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1. Introduction
1.1. Hypergraph clustering

Clustering is an important topic in data mining, network analysis, machine learn-
ing and computer vision. Many clustering methods are based on graphs, which rep-
resent pairwise relationships among objects. However, in many real-world problems,
pairwise relations are not sufficient, while higher order relations between objects can-
not be represented as edges on graphs. Hypergraphs can be used to represent more
complex relationships among data, and they have been shown empirically to have
advantages over graphs; see [55,51]. Thus, it is of practical interest to develop algo-
rithms based on hypergraphs that can handle higher-order relationships among data,
and much work has already been done to that end; see, for example, [55,41,52,28,
13,33,6]. Hypergraph clustering has found a wide range of applications ([32,21,12,25,
38]).

The stochastic block model (SBM) is a generative model for random graphs with
community structures which serves as a useful benchmark for the task of recovering
community structure from graph data. It is natural to have an analogous model for
random hypergraphs as a testing ground for hypergraph clustering algorithms.

1.2. Hypergraph stochastic block models

The hypergraph stochastic block model, first introduced in [26], is a generalization of
the SBM for hypergraphs. We define the hypergraph stochastic block model (HSBM) as
follows for d-uniform hypergraphs.

Definition 1.1 (Hypergraph). A d-uniform hypergraph H is a pair H = (V, E) where V
is a set of vertices and E C (‘;) is a set of subsets with size d of V, called hyperedges.
When d = 2, it is the same as an ordinary graph.

Definition 1.2 (Hypergraph stochastic block model (HSBM)). Let C = {C1,...C)} be a
partition of the set [n] into k sets of size s = n/k (assume n is divisible by k), each
C;,1 < i <k is called a cluster. For constants 0 < g < p < 1, we define the d-uniform
hypergraph SBM as follows:

For any set of d distinct vertices i1, .. .44, generate a hyperedge {i1,...iq} with prob-
ability p if the vertices i1,...7q are in the same cluster in C. Otherwise, generate the
hyperedge {i1,...14} with probability g. We denote this distribution of random hyper-
graphs as H(n,d,C,p,q). When d = 2, it is the same as the stochastic block models for
random graphs.

Hypergraphs are closely related to symmetric tensors. We give a definition of sym-
metric tensors below. See, e.g., [39], for more details on tensors.
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Definition 1.3 (Symmetric tensor). Let T € R™ " *™ be an order-d tensor. We call T
symmetric if T;, 4, iy = To(iy),0(is)...,0(ia) fOr ANy i1,...,iq € [n] and any permutation
o in the symmetric group of order d.

Formally, we can use a random symmetric tensor to represent a random hypergraph
H drawn from this model. We construct an adjacency tensor T of H as follows. For any
distinct vertices i1 < 19 < --- < iq that are in the same cluster,

{1 with probability p,

01,0050d . .
0  with probability 1 — p.
For any distinct vertices i; < -+ < iq4, if any two of them are not in the same cluster,
we have
~J1  with probability g,
00 with probability 1 — g.
We set T;,..., = 0 if any two of the indices in {i1,...iq} coincide, and we set

To(ir),0lia)...o(ia) = Li,..i, for any permutation o. Furthermore, we may abuse nota-
tion and write T, in place of T}, .. ;,, where e = {i1,...,i4}.

The HSBM recovery problem is to find the ground truth clusters C = {C,...,Ck}
either approximately or exactly, given a sample hypergraph from H(n,d,C,p, q). We may
ask the following questions about the quality of the solutions; see [1] for further details
in the graph case:

(1) Exact recovery (strong consistency): Find C exactly (up to a permutation) with
probability 1 — o(1).

(2) Almost exact recovery (weak consistency): Find a partition C such that o(1) portion
of the vertices are mislabeled.

(3) Detection: Find a partition € which is correlated with the true partition C.

We are typically interested in one of two regimes:

¢ The dense regime. In this regime p and ¢ are constant, and the number of clusters
k is allowed to grow with n. We then ask: how small can we make the cluster size
s = n/k while still being able to guarantee recovery?

o The sparse regime. In this regime k is constant, s = ©(n), and p, ¢ = o(1). We then
ask: how small can we make p and ¢ while still being able to guarantee recovery?

Several methods have been considered for exact recovery of HSBMs. In [26], the au-
thors used spectral clustering based on the hypergraph’s Laplacian to recover HSBMs
that are dense and uniform. Subsequently, they extended their results to sparse,
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non-uniform hypergraphs in [27-29]. Spectral methods along with local refinements were
considered in [16,4]. A semidefinite programing approach was analyzed in [37].

For different sparsity regimes, the efficient algorithms are not the same and there is no
‘universal’ algorithm that works optimally for all different sparsity regimes and different
problems. For example, the detection problems of SBMs with bounded expected degrees
are analyzed by algorithms based on self-avoiding walks [45] or non-backtracking walks
[47,11]. However, for the exact recovery problems in the logarithmic degree regime, the
algorithms that achieve the information theoretical threshold are based on semidefinite
programming [2] or spectral clustering based on eigenvectors of the adjacency matrices
[3]. In this paper we will only focus on the exact recovery problem and our algorithm
might not work well for the almost exact recovery or detection problems.

1.3. Our results

In this paper, we present a spectral algorithm for exact recovery which compares well
with previously known algorithms in the dense regime. Our main result is the following:

Theorem 1.4. Let p, q,d be constant. For sufficiently large n, there exists a deterministic,
polynomial time algorithm which exactly recovers d-uniform HSBMs with probability 1 —

exp(~Q(y/n) if s = Q(y/n).

See Theorem 2.1 below for the precise statement. Our algorithm is based on the itera-
tive projection algorithm developed in [19,18] for the graph case. We apply this approach
to the adjacency matriz A of the random hypergraph H (see Definition 3.1). The chal-
lenge is that the adjacency matrix constructed from the adjacency tensor used in the
algorithm does not have independent entries. In the process, we prove a non-asymptotic
concentration result for the spectral norm of A, which may be of independent interest
(Theorem 4.3) for other random hypergraph problems.

1.4. Why dense HSBMs?

While sparse (H)SBMs typically have more applications in data science, the dense case
is nonetheless of theoretical importance. The SBM recovery problem is known alternately
as the planted partition problem and can be seen as a variant of the planted clique
problem originally posed in [36]. In the latter, one generates an Erdés-Rényi random
graph G (n, %) and adds edges deterministically to form a clique on an arbitrary subset
of the vertices; the goal is then to determine exactly which vertices were members of
the “planted” clique w.h.p. If the planted clique is too small, then there is no way to
distinguish it from a randomly occurring clique in G(n, %), thus, the central question is
how big the clique must be in order to guarantee (efficient) recovery.

For both planted clique and planted partition, it is statistically impossible to re-
cover the clique or partition w.h.p. if the size of the clique or parts of the partition is
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O(logn) [15]. On the other hand, the best known polynomial time algorithms in both
problems require the size to be (y/n) in order to guarantee recovery w.h.p. [7,8,14,19,
49], and there is evidence that this is best that can be done efficiently for exact recov-
ery [22,23,36]. If the size of the partition or clique is s = Q(y/nlogn), a simple counting
algorithm similar to the one we present in Appendix A would work [40,15]. However,
when the cluster sizes are only required to be ©(y/n), the problem becomes more difficult
because the error terms introduced by simple counting arguments are too large. It’s still
a major open problem in theoretical computer science to find polynomial time algorithms
which succeed w.h.p. in the regime where the size of the clique or the partition is o(y/n).
See Section 1.4.1 in [15] for more discussion.

Thus, Theorem 1.4 is consistent with the state of the art for planted problems on
graphs; moreover, our algorithm for HSBM recovery compares favorably with other
known algorithms in the dense case with k¥ = w(1) clusters (see Section 1.5). To the
best of our knowledge, our algorithm is the first to guarantee exact recovery when all
clusters are size ©(y/n). In Section 9, we include a more thorough discussion of limitations
of SBM recovery algorithms.

As discussed at the end of Section 1.2, one should not expect one algorithm that works
optimally for all sparsity regimes. While we focus on the dense case, our algorithm can
be adapted to the sparse case as well (see Appendix B); however, it does not perform
as well as previously known algorithms in [37,43,17,16,29] in the sparse regime. In fact,
it is even outperformed by the simple hyperedge counting algorithm presented in Ap-
pendix A. The main obstacle is the lack of concentration for sparse hypergraphs: in our
spectral algorithm (Algorithm 1), to make sure the iterative procedure succeed at every
step, one needs to take a union bound over exponentially many events, which requires
a concentration bound of the spectral norm with exponentially decaying tail probabili-
ties, but sparse random matrices do not concentrate as well as dense random matrices.
Optimizing our algorithm for sparse HSBMs is a possible direction for future work.

1.5. Comparison with previous results

We compare our spectral algorithm, as well as the simple counting algorithm presented
in Appendix A, with previous exact recovery algorithms, with p, ¢, d being constant. In
[4,16] the regime where k grows with n is not explicitly discussed, so we only include
k= O(1) case.

Paper Number of clusters Algorithm type

[37] O(1) Semidefinite programming
[5] O(1) Spectral + local refinement
[16] O(1) Spectral + local refinement
[29], Corollary 5.1 o(log;Tl (n)n%) Spectral + k-means

Our result (Algorithm 2) O(logﬁf14 (n)n®-5) Simple counting

Our result (Algorithm 1) 0(n°%) Spectral
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2. Spectral algorithm and main results

Our main result is that Algorithm 1 below recovers HSBMs with high probability,
given certain conditions on n, k, p, ¢, and d. It is an adaptation of the iterated projection
algorithm for the graph case introduced by [19,18]. The algorithm can be broken down
into three main parts:

(1) Construct an “approximate cluster” using spectral methods (Steps 1-4)

(2) Recover the cluster exactly from the approximate cluster by counting hyperedges
(Steps 5-6)

(3) Delete the recovered cluster and recurse on the remaining vertices (Step 7).

Algorithm 1
Given H = (V, E), |V| = n, number of clusters k, and cluster size s = n/k:

(1) Let A be the adjacency matrix of H (as defined in Section 3).

(2) Let Pr(A) = (Puyv)u,vev be the dominant rank-k projector of A (as defined in Section 5).

(3) For each column v of Px(A), let Py, > ... > P, . be the entries other than P,, in non-increasing
order. Let W, := {v,u1,...,us_1}, i.e., the indices of the s — 1 greatest entries of column v of Py(A),
along with v itself.

(4) Let W = W,-, where v* := arg max, ||Py(A)1w,||2, i.e. the column v with maximum ||Px(A)1w,||2.
It will be shown that W has small symmetric difference with some cluster C; with high probability
(Section 6).

(5) For all v € V, let N, w be the number of hyperedges e such that v € e and e \ {v} C W, i.e., the
number of hyperedges containing v and d — 1 vertices from W.

(6) Let C be the s vertices v with highest N, w. It will be shown that C = C; with high probability
(Section 7).

(7) Delete C from H and repeat on the remaining sub-hypergraph. Stop when there are < s vertices left.

Theorem 2.1. Let H be sampled from H(n,d,C,p,q), where p and q are constant, C =
{C1,...,C} and |C;| = s=n/k fori=1,... k. If d = o(s) and

6dy/d(,",) By 2.1)
(3P —a)s — 12d\/d(,"))

32d ’
then for sufficiently large n, Algorithm 1 exactly recovers C with probability > 1 — 2F .

exp(—s) —nk -exp (—£2(57]) )-

In the theorem above, the size d of the hyperedges is allowed to grow with n. The
special case in which d is constant follows easily:

Theorem 2.2. Let H be sampled from H(n,d,C,p,q), where p and q, and d are constant,
C=A{Cy,...,Cx} and |C;| =s=n/k fori=1,... k. If

S covnd

T (p-g)TT

)

then Algorithm 1 recovers C w.h.p., where co is an absolute constant.
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Proof. Observe that if

18dy/d(,") g 22

52 — = 32d
(d—2) (p—aq)s
then we have

6dy/d(,") 18a,Ja() g
S 5 < .
(2 —a)s - 12d\/m () —aq)s — 32d

Hence, if (2.2) is satisfied, then it is possible to choose € satisfying (2.1), so Theorem 2.1

guarantees that we can recover C w.h.p. in this case. Recall that for nonnegative integers
a > b we can bound the binomial coefficient (2) by (%)b < (‘;) < (%)b. The conclusion
follows by applying these bounds in (2.2) and solving for s. Note that we want the failure

probability in Theorem 2.1 to be o(1), so we require

exp (—52 (2: D) — of(nk) ).

It is easy to verify that this is satisfied if d is constant. O

In Appendix A we present a trivial hyperedge counting algorithm. Algorithm 1 beats
this algorithm by a factor of (logn) %=1, See Section 1.5 for comparison with other known
algorithms.

The remainder of this paper is devoted to proving Theorem 2.1. Sections 3-5 introduce
the linear algebra tools necessary for the proof; Section 6 shows that Step 4 with high
probability produces a set with small symmetric difference with one of the clusters;
Section 7 proves that Step 6 with high probability recovers one of the clusters exactly;
and Section 8 proves inductively that the algorithm with high probability recovers all
clusters.

2.1. Running time

In contrast to the graph case, in which the most expensive step is constructing the
projection operator Py (A) (which can be done in O(n?k) time via truncated SVD [30,31]),
for d > 3 the running time of Algorithm 1 is dominated by constructing the adjacency
matrix A, which takes O(n?) time (the same amount of time it takes to simply read the
input hypergraph). Thus, the overall running time of Algorithm 1 is O(kn?).

3. Reduction to random matrices

Since we do not have many linear algebra and probability tools for random ten-
sors, it would be convenient if we could work with matrices instead of tensors. We
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propose to analyze the following adjacency matrix of a hypergraph, originally defined in
[24].

Definition 3.1 (Adjacency matriz). Let H be a random hypergraph generated from
H(n,d,C,p,q) and let T be the adjacency tensor of H. For any hyperedge e = {i1,...,i4},
let T, be the entry in T corresponding to T3, . ;,. We define the adjacency matrix A of
H by

Aij = Z Te. (31)

e{ij}ee

Thus, A;j is the number of hyperedges in H that contains vertices ¢, j. Note that in the
summation (3.1), each hyperedge is counted once.

From our definition, A is symmetric, and A; = 0 for 1 < i < n. However, the entries
in A are not independent. This presents some difficulty, but we can still get information
about the clusters from this adjacency matrix A.

4. Eigenvalues and concentration of spectral norms

It is easy to see that for d > 2,

-2 -2
(S )(p —q)+ (n 2>q, if ¢ # j are in the same cluster,

d—2 d
(Z : 2) q, if 7, j are in different clusters.

Let

s (o0 ()

then A is a symmetric matrix of rank k. The eigenvalues for A are easy to compute,
hence by a shifting, we have the following eigenvalues for EA. Note that we are using
the convention A\ (X) > ... > A\, (X) for a n x n self-adjoint matrix X.

Lemma 4.1. The eigenvalues of EA are

nEa) = (57 5) -0+ (573 a1,

e = () o-a6-v-(j5)e 2<isk

)\i(EA):—<Z:§)(p—q)— <Z:§>q, k+1<i<n.
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We can use an e-net chaining argument to prove a concentration inequality for the
spectral norm of A — EA.

Definition 4.2 (c-net). An e-net for a compact metric space (X, d) is a finite subset N
of X such that for each point x € X, there is a point y € N with d(z,y) < e.

Theorem 4.3. Let || - ||2 be the spectral norm of a matriz, we have

|A—EAl|; < 6d d(dfl) (4.1)

with probability at least 1 —e™™.

When d = 2, Theorem 4.3 is a concentration result for Wigner matrices. Our result
includes the case where d is growing with n. Lemma 2 in [5] is a similar concentration
result for the adjacency matrix A for random hypergraphs, but with probability 1 —
O(1/n). However, to make our Algorithm 1 succeed with high probability with k& =
©(y/n) many clusters, we need a concentration bound of the spectral norm of A with
exponentially small failure probability since we need to take a union bound over 2% events
in order to guarantee the algorithm’s success (see Section 8.2).

Proof of Theorem 4.3. Consider the centered matrix M := A—EA, then each entry M;;
is a centered random variable. Let M, = T, — E[T,]. Let S™! be the unit sphere in R
(using the lo-norm). By the definition of the spectral norm,

[M]l2 = sup [(Mx,x)].
XGS"71

Let NV be an e-net on S”~!. Then for any x € S"~!, there exists some y € N such that
|x — y|l2 < e. Then we have

[Mxlz2 = [[Myllz < [[Mx — Myl||2 < [|M]2][x = yll2 < &[[M|2.
For any y € NV, if we take the supremum over x, we have

(L—g)|M]2 < [Myll2 < su/}\D[IIMZIIQ-
FAS

Therefore
1
M|z < sup [[Mx||2 = sup (Mx,x) (4.2)
1—exen 1—¢exen
Now we fix an x = (x1,...,2,)" € S"~! first, and prove a concentration inequality

for ||[Mx||2. Let E be the hyperedge set in a complete d-uniform hypergraph on [n]. We
have
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(Mx,x)

ZM”:EZx] = 2ZM”$Z$] = 22 Z M.)x;x;

i#£] i<j i<j ecE:i,j€e

—22 Z x;xj) Me..

eckE i,j€e,i<j

Let Ye := (3 ;jcc.i<j TiTj)Me, then

(Mx,x) =2)"Y,

ecE

where {Y.}.cr are independent. Note that |M,| < 1, so we have

Yol =1 > M| <| ) wil
ij€e,i<g ij€e,i<j

By Hoeffding’s inequality,

P(‘ZYG‘Zt)SQQXp <_ 2t )

ecE 4Ze€E | ZijEe,z’<j zizj|?

From Cauchy’s inequality, we have

d N in
eezl:s|ij;<jxixj|2 : (2) Z Z i} < (2> (Z_2> Z zz?

ecEijce,i<j

6 () ()

Therefore from (4.3) and (4.4),

]P>(|<Mx,x>22t)§2exp<— 20" )

. 3. n
Taking ¢t = id d(d— 1), we have

P <|<Mx x)| > 3dVd <d— )) < 2exp (—%) < exp(—3n).

d—2

Since |N| < (2+1)" (see Corollary 4.2.11 in [5:
by a union bound, we have

3] for example), we can take ¢ = 1/2 and
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Akt 1y An A2y Ak A1

(53) (0 — @)s — 12d, /(")

Fig. 1. The distribution of eigenvalues of A.

P <sup |(Mx,x)| > 3dVd (d " )) < 5%exp(—3n) <e ™. (4.5)

xeN -1

So we have from (4.2), (4.5)

n
P ||M]|s>6d4/d <e "
<|| o> 6 (d_1)> <em o

Since [\ (A)=N(EA)| < |JA—EA]||3 for 1 < < n, we see that the largest k eigenvalues
of A are separated from the remaining n—k by at least (fj:g) (p—q)s—12d, /d(dfl). Fig. 1
depicts this separation in the eigenvalues, which is necessary to bound the difference in
the dominant rank-k projectors of A and EA in the next section.

5. Dominant eigenspaces and projectors

Our recovery algorithm is based on the dominant rank-k projector of the adjacency
matrix A.

Definition 5.1 (Dominant eigenspace). If X is a nxn Hermitian or real symmetric matrix,
the dominant r-dimensional eigenspace of X, denoted E,.(X), is the subspace of R™ or
C™ spanned by eigenvectors of X corresponding to its r largest eigenvalues.

Note that by this definition, if A,.(X) = Ar41(X), then E,.(X) actually has dimension
> r, but that will never be the case in this analysis.

Definition 5.2 (Dominant rank-r projector). If X is a n x n Hermitian or real symmetric
matrix, the dominant rank-r projector of X, denoted P,.(X), is the orthogonal projection
operator onto E,.(X).

P.(X) is a rank-r, self-adjoint operator which acts as the identity on E,(X). It has

r eigenvalues equal to 1 and n — r equal to 0. If vy,...,v, is an orthonormal basis for
E.(X), then

Po(X) =D viv), (5.1)
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where v* denotes either the transpose or conjugate transpose of v, depending on whether
we are working over R or C. Let us define Y to be the incidence matrixz of C; i.e.,

Yio = (5.2)

1 if u,v are in the same part of C,
0 else

Thus, it is our goal to reconstruct Y given H ~ H(n,d,C,p,q).

Theorem 5.3. Let A,EA, and A be defined as in Sections 3 and J. Then

PL(EA) = P(A) = Pi(Y) = -¥.

Proof. Let 1¢, € {0,1}" denote the indicator vector for cluster C; and J,, the n x n all
ones matrix. Then we can write

k
Y=Y 1¢1l, A=(a—bY+bl,, EA=A-al,

for some constants a > b > 0. Thus, {ﬁlci e=1,..., k:} is an orthonormal basis for

the column space of both Y and A, and hence, in accordance with (5.1),
u 1
Pe(Y)=Pu(A) =) - Y.
% (Y) % ( 2 s ;

Now, observe that the eigenvalues of EA are those of A shifted down by a, and v is
an eigenvector of EA if and only if it is an eigenvector of EA; hence, the dominant
k-dimensional eigenspace of EA is the same as the column space of A, and therefore

Thus, Py(EA) = P(A) gives us all the information we need to reconstruct Y. Unfor-
tunately, a SBM recovery algorithm doesn’t have access to EA or A (if it did the problem
would be trivial), but the following theorem shows that the random matrix Py(A) is a
good approximation to Py(EA) and thus reveals the underlying rank-k structure of A:
Theorem 5.4. Assume (4.1) holds. Then

[Pe(A) — Pe(EA)|2 < e

and

1Pk (4) = PL(EA)||r < v/2ke
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6d\/d(,")
(20 — ) — 124\ fd(,",)

To prove Theorem 5.4, we use the following Lemma from [18, Lemma 4].

for any e >

Lemma 5.5. Let X, Y € R™ ™ be symmetric. Suppose that the largest k eigenvalues of
both X,Y are at least B, and the remaining n — k eigenvalues of both X,Y are at most
a, where o < B. Then

R A 5.3
1P R < VXY (5.4)

Proof of Theorem 5.4. Apply Lemma 5.5 with X = A, Y =EA and
§—2 n—2 n
o= (525)w-a6--(575)a-oaja(," )
s—2 n—2 n
ﬁ——(d_2>(p—q)— <d_2>q+6d\/d<d_1).

Note that in order for this to work we need a > f3, i.e.

(fz - 3) (p=aq)s > 12d\/@' D

6. Constructing an approximate cluster

In this section we show how to use Py (A) to construct an “approximate cluster”, i.e.
a set with small symmetric difference with one of the clusters. We will show that

o If |W|=sand ||Py(A)1lw|2 is large, then W must have large intersection with some
cluster (Lemma 6.1)

e Such a set W exists among the sets Wy, ..., W,,, where W,, is the indices of the s —1
largest entries in column v of Py (A), along with v itself (Lemma 6.2).

The intuition is that if ||Py(A) — Pu(EA)||2 < e, then

k
1
1P (A) 1w |3 ~ | Pe(BEA) Lw[l3 = - Y wnal,

=1

and this quantity is maximized when W comes mostly from a single cluster C;.
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Lemmas 6.1 and 6.2 below are essentially the same as Lemmas 18 and 17 in [19]. As
Pi(A) = £3°,1¢,1(, as in the graph case (Theorem 5.3), we can import their proofs
directly from the graph case. However, we present a simpler proof for Lemma 6.1.

6dy/d(,",) 1
Lemma 6.1. Assume (4.1) holds and -1 .Let|W|=s

(2 (p—q)s —12d\/a(,") 12

and ||Py(A)1w|]2 > (1 —2¢e)\/s. Then |W N C;| > (1 —6e)s for some i.

/\

Proof. By Theorem 5.4,
1(Pr(A) = Po(EA)) 1w |2 < el[1wll2 = eV/s.
And by the triangle inequality,
[1Pe(EA)Lwll2 > [|Pe(A) 1wz —ev/s = (1 - 2e)v/s —ev/s = (1 = 3e)v/s.  (6.1)

We will show that in order for this to hold, W must have large intersection with some
cluster.

Fix ¢ such that § < ¢ < s. Assume by way of contradiction that [WW N C;| <t for all
i. Observe that by T heorem 5.3

k
1
|PEA W] = - 3 IW Gl 6.2)

i=1

Let x; = |W N C;| and consider the optimization problem

L

2

max g Z Ty
i=1

k
s.t. Z T =S,
i=1

0<az; <tfori=1,... k.

It is easy to see that the maximum OCCHI‘b when z; =t,z; = s —t for some ¢, j, z; =0
for all [ # 4,7, and the maximum is - —|— (s=t) t) . Thus, by (6.1) and (6.2) we have

(s —t)°

t2
(1-3¢)%s < || PL(EA) 1w |3 < P

Solving for ¢, this implies that

1 1
t> (§+§ 1—125+1852>s>(1—65)s.
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Thus, if we choose t € [s/2, (1 — 6¢)s] we have a contradiction. Let us choose ¢ to be
as large as possible, t = (1 —6¢)s. Then it must be the case that |WNC;| >t = (1—6¢)s
for some ¢. Note that for the proof to go through we require % < 1—6¢, which is satisfied
ife<1/12. O

This lemma gives us a way to identify an “approximate cluster” using only A; however,
it would take Q(n®) time to try all sets W of size s. However, if we define W, to be v
along with the indices of the s — 1 largest entries of column v of Px(A) (as in Step 3
of Algorithm 1), then Lemma 6.2 below will show that one of these sets satisfies the
conditions of Lemma 6.1; thus, we can produce an approximate cluster in polynomial
time by taking the W, that maximizes ||P;(A4)1lw,

2.

6dy/d(,",)
Lemma 6.2. Assume (4.1) holds and € > 1

(2:3) (p—q)s— 12d\/ d(dil)

let W, be defined as in Step 3 of Algorithm 1. Then there exists a column v such that

. Forv=1,...,n,

1PL(A) L, 2 > (1 - 8% — )3 = (1 - 2) V5.

Lemmas 6.1 and 6.2 together prove that, as long as (4.1) holds, Steps 2-4 successfully
construct a set W such that |W| = s and |WNC;| > (1—6¢)s for some i. In the following
section we will see how to recover C; exactly from W.

7. Exact recovery by counting hyperedges

Suppose we have a set W C [n] such that |[WAC;| < es for some i (A denotes
symmetric difference). In the graph case (d = 2) we can use W to recover C; exactly
w.h.p. as follows:

(1) Show that w.h.p. for any u € C; will have at least (p — €)s neighbors in C;, while
any v ¢ C; will have at most (¢ + €)s neighbors in C;. This follows from a simple
Hoeffding argument.

(2) Show that, if these bounds hold for any u, v, then (deterministically) any v € C; will
have at least (p — 2¢) neighbors in W, while any v ¢ C; will have at most (q + 2¢)
neighbors in W. Thus, we can use number of vertices in W to distinguish between
vertices in C; and vertices in other clusters.

See [19, Lemmas 19-20] for details. The reason we cannot directly apply a Hoeffding
argument to W is that W depends on the randomness of the instance A, thus the
number of neighbors a vertex has in W is not the sum of |W| fixed random variables.

To generalize to hypergraphs with d > 2, an obvious analogue of the notion of number
of neighbors a vertex u has in a vertex set W is to define the random variable
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Fig. 2. When d = 3, N, ,w is the number of hyperedges containing u and 2 vertices in W. In the figure
above, N, w = 3.

Now:= Y T,

eru€ce,e\{u}CW

i.e. the number of hyperedges containing u and d — 1 vertices from W. When d = 2 this
is simply the number of neighbors u has in W (see Fig. 2 for the case d = 3). We get the
following analogue to [19, Lemma 19].

Lemma 7.1. Consider cluster C; and vertex u € [n], and let € > 0. If u € C;, then for n
sufficiently large and d = o(s),

Ny, 2 (p—e¢) (dil) (7.1)

with probability > 1 — exp (—52 (2:1)), and if u ¢ C;, then
s
N, o < 2
csra,”) (72

with probability > 1 — exp (—52 (;j))

Proof. For v € C;, N, ¢, is the sum of (Zj) independent Bernoulli random variables
with expectation p, so Hoeffding’s inequality yields

P (Nu,Ci < (P—€)<di1>> =P (Nu,ci < (p— %) (2_1))
R )
()

Note that the last inequality holds for d = o(s) and n sufficiently large.

IN

IN
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For v ¢ C;, Ny ¢, is the sum of ( dfl) independent Bernoulli random variables with
expectation ¢. So by Hoeffding’s inequality again

(e wra(, ")) o (22(7 1)) 2o (2(171). 6

The difficulty is in going from N,, ¢, to N, w, where W is a set such that [IWAC;| < es.
We have the following estimate for IV, w .

Lemma 7.2. Let W C [n] such that |[W| = s and |[W N C;| > (1 — 6¢)s for some i € [k].

Then for e < d = o(s), and n sufficiently large, we have the following:

1
164’
(1) If j € C; satisfies (7.1), then Njw > (p — 16de) <di 1),

(2) If j ¢ C; satisfies (7.2), then Njw < (¢ + 16de) (d i 1)‘

Proof. Assume j € C; and j satisfies (7.1). As |C;| = s, we have |C; \ W| < 6es.
Let Nj,C,-\W be the number of hyperedges containing j and d — 1 vertices from Cj,
among which at least one vertex from C; \ W. We then have

Njw > Njwne, = Njc, — Njcaw

so-0(,0) - (W)

In the inequality above, we bound Nj,C,-\W by a deterministic counting argument, i.e.
we count all possible hyperedges that include a vertex j, with m vertices from C; \ W
and remaining (d — 1 —m) vertices from C; for 1 <m < d —1.

1
Note that we can choose ¢ < — then for n sufficiently large, we have

16d
£ () 1)< E ()0

s m (s —d+1)I(d—1)!
1) 2 ) e =T !
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So we have
S
N;w > (p— 16de) 1)

If j ¢ C;, let Nj,W\Ci be the number of hyperedges containing j and d — 1 vertices
from W, among which at least one vertex from W\ C;. Recall [W \ C;| < 6es.

!

Njw < Njc,ow = Njc, + Njw\c;

< (q+6)<di1> +:§ ([6;51>(d—f—m)
RTINS o1 G [P

< (q+16ds)<di1>. 0

Lemma 7.2 gives us a way to distinguish vertices j € C; and j ¢ C; provided p—16de >
q + 16de.

8. Proof of algorithm’s correctness

We now have all the necessary pieces to prove the correctness of Algorithm 1 (Theo-
rem 2.1). The proof is roughly the same as that of [19, Theorem 4].

8.1. Proof of correctness of first iteration

Lemmas 6.1-7.2 above prove that Steps 1-6 of Algorithm 1 correctly recover a single
cluster in the first iteration.

Theorem 8.1. Assume that (4.1) holds and that fori=1,... k, (7.1) holds for allu € C;
and (7.2) holds for all u ¢ C; with

i) g
(3 —a@)s—12dy /(")

32d
Then Steps 1-6 of Algorithm 1 exactly recover a cluster C; in the first iteration.

Proof. By Lemma 6.2, the set W constructed in Step 4 has || Px(A)Lw||2 > (1 — 2¢)/s.

By Lemma 6.1 (noting that e < 254 < ), [W N ;| > (1 — 6e)s for some i. And by

Lemma 7.2, N, w > (1 — 16¢)s for all u € C;, while N, w < (¢ + 16de)s for all u ¢ C.
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Ife < %, then (p — 16de)s > (¢ + 16de)s. Thus, when we take the s vertices u with
highest IV, .w in Step 6, for each of them we have

Nyw > (p— 16de)s > (g + 16de)s,

so none of them could possibly come from [n] \ C;. Therefore, the set C' constructed in
Step 6 must be equal to C;. O

8.2. The “delete and repeat” step

The difficulty with proving the success of Algorithm 1 beyond the first iteration is
that the iterations cannot be handled independently: whether or not the t-th iteration
succeeds determines which vertices will be left in the (¢ + 1)-st iteration, which certainly
affects whether or not the (¢ + 1)-st iteration succeeds. However, notice that there is
nothing probabilistic in the statement or proof of Theorem 8.1: if certain conditions are
true, then the first iteration of Algorithm 1 will definitely recover a cluster. In fact, the
only probabilistic statements thus far are in Theorem 4.3 and Lemma 7.1. Similar to
the analysis in [19,18], we will show that if certain (exponentially many) conditions are
met, then all iterations of Algorithm 1 will succeed. We will then show that all of these
events occur simultaneously w.h.p.; hence, Algorithm 1 recovers all clusters w.h.p.

We begin by introducing some terminology:

Definition 8.2 (Cluster subhypergraph, cluster subtensor). We define a cluster subhy-
pergraph to be a subhypergraph of H induced by a subset of the clusters Cy,...,Ck.
Similarly, we define a cluster subtensor to be the principal subtensor of T formed by
restricting the indices to a subset of the clusters. For J C [k], we denote by H(/) the
subhypergraph of H induced by e C}, and we denote by T)) the principal subtensor
of T' with indices restricted to (J,c ; Cj.

We now define two types of events on our probability space H(n,d,C,p,q):

o Spectral events — For J C [k], let E; be the event that

m
B—-EB|: <
15 - E8l < oayfa( ")),

where B is the adjacency matrix of H(/) and m = s|J| is the number of vertices in
H) . Note that B is not simply a submatrix of A, as only a subset of the edges of
H are counted when computing the entries of B.

o Degree events — For 1 < i < k,1 < u < n, let D;, be the event that N, o, >

(p—e¢) (di 1) if u € C;, or the event that N, ¢, < (¢+¢) <di 1) if u ¢ C;. These
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are the events that each vertex u has approximately the correct value of N, ¢, for
each cluster C;.

Observe that there are 2* spectral events and nk degree events. We will now show
that if all of these events occur, then Algorithm 1 will definitely succeed in recovering
all clusters. Again, there is nothing probabilistic in this theorem or its proof.

Lemma 8.3. Assume that E; holds for all J C [k] and D, holds for all i € [k],u € [n]

with
(2 (p—q)s — 12dm 32

Then Algorithm 1 recovers Ci,...,Cy exactly.

Proof sketch. We omit the full proof as it is analogous to the proof in [19, Section 7.3].
Essentially, we prove by induction that the ¢-th iteration succeeds for ¢t =1, ..., k. If the
1st through tth iterations succeed, then the (¢t + 1)-st iteration receives as input a cluster
sub-hypergraph H), for some J C [k]. Hence, E; and D, ,, for i € J, u € Ujes Ci
ensure the success of the (¢ + 1)-st iteration. Note that if there are m = |J|s vertices
remaining, then Theorem 5.4 requires that

i)

T () - s 124, /a(m)

but this bound is largest when m = n; thus, the condition (8.1) is sufficient for all
iterations. O

Finally, we show that all of the E; and D, , hold simultaneously w.h.p.

Lemma 8.4. E; and D, ,, hold simultaneously for all J C [k],i € [k],u € [n] with proba-
bility > 1 — 2% . exp(—s) — nk - exp (—52 (2:})) for any e satisfying condition (8.1).

Proof. For any fited J C [k], H") is simply an instance of a smaller HSBM; it has
distribution H(|J|s,d,U;c ; Cj, p,q). Thus,

P (E7) < exp(~|J]s) < exp(~s)

by Theorem 4.3. And for any i € [k],u € [n],

P (D) <o (-(57)))
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by Lemma 7.1. The proof is completed by taking a union bound over all J C [k],i €
[kl,u € [n]. O

Theorem 2.1 follows as an immediate corollary to Lemmas 8.3 and 8.4.
9. Lower bounds for HSBM recovery

There have been many results which show that, for a fixed number of blocks, (H)SBM
recovery becomes impossible if the edge probabilities are below a certain threshold. For
exact recovery of HSBMs with two blocks, it was shown in [43,17,16] that the phase
transition from impossible to possible occurs in the regime of logarithmic average degree
by analyzing the minimax risk, and the exact threshold was given in [37] by a general-
ization of the techniques in [2] for graph SBMs. For the detection problem of HSBMs in
the bounded expected degree regime, a phase transition was conjectured in [9] based on
belief propagation and the non-backtracking operator. Very recently, a spectral method
based on the self-avoiding walk was proved to achieve the conjectured threshold [50].

For graph SBMs, a phase transition for the detection problem in the bounded ex-
pected degree regime with finitely many blocks, called the Kesten-Stigum threshold,
was conjectured in [20] and then proved in [47,45,46] for the 2-block case. Below the
Kesten-Stigum threshold no algorithms (even with exponential running time) will solve
the detection problem, while above the threshold detection is not only possible but can
be done in polynomial time. See [1] for further details. The phase transition behavior for
the exact recovery problem with two blocks was proved in [2]. Above the threshold, there
are polynomial time algorithms that solve the problem [2,3,48]. Minimax lower bounds
for general SBMs with finite or a growing number of blocks were given in [15,35,54].

Relatively little is known in the dense regime, even in the graph case, and most re-
sults focus on the related planted clique problem [7,36] rather than SBM recovery (a.k.a.
planted partition). It is generally believed that these problems become intractable when
the size of the clique/blocks is o(y/n). In this case, one would ideally like to prove that
these problems are distNP-complete (where distP and distNP are distributional ana-
logues of P and NP [42]). However, showing the existence of a “natural” distNP-complete
problem is itself a long-outstanding problem in complexity theory [10].

Instead, various authors have shown that certain types of algorithms will provably fail
if the size of the planted clique/blocks is too small. The first such result dates back to the
original paper introducing the planted clique problem [36], in which the author showed
that the Metropolis-Hastings algorithm fails to recover planted cliques of size n'/2~¢
for any € > 0. It was subsequently shown in [15,22] that certain optimization-based ap-
proaches also fail in this regime, while it was shown in [23] that statistical algorithms
also run into the same barrier. (A statistical algorithm is an algorithm which, instead
of receiving samples from a distribution, can query an oracle for statistics on the distri-
bution within some tolerance. Such algorithms can be used to simulate many standard
algorithms on randomized input.)
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Extending these results for planted clique to dense SBM and HSBM recovery appears
to be a promising direction for future work. In the d-uniform hypergraph case, it is unclear
whether the barrier should be /n, n'/® or something else. It seems plausible that the
barrier could be less than \/n for d > 2, since d-uniform HSBMs have (Z) independent
random variables in play compared with only () in the graph case, and thus we may
expect certain random variables (e.g. degrees) to be more tightly concentrated about
their expectations. However, it seems doubtful that a spectral algorithm could do better
than /n using only the adjacency matrix (see Definition 3.1), as this is the error term
introduced by concentration results for the spectral norm of a random symmetric n X n
matrix (see, e.g., [53]); to break the /n barrier, we suspect that one must use the spectral
properties of the adjacency tensor and not simply reduce to the adjacency matrix.

While proving lower bounds for efficient HSBM recovery appears to be difficult, one
can readily prove that exact recovery is impossible for any algorithm, regardless of run-
ning time, if the cluster size is small enough (i.e., an information theoretic lower bound).
We will follow the proof ideas from [15,34] for graph SBM recovery to prove an informa-
tion theoretic lower bound for HSBMs.

Recall the definition of incidence matrix of a partition (5.2). Conversely, let C(Y)
denote the partition of [n] whose incidence matrix is Y. Let ) be the set of all incidence
matrices corresponding to partitions of [n]| into k parts of size s:

Y :={Y : 3 k clusters of size s such that Y is the corresponding incidence matrix}.
(9.1)

In addition, recall that the Kullback-Leibler (KL) divergence between two Bernoulli
random variables with means u and v is given by
1—-u

D(u|lv) = ulog% + (1 —u)log T . (9.2)

—v

We are now able to state our theorem for the lower bound on the minimax error proba-
bility of recovering Y™*.

Theorem 9.1. If 128 < s <n/2 and

(521 mex(D@lo). Dlal)} < g ta(n ), (93)

then

inf sup P(f(T) #£Y") >
f yrey

N =

The infimum is taken over all measurable functions f : S¢({0,1}") — Y, where
S9({0,1}™) denotes the set of symmetric d-tensors in {O,l}”d, and the probability is
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taken over a random adjacency tensor T sampled from the HSBM distribution corre-
sponding to Y*, i.e. T ~ H(n,C(Y*),p,q,d).

From this theorem we know that when p, q are constant, if s = O glogdll n), then for
any algorithm there is some “bad” input on which the algorithm will fail with probability
at least 1/2. When d = 2, this is the result obtained in [15]. It is unclear at present
whether the exponent ﬁ can be improved.

Note that Theorem 9.1 is an information theoretical lower bound. On the other hand,
our Theorem 2.1 considers only polynomial time solvability, and there is a considerable
gap between the performance guarantee of Theorem 2.1 and the lower bound given in
Theorem 9.1. Closing this gap remains an open problem.

Proof of Theorem 9.1. Let m = n — s and Y = {Y,...,Y,,} be a subset of ) of size
m + 1 defined as follows. Let Yy be the incidence matrix of the partition Cq,...,Ck,
where C; ;= {(l —1)s +1,...,ls}. We then define Y; for ¢ > 0 by swapping the cluster
membership of s and s + i. More formally, if s + ¢ € Cj, then Y; is the incidence matrix
of the partition C1,...,C}, where C] := Ci U{s+i}\ {s}, C] := C;U{s}\ {s+ i}, and
C} = Cj forall j #1,1.

Let Py« ) be the joint distribution of (Y*,T') where we first sample an incidence
matrix Y* from ) uniformly at random and then sample a hypergraph adjacency tensor
T ~ H(n,C(Y™*),p,q,d) (see Section 1.2). Then we have

I(Y*5T)+1

inf sup P(f(T)#Y™) > ir}f Py (F(T) #Y7) 21~ log |Y|

, 9.4
I v=ey ( )

where the last inequality is by Fano’s inequality and I(Y™*;T) is the mutual informa-
tion between Y™ and T. Let P; be the probability distribution of the hypergraph H
conditioned on Y* =Y. By the convexity of KL-divergence we have

* 1 -
I(Y*T) < m“,ZZOD(PiHPi/) < IE{%XD(Pi|\P¢/)-

Note that P; is the product of (Z) many Bernoulli distributions. Let P;(e) be the prob-
ability distribution of the hyperedge e under the distribution P;, which is either Ber(p)
or Ber(q). Then for any i # ' we have

S

D P < 3 DEIPe () <3(3 1) Dl +3(5 7)) Dlall) - 05)

<o) mex(Dwla). Dial)

Here the first inequality in (9.5) is due to the fact that KL-divergence is additive for
products of independent distributions. The second inequality comes from counting terms
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in which P;(e) # Pis(e). In the worst case we have s +4 € C; and s + i’ € Cp for some
I #1 # 0, in which we get a contribution of D(p||q) from all e containing s+14 and d — 1
indices from C; \ {s}, all e containing s and d — 1 indices from Cj \ {s + i}, and all e
containing s + ¢’ and d — 1 indices from Cy \ {s +14'}, a total of 3(%"]) terms; we get a
contribution of D(q||p) from the same number of terms.

If (9.3) holds, then I(Y*;T) < flog(n —s) = Ilog|Y|. When n > 128, we have
log || > 4. Then from (9.4) the minimax error probability is at least 1/2. This completes
the proof. O
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Appendix A. Simple counting algorithm

One can recover HSBMs by simply counting the number of hyperedges containing pairs
of vertices: with high probability, pairs of vertices in the same cluster will be contained

in more hyperedges than pairs in different clusters. However, our spectral algorithm
provides better performance guarantees than this simple counting algorithm.

Algorithm 2

Given H = (V, E), |V| = n, number of clusters k, and cluster size s = n/k:

(1) For each pair of vertices u # v, compute A,, := number of hyperedges containing u and v.
(2) For each vertex v, let W, be the set of vertices containing v and the s — 1 vertices u # v with highest
A, (breaking ties arbitrarily). It will be shown that w.h.p. W, will be the cluster C; containing v.

Theorem A.1. Let H be sampled from H(n,d,C,p,q), whered > 3,C = {C1,...,Cx} and
|Ci| = s=n/k fori=1,...,k. Then Algorithm 2 recovers C with probability > 1 —1/n

if
s—2 n—2
(d_2>(pq)> 6<d_2>logn.

A simple counting algorithm for graph SBMs was given in [15]. Our algorithm is
modified from [15] for hypergraphs based on counting hyperedges and it requires d > 3.
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Proof. For each u # v, Ay, = Z T. is the sum of (Z:§> independent Bernoulli
e:u,vee
random variables of expectation either p or ¢. Thus, it follows from a straightforward

application of Hoeffding’s inequality that

A= (") (50— /2 (772 10gm (A1)
d—2 d—2 2\d—2

with probability > 1 — 1/n3 if v and v are in the same cluster and

n—2 3/n—2
< — .
Auv_<d2)q—|— 2(d2>logn (A.2)

with probability > 1 —1/ n3 if u and v are in different clusters. Taking a union bound
over all (}) pairs, these bounds hold for all pairs u # v with probability > 1—1/n. Thus,
as long as the lower bound in (A.1) is greater than the upper bound in (A.2), for each
v the s — 1 vertices with highest A,, will be the other vertices in v’s cluster. 0O

In particular, if we bound the binomial coefficient (Z) by (%)b < (Z) < (ae)b, we see
that

1
/1 a—2
s> civnd <ﬂ>
p—q
and
d—2

2end) 7" \/logn 2ek%d *
- c2(2end) ogn _ o ( ek d) Jiogn
n

p—aq= $d—2

are both sufficient conditions for recovery, where ¢; and ¢y are absolute constants.
Appendix B. The sparse case

We can also analyze the performance of Algorithm 1 in the sparse case, in which we

treat k, d as fixed and try to make p and ¢ as small as possible. Our concentration bound
4

w(log®n)
nd—1

a good concentration inequality of the adjacency matrix A using Lemma 5 in [44]. We

(4.3) is not optimal in the sparse case. However, when p = , we can still get

include it here:

w(log* n)

Lemma B.1. Ifp = 1
-

, we have

|A - EA||y < 2dv/nd1p (B.1)
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with probability 1 — o(1).
In this case, we get the following analog of Theorem (5.4).
Lemma B.2. Assume (B.1) holds. Then
[Pe(A) — Pu(EA)[l2 <€
and
IP:(A) = PL(EA)||r < V2ke

for any

2d+/nd=1p
: : B.
2 - g~ divT (B.2)

Proof. Apply Lemma 5.5 with X = A, Y = EA, and

o= (8_2>(p—q)(8—1)—(n:§>q—2d\/ndTa

d—2 d
f=— s—2 (p—q)— n—2 4 2dy/mdT
= d—2 pb—q d—9 q V 2
Note that we need

(523) 00> 10y (B.3)

d—2
in order for this to work. 0O

1 4
If we assume p = o.)(?i—gln)’p_ q = O(p), and k is fixed, condition (B.3) always holds.
n

In addition, we want the failure probability to be o(1), so we require

exp (52 (2: 1)) = o((nk)™1).

-1
Putting &2 <2 1> > 3logn suffices to accomplish this. Therefore, we require that ¢ >
cq/logn
n(d=1)/2

€. On the other hand, to make the algorithm succeed, we need to have ¢ <

for some constant ¢, depending only on d, k as an additional lower bound on
p—q
32d

from

the analysis in Section 8. Together we have the following constraint on e:
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cy/Togn 2d+/nd1p p—q

max <e< T/ (B.4)

nld—1)/2" (2:3) (p — q)s — 4d/n%1p 32d -

To make (B.4) work, assuming p — ¢ > ¢5p for some constant 0 < ¢5 < 1, we have

p—q> _ %
n(d—l)/S

for some constant cg > 0 depending on d, k and c5. This yields the following corollary to
Theorem 2.1:

Theorem B.3 (Sparse case). Let k,d be constant and let H be sampled from H(n,d,C,p,q),
where C = {C1,...,Cx} and |C;| = s =n/k fori=1,....k. If p—q > csp for some
constant 0 < c5 < 1 and

Ce

P=4Z G (B.5)

for some constant cg depending on d, k and cs, then Algorithm 1 recovers C w.h.p.

Thus, we see that our algorithm is far from optimal in the sparse case: the algorithms
developed in [37,43,17,16,29] all provide better performance guarantees. In fact, even the
trivial hyperedge counting algorithm (Algorithm 2) beats our spectral algorithm in the
sparse case.
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