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ABSTRACT
We prove a local law and eigenvector delocalization for general Wigner-type matrices. Our methods allow us to get the best
possible interval length and optimal eigenvector delocalization in the dense case, and the first results of such kind for the sparse

case downtop = w with g(n) — co. We specialize our results to the case of the stochastic block model, and we also obtain a
local law for the case when the number of classes is unbounded.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5053613

I. INTRODUCTION
A. The stochastic block model

The Stochastic Block Model (SBM), first introduced by mathematical sociologists,?? is a widely used random graph model
for networks with communities. In the last decade, there has been considerable activity’2#-1125 in understanding the spectral
properties of matrices associated with the SBM and to other generalized graph models, in particular, in connection to spectral
clustering methods.

Stochastic Block Models represent a generalization of Erdés-Rényi graphs to allow for more heterogeneity. Roughly speak-
ing, an SBM graph starts with a partitioning of the vertices into classes, followed by placing an Erdés-Rényi graph on each
class (independent edges, each occurring with the same given probability depending on the class), and connecting vertices
in two different blocks by independent edges, again with the same given probability which this time depends on the pair
of classes. The random matrix associated with this graph is the adjacency matrix, which is a random block matrix whose
entries have Bernoulli distributions, the parameters of which are dictated by the inter- and intra-block probabilities mentioned
above.

Specifically, suppose for ease of numbering that [n] = V; U Vo U - - - UV, for some integer d, [Vi| = N; fori=1, ..., d. Suppose
that for any pair (k, I) € [d] x [d] with k # [ there is a py; € [0, 1] such that for any i € V,j € V;,

__J1,  with probability py,,
% = 0, otherwise.

Also, if k = [, there is p;, such that for any i, j € V,,
0, ifi=j,

a; =11, with probability py,
0, otherwise.
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Each diagonal block is an adjacency matrix of a simple Erd6s-Rényi graph, and off-diagonal blocks are adjacency matrix of bipar-
tite graphs. While there is interest in studying the O(1) variance case [corresponding to all p;s and p;s being O(1) the “dense” case],
special interest is given to the sparse case [when pys and p;s are o(l), and more specifically, when the average vertex degrees,
given by np;; as well as np;, are growing very slowly with n or may even be large and constant].

The adjacency matrices of SBM graphs are themselves a particular form of general Wigner-type matrix, which have been
shown to exhibit universal properties in Ref. 5 in the dense case. We detail the connection to the broader field of random matrix
universality studies in Sec. I B.

B. Universality studies, general Wigner-type matrices, and related graph-based matrix models

At the same time with the increased interest in the spectra of SBM, the universality studies in random matrix theory pio-
neered by Refs. 30 and 13 had been gaining ground at tremendous pace. The pioneering work on Wigner matrices started
in Refs. 30 and 13 has been now extended to cover generalized Wigner matrices,'® Erdés-Rényi matrices (including sparse
ones),'* 6 and general Wigner-type matrices.® All such studies start by proving a local law at “optimal” scale, that is, on intervals
of length (logn)® /n or n'~2, which is necessary for the complicated machinery of either Ref. 30 or Ref. 17 to translate the local
law into universality of eigenstatistics on “optimal-length” intervals.

In this paper, we prove a main theorem about (dense) generalized Wigner matrices and then apply it to cover sparse gen-
eralized Wigner matrices; finally, we show that our results translate to graph models like the SBM with bounded or unbounded
number of blocks. We provide below a brief review of universality studies related to graph-based models.

After the original work on Wigner matrices, the first step in the direction of graph models, or graph-based matrices, came
with Ref. 31, where the authors proved a local law for Erdds-Rényi graphs. Subsequently, Refs. 16 and 15 superseeded these
results for the slightly denser cases and showed bulk universality in a p > n™"/3 regime. The sparsity of the model is important
here because it makes the problem more difficult. A more recent paper?* refined the results of Refs. 15 and 16 and made them
applicable for p > n™* for any (fixed) & > 0. Subsequently, in a departure from studying adjacency matrices, Ref. 23 proved bulk
universality for the eigenvalue statistics of Laplacian matrices of Erd6s-Rényi graphs, in the regime when p > n~'*# for fixed
& > 0. Very recently, Ref. 21 proved a local law for the adjacency matrix of the Erd6s-Rényi graph with p > Clogn/n for some
constant C > 0.

Finally, Ref. 3 examined a large class of sparse random graph-based matrices (two-atom and three-atom entry distributions),
proved a local law up to intervals of length 1/n'-“, and deduced (by the same means employed in Ref. 24) a bulk universality
theorem. This is different from our results since our sparse matrices have entries that are not necessarily atomic but come from
the product of a Bernoulli variable and a potentially continuous one (See Sec. [II A); however, the® case does seem to cover the
sparse SBM model for p > n™'*%. As an interesting aside, in the general case, there may not be an asymptotic global law (aka
the limiting empirical spectral distribution); the cases we study here (SBM with bounded and unbounded number of classes)
are specific enough that we can also prove the asymptotic global law. However, as it turns out, in the case of the SBM with an
unbounded number of blocks, the prediction in the local law must still be made using the n-step approximation to the global law,
not the global law itself, since convergence to the global law is not uniform.

Some of the methods used for examining the universality of these graph models rely on the work in Refs. 4 and 5, where
a general (dense) Wigner-type matrix model is considered and universality is proved up to intervals of length 1/n'-¢. We
will also appeal to Ref. 4 since it will help establish the existence of limiting distributions and the stability of their Stieltjes
transforms.

We should mention the significant body of the literature that deals with global limits for the empirical spectral distributions
of block matrices. Starting with the seminal work of Girko,?° the topic was treated in Refs. 19 and 29 from a free probability
perspective; more recently, Refs. 6 and 12 have examined the topic again for finitely many blocks (a claim in Ref. 12 that the
method extends to a growing number of blocks is incorrect). The global law for stochastic block models with a growing number
of blocks was derived in Ref. 34 via graphon theory.

C. This paper

The main difference in the results streaming from the seminal studies of Ref. 30, respectively,’? is in the conditions imposed
on the matrix entries: the former approach to universality is based on the “four moment match” condition but imposes relatively
weak conditions on the tails, while the latter studies by imposing stronger conditions on the tails. In later studies, these stronger
conditions have included bounded moments.>'82% While the methods of Ref. 13 have been extended to increasingly more general
matrix models, the methods in Ref. 30 have been used to focus on reaching the best (smallest) possible interval lengths for the
classical, Wigner case via methods whose basis was set in Ref. 32.

This paper bridges the two approaches to obtain a local law and eigenvector delocalization for dense and sparse general
Wigner-type matrices and for the SBM.

Our main result is a local law in the bulk down to interval length % for general Wigner-type matrices (see Sec. I) whose
entries are compactly supported almost surely in [-K, K], employing some of the ideas from Refs. 30 and 32. Our result is more
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refined than the one from Ref. 5, where the smallest interval length was O(1/n!~#) and bounded moments were assumed. With
additional assumptions (either four-moment matching, as in the case of Ref. 30, or finite moments, as in Ref. 13 and subsequent
studies), universality down to this smaller interval length should follow.

In addition to this main result, we also obtain the first local laws for sparse general Wigner-type matrices (see Sec. 1] A),

2
down to interval length CKn—l;g". We specialize our results to sparse SBM with finite many blocks, where a limiting law
exists. Finally, we extend these results to an unbounded number of blocks for the SBM, under certain conditions (see
Sec. I1I B).

It should be said that our local laws for sparse general Wigner-type matrices are not sharp enough to yield universality,
unless p is w(1/n®) for any & > 0. This is an artifact of the use of the methods of Ref. 30 and is also observable in Ref. 31. It is
to be expected that they can be refined (by us or by other researchers) in the near future to a point where universality can be
deduced.

Il. GENERAL WIGNER-TYPE MATRICES

Let My = (&j)i<ijen be a random Hermitian matrix with variance profile S; = (sij)i<ij<n Such that &, 1 <i <j <n are
independent with

E&j = 0,Elg;|* = sy

and compactly supported almost surely, i.e., |£;| < K for some K = o(\/%).
For the variance profile S,, we assume
c<s;<1
for some constant ¢ > 0. Note this is equivalent to ¢ < s;; < C by scaling. Define W, = % The Stieltjes transform of the empirical
spectral distribution of W, is given by

1
sn(z) = 7—Ltr(Wn —zl)7L,

We will show that s,(z) can be approximated by the solution of the following quadratic vector equation studied in Ref. 4:

1w
Mp(2) = n Zgn (), ®
k=1
b :z+lzn:sklgﬁ)(z) 1<k <n. )
we G

From Theorem 2.1 in Ref. 4, Eq. (2) has a unique set of solutions gﬁe )(z) :H — H,1 < k <n, which are analytic functions on the
complex upper half plane H = {z € C : Im(z) > 0}. The unique solution my(z) in Eq. (1) is the Stieltjes transform of a probability
measure p, with supp(on) c [-2, 2] such that

o1 .
pon(x) = 1,;13(} ;Im(mn(x +1n)).
We use the following definition for bulk intervals of py,.

Definition IL1. An interval I of a probability density function p on R is a bulk interval if there exists some fixed &£ > 0 such that
p(x) >, for any x € L.

We obtain the following local law of M,, in the bulk.

Theorem II.2 (Local law in the bulk). Let My, be a general Wigner-type matrix and pn be the probability measure corresponding

to Egs. (1) and (2). For any constant &, Cy, there exists a constant C, > 0 such that with probability at least 1-n~%, the following holds.

CoK?logn
n

For any bulk interval I of length |I| > , the number of eigenvalues N; of Wy, in I obeys the concentration estimate

< onll|. 3

N - n/pn(x)dx
I

As a consequence, we obtained an optimal upper bound for eigenvectors that corresponds to eigenvalues of W, in the bulk
interval.
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Theorem II.3 (Optimal delocalization of eigenvectors in the bulk). Let My, be a general Wigner-type matrix. For any constant
C; > 0 and any bulk interval I such that eigenvalue 1;(Wp) € I, with probability at least 1 — n~%, there is a constant C, such that the
corresponding unit eigenvector ui(Wy) satisfies
CyKlog"?n
wi (W, < —-.
lui(Wa)ll,, N

Remark 11.4. Theorems I1.2 and I1.3 also hold for the general Wigner-type matrix whose entries £;s are sub-gaussian
with sub-gaussian norm bounded by K. As mentioned in Remark 4.2 in Ref. 27, the proof follows in the same way by using
the inequality in Theorem 2.1 in Ref. 28 for sub-gaussian concentration instead of Lemma 1.2 in Ref. 32 for K-bounded
entries.

We use standard methods from Ref. 30, adapted to fit the model considered here.

A. Proof of main results
1. Proof of Theorem I1.2
Forany O < ¢ < % and constant C; > 0, define a region

C2K*logn }

Dne = {z € C: pp(Re(2)) = &,Im(z) > 56

)

for some constant C3 > 0 to be decided later.
Let Wy, i be the matrix W, with the kth row and column removed, and a;, be the kth row of W,, with the kth element removed.

Let (Wy —zI)! = (qg.l))lg j<n- From Schur’s complement lemma (Theorem A.4 in Ref. 7), we have

1
ke = —7 )
—ﬁ -z-Y
where
Y = a5 (Wn, — 21) .
Let

R 1
M@ = &,y ()
then we can write s,(z) as
1 a_ 15w
sn(d) = tr(Wn —2l) ' = - kzz; 9(2). (6)

We first estimate Yy to derive a perturbed version of (2). Let (W, — zI)™! = (qgl'k))m,jsn_l, and Sﬁe) be a diagonal matrix whose
diagonal elements are the kth row of S, with the kth entry removed. We have

]E[Yk |Wn,k] = E[“Z(Wn,k - ZI)ilak |Wn,k]

n-1 k
= > di Elag
i=1
n-1 K
= qf[‘ sk
i=1
1
= —tr[(W - 2D)'sY) ™

The following 2 lemmas give estimates for Yy, and the proofs are deferred for Secs Il B 1 and II B 2.

LemmaIL5. Let Zﬂg ) e the diagonal matrix whose diagonal elements are the kth row of S,. For any k, 1 < k <n, and any fixed z
K2C3logn
nss

’

with Im(z) >
E[Y W, ] = —1 tl‘[(W - ZI)_lz(k)] +0 —1
k nk n n n oy

L

where the constant in the O(m7

) term is independent of z.
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A similar estimate holds for Yy itself.

Lemma I1.6. For any constant C > 0, one can choose the constant Cs defined in (4) sufficiently large such that for any k,
1<k <n, zeDyg onehas

i - tr{(Wa —21) 5] = o(6?) (®)
with probability at least 1 — n~¢-10,

With the help of Lemmas II.5 and 11.6, note that, since % = 0(62),

1 1<
—t[(Wa -2 '20] = — 3 sufl ©)
=1

and combining (5), (8), and (9), we have

)+ ! 0, 1<k<n (10)

)
Lom suf(z) +z+0(52)

with probability at least 1 — n=¢=9,

The next step involves using the stability analysis of quadratic vector equations provided in Ref. 4 to compare the solutions
to (10) and (2). We have the following estimate.

Lemma IL.7. For any constant C > 0, one can choose Cs in (4) sufficiently large such that

sup [f(2) - g¥(2)] = o(6?), 1)

1<ksn

for all z € Dy, . uniformly with probability at least 1 — n=C¢=2,

With Lemma I1.7, we have for any C > 0, there exists C3 > 0 in (4) such that

302 - ma(a)1 = |+ 10 - 1Y g0e) = o(6?) (12)
k=1 k=1

uniformly for all z € Dy, . with probability at least 1 — n=C.
To complete the Proof of Theorem 11.2, we need the following well-known connection between the Stieltjes transform and

empirical spectral distribution, as shown, for example, in Lemma 64 in Ref. 30 and also Lemma 4.1 in Ref. 32.

Lemma I1.8. Let My, be a general Wigner-type matrix. Let &, § > 0, for any constant C; > 0, there exists a constant C > 0 such
that suppose that one has the bound
ISn(z) —mn(2)| < 6

212
with probability at least 1 - n~C uniformly for all z € Dy, ., then for any bulk interval I with |I| > max {2z, % log 1 5} wheren = w,

one has

< onll|

‘NI - n/pn(x)dx
1

with probability at least 1 - n=4

From (12), for any constant C; > 0, we can choose Cs in (4) large enough such that
ISn(z) —mn(2)| < 6

uniformly for all z € Dy . with probability 1 — n=C, where C is the constant in the assumption of Lemma 1.8, and then Theorem
I1.2 follows from Lemma II.8.

2. Proof of Theorem 11.3

The proof is based on Lemma 41 from Ref. 30 given below.
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Lemma IL.9. Let Wy be a n x n Hermitian matrix and W, be the submatrix of Wy with kth row and column removed, and
let wi(Wy) be a unit eigenvector of Wy, corresponding to 23(Wy), and x; be the kth coordinate of u;(Wy). Suppose that none of the
eigenvalues of Wy, are equal to 4;(Wn). Let a;, be the kth row of Wy, with of kth entry removed, then

1

I | = :
T L W) — (W) 2 (W) ag 2

(13)

where uj(Wy) is a unit eigenvector corresponding to 4;(Wp).

Another lemma we need is a weighted projection lemma for random vectors with different variances. It is a slight
generalization of Lemma 1.2 in Ref. 32. Note that in the below

*y 12 _ A
]Elqu| —tr(ujqu),

and the proof follows verbatim, as in Ref. 32.

Lemma IL.10. Let X = (&3, - .., &n) be a K-bounded random vector in C" such that Var(&) = 0'i2, 0 < 0'12 < 1. Then there are
constants C, C’ > 0 such that the following holds. Let H be a subspace of dimension d with an orthonormal basis {uy, ..., ug}, and
x = diag(c?,...,03%). Then forany1 > 1y, ..., 14 > 0,

d d £
P lerj |u]f‘X|2 - Z;rjtr(uju]i*z) >t|< Cexp(—C’ﬁ). (14)
J= j=

In particular, by squaring, it follows that

P

d 2
* ’ t
> 2t ;:1 ritrWw )+ t* | < Cexp(-C ) (15)

Below we show how delocalization follows from Lemmas I1.9, I1.10, and Theorem I1.2. For any C; > 0 and any 2;(W5) in the
K>Cy logn
n

d d
*y |2 *
g 13|qu| - E rjtr(ujujz)
J=1

=

bulk, by Theorem 1.2, one can find an interval I centered at 2;(Wy) and |I| = for some sufficiently large C, such that N;
> &ym|l| for some small 6; > 0 with probability at least 1 - n~%~3. By Cauchy interlacing law, we can find asetJ c {l, ..., n - 1}
with |J| > N;/2 such that [4;(Why k) — 4i(Wy)| < |I| for all j € J. Let X, be the kth column of My, with the kth entry removed. Note

Ci+3
C/

that from Lemma I1.10, by taking r; = 1,j € J, and t = C3K, [logn for some constant C3 >
have

in (14), using assumption s;; > ¢, we

3 (W) X 2 > \/Ztrwwn,k)u;(wn,k)z)—csf< logn

jeJ jel
> 4/clJ| - C3K/logn

__ G
> (Ve _Czél/zwm (16)

with probability at least 1 - n~%~3, By choosing C; sufficiently large, (16) implies

D (W) X2 = /1]

jel

for some constant C’ > 0 with probability at least 1 - n=¢1=3. By (13),
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2 1
[xe|* = — 5 %
1+ Z]':1 (’lj(wn,k) - /li(Wn))_ |uj(Wn,k)* \/_ﬁ |
< 1
1 B (W) = (W) 2 g (W ) 3 12
< 1
T 1T B 10 (Wh k) X 2
1

S e —
1+n-I|=2C ||
21| _ K*C}logn

< % =
Co — n

for some constant C4 with probability at least 1—2n-%~3, Thus by taking a union bound, [|u; ||, < % “::)g" with probability at least

1-nCforall<ic<n.

B. Proof of auxiliary lemmas
We now prove the all the lemmas in the proof of Theorem II.2.

1. Proof of Lemma 1.5

C2K*logn o
Letn = Y and z := x + V=1 - 7. By (7), it suffices to show forall 1 <k <n,
tr{(Wa — 2) =W - tr[(W, - 21)'sW]| < % (17)

We will use the following result known as Lemma 1.1 in Chap. 1 of Ref. 20.

Lemma IL11. Let €= (cy,...,Cn) be a real column vector, and My, = (&ij)nxn be a Hermitian matrix, for any z with and Imz > 0, we
have, forany1 <k <n,

2 * > 2 * - T =
Ci — & Re(2cich) + & RiiCi Rid

&k —2— & Redi

where R, = (M, — zI)7, ¢, is the vector € with the kth coordinate removed, and & is the kth column of My with the kth element
removed.

"My, —zly'e - CTQT(MMQ -zl =

We introduce a real random vector € = (cy, . . ., ¢,) whose coordinates are mean zero, independent variables also independent
of W, with Var(c;) = s; for1 <i <n.
Apply Lemma IL.11 to Wy, and . We have R, = (W, —zI)7!, and

2 - - 5T
Ck - a;Rk(ZCka) + a;RkaCk Ryay
ik ’

& _z-y,

'(Wy, —z)le - CTQT(WMQ -zl g =

By taking the conditional expectation with respect to c, conditioned on W,,, we have

Skr t asz ng)Rk Ay

Sk o
W Z Yk

E[ET Wy —2I)1€ — &, Wy — 21)7'65 | W] =

Calculating the left-hand side yields

S + a2 Ry SY
Er[(Wa = 20 5] = (W - 2l) 50 = T
Sk _z_y,

Vn

Ryay,

Since we have
* (k) * (k)
[Skk + akRkSn Rpag| <1+ |akRkSn Reag|

<1+ ap(Wag — X% +7°1) " ag,
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and
(5230 = (1P ).

(17) holds. This completes the proof of Lemma II.5.

2. Proof of Lemma 1.6

We need a preliminary bound on the number of eigenvalues in a short interval. The following Lemma is similar to Proposition
66 in Ref. 30.

Lemma I1.12. For any constant C; > 0, there exists a constant Cy > 0 such that for any interval I c R with |I| > w, one has
Ni(Wn) = O(nl1) (18)
with probability at least 1 - n=C1,
Proof. By the union bound, it suffices to show that the failure probability for (18) is less than 1-n-¢-! for
I =n= Csz logn
R n
for some sufficiently large C. By
1 n
Im(sa(x s Vo) = S — 1 19
m(sn(x m)= - ; 7 Wn) el (19)
it suffices to show that the event
N; > Cnny (20)
and
Im(sn(x + nV-1)) > C (21)
fails with probability at least 1 — n~¢~! for some large absolute constant C > 1. Suppose we have (20), (21), by (19),
1 ¢ 1
— » |Im >C
n kZ:; (%‘i —(x+n\/—_1)—Yk)
1
Using the bound |{Im it implies
£ ()| < gyt e
1
- ) ——02C 22
n kz;f |77 + Im(Yy)| 22)

Note that
n-1
Wn,k = Z /lj(wn,k)u;(wn,k)uj(Wn,k)v
j=1
where uj(Wy ), 1 < j <n - 1are orthonormal basis of Wy, i, one has
o (W)

=]ZA(WM> (x+ V1)’

Yk = ak(

and hence

i (Whg)ag
mY,>ny —2—— .
j=1 7%+ (/lj(wn,k - x)?

On the other hand, from (20), by Cauchy interlacing theorem, we can find an index set J with |J| > #n such that 4;(Wy ;) €1
for all j € J, then we have

Zm W) [® :—nPHkakn : 23)
]eJ
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where Py, is the orthogonal projection onto a subspace Hj, spanned by eigenvectors uj(Wn ), j € J. From (22) and (23), we have

% Z > C. (24)

o1 2t + ||PHkak||

On the other hand, takingrj = 1,1 <j < d, d = |J] and t = C4K,/logn for some sufficiently large C, in (I5), using assumption s;; > c,

we have that [Py, (a)lI* = Q(n7) with probability at least 1 — O(n~C'#) > 1 -n~C1-5, Taking the union bound over all possible choice
of J, we have (24) holds with probability at least 1 - n=%~1, The claim then follows by taking C sufficiently large.
Now we are ready to prove Lemma II.6. From Lemma IL.5, it suffices to show

Vi - E[Yi Wil = 0(6), 1<k<n (25)

with probability at least 1 — n=¢~10, We can write

"le I ( (W )a |
’I(Wnk)_z '

Jj=1

where {u;(Wy, k) 1 are orthonormal eigenvectors of Wy, ;. Moreover,

1 -
E[Yi W] = —tr[(Wa - 21) 'S

1 n-1 1 . ®
= ; Wuj(wn,k)uj (Wne)Su
. k
2 Ui (W (W )S5]
4 (Wn,k) -z

1
=
Let X;, = Vnag, and define

£ 1= 1 (Wine) X2 = truj(Woy s (Wi )SWT-

It suffices to show that

= 0(6%)

Yy — E[Ye Wai]l =
[V~ EDY Wa] = 21: (Wnk) x- V-1

with probability at least 1 — n=¢~1, The remaining part of the proof goes through in the same way as in the Proof of Lemma 5.2 in
Ref. 32 with Lemmas I1.10 and I1.12. Then Lemma II.6 follows. O

3. Proof of Lemma 1.7
We define gn(z,x) = g(k)(z) if x e [&1, k) 1 <k <nand

. i-11 i—-1 3
Sn(x,y) =s; ifxe [T’ ﬁ)’y € []T’ %) (26)
Then (2) can be written as
1
Mp(z) = /0 gn(z, x)dx, (27)
1
———— =2+ | Sulx, ,y)dy, 28
N /0 n(X, Y)gn(z, y)dy (28)

for all x € [0, 1]. Similarly, define fu(z, x) = ﬁlk)(z) if x € [&1 k) 1 <k <n. Then we can write (6) and (10) as

n'’'n

sn(z) = /lfn(z, x)dx,

fn<z » / S, Y)fn(z,y)dy + dn(z,X),
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where for any fixed z from (10),
ldn(2)ll,, = sup |dn(z,%)| = 0(5%) (29)
x€[0,1]

with probability at least 1 — n~C-? for any fixed z € Dy, ..
The following lemma follows from Theorem 2.12 in Ref. 4 which controls the stability of Eq. (28) in the bulk. Here we use the
fact that ¢ < s; < 1to guarantee the assumptions of S, in Theorem 2.12 in Ref. 4. Define

A(z) = sup [fu(z,%) — gn(z,X)I.
xe[0,1]

Lemma I1.13. For any fixed z € Dy, -, there exist constants 1, Cs > 0 depending on & but independent of n such that for z € Dy,

A@UA®) < A} < Cslldu(@)ll... (30)

Proof. Since the variance satisfies ¢ < s;j < 1, Sy satisfies condition A1-A3 in Chap. 1 of Ref. 4. Especially, it implies condition
A3withL =1
From the lower bound p(z) >&, Lemma 5.4 (i) in Ref. 4 implies

R 1
sup I94(z) < = < oo
1<k<n €

for any z with Re(z) € I, Im(z) > 0. Then the assumptions in Theorem 2.12 in Ref. 4 holds. (30) then follows from Theorem 2.12 in
Ref. 4. a

Remark 11.14. Lemma II.13 is a stability result for the solution of (28), which is deterministic and does not require moment
assumptions on the random matrix My,.

From Lemma I1.13 and (29), we have for any fixed z € Dy, ¢,

AR{A(2) < 1) = 0o(6?) (31)
with probability at least 1 — n=¢=9,
We proceed with a continuity argument as in the proof of Theorem 3.2 in the bulk (Sec. 3.1 in Ref. 4) to show (31) holds
uniformly for z € D, . with probability at least 1 - n=¢-2,
Now for any 0 < &’ < 4, we consider a line segment

K*CZlogn
ngé

L=x+V-1

)

for some fixed x with pn(x) >£, 0 < £ <1/2, and let n be large enough such that }L < & and ||dn(2)|l,, < &'. Let Ly consist of n*
evenly spaced points on L. Then we have
ARA@R) < ) < & (32)
for all z € L, with probability at least 1 — n=C>,
From Theorem 2.1 in Ref. 4, gn(z, x) is the Stieltjes transform of a probability measure; hence, the derivative of gn(z, x) is
uniformly bounded by m < n? for z € Dy, .. Similarly, for fn(z, x), from (5), for 1 <k <n,

)| | 1+
9z (52 —z-Y,)2
1+ ap (W - 2I)2a, 1
ez 1E-z-v
By Theorem A.6. in Ref. 7, for z = x + V=17,

1+ a; Wy, — 2I)2ay, 1

(-z-vy) |
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Ekk Ekk . 2., 21
= —z-Yy| =2 |Im(Z= —z-Yy)| = n(l+a,(Wpr — xI)* +1n°)"ag) > n.
B 2] 2 (S -2 i) =l (W= 0P D N0 2
202
Note thatforz € D, ., 7 > %j;’g” > 1 we get
(k)
8f"(z)slsn2, 1<k<n
0z e

So both fu(z, x) and ga(z, x) are n?-Lipschitz function in z for z € D, ... It follows that
IA(Z') - A(z)| < 2n?|Z’ -z|,
for any z, z’ € L. We first claim that
A@Z)1{A(z) < /%8 } <2¢, (33)
for all z € L with probability at least 1 — n=C->,

Since 0 < & <1/2,ifz € Ly, (33) is true from (32). If z € L \ Ly,, choose some z’ € L, such that |z — 2’| < n~3. Suppose A(z) < /%8,
note that
IAZ) - A@)| < 2n’|z-7| < % (34)
which implies
, 2 e 2
A(z)sA(z)+R S5t <A
with probability at least 1 — n~C-5. From (32), A(z') < &’ with probability at least 1 — n=C~5, From (34),
A@R) < A@)+ % <2¢ (35)

with probability at least 1 — n=C-5, therefore (33) holds.

In the next step, we show that the indicator function in (33) is identically equal to 1. From (32), we have A(z) ¢ (2¢, 1/2) with
probability at least 1 - n=¢-5,

Let E be the event that A(z)1{A(z) < 4} < 2&’ happens. Conditioning on E, since A(z) is 2n?-Lipschitz in z, and L is simply
connected, we have

A(L) = {A(z):z € L}
is simply connected. Therefore A(L) is contained either in [0, 2&’] or [£, o).

From (5), we have for 1 <k <n,
1 1

<
_dw _,_vy | IIm@)]’
‘% z Yk ()

)=

and since gﬂe)(z) is a Stieltjes transform of a probability measure, for1 <k <mn,

1

®Nf <
Ign (2)] < @)

which implies

2
A(Z) < |Im—(z)|

Consider the point z, == x + V=1-n € L, we have

2 2
Alzn) € —— = = < 2¢
(zn) < Im(z,) n &>

which implies A(z,) € [0, 2&']. Hence for all z € L, A(z) < 2&’ with probability at least 1 - n~¢=5, and the indicator function in (33) is
identically equal to 1.
Now we extend the estimate to all z € D,, ... Consider n® lines segments
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K2C2 logn 5
n|,pn(xg) = &,1<k <n

xk+\/_[

such that the n?-neighborhoods of points {x, 1 < k < n®} cover any bulk interval of py. By the 2n?-Lipschitz property of A(z) again,
K2CZlogn

— 5 < Imz < n, with probability at least 1 - n=“2.

we can show A(z) < 4¢&’ for all z with pn(Re(2)) > &,
On the other hand, for all z with Im(z) > n,

1) 90 < 1z =O[ 1) (36)

Combining these two cases, for all z € D, . with probability at least 1 — n-¢-2

lIfa(2) = gn(@) o, = 0(6%).

This completes the Proof of Lemma IL.7.

Ill. APPLICATIONS: SPARSE MATRICES
A. Sparse general Wigner-type matrices

Let My, be a sparse general Wigner-type matrix with independent entries Mj; = §;;¢;; for 1 <i < j < n. Here §;; are independent

g(n)logn
n

and identically distributed (i.i.d.) Bernoulli random variables which take value 1 with probability p = , where g(n) is any

function for which g(n) — c asn — oo, and &;; are independent random variables such that
]Eflj = O1E|‘§1]|2 = Sij,C < Sij < 1’

and in addition, |£;| < K almost surely for K = o(4/g(n)).
We can regard this model as the sparsification of a general Wigner-type matrix by uniform sampling. Similar models were
considered in Refs. 26 and 33.

Considering the empirical spectral distribution of W,, := 3%‘; we specify a local law for this model.

Corollary III.1. Let My, be a sparse general Wigner-type matrix, let p,, be the probability measure corresponding to Egs. (1)

and (2). For any constants &, C; > 0, there exists a constant C; > 0 such that with probability at least 1 — n=, the following

. CoK?logn Mn

holds. For any bulk interval I of length |I| > === 7
estimate

, the number of eigenvalues N; of W,, := in I obeys the concentration

< onll|. (37)

Ni—-n / on(x)dx
I

Proof. Define

M
Hy = ?; = (hijhi<ij<n-
Then Ehy; = 0, E|h; = sij, and |hyj| < % = o( [%), and (37) follows as a corollary of Theorem II.2 for Hy,. O

The infinity norm of eigenvectors in the bulk can be estimated in a similar way.

Corollary II1.2. Let My, be a sparse general Wigner-type matrix and W, = yTip. For any constant C; > 0 and any bulk interval
I such that eigenvalue 1;(W,) € I, with probability at least 1 — n~%, there is a constant C; such that the corresponding unit
eigenvector u;(Wy) satisfies
CyKlog"?n

Twi(Wn)ll, < N
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B. Sparse stochastic block models
1. Finite number of classes

Our analysis of sparse random matrices applies to the adjacency matrices of sparse stochastic block models.
Consider the adjacency matrix An = (a4j)1<ij<n Of an SBM graph, where A, is a random real symmetric block matrix with d?
blocks. Recall that we partition all indices [n] into d sets,

n]=ViuVu---UVy (38)

such that |[V;| = N;. We assume a; = 0,1 < i <nand ay, i # j are Bernoulli random variables such that if a;; is in the (k, [)th block, a;;
= 1 with probability py; and a;; = O with probability 1 - py;.
Let o2 = pi(1 - py). Define p = max py and o2 = p(1 - p). Assume

B g(n)logn
b= T

’

where supp < 1and g(n) » o0 as n — co. We also assume that
n

N 1
n “’”"(g(n))’ )
2
il _ 1
5 = o ) “0)
where a; > 0,1 <i <dandcy >c>0,1<k, 1 <dfor some constant c. The quadratic vector equation becomes
d
mz) = " g, (41)
k=1
1 d
———==2z+ ) Cyg(2). 42
e IZ:; 1Ck191(2) (42)

We state the following local law for sparse SBM.

Corollary II1.3. Let Ay be the adjacency matrix of a stochastic block model with the assumptions above, let p be the probability
measure corresponding to Eq. (41). For any constant &, C; > 0, there exists a constant C, > 0 such that with probability at least

1-n"%, the following holds. For any bulk interval I of length |I| > CZL—?", the number of eigenvalues N; of \/’:l% in I obeys the
concentration estimate

< onll|.

N - n/lp(x)dx

Proof. We have the following well-known Cauchy Interlacing Lemma, appearing, for example, as Lemma 36 from Ref. 30.

Lemma Ill4. Let A, B be symmetric matrices with the same size, and B has rank 1. Then for any interval I, we have
INI(A+B) - Ni(B)| <1, (43)

where Ni(M) is the number of eigenvalues of M in L.

Let A, be the matrix whose off diagonal entries are equal to A, and
i = Pre (44)
if (i, 1) is in the kth block. y
From Lemma II1.4, since rank E(A,) = d, we have
INi(An) = Ni(An - EAy))| < d = o(nI]).

Therefore it suffices to prove the local law for
A, - EA,

W, =
n \/ﬁO’
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Let A"’?]EA" = (&j)1<ij<n- By Schur’s complement, we can write the Stieltjes transform of the empirical measure s(z) in the following

way: .
1 1
@) == > —————.
n nkZ:; Ekk -z2-Y,

We do the following partition of sy(z) into d parts:

R
where
0) 1
A=t Y — (45)
Nl kev; % -z=Y
The kth diagonal element in 22-EAn ]EA" is —— Pek _ = o(1). Similar with (10), we have
# Vi
1 Nm
- = Z cnf @) +z+0(l), 1<l<d (46)
fo@
for any z € D, . with probability at least 1 - n=C=°. Using the assumptions (39), (40) and the fact that If | <1 wehave
=z+ Z amCf @) +0(l), 1<l<d (47)

() m=1

for any fixed z € Dy, . with probability at least 1 - n=¢-9,
Since d is fixed and all coefficients ¢, 1 < k, I < d in (42) are positive and bounded, from Theorem 2.10 in Ref. 4,

sup 1gi(z)| < oo, ¥z € H.

1<i<d

Theorem 2.12(i) in Ref. 4 implies Lemma II.13 holds with A(z) := sup |f (z) gi(z)| for any fixed z € Dy .. Similar to the Proof of
1<izd
Lemma I1.7, we have

a

Isn(z) - m(z)| = |Z

3

d
- 3 ma@)
=1

d
@) - eff <z>|+|2au*”<z> Zalgmz
=1

IA
M= L
=1z

[N

N

d
< DG - af)@1+ Y alf@) - @) = of1)

=1

M“r

l

Il
5N

uniformly for all z € Dy,  with probability at least 1 -
We have the corresponding infinity norm bound for eigenvectors in the bulk

Corollary IIL.5. Let A, be an adjacency matrix of a stochastic block model. For any bulk interval I such that eigenvalue

&’;)satisﬁes
u‘( An ) B Cz,llogn
' ﬁo— o B

vnp
Proof. LetW, = ‘%”U .For any 4;(Wy) in the bulk, by Corollary II1.3, one can find an interval I centered at 2;(W,) and |I| = %‘;g"
such that Ny > in|I| for some small §; > 0 with probability at least 1 - n~“~3. We can find asetJ c {1, ..., n — 1} with |J| > N; /2

such that |4(Wn_1) — 4;(Wy)| < [l for all j € J. Let X, be the kth column of A;" with the kth entry removed, then X, = vna.
Since X} is not centered, we need to show

for some constant C, > 0.
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D7 (W) X = (X I = Q(171) (48)
jel

with probability at least 1 - n~¢=3, where H is the subspace spanned by all orthonormal eigenvectors associated with eigenvalues
Aj(Wn x), j € Jand dim(H) = |J].

Let H; = H n Hy, where Hj is the subspace orthogonal to the vector Eay. The dimension of Hj is at least |J| — 1. Let by = a; —Eay,
then the entries of b, are centered with the same variances as a;,. By Lemma I1.10, we have

Iy (D)1 = Q(%)
with probability at least 1 - n=%1=3. Moreover,
llwm(ap)ll = llwn(be + Eag)ll = |7, (b + Eag)ll = ll7w, (bk)1,
which implies (48) holds. The rest of the proof follows from the Proof of Theorem II.3. m|

2. Unbounded number of classes

For the Stochastic Block Models, if we allow the number of classes d — « as n — o, a local law can be proved under the
following assumptions:

d= o(%) (49)

_ o(ﬁ) (50)

We will compare the Stieltjes transform of the empirical spectral distribution to the measure whose Stieltjes transform
satisfies the following equations:

2
T o
- O'Z

d
i=1

d
Ni
'H'I.n(Z) = _gn,i(Z), (51)
i=1
1 d N'
- =z+ ean o (2). N
Ini(2) ; ii9n,j(2) 52

We have the following local law for SBM with unbounded number of blocks.

Corollary II1.6. Let A, be an adjacency matrix of SBM with assumptions (49) and (50). Let p, be the probability measure
corresponding to Egs. (51) and (52). For any constants &, C; > 0, there exists a constant C, such that with probability at least
Cyl
—2ogn A ing obeys the

n o

1-n"% the following holds. For any bulk interval I of length |I| > , the number of eigenvalues N; of

concentration estimate

< onll|. (53)

N - n/pn(x)dx
I

Proof. Since d = o(ﬁ), recall the definition of A, from (44), by Cauchy interlacing law,

IN1(An) = Ni(An — E(An))| < d = o(n]I)).
A, - EA,
Vno

assumption (50). m]

It suffices to prove the statement for the centered matrix Wy, := . The proof then follows from Corollary II1.3 with

Remark IIL.7. Different from Corollary IIL.3, in Corollary III.6, we are not comparing the empirical spectral distribution to a

limiting spectral distribution p independent of n. If we assume # - a,a >ay--- > ---,and Z ; = 1, one can show that p,
i=1
converge to some p (see Sec. 7 in Ref. 34 for further details). But we do not have a local law comparing N; with n f1p(x)dx. In fact,
let S, be the symmetric function on [0, 1]? representing the variance profile as in (26) and S be its point-wise limit, there is no
upper bound for rate of convergence on sup|Sn(x, ¥) — S(x, y)|-
Xy
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Remark III.8. With the same argument in the Proof of Corollary IIL.5, the infinity norm bound for eigenvectors in Corollary
I11.5 still holds for the SBM with unbounded number of classes.
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