discussed below, in the
case of the helium calculations, we also include here the recoil a® QED
energy corrections [23]. In the Be calculations these corrections are
negligible in comparison to the uncertainty resulting from the approx-
imations used to calculate the a* QED corrections (23).

The values of the total energies that include the spin-orbit and spin-
spin energy corrections for the considered 3P;_o 1, states of the He and
Be atoms are calculated as follows:

Er = Eqet + o?[ES™ + CFO(Esor + Esos) + CPSEss] + o (Eqep + Ey)
+ a*Buqep, 24

where C}* coupling coefficients of Eq. (15) have the following values:
C3%12=-2,-1,1and C5,,, = 10, =5, 1. Eso1, Esop, and Esg are the
expectation values (16) of the respective operators calculated using the
wave functions representing the considered [n3PMg=1, M, = 1)
states, where n = 2, 3, ...,11 for the helium states and n = 2, 3 for the
beryllium states. The a® correction, due to the anomalous magnetic
moment of the electron x (z%), is the following

1
E,==[C{°E E PSE.
= [C7° (Esowx + Esoax) + C7”Essels (25)
where Eso1 and Egs, are the Eso; and Ess matrix elements calculated

within the INM approach. The Egpy. contribution is the corresponding
matrix element of the operator:

~ u Soqq 1 1 1
Hyooe = Y, s )~ |rux|—p— —py| |-
502 P kl=1 > kr]?l[zk ( kPk le)]
£k (26)

where the 2xa? (z%}) factor is included in Egs. (24) and (25). It is noted

that Hgoy, differs from the standard spin-other-orbit operator. In the
case of the triplet states of helium, the simple relation, Egpy, = %Esoz,
holds [22], where Egp, is calculated within the INM approach. The
value of the corresponding factor obtained with 1000 basis for 2 °P and
3 3p (INM) states of beryllium is equal to 0.8358(15).

Before the results are analyzed, it is interesting to compare the
general splitting schemes of the 3P atomic terms of “He and “Be atoms
presented in the Fig. 1, where the particular case of the 2 ®P states is
shown. It should be noted that for the other n 3P states (i.e. states with
n > 2) for either helium or beryllium considered in this work, the
splitting schemes are similar. In those schemes for n > 2 the absolute
values of the energies are proportionally smaller than for the lowest P
state. The first-order energy corrections calculated with Hyo, and Hyo,
are of the same order of magnitude but have opposite signs. Since for

4 - J=2 —
L %Be i
2 — —
e _
—~ 0 -
A I |
o
> -2 g - -
2 |
g J=1 1
4 - _
6 : .
| J=0 |
8 Ewpf + SO1 + SO2 + SS

1+ J=0 -
“He
0.5 J=2 J=0 N
- i =1 ,
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“He, the SO2 correction is larger than the SO1 correction, the ordering
of the J = 0, 1, 2 energy levels is reversed. At the same time, in the case
of °Be, the SO2 corrections only reduce the dominating effect of the SO1
correction.

The SO interaction leads to a splitting scheme that obeys the so-
called Landé interval rule, which, in the case of the 3P, energy le-
vels, leads to the (E, — E1)/(E; — E,) = 2 splitting ratio. The energy
corrections due to the SS interaction may invalidate the interval rule of
the SO interaction. This can be seen in the case of “He. However, in the
case of °Be, the changes of the splitting due to the SS interaction are
relatively small. Also, in this case, the 23P; energy level is slightly down-
shifted due to the coupling involving the SO interaction with the above-
lying 2'P, singlet energy level. The &’E, corrections (25) due to the
anomalous magnetic moment of the electron are too small to be noticed
in the Fig. 1. Also, the higher-order QED corrections [23,41] not in-
cluded in the present work lead to a further slight modification of the
splitting within the fine structure of the 3P states.

In present work the following values were used:
a = 7.2973525698(24) x 1073 and 1 hartree = 2.194746313708(11) X 10°

cm~! [42].

8.1. He

The results obtained in the present helium calculations are pre-
sented in Tables 1-3. The results shown in Table 1 concern the lowest
ten 3P excited states of the major He isotope. For each state they include
the total non-relativistic energy, the total leading spin-independent o
relativistic correction, the a® and o* corrections, and the SO1, SO2, and
SS matrix elements used to calculate the spin-dependent relativistic
corrections. The quantities are shown for different basis-set sizes (1600,
1800, and 2000) allowing for assessing the level of their convergence.
As one can see the convergence is very good for the lower states, but, as
expected, somewhat worse for the top states.

Error of the non-relativistic energy presented in Table 2 (i.e. num-
bers in parentheses) is assumed to be two times the absolute difference
between E, values obtained for two largest basis sets, i.e. 2000 and
1800, whereas for the remaining energy terms presented in this table
the errors are estimated as four times the corresponding absolute dif-
ference. However, the comparison of the present results with those
obtained in Ref. [23] for 1 1S and 2 3P states of He allow to assume that
the error of the a®Eqgp is at least 3 X 107!! a.u. Thus, if the error of
a®Eqep due to the above-mentioned convergence is smaller than that
latter value, the error 3 X 107! a.u. can be assumed (see Table 2). At the
same time the comparison of the results of present approximate treat-
ment of the a*Eggp energy corrections with the accurate results [23] for

Fig. 1. Fine splittings of the 2 *P atomic term into J = 0, 1, 2 energy levels of “He and °Be atoms due to spin-dependent a relativistic interactions represent by the
Hamiltonians Hsoy, Hsoz (9), and Hss (7). Note that Eret = Enre + 2B + a®Eqep + a*Buqep is set to zero.
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Table 1
shift
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Non-relativistic energies, Ey|, a® relativistic spin-free corrections, Ef", and spin-dependent o? corrections, Ego and Egg, obtained for n 3P states of “He. The QED a®

and approximate o* corrections are also shown. All values are in hartrees.

basis Enrel aEShift x 104 a?Eso1 X 10° a2Esoy X 100 a’Ess x 107 aEqep X 10° a*Erqep X 107 AEgor X 108
23p
1600 —2.1328806421032 —1.047628362 1.8462466 —2.7420437 2.398262 1.59112170 2.745665
1800 —2.1328806421032 —1.047628445 1.8462466 —2.7420437 2.398262 1.59112276 2.745666
2000 —2.1328806421032 —1.047628007 1.8462466 —2.7420437 2.398262 1.59112314 2.745667
—2.1328806421032 —1.0476280(18) 1.8462466 —2.7420437 2.398262 1.591123(3) 2.7(1) 2.1
33p
1600 —2.0578014926061 —1.061617997 0.5354414 —0.7828304 0.655691 1.60454399 2.768061
1800 —2.0578014926062 —1.061618457 0.5354414 —0.7828304 0.655691 1.60454596 2.768064
2000 —2.0578014926063 —1.061618372 0.5354414 —0.7828304 0.655691 1.60454595 2.768064
—2.0578014926063(2) —1.06161837(34) 0.5354414 —0.7828304 0.655691 1.604545(3) 2.8(1) 2.1
43p
1600 —2.0320468104811 —1.063940037 0.2225276 —0.3234238 0.267196 1.60768786 2.773336
1800 —2.0320468104818 —1.063939988 0.2225276 —0.3234238 0.267196 1.60768784 2.773336
2000 —2.0320468104818 —1.063939653 0.2225276 —0.3234238 0.267196 1.60768855 2.773338
—2.0320468104818(1) —1.0639397(14) 0.2225276 —0.3234238 0.267196 1.607689(3) 2.8(1) 2.1
53p
1600 —2.0202747438029 —1.064572261 0.1128371 —0.1635433 0.134286 1.60877574 2.775166
1800 —2.0202747438053 —1.064572636 0.1128371 —0.1635433 0.134286 1.60877821 2.775170
2000 —2.0202747438045 —1.064572448 0.1128371 —0.1635433 0.134286 1.60877826 2.775170
—2.020274743805(3) —1.0645724(8) 0.1128371 —0.1635433 0.134286 1.608778(3) 2.8(1) 2.1
63P
1600 —2.0139321617499 —1.064802299 0.0648676 —0.0938750 0.076830 1.60924822 2.775961
1800 —2.0139321617502 —1.064802564 0.0648676 —0.0938750 0.076830 1.60925226 2.775968
2000 —2.0139321617505 —1.064802686 0.0648676 —0.0938750 0.076830 1.60925387 2.775971
—2.0139321617505(6) —1.06480267(25) 0.0648676 —0.0938750 0.076830 1.609254(4) 2.8(1) 2.1
73p
1600 —2.0101295721117 —1.064902060 0.0406539 —0.0587796 0.048014 1.60948362 2.776357
1800 —2.0101295721126 —1.064902007 0.0406539 —0.0587796 0.048014 1.60948753 2.776364
2000 —2.0101295721129 —1.064903107 0.0406539 —0.0587796 0.048014 1.60949034 2.776369
—2.0101295721129(6) —1.0649031(44) 0.0406539 —0.0587796 0.048014 1.609490(12) 2.8(1) 2.1
83p
1600 —2.0076719003263 —1.064952455 0.0271363 —0.0392119 0.031990 1.60960982 2.776570
1800 —2.0076719003272 —1.064953388 0.0271363 —0.0392119 0.031990 1.60961709 2.776582
2000 —2.0076719003279 —1.064952371 0.0271363 —0.0392119 0.031990 1.60961885 2.776585
—2.0076719003279(14) —1.0649524(41) 0.0271363 —0.0392119 0.031990 1.6096189(71) 2.8(1) 2.1
93p
1600 —2.0059923465798 —1.065018521 0.0190059 —0.0274523 0.022377 1.60964675 2.776630
1800 —2.0059923466362 —1.065004571 0.0190048 —0.0274507 0.022376 1.60967162 2.776673
2000 —2.0059923466475 —1.064992037 0.0190048 —0.0274507 0.022376 1.60967203 2.776674
—2.005992346648(23) —1.064992(51) 0.0190048 —0.0274507 0.022376 1.609672(3) 2.8(1) 2.6
103p
1600 —2.0047940250959 —1.065042561 0.0138238 —0.0199613 0.016261 1.60964978 2.776634
1800 —2.0047940251453 —1.065006651 0.0138232 —0.0199605 0.016260 1.60967989 2.776686
2000 —2.0047940251708 —1.065011305 0.0138230 —0.0199603 0.016260 1.60969647 2.776714
—2.004794025171(51) —1.06501(2) 0.0138230 —0.0199603 0.016260 1.60970(7) 2.8(1) 2.3
113P
1600 —2.0039092281603 —1.065042105 0.0103667 —0.0149661 0.012186 1.60963437 2.776606
1800 —2.0039092281947 —1.065022256 0.0103666 —0.0149660 0.012186 1.60965656 2.776644
2000 —2.0039092282248 —1.065016780 0.0103666 —0.0149661 0.012186 1.60965856 2.776648
—2.00390922822(6) —1.065017(22) 0.0103666 —0.0149661 0.012186 1.609659(8) 2.8(1) 2.3

the 2 3P, states shows that the error of a*Egqgp is about 10~® a.u.. Fi-
nally, the higher order QED correction are estimated to be

4 2
O@@®) = 2 x %AO*S a.u.. Due to the fact that the values of the

o®Eqep and a*Eyqep corrections for all the considered n 3P states vary
only slightly with n, it is safe to assume that for the higher states, n > 2,
the estimates of the error of a*Egqgp and of the higher correction, ¢ (),
are the same as for 2 °P. The values of the Bethe logarithm, In(k,), for 1
1S and 2 P states are taken from Ref. [23], whereas for the other states
the highly accurate estimation of In(k,) [43] is used. Additional errors
of a®Eqep correction due to different treatment of the finite nuclear
mass in Refs. [23,43] and in the present work, are expected to be
negligible in comparison to the errors of the a*Eyqep correction.
Namely, aninspection of the errors presented in Table 2 for each state
shows that the major contribution to the total energy error AE,, comes
from the approximations used to determine a*Epqrp(~10~% a.u.) and
from neglecting higher QED corrections, ¢(«’) (~10~% a.u.). The next

largest contributions to the total energy error originates from the Dirac
deltas slowly converging with the basis size (as well as from other
slowly converging quantities) appearing in «2ESi" and *Eqgp. This
latter error can be estimated to be ~10~° a.u. at most. At the same time,
the error of the spin-dependent contributions, SO1, SO2 and SS, is
practically negligible. The total energy errors AE, are shown in the last
column of Table 2. One can see that, for the majority of the n ®P states
of “He, these errors are expected to be only slightly larger than 2 x 10~%
a.u. and the largest value of 2.6 X 10~® a.u. appears for 9 P state. The
errors of the ground-state energies of the He isotopes are estimated in
an analogous manner.

In Tables 2 and 3 we show the results obtained for the excitation
energies with respect to the ground state (1 18) and for the fine spectral
splitting for the ten °P states, respectively. The results calculated for
“He are compared with the NIST experimental values [1]. As one can
see, the experimental excitation energies for the states 2°P — 103P are
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Table 2

Excitation energies calculated for n 3P; states of “He determined with respect to the ground state”. The excitation energies obtained for the “He and >He isotopes are also shown. The results are obtained using basis sets of
2000 Gaussian functions. For “He the differences between the calculated excitation energies and the corresponding experimental values taken from Ref. [1] (4;) are shown (A,, A;, and A,). All values are in em” L.

He

“He

“He

State

Ao

Ay

169077.059(9) 169078.047(9)

169076.982(9)

—0.002
—0.002
—0.002
—0.002
—0.002
—0.002
—0.002
—0.002
—0.002

169087.829(9)

—0.002
—0.002
—0.002
—0.002
—0.002
—0.002
—0.002
—0.002
—0.002

169086.841(9)

—0.002
—0.002
—0.002
—0.002
—0.002
—0.002
—0.002
—0.002
—0.002

169086.765(9)

169117.733(9)
185595.625(9)

169116.745(9)
185595.354(9)

169116.668(9)
185595.332(9)

23p
33p
43p
53p
63P
73p
83p
93p
103P
113p

185554.516(9) 185554.786(9)

185564.582(9) 185564.853(9) 185554.494(9)

185564.560(9)

191206.835(9) 191206.945(9)

191206.826(9)

191217.159(9)

191217.049(9)
193800.711(9)

191217.040(9)
193800.706(9)

191248.380(9)
193832.229(9)

191248.270(9)

191248.261(9)

193790.418(9) 193790.474(9)

193790.414(9)

193800.766(9)

193832.173(9)

193832.169(9)

195182.437(9)
196016.967(9)

195182.405(9)

196016.947(9)

195182.403(9)

195192.776(9)
196027.335(9)

195192.744(9)
196027.315(9)

195192.742(9)
196027.314(9)

195224.380(9)
196059.029(9)

195224.349(9)

195224.346(9)

196016.945(9)

196059.010(9)

196059.008(9)

196556.323(9) 196556.337(9)

196566.711(9) 196566.725(9) 196556.322(9)

196598.466(9) 196598.479(9) 196566.710(9)

196598.465(9)

196924.938(11)

196924.928(11)
197187.919(10)
197382.102(10)

196924.928(11)
197187.919(10)
197382.102(10)

196935.340(11)
197198.338(10)
197392.527(10)

196935.330(11)
197198.331(10)
197392.522(10)

196935.330(11)
197198.331(10)
197392.521(10)

196967.137(10)
197230.166(10)
197424.378(10)

196967.127(10)

196967.127(10)
197230.159(10)
197424.372(10)

197187.926(10)
197382.107(10)

197230.159(10)

197424.373(10)

@ The ground state energies that include the leading relativistic and QED corrections up to the order of a* obtained in the basis set of 2000 functions are: ~He: —2.903805654(19) a.u., “He: —2.903385865(20) a.u., and

He: —2.903248528(20) a.u..
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reproduced by the calculated values with accuracy of 0.002 cm™'. A
detailed comparison of the results obtained in this work with those from
Ref. [23] shows that this systematic error (— 0.002 cm ™) reflects the
omitted part of the a* QED corrections and neglecting the o® correc-
tions. As for the 11 3P state where there are no experimental values, the
present calculated results can be used to assist to perform a measure-
ment of this state. In Table 3 the calculated values of the fine splitting of
the helium ten lowest 3P states are shown for “He, “He, and ®He. The
“He results are compared with the experimental values [1]. The errors
of theoretical values of the splitting are estimated to be two times the a*
energy correction to the considered splitting. Additionally, in the case
of the error of the E; — E, splitting, the downward energy shift, A11§1 of
n3P, due to n3P, — n'P, mixing, is added to the corresponding error.
Shift Allgl is evaluated according to the approach used by Drake [44]. It
is seen in Table 3 that the differences between the theoretical and NIST
values of the E; — E, splitting are, in the majority of cases, especially
for n > 3, almost equal to energy shift Allgl. Furthermore, the corre-
sponding theoretical energy splitting E, — E, for n > 2 reaches the ac-
curacy of the NIST energies (~107% cm™1). This agreement provides
validation of the algorithm for calculating the fine spectral splitting
developed and implemented in this work.

Finally, we would like to make a comment on a small detail of the
present calculations. As almost all previous high-accuracy atomistic
calculations were performed using the finite-nuclear-mass approach, we
found it interesting to compare our non-relativistic finite-nuclear-mass
energy for the lowest °P state of the lightest helium isotope, *He, with
the best previous calculations of Drake [44]. The Drake’s result of
— 2.132787874715174(7) hartree was obtained by adding the first- and
second-order adiabatic and non-adiabatic corrections calculated for *He
using the perturbation-theory approach to the non-relativistic energy of
“He. Our results obtained with the finite-nuclear-mass variational
method with 1400, 1600, 1800, and 2000 basis functions for *He are
— 2.13278787471525, — 2.13278787471538, — 2.13278787471543, and
—2.13278787471545, respectively. As one can see, our results are very
well converged to a value that is slightly lower than Drake’s result. The
difference is very small, but not negligible. As our results are upper
bounds to the accurate *He non-relativistic energy, we can conclude
that calculating the finite-nuclear-mass effects up to the second order of
the perturbation theory is, perhaps, not quite sufficient if very high
accuracy of the results is aimed for.

8.2. Be

In Table 4 we present the results of the non-relativistic energies and
the leading relativistic and QED corrections for the ground state 1 'S
and the two lowest 3P states of °Be. It should be pointed out that in
calculating the QED corrections for the ®P states we use the value of the
Bethe logarithm (Ink, = 5.75035, a.u.) calculated for state 2 15 of °Be in
Ref. [35]. In order to evaluate the accuracy of such an approach, the
results are recalculated using the value of the Bethe logarithm de-
termined for the 2 'P excited state of °Be of Ink, = 5.75232(8) a.u. in
Ref. [15]. This gives the total energy of the °P states smaller by
1.4 x 1077 a. u. (=0.03 cm™!) than in the former calculation. A similar
calculation performed with the smallest value of the Bethe logarithm
reported for an excited state of Be, i.e. Ink, = 5.74895 a.u. for the 6 'S
state [35], shifts the total energies of the 3p states upwards by
1.0 X 1077 a. u. (=0.02 cm™'). Thus, we can conclude that the QED cor-
rection in this case is rather insensitive to small changes in the value of
Ink,.

It should be noted that the spin-dependent energy terms, Eso1, Esoz,
and Egg, shown in Table 4 are not, strictly speaking, the actual energy
corrections but the expectation values of the corresponding relativistic
operators calculated for states |[n3P, Mg = 1, My = 1), where n =1, 2
(see Eq. (16)). These terms are presented here in order to show in a
concise (J-independent) form how well they are converged with respect
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Table 3
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Fine spectral splittings, E; — Ej, of the n°P states of ~He, “He, and *He isotopes obtained in the basis set of 2000 functions. The “He results are compared with the
experimental values calculated using the NIST excitation energies [1]. Ay are the difference between the calculated and experimental sets of values. All results are in

-1

cm

State “He “He SHe
E - E; Eo — E2 E - E; A All‘;l Eo — E2 Aoz E - E; Eo — E2

23p 0.07654(60) 1.06454(53) 0.07664(60) 2.2.1074 1.610~4 1.06461(53) 2.7.10~4 0.07668(60) 1.06463(57)
33p 0.02201(18) 0.29268(15) 0.02203(18) 5.7-10~5 4.2.10-5 0.29268(15) 6.410~3 0.02204(18) 0.29268(16)
43p 0.009003(70) 0.119326(60) 0.009014(70) 1.810~4 1.7-10~3 0.119323(60) <1076 0.009018(70) 0.119322(64)
53p 0.004524(35) 0.059969(30) 0.004529(35) 6.1-10~6 8.7.10~6 0.059967(30) <10-6 0.004531(35) 0.059966(33)
63p 0.002587(20) 0.034309(15) 0.002590(20) 4.8106 5.0.10-6 0.034307(17) <106 0.002591(20) 0.034306(20)
73p 0.001616(14) 0.021439(11) 0.001617(14) 3.310°° 3.1.107¢ 0.021438(11) <1076 0.001618(14) 0.021438(12)
83p 0.0010759(65) 0.0142836(71) 0.0010772(65) 2.1.10~6 2.1.10~6 0.0142828(71) 2.4.10~7 0.0010776(65) 0.0142826(80)
93p 0.0007523(46) 0.0099905(50) 0.0007532(46) 1.410~% 1.5.10~% 0.0099900(50) <1077 0.0007535(46) 0.0099898(54)
103pP 0.0005466(34) 0.0072599(36) 0.0005472(34) 1.1.107° 1.1.107% 0.0072594(36) <1077 0.0005474(34) 0.0072593(40)
113p 0.0004095(25) 0.0054406(27) 0.0004100(25) - - 0.0054405(27) - 0.0004102(25) 0.0054405(30)

to the size of the basis set. It can also be noted that the values of the
Esou, Esoz, and Egg energy terms for the 3 3P state are one order of
magnitude smaller than the corresponding values obtained for the 2 P
state. At the same time all other corrections to the energies of the 2 3P
and 3 P states shown in Tables 4 are of the same order of magnitude.

It can be seen in Table 4 that the non-relativistic energies are con-
verged to the relative precision of 10~ — 107°. A good indication of the
quality of results is provided by the calculated virial ratios, — V/T.
These ratios deviate from the exact value of two by less than 2 x 10~°
for the largest basis sets. Thus, by taking into account the level of
convergence of the relativistic and QED corrections and by accounting
for the inaccuracy related to using an approximate value for the Bethe
logarithm, Ink,, we can tentatively estimate the absolute error of the
total energies of the considered P states to be not larger than roughly
2% 107 a. u. < 0.5 cm™!. As it can be seen in Table 4, the a®Eqgp cor-
rections are two orders of magnitude larger than this error upper
bound, and, what is even more important, these corrections differ by
roughly 2 x 1076 a. u. for the 2 ®P and 3 3P states. This shows the im-
portance of the QED corrections in the present calculations. The higher

order QED corrections in terms of «, e.g.. the approximate o* QED
terms taken into account in the present calculations, are expected to be
of the order of about 1 cm ™. Their impact on the ionization potential
and the transition energies is expected to be smaller than 0.1 cm™*!
[13,15], i.e. it is below the estimated accuracy of the present calcula-
tions. The values of the a*Eyqep corrections are collected in Table 4.

The experimental fine structures of the considered 2 3P and 3 3B
states of Be exhibit a 10~ — 3 cm™! splitting of the energy levels [1].
This is of the same order of magnitude as the estimated error of the total
energies calculated in the present work. Fortunately, the energy terms,
a’Eso1, @?Esos, and a?Esg, responsible for the fine structure splitting, are
converged with the basis-set size to about 1071° a. u. (see Table 4). This
convergence level gives credence to the present fine-structure calcula-
tions. Thus, the comparison of the present results with the experimental
values is meaningful.

The total E; energies obtained in this work using Eq. (24) and the
corresponding excitation energies are collected in Table 5. The table
includes a comparison of the excitation energies with the NIST ex-
perimental results [1] and with the results of some previous theoretical

Table 4
Non-relativistic energies, Ep, and relativistic (a?) and QED (a® and approximate o*) energy corrections for the two lowest 3p states of °Be. All values are in hartrees.
Basis Enrel aEShift % 103 a2Eso X 10° a2Egoy X 105 a2Egg x 107 oEqep X 104 * a*Enqep X 10° AEo X 10°
11s
10000 —14.666435514 —2.360257 0 0 0 3.39720 1.5431
11000 —14.666435522 —2.360255 0 0 0 3.39721 1.5431
12000 —14.666435524 —2.360267 0 0 0 3.39725 1.5432
—14.666435524(4) —2.36027(5) 0 0 0 3.3973(6) 1.54(4) 2.0
23p
1000 —14.566338951 —2.303472 1.61216 —1.11251 1.365 3.34796 1.5206
2000 —14.566341155 —2.303639 1.61223 —1.11247 1.364 3.34905 1.5211
3000 —14.566341380 —2.303791 1.61224 —1.11247 1.364 3.34945 1.5213
4000 —14.566341432 —2.303727 1.61224 —1.11247 1.364 3.34963 1.5214
5000 —14.566341452 —2.303702 1.61224 —1.11247 1.364 3.34963 1.5214
6000 —14.566341462 —2.303670 1.61224 —1.11247 1.364 3.34963 1.5214
7000 —14.566341468 —2.303746 1.61224 —1.11247 1.364 3.34983 1.5215
8000 —14.566341472 —2.303752 1.61224 —1.11247 1.364 3.34983 1.5215
—14.566341472(8) —2.30375(33) 1.61224 —1.11247 1.364 3.3498(33) 1.52(12) 2.6
33p
1000 —14.398062139 —2.326188 0.22937 —0.15451 0.210 3.36599 1.5285
2000 —14.398065345 —2.326687 0.22947 —0.15453 0.210 3.36813 1.5295
3000 —14.398065695 —2.326872 0.22948 —0.15453 0.210 3.36918 1.5300
4000 —14.398065779 —2.326806 0.22948 —0.15453 0.210 3.36924 1.5300
5000 —14.398065813 —2.326879 0.22948 —0.15453 0.210 3.36945 1.5301
6000 —14.398065831 —2.326969 0.22948 —0.15453 0.210 3.36959 1.5302
7000 —14.398065852 —2.326950 0.22948 —0.15453 0.210 3.36961 1.5302
—14.398065852(42) —2.3270(3) 0.22948 —0.15453 0.210 3.3696(32) 1.53(12) 2.6

2 The value of the Bethe logarithm of Ink, = 5.75035, a.u. is taken from Ref. [35] and calculated for state 2'S of °Be is used here to calculate the QED corrections for
states 2°P and 3°P, whereas the value of Ink, for the ground state is taken from Ref. [13].
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Table 5
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Excitation energies of the 2°P, and 3P states of °Be obtained for 8000 and 7000 bases, respectively. The energies are calculated using the total energies of the states,
Ej, calculated according to Eq. (24). The excitation energies (in cm ™ ') are determined with respect to the °Be ground-state energy of — 14.6684406(20) a.u. obtained
with 12000 basis functions that includes the QED correction where the value of the Bethe logarithm, Ink,, is taken from Ref. [13]. A; are deviations (in cm ™Y from

the experimental excitation energies [1].

E Ay E - Ey Ey Ny E - Ey Ref.
(a.u.) (em™ b (em™ b (em™ b (a.u.) (em™ Y (em™ Y (em™ b
2 3P, 3 3P,
—14.5683037(26) 21977.5(11) -0.8 —14.4000418(26) 58906.7(11) -0.7 This work
21978.28(10) 58907.45(10) Exp. [1]
21978.971 0.691 58908.860 1.410 FCPC [26]
—14.568275123" —14.400005332" This work
—14.567693120" 22097.41 119.13 —14.399652760" 58975.47 68.02 MCHF [25]
23p; 33p;
—14.5683007(26) 21978.2(11) -0.8 0.650(5) —14.4000414(26) 58906.8(11) -0.6 0.096(8) This work
21978.925(10) 0.65(11) 58907.45(10) 0.0(2) Exp. [1]
21979.608 0.683 0.637 58908.952 1.502 0.091 FCPC [26]
—14.568272172% —14.400004899* This work
—14.567690160" 22098.06 119.135 0.65 —14.399652330" 58975.57 68.12 0.09 MCHF [25]
23p, 33p,
—14.5682899(26) 21980.5(11) -0.7 3.031(33) —14.4000398(26) 58907.2(11) -0.6 0.453(33) This work
21981.27(10) 2.99(20) 58907.83(10) 0.38(20) Exp. [1]
21981.968 0.698 2.997 58909.302 1.472 0.442 FCPC [26]
—14.568261358" —14.400003273" This work
—14.567679340" 22100.43 119.16 3.02 —14.399650710" 58975.92 68.09 0.45 MCHF [25]

2 a?Epp and QED corrections are not taken into account.

calculations [25,26].

The effect not taken into account in the present calculations, that
can affect the calculated fine structure of the 2 P and 3 3P states of Be,
is the coupling with other states via the spin-orbit and spin-spin inter-
actions. We can estimate this effect by considering such coupling with
the closest pairs of states. The 2 3P, ; , levels are well separated from
other states; the closest state that couples to the 2 3P; state via the spin-
orbit interaction is the 2 'P; state that lays roughly 20000 cm ™! above.
Using Eq. (16) of Ref. [26] one can extract the value of the off-diagonal
matrix element, (¥(2 'P)|H,, |¥(2 3P)), to be roughly 1.7 em~ . In-
clusion of the coupling may result in lowering of the energy of the 2 3P,
state by about 1.3 x 10~* cm ™ 1. Although, in the case of the 3 3P, state,
the closest excited singlet state, 3 'P;, lays only 1279.89 cm ™! above it,
assuming the same value of the off-diagonal coupling matrix element of
the spin-orbit interaction operator, the energy-lowering shift of the 3 3P
state would be only about 2.1 x 103 cm ~*. However, if the off-diagonal
matrix element, (¥(3 P)|H,, [¥(3 3P)), was roughly 10 cm ™2, then the
splitting between the 3 3P, and 3 3P, energy levels would completely
vanish, as the experiment seems to suggest [1]. However, as the un-
certainty of the experimental result is about 0.2 cm ™ ?, the vanishing of
the splitting may not be real.

In Tables 4 and 5 the errors presented in parentheses were obtained
in an analogous way as in the case of He and, once again, the dom-
inating contribution is due to the higher-order corrections, i.e.

0(a®)~107% a.u., not included in the present approach. Additionally, as
discussed above, for the P states the error due to the adaptation of the
Bethe logarithm value obtained for different state (i.e. 2 19) is taken
into account. The error of approximated a*Eyqep approach (see Table 4)
and the error of fine-structure splittings (see Table 5) are estimated with
the assumption that the respective relative errors are two times larger
than their counterparts obtained for He. It is interesting to note that,
once again, almost the same deviations (~ — 0.7 cm™ 1Y) from the ex-
perimental excitation energies are obtained for all the considered 3P,
energy levels. This value is two orders of magnitude larger than in the
case of “He (i.e. — 0.002 cm ™! in Table 2). Since the errors of the the-
oretical excitation energies for Be are also two orders of magnitude
larger than in the case of helium, we can tentatively attribute the
uniform shift of — 0.7 cm ™! of the theoretical excitation energies of °Be,
to the omitted QED corrections as in the case of “He.

Although many calculations were performed for the low-lying 3P
states of Be (see e.g. Ref. [45,46] and references therein), to the best our
knowledge, the most accurate non-relativistic calculations were per-
formed 25 years ago by Chung [26]. Our non-relativistic energies of the
two lowest °P states of “Be are compared with the results of Chung in
Table 6, as well as with the results of other calculations. The compar-
ison indicates that our results are noticeably better than the other re-
sults.

Table 6
Non-relativistic energies, Eyy, in hartrees and the virial ratios, — V/T, for two lowest 3P states of ~Be calculated with different numbers of the basis functions.
basis 23p 33p Ref.
Enrel -vIiT Enrel -VIiT
5000 —14.567244202 2.0000000027 —14.398968642 2.0000000057 This work
6000 —14.567244213 2.0000000013 —14.398968660 2.0000000028 This work
7000 —14.567244218 2.0000000007 —14.398968681 1.9999999993 This work
8000 —14.567244222 2.0000000005 This work
—14.56723830 —14.39896012 FCPC [26]
—14.566560 MCHF [47]
—14.56637 —14.39839 FCPC [27]
—14.565365 —14.395471 CI [45]
—14.565432 —14.392598 CI [46]

10
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9. Summary

New capabilities involving extending the use of explicitly correlated
Gaussian function to perform very accurate non-BO calculations of fine
structures of small atoms are developed, implemented, and tested. The
new development is tested in calculations of ten lowest °P states of
helium and two lowest 3P states of beryllium. In the calculations the
variational method is used and the Hamiltonian explicitly depends on
the finite mass of the nucleus. The results of the calculations are com-
pared with the available experimental results and results of some pre-
vious calculations. The good agreement found in this comparison va-
lidates the approach developed in this work. In the future work the
approach developed here will be applied to calculate fine structures of
some larger atomic systems and of systems with a larger range of the L
and S quantum numbers. On the development side, algorithms will be
worked out to include off-diagonal SO interactions. Work will also be
performed on implementing a method to account for the hyperfine in-
teractions.
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