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ABSTRACT
We prove a local law and eigenvector delocalization for general Wigner-type matrices. Our methods allow us to get the best
possible interval length and optimal eigenvector delocalization in the dense case, and the first results of such kind for the sparse
case down to p = g(n) log n

n with g(n)→∞. We specialize our results to the case of the stochastic block model, and we also obtain a
local law for the case when the number of classes is unbounded.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5053613

I. INTRODUCTION
A. The stochastic block model

The Stochastic Block Model (SBM), first introduced by mathematical sociologists,22 is a widely used random graph model
for networks with communities. In the last decade, there has been considerable activity1,2,8–11,25 in understanding the spectral
properties of matrices associated with the SBM and to other generalized graph models, in particular, in connection to spectral
clustering methods.

Stochastic Block Models represent a generalization of Erdős-Rényi graphs to allow for more heterogeneity. Roughly speak-
ing, an SBM graph starts with a partitioning of the vertices into classes, followed by placing an Erdős-Rényi graph on each
class (independent edges, each occurring with the same given probability depending on the class), and connecting vertices
in two different blocks by independent edges, again with the same given probability which this time depends on the pair
of classes. The random matrix associated with this graph is the adjacency matrix, which is a random block matrix whose
entries have Bernoulli distributions, the parameters of which are dictated by the inter- and intra-block probabilities mentioned
above.

Specifically, suppose for ease of numbering that [n] = V1 ∪ V2 ∪ · · · ∪Vd for some integer d, |Vi| = Ni for i = 1, . . ., d. Suppose
that for any pair (k, l) ∈ [d] × [d] with k , l there is a pkl ∈ [0, 1] such that for any i ∈ Vk, j ∈ Vl,

aij =



1, with probability pkl,
0, otherwise.

Also, if k = l, there is pk such that for any i, j ∈ Vk,

aij =




0, if i = j,
1, with probability pk,
0, otherwise.
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Each diagonal block is an adjacency matrix of a simple Erdős-Rényi graph, and off-diagonal blocks are adjacency matrix of bipar-
tite graphs. While there is interest in studying the O(1) variance case [corresponding to all pijs and pis being O(1) the “dense” case],
special interest is given to the sparse case [when pijs and pis are o(1), and more specifically, when the average vertex degrees,
given by npij as well as npi, are growing very slowly with n or may even be large and constant].

The adjacency matrices of SBM graphs are themselves a particular form of general Wigner-type matrix, which have been
shown to exhibit universal properties in Ref. 5 in the dense case. We detail the connection to the broader field of random matrix
universality studies in Sec. I B.

B. Universality studies, general Wigner-type matrices, and related graph-based matrix models
At the same time with the increased interest in the spectra of SBM, the universality studies in random matrix theory pio-

neered by Refs. 30 and 13 had been gaining ground at tremendous pace. The pioneering work on Wigner matrices started
in Refs. 30 and 13 has been now extended to cover generalized Wigner matrices,18 Erdős-Rényi matrices (including sparse
ones),14–16 and general Wigner-type matrices.5 All such studies start by proving a local law at “optimal” scale, that is, on intervals
of length (log n)α/n or n1−ε , which is necessary for the complicated machinery of either Ref. 30 or Ref. 17 to translate the local
law into universality of eigenstatistics on “optimal-length” intervals.

In this paper, we prove a main theorem about (dense) generalized Wigner matrices and then apply it to cover sparse gen-
eralized Wigner matrices; finally, we show that our results translate to graph models like the SBM with bounded or unbounded
number of blocks. We provide below a brief review of universality studies related to graph-based models.

After the original work on Wigner matrices, the first step in the direction of graph models, or graph-based matrices, came
with Ref. 31, where the authors proved a local law for Erdős-Rényi graphs. Subsequently, Refs. 16 and 15 superseeded these
results for the slightly denser cases and showed bulk universality in a p � n−1/3 regime. The sparsity of the model is important
here because it makes the problem more difficult. A more recent paper24 refined the results of Refs. 15 and 16 and made them
applicable for p � n−1+ε for any (fixed) ε > 0. Subsequently, in a departure from studying adjacency matrices, Ref. 23 proved bulk
universality for the eigenvalue statistics of Laplacian matrices of Erdős-Rényi graphs, in the regime when p � n−1+ε for fixed
ε > 0. Very recently, Ref. 21 proved a local law for the adjacency matrix of the Erdős-Rényi graph with p ≥ C log n/n for some
constant C > 0.

Finally, Ref. 3 examined a large class of sparse random graph-based matrices (two-atom and three-atom entry distributions),
proved a local law up to intervals of length 1/n1−ε , and deduced (by the same means employed in Ref. 24) a bulk universality
theorem. This is different from our results since our sparse matrices have entries that are not necessarily atomic but come from
the product of a Bernoulli variable and a potentially continuous one (See Sec. III A); however, the3 case does seem to cover the
sparse SBM model for p � n−1+ε . As an interesting aside, in the general case, there may not be an asymptotic global law (aka
the limiting empirical spectral distribution); the cases we study here (SBM with bounded and unbounded number of classes)
are specific enough that we can also prove the asymptotic global law. However, as it turns out, in the case of the SBM with an
unbounded number of blocks, the prediction in the local law must still be made using the n-step approximation to the global law,
not the global law itself, since convergence to the global law is not uniform.

Some of the methods used for examining the universality of these graph models rely on the work in Refs. 4 and 5, where
a general (dense) Wigner-type matrix model is considered and universality is proved up to intervals of length 1/n1−ε . We
will also appeal to Ref. 4 since it will help establish the existence of limiting distributions and the stability of their Stieltjes
transforms.

We should mention the significant body of the literature that deals with global limits for the empirical spectral distributions
of block matrices. Starting with the seminal work of Girko,20 the topic was treated in Refs. 19 and 29 from a free probability
perspective; more recently, Refs. 6 and 12 have examined the topic again for finitely many blocks (a claim in Ref. 12 that the
method extends to a growing number of blocks is incorrect). The global law for stochastic block models with a growing number
of blocks was derived in Ref. 34 via graphon theory.

C. This paper
The main difference in the results streaming from the seminal studies of Ref. 30, respectively,13 is in the conditions imposed

on the matrix entries: the former approach to universality is based on the “four moment match” condition but imposes relatively
weak conditions on the tails, while the latter studies by imposing stronger conditions on the tails. In later studies, these stronger
conditions have included bounded moments.5,18,24 While the methods of Ref. 13 have been extended to increasingly more general
matrix models, the methods in Ref. 30 have been used to focus on reaching the best (smallest) possible interval lengths for the
classical, Wigner case via methods whose basis was set in Ref. 32.

This paper bridges the two approaches to obtain a local law and eigenvector delocalization for dense and sparse general
Wigner-type matrices and for the SBM.

Our main result is a local law in the bulk down to interval length CK2 log n
n for general Wigner-type matrices (see Sec. II) whose

entries are compactly supported almost surely in [−K, K], employing some of the ideas from Refs. 30 and 32. Our result is more
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refined than the one from Ref. 5, where the smallest interval length was O(1/n1−ε ) and bounded moments were assumed. With
additional assumptions (either four-moment matching, as in the case of Ref. 30, or finite moments, as in Ref. 13 and subsequent
studies), universality down to this smaller interval length should follow.

In addition to this main result, we also obtain the first local laws for sparse general Wigner-type matrices (see Sec. III A),

down to interval length CK2 log n
np . We specialize our results to sparse SBM with finite many blocks, where a limiting law

exists. Finally, we extend these results to an unbounded number of blocks for the SBM, under certain conditions (see
Sec. III B).

It should be said that our local laws for sparse general Wigner-type matrices are not sharp enough to yield universality,
unless p is ω(1/nε ) for any ε > 0. This is an artifact of the use of the methods of Ref. 30 and is also observable in Ref. 31. It is
to be expected that they can be refined (by us or by other researchers) in the near future to a point where universality can be
deduced.

II. GENERAL WIGNER-TYPE MATRICES
Let Mn B (ξij)1≤i,j≤n be a random Hermitian matrix with variance profile Sn = (sij)1≤i,j≤n such that ξ ij, 1 ≤ i ≤ j ≤ n are

independent with

Eξij = 0,E |ξij |
2 = sij

and compactly supported almost surely, i.e., |ξ ij| ≤ K for some K = o
(√

n
log n

)
.

For the variance profile Sn, we assume

c ≤ sij ≤ 1

for some constant c > 0. Note this is equivalent to c ≤ sij ≤ C by scaling. Define Wn B
Mn√

n
. The Stieltjes transform of the empirical

spectral distribution of Wn is given by

sn(z) B
1
n

tr(Wn − zI)−1.

We will show that sn(z) can be approximated by the solution of the following quadratic vector equation studied in Ref. 4:

mn(z) =
1
n

n∑
k=1

g(k)
n (z), (1)

−
1

g(k)
n (z)

= z +
1
n

n∑
l=1

sklg
(l)
n (z), 1 ≤ k ≤ n. (2)

From Theorem 2.1 in Ref. 4, Eq. (2) has a unique set of solutions g(k)
n (z) : H → H, 1 ≤ k ≤ n, which are analytic functions on the

complex upper half plane H B {z ∈ C : Im(z) > 0}. The unique solution mn(z) in Eq. (1) is the Stieltjes transform of a probability
measure ρn with supp(ρn) ⊂ [−2, 2] such that

ρn(x) B lim
η↓0

1
π

Im(mn(x + iη)).

We use the following definition for bulk intervals of ρn.

Definition II.1. An interval I of a probability density function ρ on R is a bulk interval if there exists some fixed ε > 0 such that
ρ(x) ≥ε, for any x ∈ I.

We obtain the following local law of Mn in the bulk.

Theorem II.2 (Local law in the bulk). Let Mn be a general Wigner-type matrix and ρn be the probability measure corresponding
to Eqs. (1) and (2). For any constant δ, C1, there exists a constant C2 > 0 such that with probability at least 1−n−C1 , the following holds.

For any bulk interval I of length |I | ≥ C2K2 log n
n , the number of eigenvalues NI of Wn in I obeys the concentration estimate

�����
NI − n

∫
I
ρn(x)dx

�����
≤ δn |I |. (3)

As a consequence, we obtained an optimal upper bound for eigenvectors that corresponds to eigenvalues of Wn in the bulk
interval.
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Theorem II.3 (Optimal delocalization of eigenvectors in the bulk). Let Mn be a general Wigner-type matrix. For any constant
C1 > 0 and any bulk interval I such that eigenvalue λi(Wn) ∈ I, with probability at least 1 − n−C1 , there is a constant C2 such that the
corresponding unit eigenvector ui(Wn) satisfies

‖ui(Wn)‖
∞
≤

C2K log1/2 n
√

n
.

Remark II.4. Theorems II.2 and II.3 also hold for the general Wigner-type matrix whose entries ξ ijs are sub-gaussian
with sub-gaussian norm bounded by K. As mentioned in Remark 4.2 in Ref. 27, the proof follows in the same way by using
the inequality in Theorem 2.1 in Ref. 28 for sub-gaussian concentration instead of Lemma 1.2 in Ref. 32 for K-bounded
entries.

We use standard methods from Ref. 30, adapted to fit the model considered here.

A. Proof of main results
1. Proof of Theorem II.2

For any 0 < ε < 1
2 and constant C1 > 0, define a region

Dn,ε B {z ∈ C : ρn(Re(z)) ≥ ε, Im(z) ≥
C2

3K2 log n

nδ6
} (4)

for some constant C3 > 0 to be decided later.
Let Wn ,k be the matrix Wn with the kth row and column removed, and ak be the kth row of Wn with the kth element removed.
Let (Wn − zI)−1 B (q(n)

ij )1≤i,j≤n. From Schur’s complement lemma (Theorem A.4 in Ref. 7), we have

qkk =
1

−
ξkk√

n
− z − Yk

,

where

Yk = a∗k(Wn,k − zI)−1ak.

Let
f (k)
n (z) B

1

−
ξkk√

n
− z − Yk

, (5)

then we can write sn(z) as

sn(z) =
1
n

tr(Wn − zI)−1 =
1
n

n∑
k=1

f (k)
n (z). (6)

We first estimate Yk to derive a perturbed version of (2). Let (Wn,k − zI)−1 B (q(n,k)
ij )1≤i,j≤n−1, and S(k)

n be a diagonal matrix whose
diagonal elements are the kth row of Sn with the kth entry removed. We have

E[Yk |Wn,k] = E[a∗k(Wn,k − zI)−1ak |Wn,k]

=

n−1∑
i=1

q(n,k)
ii E |aki |

2

=

n−1∑
i=1

q(n,k)
ii ski

=
1
n

tr[(Wn,k − zI)−1S(k)
n ]. (7)

The following 2 lemmas give estimates for Yk, and the proofs are deferred for Secs II B 1 and II B 2.

Lemma II.5. Let Σ(k)
n be the diagonal matrix whose diagonal elements are the kth row of Sn. For any k, 1 ≤ k ≤ n, and any fixed z

with Im(z) ≥
K2C2

3 log n
nδ6 ,

E[Yk |Wn,k] =
1
n

tr[(Wn − zI)−1
Σ

(k)
n ] + O

(
1

nη

)
,

where the constant in the O
(

1
nη

)
term is independent of z.
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A similar estimate holds for Yk itself.

Lemma II.6. For any constant C > 0, one can choose the constant C3 defined in (4) sufficiently large such that for any k,
1 ≤ k ≤ n, z ∈ Dn,ε , one has

Yk −
1
n

tr[(Wn − zI)−1
Σ

(k)
n ] = o(δ2) (8)

with probability at least 1 − n−C−10.

With the help of Lemmas II.5 and II.6, note that, since |ξkk |√
n
= o(δ2),

1
n

tr[(Wn − zI)−1
Σ

(k)
n ] =

1
n

n∑
l=1

sklf
(l)
n , (9)

and combining (5), (8), and (9), we have

f (k)
n (z) +

1
1
n
∑n

l=1 sklf
(l)
n (z) + z + o(δ2)

= 0, 1 ≤ k ≤ n (10)

with probability at least 1 − n−C−9.
The next step involves using the stability analysis of quadratic vector equations provided in Ref. 4 to compare the solutions

to (10) and (2). We have the following estimate.

Lemma II.7. For any constant C > 0, one can choose C3 in (4) sufficiently large such that

sup
1≤k≤n

|f (k)
n (z) − g(k)

n (z) | = o(δ2), (11)

for all z ∈ Dn,ε uniformly with probability at least 1 − n−C−2.

With Lemma II.7, we have for any C > 0, there exists C3 > 0 in (4) such that

|sn(z) −mn(z) | =
������

1
n

n∑
k=1

f (k)
n (z) −

1
n

n∑
k=1

g(k)
n (z)

������
= o(δ2) (12)

uniformly for all z ∈ Dn ,ε with probability at least 1 − n−C.
To complete the Proof of Theorem II.2, we need the following well-known connection between the Stieltjes transform and

empirical spectral distribution, as shown, for example, in Lemma 64 in Ref. 30 and also Lemma 4.1 in Ref. 32.

Lemma II.8. Let Mn be a general Wigner-type matrix. Let ε, δ > 0, for any constant C1 > 0, there exists a constant C > 0 such
that suppose that one has the bound

|sn(z) −mn(z) | ≤ δ

with probability at least 1 − n−C uniformly for all z ∈ Dn,ε , then for any bulk interval I with |I | ≥ max{2η, ηδ log 1
δ } where η =

C2
3K2 log n

n ,
one has

�����
NI − n

∫
I
ρn(x)dx

�����
≤ δn |I |

with probability at least 1 − n−C1 .

From (12), for any constant C1 > 0, we can choose C3 in (4) large enough such that

|sn(z) −mn(z) | ≤ δ

uniformly for all z ∈ Dn ,ε with probability 1 − n−C, where C is the constant in the assumption of Lemma II.8, and then Theorem
II.2 follows from Lemma II.8.

2. Proof of Theorem II.3
The proof is based on Lemma 41 from Ref. 30 given below.
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Lemma II.9. Let Wn be a n × n Hermitian matrix and Wn,k be the submatrix of Wn with kth row and column removed, and
let ui(Wn) be a unit eigenvector of Wn corresponding to λi(Wn), and xk be the kth coordinate of ui(Wn). Suppose that none of the
eigenvalues of Wn,k are equal to λi(Wn). Let ak be the kth row of Wn with of kth entry removed, then

|xk |
2 =

1
1 +

∑n−1
j=1 (λj(Wn,k) − λi(Wn))−2 |uj(Wn,k)∗ak |

2
, (13)

where uj(Wn,k) is a unit eigenvector corresponding to λj(Wn,k).

Another lemma we need is a weighted projection lemma for random vectors with different variances. It is a slight
generalization of Lemma 1.2 in Ref. 32. Note that in the below

E |u∗j X |2 = tr(uju∗j Σ),

and the proof follows verbatim, as in Ref. 32.

Lemma II.10. Let X = (ξ 1, . . ., ξn) be a K-bounded random vector in Cn such that Var(ξi) = σ2
i , 0 ≤ σ2

i ≤ 1. Then there are
constants C, C′ > 0 such that the following holds. Let H be a subspace of dimension d with an orthonormal basis {u1, . . ., ud}, and
Σ = diag(σ2

1 , . . . ,σ2
n). Then for any 1 ≥ r1, . . ., rd ≥ 0,

P
*..
,

��������

√√√√ d∑
j=1

rj |u∗j X |2 −

√√√√ d∑
j=1

rjtr(uju∗j Σ)

��������
≥ t

+//
-
≤ C exp(−C′

t2

K2
). (14)

In particular, by squaring, it follows that

P
*..
,

�������

d∑
j=1

rj |u∗j X |2 −
d∑

j=1

rjtr(uju∗j Σ)
�������
≥ 2t

√√√√ d∑
j=1

rjtr(uju∗j Σ) + t2+//
-
≤ C exp(−C′

t2

K2
). (15)

Below we show how delocalization follows from Lemmas II.9, II.10, and Theorem II.2. For any C1 > 0 and any λi(Wn) in the

bulk, by Theorem II.2, one can find an interval I centered at λi(Wn) and |I | = K2C2 log n
n for some sufficiently large C2 such that NI

≥ δ1n|I| for some small δ1 > 0 with probability at least 1 − n−C1−3. By Cauchy interlacing law, we can find a set J ⊂ {1, . . ., n − 1}
with |J| ≥ NI/2 such that |λj(Wn ,k) − λi(Wn)| ≤ |I| for all j ∈ J. Let Xk be the kth column of Mn with the kth entry removed. Note

that from Lemma II.10, by taking rj = 1, j ∈ J, and t = C3K
√

log n for some constant C3 ≥
C1+3

C′ in (14), using assumption sij ≥ c, we
have

√∑
j∈J

|uj(Wn,k)∗Xk |
2 ≥

√∑
j∈J

tr(uj(Wn,k)u∗j (Wn,k)Σ) − C3K
√

log n

≥
√

c |J | − C3K
√

log n

≥ (
√

c −
C3√

C2δ1/2
)
√
|J | (16)

with probability at least 1 − n−C1−3. By choosing C2 sufficiently large, (16) implies

∑
j∈J

|uj(Wn,k)∗Xk |
2 ≥ C′ |J |

for some constant C′ > 0 with probability at least 1 − n−C1−3. By (13),
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|xk |
2 =

1

1 +
∑n−1

j=1 (λj(Wn,k) − λi(Wn))−2 |uj(Wn,k)∗ Xk√
n
|2

≤
1

1 +
∑

j∈J(λj(Wn,k) − λi(Wn))−2 |uj(Wn,k)∗ Xk√
n
|2

≤
1

1 + n−1 |I |−2 ∑
j∈J |uj(Wn,k)∗Xk |

2

≤
1

1 + n−1 |I |−2C′ |J |

≤
2 |I |
C′δ1

≤
K2C2

4 log n
n

for some constant C4 with probability at least 1−2n−C1−3. Thus by taking a union bound, ‖ui ‖∞ ≤
C4K
√

log n
√

n
with probability at least

1 − n−C1 for all 1 ≤ i ≤ n.

B. Proof of auxiliary lemmas
We now prove the all the lemmas in the proof of Theorem II.2.

1. Proof of Lemma II.5

Let η B
C2

3K2 log n

nδ6
and z B x +

√
−1 · η. By (7), it suffices to show for all 1 ≤ k ≤ n,

����tr[(Wn − zI)−1
Σ

(k)
n ] − tr[(Wn,k − zI)−1S(k)

n ]
���� ≤

1
η

. (17)

We will use the following result known as Lemma 1.1 in Chap. 1 of Ref. 20.

Lemma II.11. Let ~c = (c1, . . . , cn) be a real column vector, and Mn = (ξij)n×n be a Hermitian matrix, for any z with and Imz > 0, we
have, for any 1 ≤ k ≤ n,

~cT(Mn − zI)−1~c − ~ck
T(Mn,k − zI)−1 ~ck =

c2
k −

~ξk
∗
Rk(2ck ~ck) + ~ξk

∗
Rk ~ck ~ck

TRk ~ξk

ξkk − z − ~ξk
∗
Rk ~ξk

,

where Rk = (Mn,k − zI)−1, ~ck is the vector ~c with the kth coordinate removed, and ~ξk is the kth column of Mn with the kth element
removed.

We introduce a real random vector~c = (c1, . . . , cn) whose coordinates are mean zero, independent variables also independent
of Wn with Var(ci) = ski for 1 ≤ i ≤ n.

Apply Lemma II.11 to Wn and ~c. We have Rk = (Wn,k − zI)−1, and

~cT(Wn − zI)−1~c − ~ck
T(Wn,k − zI)−1 ~ck =

c2
k − a∗kRk(2ck ~ck) + a∗kRk ~ck ~ck

TRkak
ξkk√

n
− z − Yk

.

By taking the conditional expectation with respect to c, conditioned on Wn, we have

E[~cT(Wn − zI)−1~c − ~ck
T(Wn,k − zI)−1 ~ck | Wn] =

skk + a∗kRkS(k)
n Rkak

ξkk√
n
− z − Yk

.

Calculating the left-hand side yields

tr[(Wn − zI)−1
Σ

(k)
n ] − tr[(Wn,k − zI)−1S(k)

n ] =
skk + a∗kRkS(k)

n Rkak
ξkk√

n
− z − Yk

.

Since we have

|skk + a∗kRkS(k)
n Rkak | ≤ 1 + |a∗kRkS(k)

n Rkak |

≤ 1 + a∗k((Wn,k − xI)2 + η2I)−1ak,
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and

Im
(
ξkk
√

n
− z − Yk

)
= −η

(
1 + a∗k((Wn,k − xI)2 + η2I)−1ak

)
,

(17) holds. This completes the proof of Lemma II.5.

2. Proof of Lemma II.6
We need a preliminary bound on the number of eigenvalues in a short interval. The following Lemma is similar to Proposition

66 in Ref. 30.

Lemma II.12. For any constant C1 > 0, there exists a constant C2 > 0 such that for any interval I ⊂ R with |I | ≥ C2K2 log n
n , one has

NI(Wn) = O(n |I |) (18)

with probability at least 1 − n−C1 .

Proof. By the union bound, it suffices to show that the failure probability for (18) is less than 1 − n−C1−1 for

|I | = η B
C2K2 log n

n

for some sufficiently large C2. By

Im(sn(x +
√
−1η)) =

1
n

n∑
i=1

η

η2 + (λi(Wn) − x)2
, (19)

it suffices to show that the event

NI ≥ Cnη (20)

and

Im(sn(x + η
√
−1)) ≥ C (21)

fails with probability at least 1 − n−C1−1 for some large absolute constant C > 1. Suppose we have (20), (21), by (19),

1
n

n∑
k=1

�������
Im*.

,

1
ξkk√

n
− (x + η

√
−1) − Yk

+/
-

�������
≥ C.

Using the bound
�����
Im

(
1
z

) �����
≤

1
|Im(z) |

, it implies

1
n

n∑
k=1

1
|η + Im(Yk) |

≥ C. (22)

Note that

Wn,k =

n−1∑
j=1

λj(Wn,k)u∗j (Wn,k)uj(Wn,k),

where uj(Wn ,k), 1 ≤ j ≤ n − 1 are orthonormal basis of Wn ,k, one has

Yk = a∗k(Wn,k − zI)−1ak =

n−1∑
j=1

|u∗j (Wn,k)ak |
2

λj(Wn,k) − (x + η
√
−1)

,

and hence

ImYk ≥ η

n−1∑
j=1

|u∗j (Wn,k)ak |
2

η2 +
(
λj(Wn,k − x)2

.

On the other hand, from (20), by Cauchy interlacing theorem, we can find an index set J with |J| ≥ ηn such that λj(Wn ,k) ∈ I
for all j ∈ J, then we have

Im(Yk) ≥
1

2η

∑
j∈J

|u∗j (Wn,k)ak |
2 =

1
2η
‖PHk ak ‖

2, (23)
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where PHk is the orthogonal projection onto a subspace Hk spanned by eigenvectors uj(Wn ,k), j ∈ J. From (22) and (23), we have

1
n

n∑
k=1

2η

2η2 + ‖PHk ak ‖
2
≥ C. (24)

On the other hand, taking rj = 1, 1 ≤ j ≤ d, d = |J| and t = C4K
√

log n for some sufficiently large C4 in (15), using assumption sij ≥ c,

we have that ‖PHk (ak)‖2 = Ω(η) with probability at least 1 −O(n−C′C4 ) ≥ 1 − n−C1−5. Taking the union bound over all possible choice
of J, we have (24) holds with probability at least 1 − n−C1−1. The claim then follows by taking C sufficiently large.

Now we are ready to prove Lemma II.6. From Lemma II.5, it suffices to show

Yk − E[Yk |Wn,k] = o(δ2), 1 ≤ k ≤ n (25)

with probability at least 1 − n−C−10. We can write

Yk =

n−1∑
j=1

|u∗j (Wn,k)ak |
2

λj(Wn,k) − z
,

where {uj(Wn,k)}n−1
j=1 are orthonormal eigenvectors of Wn ,k. Moreover,

E[Yk |Wn,k] =
1
n

tr[(Wn,k − zI)−1S(k)
n ]

=
1
n

tr


n−1∑
j=1

1
λj(Wn,k) − z

uj(Wn,k)u∗j (Wn,k)S(k)
n



=
1
n

n−1∑
j=1

tr[uj(Wn,k)u∗j (Wn,k)S(k)
n ]

λj(Wn,k) − z
.

Let Xk =
√

nak, and define

tj B |uj(Wn,k)∗Xk |
2 − tr[uj(Wn,k)u∗j (Wn,k)S(k)

n ].

It suffices to show that

���Yk − E[Yk |Wn,k]��� =
1
n

�������

n−1∑
j=1

tj

λj(Wn,k) − x −
√
−1η

�������
= o(δ2)

with probability at least 1 − n−C−10. The remaining part of the proof goes through in the same way as in the Proof of Lemma 5.2 in
Ref. 32 with Lemmas II.10 and II.12. Then Lemma II.6 follows. ◽

3. Proof of Lemma II.7
We define gn(z, x) B g(k)

n (z) if x ∈ [ k−1
n , k

n ), 1 ≤ k ≤ n and

Sn(x, y) B sij if x ∈ [
i − 1

n
,

i
n

), y ∈ [
j − 1

n
,

j
n

). (26)

Then (2) can be written as

mn(z) =
∫ 1

0
gn(z, x)dx, (27)

−
1

gn(z, x)
= z +

∫ 1

0
Sn(x, y)gn(z, y)dy, (28)

for all x ∈ [0, 1]. Similarly, define fn(z, x) B f (k)
n (z) if x ∈ [ k−1

n , k
n ), 1 ≤ k ≤ n. Then we can write (6) and (10) as

sn(z) =
∫ 1

0
fn(z, x)dx,

−
1

fn(z, x)
= z +

∫ 1

0
Sn(x, y)fn(z, y)dy + dn(z, x),
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where for any fixed z from (10),
‖dn(z)‖

∞
B sup

x∈[0,1]
|dn(z, x) | = o(δ2) (29)

with probability at least 1 − n−C−9 for any fixed z ∈ Dn ,ε .
The following lemma follows from Theorem 2.12 in Ref. 4 which controls the stability of Eq. (28) in the bulk. Here we use the

fact that c ≤ sij ≤ 1 to guarantee the assumptions of Sn in Theorem 2.12 in Ref. 4. Define

Λ(z) B sup
x∈[0,1]

|fn(z, x) − gn(z, x) |.

Lemma II.13. For any fixed z ∈ Dn,ε , there exist constants λ, C5 > 0 depending on ε but independent of n such that for z ∈ Dn,ε ,

Λ(z)1{Λ(z) ≤ λ} ≤ C5 ‖dn(z)‖
∞

. (30)

Proof. Since the variance satisfies c ≤ sij ≤ 1, Sn satisfies condition A1-A3 in Chap. 1 of Ref. 4. Especially, it implies condition
A3 with L = 1.

From the lower bound ρn(z) ≥ε, Lemma 5.4 (i) in Ref. 4 implies

sup
1≤k≤n

|g(k)
n (z) | ≤

1
ε
< ∞

for any z with Re(z) ∈ I, Im(z) > 0. Then the assumptions in Theorem 2.12 in Ref. 4 holds. (30) then follows from Theorem 2.12 in
Ref. 4. ◽

Remark II.14. Lemma II.13 is a stability result for the solution of (28), which is deterministic and does not require moment
assumptions on the random matrix Mn.

From Lemma II.13 and (29), we have for any fixed z ∈ Dn ,ε ,

Λ(z)1{Λ(z) ≤ λ} = o(δ2) (31)

with probability at least 1 − n−C−9.
We proceed with a continuity argument as in the proof of Theorem 3.2 in the bulk (Sec. 3.1 in Ref. 4) to show (31) holds

uniformly for z ∈ Dn ,ε with probability at least 1 − n−C−2.
Now for any 0 < ε′ < λ

4 , we consider a line segment

L = x +
√
−1



K2C2
3 log n

nδ6
, n



for some fixed x with ρn(x) ≥ε, 0 < ε < 1/2, and let n be large enough such that 1
n < ε′ and ‖dn(z)‖

∞
≤ ε′. Let Ln consist of n4

evenly spaced points on L. Then we have
Λ(z)1{Λ(z) ≤ λ} ≤ ε′ (32)

for all z ∈ Ln with probability at least 1 − n−C−5.
From Theorem 2.1 in Ref. 4, gn(z, x) is the Stieltjes transform of a probability measure; hence, the derivative of gn(z, x) is

uniformly bounded by 1
|Im(z)|2 ≤ n2 for z ∈ Dn ,ε . Similarly, for fn(z, x), from (5), for 1 ≤ k ≤ n,

������

∂f (k)
n (z)
∂z

������
=

�������

1 + ∂Yk
∂z

( ξkk√
n
− z − Yk)2

�������

≤

�������

1 + a∗k(Wn,k − zI)−2ak
ξkk√

n
− z − Yk

�������

1

|
ξkk√

n
− z − Yk |

.

By Theorem A.6. in Ref. 7, for z = x +
√
−1η,

�������

1 + a∗k(Wn,k − zI)−2ak

( ξkk√
n
− z − Yk)

�������
≤

1
η

,
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and
�����
ξkk
√

n
− z − Yk

�����
≥

�����
Im(

ξkk
√

n
− z − Yk)

�����
= η(1 + a∗k((Wn,k − xI)2 + η2I)−1ak) ≥ η.

Note that for z ∈ Dn ,ε , η ≥
K2C2

3 log n
nδ6 ≥ 1

n , we get

������

∂f (k)
n (z)
∂z

������
≤

1
η2
≤ n2, 1 ≤ k ≤ n.

So both fn(z, x) and gn(z, x) are n2-Lipschitz function in z for z ∈ Dn ,ε . It follows that

|Λ(z′) − Λ(z) | ≤ 2n2 |z′ − z |,

for any z, z′ ∈ L. We first claim that

Λ(z)1{Λ(z) ≤
λε

2
} ≤ 2ε′, (33)

for all z ∈ L with probability at least 1 − n−C−5.

Since 0 < ε < 1/2, if z ∈ Ln, (33) is true from (32). If z ∈ L \ Ln, choose some z′ ∈ Ln such that |z − z′| ≤ n−3. Suppose Λ(z) ≤
λε

2
,

note that

|Λ(z′) − Λ(z) | ≤ 2n2 |z − z′ | ≤
2
n

, (34)

which implies

Λ(z′) ≤ Λ(z) +
2
n
≤
λε

2
+

2
n
≤ λ

with probability at least 1 − n−C−5. From (32), Λ(z′) ≤ ε′ with probability at least 1 − n−C−5. From (34),

Λ(z) ≤ Λ(z′) +
2
n
< 2ε′ (35)

with probability at least 1 − n−C−5, therefore (33) holds.
In the next step, we show that the indicator function in (33) is identically equal to 1. From (32), we have Λ(z) < (2ε′,λ/2) with

probability at least 1 − n−C−5.
Let E be the event that Λ(z)1{Λ(z) ≤ λ

2 } ≤ 2ε′ happens. Conditioning on E, since Λ(z) is 2n2-Lipschitz in z, and L is simply
connected, we have

Λ(L) B {Λ(z) : z ∈ L}

is simply connected. Therefore Λ(L) is contained either in [0, 2ε′] or [ λ2 ,∞).
From (5), we have for 1 ≤ k ≤ n,

|f (k)
n (z) | =

1
����−
ξkk√

n
− z − Yk

����

≤
1

|Im(z) |
,

and since g(k)
n (z) is a Stieltjes transform of a probability measure, for 1 ≤ k ≤ n,

|g(k)
n (z) | ≤

1
|Im(z) |

,

which implies

Λ(z) ≤
2

|Im(z) |
.

Consider the point zn B x +
√
−1 · n ∈ L, we have

Λ(zn) ≤
2

Im(zn)
=

2
n
≤ 2ε′,

which implies Λ(zn) ∈ [0, 2ε′]. Hence for all z ∈ L, Λ(z) ≤ 2ε′ with probability at least 1 − n−C−5, and the indicator function in (33) is
identically equal to 1.

Now we extend the estimate to all z ∈ Dn ,ε . Consider n3 lines segments
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xk +
√
−1



K2C2
3 log n

nδ6
, n


, ρn(xk) ≥ ε, 1 ≤ k ≤ n3

such that the n2-neighborhoods of points {xk, 1 ≤ k ≤ n3} cover any bulk interval of ρn. By the 2n2-Lipschitz property of Λ(z) again,

we can show Λ(z) ≤ 4ε′ for all z with ρn(Re(z)) > ε,
K2C2

3 log n
nδ6 ≤ Imz ≤ n, with probability at least 1 − n−C−2.

On the other hand, for all z with Im(z) > n,



fn(z) − gn(z)

∞ ≤
2

Imz
= O

(
1
n

)
. (36)

Combining these two cases, for all z ∈ Dn ,ε with probability at least 1 − n−C−2,

‖fn(z) − gn(z)‖
∞
= o(δ2).

This completes the Proof of Lemma II.7.

III. APPLICATIONS: SPARSE MATRICES
A. Sparse general Wigner-type matrices

Let Mn be a sparse general Wigner-type matrix with independent entries Mij = δijξ ij for 1 ≤ i ≤ j ≤ n. Here δij are independent

and identically distributed (i.i.d.) Bernoulli random variables which take value 1 with probability p =
g(n) log n

n
, where g(n) is any

function for which g(n)→∞ as n→∞, and ξ ij are independent random variables such that

Eξij = 0,E |ξij |
2 = sij, c ≤ sij ≤ 1,

and in addition, |ξ ij| ≤ K almost surely for K = o(
√

g(n)).
We can regard this model as the sparsification of a general Wigner-type matrix by uniform sampling. Similar models were

considered in Refs. 26 and 33.
Considering the empirical spectral distribution of Wn B

Mn√
np

, we specify a local law for this model.

Corollary III.1. Let Mn be a sparse general Wigner-type matrix, let ρn be the probability measure corresponding to Eqs. (1)
and (2). For any constants δ, C1 > 0, there exists a constant C2 > 0 such that with probability at least 1 − n−C1 , the following

holds. For any bulk interval I of length |I | ≥ C2K2 log n
np , the number of eigenvalues NI of Wn B

Mn√
np in I obeys the concentration

estimate
�����
NI − n

∫
I
ρn(x)dx

�����
≤ δn |I |. (37)

Proof. Define

Hn B
Mn
√

p
= (hij)1≤i,j≤n.

Then Ehij = 0,E |hij |
2 = sij, and |hij | ≤

K
√

p
= o

(√
n

log n

)
, and (37) follows as a corollary of Theorem II.2 for Hn. ◽

The infinity norm of eigenvectors in the bulk can be estimated in a similar way.

Corollary III.2. Let Mn be a sparse general Wigner-type matrix and Wn =
Mn√
np . For any constant C1 > 0 and any bulk interval

I such that eigenvalue λi(Wn) ∈ I, with probability at least 1 − n−C1 , there is a constant C2 such that the corresponding unit
eigenvector ui(Wn) satisfies

‖ui(Wn)‖
∞
≤

C2K log1/2 n
√

np
.
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B. Sparse stochastic block models
1. Finite number of classes

Our analysis of sparse random matrices applies to the adjacency matrices of sparse stochastic block models.
Consider the adjacency matrix An = (aij)1≤i,j≤n of an SBM graph, where An is a random real symmetric block matrix with d2

blocks. Recall that we partition all indices [n] into d sets,

[n] = V1 ∪ V2 ∪ · · · ∪ Vd (38)

such that |Vi| = Ni. We assume aii = 0, 1 ≤ i ≤ n and aij, i , j are Bernoulli random variables such that if aij is in the (k, l)th block, aij
= 1 with probability pkl and aij = 0 with probability 1 − pkl.

Let σ2
kl B pkl(1 − pkl). Define p Bmax

kl
pkl and σ2 = p(1 − p). Assume

p =
g(n) log n

n
,

where sup
n

p < 1 and g(n)→∞ as n→∞. We also assume that

Ni

n
= αi + o

(
1

g(n)

)
, (39)

σ2
kl

σ2
= ckl + o

(
1

g(n)

)
, (40)

where αi > 0, 1 ≤ i ≤ d and ckl ≥ c > 0, 1 ≤ k, l ≤ d for some constant c. The quadratic vector equation becomes

m(z) =
d∑

k=1

αkgk(z), (41)

−
1

gk(z)
= z +

d∑
l=1

αlcklgl(z). (42)

We state the following local law for sparse SBM.

Corollary III.3. Let An be the adjacency matrix of a stochastic block model with the assumptions above, let ρ be the probability
measure corresponding to Eq. (41). For any constant δ, C1 > 0, there exists a constant C2 > 0 such that with probability at least
1 − n−C1 , the following holds. For any bulk interval I of length |I | ≥ C2 log n

np , the number of eigenvalues NI of An√
nσ

in I obeys the
concentration estimate �����

NI − n
∫

I
ρ(x)dx

�����
≤ δn |I |.

Proof. We have the following well-known Cauchy Interlacing Lemma, appearing, for example, as Lemma 36 from Ref. 30.

Lemma III.4. Let A, B be symmetric matrices with the same size, and B has rank 1. Then for any interval I, we have

|NI(A + B) −NI(B) | ≤ 1, (43)

where NI(M) is the number of eigenvalues of M in I.

Let Ãn be the matrix whose off diagonal entries are equal to An and

ãii = pkk (44)

if (i, i) is in the kth block.
From Lemma III.4, since rank E(Ãn) = d, we have

|NI(An) −NI(An − E(Ãn)) | ≤ d = o(n |I |).

Therefore it suffices to prove the local law for

Wn =
An − EÃn
√

nσ
.
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Let An−EÃn
σ = (ξij)1≤i,j≤n. By Schur’s complement, we can write the Stieltjes transform of the empirical measure sn(z) in the following

way:

sn(z) =
1
n

n∑
k=1

1

−
ξkk√

n
− z − Yk

.

We do the following partition of sn(z) into d parts:

sn(z) B
d∑

l=1

Nl

n
f (l)
n (z),

where

f (l)
n (z) B

1
Nl

∑
k∈Vl

1

−
ξkk√

n
− z − Yk

. (45)

The kth diagonal element in An−EÃn
σ is

−pkk
√

nσ
= o(1). Similar with (10), we have

−
1

f (l)
n (z)

=

d∑
m=1

Nm

n
cmlf

(m)
n (z) + z + o(1), 1 ≤ l ≤ d (46)

for any z ∈ Dn ,ε with probability at least 1 − n−C−9. Using the assumptions (39), (40) and the fact that |f (l)
n | ≤

1
η , we have

−
1

f (l)
n (z)

= z +
d∑

m=1

αmcmlf
(m)
n (z) + o(1), 1 ≤ l ≤ d (47)

for any fixed z ∈ Dn ,ε with probability at least 1 − n−C−9.
Since d is fixed and all coefficients ckl, 1 ≤ k, l ≤ d in (42) are positive and bounded, from Theorem 2.10 in Ref. 4,

sup
1≤i≤d

|gi(z) | < ∞, ∀z ∈ H.

Theorem 2.12(i) in Ref. 4 implies Lemma II.13 holds with Λ(z) B sup
1≤i≤d

|f (i)
n (z) − gi(z) | for any fixed z ∈ Dn ,ε . Similar to the Proof of

Lemma II.7, we have

|sn(z) −m(z) | = |
d∑

l=1

Nl

n
f (l)
n (z) −

d∑
l=1

αlgl(z) |

≤ |

d∑
l=1

Nl

n
f (l)
n (z) −

d∑
l=1

αlf
(l)
n (z) | + |

d∑
l=1

αlf
(l)
n (z) −

d∑
l=1

αlgl(z) |

≤

d∑
l=1

|(
Nl

n
− αl)f

(l)
n (z) | +

d∑
l=1

αl |f
(l)
n (z) − gl(z) | = o(1)

uniformly for all z ∈ Dn ,ε with probability at least 1 − n−C. Hence the local law for An√
nσ

is proved. ◽

We have the corresponding infinity norm bound for eigenvectors in the bulk.

Corollary III.5. Let An be an adjacency matrix of a stochastic block model. For any bulk interval I such that eigenvalue
λi(

An√
nσ

) ∈ I and any constant C1 > 0, with probability at least 1 − n−C1 , the corresponding unit eigenvector ui(
An√
nσ

) satisfies







ui

(
An
√

nσ

)




∞
≤

C2

√
log n
√

np

for some constant C2 > 0.

Proof. Let Wn B
An√
nσ

. For any λi(Wn) in the bulk, by Corollary III.3, one can find an interval I centered at λi(Wn) and |I | = C2 log n
np

such that NI ≥ δ1n|I| for some small δ1 > 0 with probability at least 1 − n−C1−3. We can find a set J ⊂ {1, . . ., n − 1} with |J| ≥ NI/2
such that |λj(Wn−1) − λi(Wn)| ≤ |I| for all j ∈ J. Let Xk be the kth column of An

σ with the kth entry removed, then Xk =
√

nak.
Since Xk is not centered, we need to show
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∑
j∈J

|uj(Wn,k)∗Xk |
2 = ‖πH(Xk)‖2 = Ω( |J |) (48)

with probability at least 1 − n−C1−3, where H is the subspace spanned by all orthonormal eigenvectors associated with eigenvalues
λj(Wn ,k), j ∈ J and dim(H) = |J|.

Let H1 = H ∩H2, where H2 is the subspace orthogonal to the vector Eak. The dimension of H1 is at least |J| − 1. Let bk = ak−Eak,
then the entries of bk are centered with the same variances as ak. By Lemma II.10, we have

‖πH1 (bk)‖2 = Ω
(
|J |
n

)
with probability at least 1 − n−C1−3. Moreover,

‖πH(ak)‖ = ‖πH(bk + Eak)‖ ≥ ‖πH1 (bk + Eak)‖ = ‖πH1 (bk)‖,

which implies (48) holds. The rest of the proof follows from the Proof of Theorem II.3. ◽

2. Unbounded number of classes
For the Stochastic Block Models, if we allow the number of classes d → ∞ as n → ∞, a local law can be proved under the

following assumptions:

d = o
(

n
g(n)

)
, (49)

d∑
i=1

������

σ2
kl

σ2
− ckl

������
= o

(
1

g(n)

)
. (50)

We will compare the Stieltjes transform of the empirical spectral distribution to the measure whose Stieltjes transform
satisfies the following equations:

mn(z) =
d∑

i=1

Ni

n
gn,i(z), (51)

−
1

gn,i(z)
= z +

d∑
i=1

Ni

n
cijgn,j(z). (52)

We have the following local law for SBM with unbounded number of blocks.

Corollary III.6. Let An be an adjacency matrix of SBM with assumptions (49) and (50). Let ρn be the probability measure
corresponding to Eqs. (51) and (52). For any constants δ, C1 > 0, there exists a constant C2 such that with probability at least

1 − n−C1 the following holds. For any bulk interval I of length |I | ≥
C2 log n

np
, the number of eigenvalues NI of

An
√

nσ
in I obeys the

concentration estimate
�����
NI − n

∫
I
ρn(x)dx

�����
≤ δn |I |. (53)

Proof. Since d = o
(

n
g(n)

)
, recall the definition of Ãn from (44), by Cauchy interlacing law,

|NI(An) −NI(An − E(Ãn)) | ≤ d = o(n |I |).

It suffices to prove the statement for the centered matrix Wn B
An − EÃn
√

nσ
. The proof then follows from Corollary III.3 with

assumption (50). ◽

Remark III.7. Different from Corollary III.3, in Corollary III.6, we are not comparing the empirical spectral distribution to a

limiting spectral distribution ρ independent of n. If we assume
Ni

n
→ αi,α1 ≥ α2 · · · ≥ · · · , and

∞∑
i=1

αi = 1, one can show that ρn

converge to some ρ (see Sec. 7 in Ref. 34 for further details). But we do not have a local law comparing NI with n∫ Iρ(x)dx. In fact,
let Sn be the symmetric function on [0, 1]2 representing the variance profile as in (26) and S be its point-wise limit, there is no
upper bound for rate of convergence on sup

x,y
|Sn(x, y) − S(x, y)|.
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Remark III.8. With the same argument in the Proof of Corollary III.5, the infinity norm bound for eigenvectors in Corollary
III.5 still holds for the SBM with unbounded number of classes.
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23J. Huang and B. Landon, “Spectral statistics of sparse Erdős-Rényi graph Laplacians,” Ann. Inst. H. Poincare Probab. Statist. (to appear); e-print
arXiv:1510.06390v1 (2015).
24J. Huang, B. Landon, and H.-T. Yau, “Bulk universality of sparse random matrices,” J. Math. Phys. 56(12), 123301 (2015).
25F. Krzakala, C. Moore, E. Mossel, N. Joe, S. Allan, L. Zdeborová, and P. Zhang, “Spectral redemption in clustering sparse networks,” Proc. Natl. Acad. Sci.
U. S. A. 110(52), 20935–20940 (2013).
26K. Luh and V. Vu, “Sparse random matrices have simple spectrum,” preprint arXiv:1802.03662 (2018).
27S. O’Rourke, V. Vu, and K. Wang, “Eigenvectors of random matrices: A survey,” J. Comb. Theory, Ser. A 144, 361–442 (2016).
28M. Rudelson, R. Vershynin, and R. Vershynin, “Hanson-Wright inequality and sub-Gaussian concentration,” Electron. Commun. Probab. 18(82), 1–9 (2013).
29D. Shlyakhtenko, “Gaussian random band matrices and operator-valued free probability theory,” Banach Cent. Publ. 43(1), 359–368 (1998).
30T. Tao and V. Vu, “Random matrices: Universality of local eigenvalue statistics,” Acta Math. 206(1), 127–204 (2011).
31L. V. Tran, V. H. Vu, and K. Wang, “Sparse random graphs: Eigenvalues and eigenvectors,” Random Struct. Algorithms 42(1), 110–134 (2013).
32V. Vu and K. Wang, “Random weighted projections, random quadratic forms and random eigenvectors,” Random Struct. Algorithms 47(4), 792–821 (2015).
33P. M. Wood, “Universality and the circular law for sparse random matrices,” Ann. Appl. Probab. 22(3), 1266–1300 (2012).
34Y. Zhu, “A graphon approach to limiting spectral distributions of Wigner-type matrices,” preprint arXiv:1806.11246 (2018).

J. Math. Phys. 60, 023301 (2019); doi: 10.1063/1.5053613 60, 023301-16

Published under license by AIP Publishing

https://scitation.org/journal/jmp
https://doi.org/10.1109/tit.2015.2490670
http://arxiv.org/abs/1509.03368
http://arxiv.org/abs/1506.05095
https://doi.org/10.1007/s00440-016-0740-2
http://arxiv.org/abs/1704.02945
http://arxiv.org/abs/1704.02953
https://doi.org/10.1017/s0963548309990514
https://doi.org/10.1007/s10986-014-9231-2
https://doi.org/10.1214/08-aop421
https://doi.org/10.4310/joc.2011.v2.n1.a2
https://doi.org/10.1007/s00220-012-1527-7
https://doi.org/10.1007/s00220-012-1527-7
https://doi.org/10.1214/11-aop734
https://doi.org/10.1002/cpa.20317
https://doi.org/10.1007/s00440-011-0390-3
http://arxiv.org/abs/cs/0610045
http://arxiv.org/abs/1808.09437
https://doi.org/10.1016/0378-8733(83)90021-7
http://arxiv.org/abs/1510.06390v1
https://doi.org/10.1063/1.4936139
https://doi.org/10.1073/pnas.1312486110
https://doi.org/10.1073/pnas.1312486110
http://arxiv.org/abs/1802.03662
https://doi.org/10.1016/j.jcta.2016.06.008
https://doi.org/10.1214/ecp.v18-2865
https://doi.org/10.4064/-43-1-359-368
https://doi.org/10.1007/s11511-011-0061-3
https://doi.org/10.1002/rsa.20406
https://doi.org/10.1002/rsa.20561
https://doi.org/10.1214/11-aap789
http://arxiv.org/abs/1806.11246

