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√
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1. Introduction

1.1. Hypergraph clustering

Clustering is an important topic in data mining, network analysis, machine learn-
ing and computer vision. Many clustering methods are based on graphs, which rep-
resent pairwise relationships among objects. However, in many real-world problems, 
pairwise relations are not sufficient, while higher order relations between objects can-
not be represented as edges on graphs. Hypergraphs can be used to represent more 
complex relationships among data, and they have been shown empirically to have 
advantages over graphs; see [55,51]. Thus, it is of practical interest to develop algo-
rithms based on hypergraphs that can handle higher-order relationships among data, 
and much work has already been done to that end; see, for example, [55,41,52,28,
13,33,6]. Hypergraph clustering has found a wide range of applications ([32,21,12,25,
38]).

The stochastic block model (SBM) is a generative model for random graphs with 
community structures which serves as a useful benchmark for the task of recovering 
community structure from graph data. It is natural to have an analogous model for 
random hypergraphs as a testing ground for hypergraph clustering algorithms.

1.2. Hypergraph stochastic block models

The hypergraph stochastic block model, first introduced in [26], is a generalization of 
the SBM for hypergraphs. We define the hypergraph stochastic block model (HSBM) as 
follows for d-uniform hypergraphs.

Definition 1.1 (Hypergraph). A d-uniform hypergraph H is a pair H = (V, E) where V
is a set of vertices and E ⊂

(
V
d

)
is a set of subsets with size d of V , called hyperedges. 

When d = 2, it is the same as an ordinary graph.

Definition 1.2 (Hypergraph stochastic block model (HSBM)). Let C = {C1, . . . Ck} be a 
partition of the set [n] into k sets of size s = n/k (assume n is divisible by k), each 
Ci, 1 ≤ i ≤ k is called a cluster. For constants 0 ≤ q < p < 1, we define the d-uniform 
hypergraph SBM as follows:

For any set of d distinct vertices i1, . . . id, generate a hyperedge {i1, . . . id} with prob-
ability p if the vertices i1, . . . id are in the same cluster in C. Otherwise, generate the 
hyperedge {i1, . . . id} with probability q. We denote this distribution of random hyper-
graphs as H(n, d, C, p, q). When d = 2, it is the same as the stochastic block models for 
random graphs.

Hypergraphs are closely related to symmetric tensors. We give a definition of sym-
metric tensors below. See, e.g., [39], for more details on tensors.
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Definition 1.3 (Symmetric tensor). Let T ∈ Rn×···×n be an order-d tensor. We call T
symmetric if Ti1,i2,...id

= Tσ(i1),σ(i2)...,σ(id) for any i1, . . . , id ∈ [n] and any permutation 
σ in the symmetric group of order d.

Formally, we can use a random symmetric tensor to represent a random hypergraph 
H drawn from this model. We construct an adjacency tensor T of H as follows. For any 
distinct vertices i1 < i2 < · · · < id that are in the same cluster,

Ti1,...,id
=

{
1 with probability p,

0 with probability 1 − p.

For any distinct vertices i1 < · · · < id, if any two of them are not in the same cluster, 
we have

Ti1,...,id
=

{
1 with probability q,

0 with probability 1 − q.

We set Ti1,...id
= 0 if any two of the indices in {i1, . . . id} coincide, and we set 

Tσ(i1),σ(i2)...,σ(id) = Ti1,...id
for any permutation σ. Furthermore, we may abuse nota-

tion and write Te in place of Ti1,...,id
, where e = {i1, . . . , id}.

The HSBM recovery problem is to find the ground truth clusters C = {C1, . . . , Ck}
either approximately or exactly, given a sample hypergraph from H(n, d, C, p, q). We may 
ask the following questions about the quality of the solutions; see [1] for further details 
in the graph case:

(1) Exact recovery (strong consistency): Find C exactly (up to a permutation) with 
probability 1 − o(1).

(2) Almost exact recovery (weak consistency): Find a partition Ĉ such that o(1) portion 
of the vertices are mislabeled.

(3) Detection: Find a partition Ĉ which is correlated with the true partition C.

We are typically interested in one of two regimes:

• The dense regime. In this regime p and q are constant, and the number of clusters 
k is allowed to grow with n. We then ask: how small can we make the cluster size 
s = n/k while still being able to guarantee recovery?

• The sparse regime. In this regime k is constant, s = Θ(n), and p, q = o(1). We then 
ask: how small can we make p and q while still being able to guarantee recovery?

Several methods have been considered for exact recovery of HSBMs. In [26], the au-
thors used spectral clustering based on the hypergraph’s Laplacian to recover HSBMs
that are dense and uniform. Subsequently, they extended their results to sparse, 
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non-uniform hypergraphs in [27–29]. Spectral methods along with local refinements were 
considered in [16,4]. A semidefinite programing approach was analyzed in [37].

For different sparsity regimes, the efficient algorithms are not the same and there is no 
‘universal’ algorithm that works optimally for all different sparsity regimes and different 
problems. For example, the detection problems of SBMs with bounded expected degrees 
are analyzed by algorithms based on self-avoiding walks [45] or non-backtracking walks 
[47,11]. However, for the exact recovery problems in the logarithmic degree regime, the 
algorithms that achieve the information theoretical threshold are based on semidefinite 
programming [2] or spectral clustering based on eigenvectors of the adjacency matrices 
[3]. In this paper we will only focus on the exact recovery problem and our algorithm 
might not work well for the almost exact recovery or detection problems.

1.3. Our results

In this paper, we present a spectral algorithm for exact recovery which compares well 
with previously known algorithms in the dense regime. Our main result is the following:

Theorem 1.4. Let p, q, d be constant. For sufficiently large n, there exists a deterministic, 
polynomial time algorithm which exactly recovers d-uniform HSBMs with probability 1 −
exp(−Ω(

√
n)) if s = Ω(

√
n).

See Theorem 2.1 below for the precise statement. Our algorithm is based on the itera-
tive projection algorithm developed in [19,18] for the graph case. We apply this approach 
to the adjacency matrix A of the random hypergraph H (see Definition 3.1). The chal-
lenge is that the adjacency matrix constructed from the adjacency tensor used in the 
algorithm does not have independent entries. In the process, we prove a non-asymptotic 
concentration result for the spectral norm of A, which may be of independent interest 
(Theorem 4.3) for other random hypergraph problems.

1.4. Why dense HSBMs?

While sparse (H)SBMs typically have more applications in data science, the dense case 
is nonetheless of theoretical importance. The SBM recovery problem is known alternately 
as the planted partition problem and can be seen as a variant of the planted clique
problem originally posed in [36]. In the latter, one generates an Erdős-Rényi random 
graph G 

(
n, 1

2
)

and adds edges deterministically to form a clique on an arbitrary subset 
of the vertices; the goal is then to determine exactly which vertices were members of 
the “planted” clique w.h.p. If the planted clique is too small, then there is no way to 
distinguish it from a randomly occurring clique in G(n, 12); thus, the central question is 
how big the clique must be in order to guarantee (efficient) recovery.

For both planted clique and planted partition, it is statistically impossible to re-
cover the clique or partition w.h.p. if the size of the clique or parts of the partition is 



S. Cole, Y. Zhu / Linear Algebra and its Applications 593 (2020) 45–73 49
O(log n) [15]. On the other hand, the best known polynomial time algorithms in both 
problems require the size to be Ω(

√
n) in order to guarantee recovery w.h.p. [7,8,14,19,

49], and there is evidence that this is best that can be done efficiently for exact recov-
ery [22,23,36]. If the size of the partition or clique is s = Ω(

√
n log n), a simple counting 

algorithm similar to the one we present in Appendix A would work [40,15]. However, 
when the cluster sizes are only required to be Θ(

√
n), the problem becomes more difficult 

because the error terms introduced by simple counting arguments are too large. It’s still 
a major open problem in theoretical computer science to find polynomial time algorithms 
which succeed w.h.p. in the regime where the size of the clique or the partition is o(

√
n). 

See Section 1.4.1 in [15] for more discussion.
Thus, Theorem 1.4 is consistent with the state of the art for planted problems on 

graphs; moreover, our algorithm for HSBM recovery compares favorably with other 
known algorithms in the dense case with k = ω(1) clusters (see Section 1.5). To the 
best of our knowledge, our algorithm is the first to guarantee exact recovery when all 
clusters are size Θ(

√
n). In Section 9, we include a more thorough discussion of limitations 

of SBM recovery algorithms.
As discussed at the end of Section 1.2, one should not expect one algorithm that works 

optimally for all sparsity regimes. While we focus on the dense case, our algorithm can 
be adapted to the sparse case as well (see Appendix B); however, it does not perform 
as well as previously known algorithms in [37,43,17,16,29] in the sparse regime. In fact, 
it is even outperformed by the simple hyperedge counting algorithm presented in Ap-
pendix A. The main obstacle is the lack of concentration for sparse hypergraphs: in our 
spectral algorithm (Algorithm 1), to make sure the iterative procedure succeed at every 
step, one needs to take a union bound over exponentially many events, which requires 
a concentration bound of the spectral norm with exponentially decaying tail probabili-
ties, but sparse random matrices do not concentrate as well as dense random matrices. 
Optimizing our algorithm for sparse HSBMs is a possible direction for future work.

1.5. Comparison with previous results

We compare our spectral algorithm, as well as the simple counting algorithm presented 
in Appendix A, with previous exact recovery algorithms, with p, q, d being constant. In 
[4,16] the regime where k grows with n is not explicitly discussed, so we only include 
k = O(1) case.

Paper Number of clusters Algorithm type
[37] O(1) Semidefinite programming
[5] O(1) Spectral + local refinement
[16] O(1) Spectral + local refinement

[29], Corollary 5.1 o(log
−1
2d (n)n

d−4
2d ) Spectral + k-means

Our result (Algorithm 2) O(log
−1

2d−4 (n)n0.5) Simple counting
Our result (Algorithm 1) O(n0.5) Spectral
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2. Spectral algorithm and main results

Our main result is that Algorithm 1 below recovers HSBMs with high probability, 
given certain conditions on n, k, p, q, and d. It is an adaptation of the iterated projection
algorithm for the graph case introduced by [19,18]. The algorithm can be broken down 
into three main parts:

(1) Construct an “approximate cluster” using spectral methods (Steps 1-4)
(2) Recover the cluster exactly from the approximate cluster by counting hyperedges 

(Steps 5-6)
(3) Delete the recovered cluster and recurse on the remaining vertices (Step 7).

Algorithm 1
Given H = (V, E), |V | = n, number of clusters k, and cluster size s = n/k:
(1) Let A be the adjacency matrix of H (as defined in Section 3).
(2) Let Pk(A) = (Puv)u,v∈V be the dominant rank-k projector of A (as defined in Section 5).
(3) For each column v of Pk(A), let Pu1,v ≥ . . . ≥ Pun−1,v be the entries other than Pvv in non-increasing 

order. Let Wv := {v, u1, . . . , us−1}, i.e., the indices of the s − 1 greatest entries of column v of Pk(A), 
along with v itself.

(4) Let W = Wv∗ , where v∗ := arg maxv ||Pk(A)1Wv
||2, i.e. the column v with maximum ||Pk(A)1Wv

||2. 
It will be shown that W has small symmetric difference with some cluster Ci with high probability 
(Section 6).

(5) For all v ∈ V , let Nv,W be the number of hyperedges e such that v ∈ e and e \ {v} ⊆ W , i.e., the 
number of hyperedges containing v and d − 1 vertices from W .

(6) Let C be the s vertices v with highest Nv,W . It will be shown that C = Ci with high probability 
(Section 7).

(7) Delete C from H and repeat on the remaining sub-hypergraph. Stop when there are < s vertices left.

Theorem 2.1. Let H be sampled from H(n, d, C, p, q), where p and q are constant, C =
{C1, . . . , Ck} and |Ci| = s = n/k for i = 1, . . . , k. If d = o(s) and

6d
√

d
(

n
d−1

)
(

s−2
d−2

)
(p − q)s − 12d

√
d
(

n
d−1

) ≤ ε ≤ p − q

32d
, (2.1)

then for sufficiently large n, Algorithm 1 exactly recovers C with probability ≥ 1 − 2k ·
exp(−s) − nk · exp

(
−ε2(

s−1
d−1

))
.

In the theorem above, the size d of the hyperedges is allowed to grow with n. The 
special case in which d is constant follows easily:

Theorem 2.2. Let H be sampled from H(n, d, C, p, q), where p and q, and d are constant, 
C = {C1, . . . , Ck} and |Ci| = s = n/k for i = 1, . . . , k. If

s ≥ c0
√

nd

(p − q)
2

d−1
,

then Algorithm 1 recovers C w.h.p., where c0 is an absolute constant.



S. Cole, Y. Zhu / Linear Algebra and its Applications 593 (2020) 45–73 51
Proof. Observe that if

18d
√

d
(

n
d−1

)
(

s−2
d−2

)
(p − q)s

≤ p − q

32d
, (2.2)

then we have

6d
√

d
(

n
d−1

)
(

s−2
d−2

)
(p − q)s − 12d

√
d
(

n
d−1

) ≤
18d

√
d
(

n
d−1

)
(

s−2
d−2

)
(p − q)s

≤ p − q

32d
.

Hence, if (2.2) is satisfied, then it is possible to choose ε satisfying (2.1), so Theorem 2.1
guarantees that we can recover C w.h.p. in this case. Recall that for nonnegative integers 
a ≥ b we can bound the binomial coefficient 

(
a
b

)
by 

(
a
b

)b ≤
(

a
b

)
≤

(
ae
b

)b. The conclusion 
follows by applying these bounds in (2.2) and solving for s. Note that we want the failure 
probability in Theorem 2.1 to be o(1), so we require

exp
(

−ε2
(

s − 1
d − 1

))
= o((nk)−1).

It is easy to verify that this is satisfied if d is constant. �
In Appendix A we present a trivial hyperedge counting algorithm. Algorithm 1 beats 

this algorithm by a factor of (log n)
1

2d−4 . See Section 1.5 for comparison with other known 
algorithms.

The remainder of this paper is devoted to proving Theorem 2.1. Sections 3-5 introduce 
the linear algebra tools necessary for the proof; Section 6 shows that Step 4 with high 
probability produces a set with small symmetric difference with one of the clusters; 
Section 7 proves that Step 6 with high probability recovers one of the clusters exactly; 
and Section 8 proves inductively that the algorithm with high probability recovers all 
clusters.

2.1. Running time

In contrast to the graph case, in which the most expensive step is constructing the 
projection operator Pk(A) (which can be done in O(n2k) time via truncated SVD [30,31]), 
for d ≥ 3 the running time of Algorithm 1 is dominated by constructing the adjacency 
matrix A, which takes O(nd) time (the same amount of time it takes to simply read the 
input hypergraph). Thus, the overall running time of Algorithm 1 is O(knd).

3. Reduction to random matrices

Since we do not have many linear algebra and probability tools for random ten-
sors, it would be convenient if we could work with matrices instead of tensors. We 
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propose to analyze the following adjacency matrix of a hypergraph, originally defined in 
[24].

Definition 3.1 (Adjacency matrix). Let H be a random hypergraph generated from 
H(n, d, C, p, q) and let T be the adjacency tensor of H. For any hyperedge e = {i1, . . . , id}, 
let Te be the entry in T corresponding to Ti1,...,id

. We define the adjacency matrix A of 
H by

Aij :=
∑

e:{i,j}∈e

Te. (3.1)

Thus, Aij is the number of hyperedges in H that contains vertices i, j. Note that in the 
summation (3.1), each hyperedge is counted once.

From our definition, A is symmetric, and Aii = 0 for 1 ≤ i ≤ n. However, the entries 
in A are not independent. This presents some difficulty, but we can still get information 
about the clusters from this adjacency matrix A.

4. Eigenvalues and concentration of spectral norms

It is easy to see that for d ≥ 2,

EAij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
s − 2
d − 2

)
(p − q) +

(
n − 2
d − 2

)
q, if i �= j are in the same cluster,

(
n − 2
d − 2

)
q, if i, j are in different clusters.

Let

Ã := EA +
((

s − 2
d − 2

)
(p − q) +

(
n − 2
d − 2

)
q

)
I,

then Ã is a symmetric matrix of rank k. The eigenvalues for Ã are easy to compute, 
hence by a shifting, we have the following eigenvalues for EA. Note that we are using 
the convention λ1(X) ≥ . . . ≥ λn(X) for a n × n self-adjoint matrix X.

Lemma 4.1. The eigenvalues of EA are

λ1(EA) =
(

s − 2
d − 2

)
(p − q)(s − 1) +

(
n − 2
d − 2

)
q(n − 1),

λi(EA) =
(

s − 2
d − 2

)
(p − q)(s − 1) −

(
n − 2
d − 2

)
q, 2 ≤ i ≤ k,

λi(EA) = −
(

s − 2
d − 2

)
(p − q) −

(
n − 2
d − 2

)
q, k + 1 ≤ i ≤ n.
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We can use an ε-net chaining argument to prove a concentration inequality for the 
spectral norm of A − EA.

Definition 4.2 (ε-net). An ε-net for a compact metric space (X , d) is a finite subset N
of X such that for each point x ∈ X , there is a point y ∈ N with d(x, y) ≤ ε.

Theorem 4.3. Let ‖ · ‖2 be the spectral norm of a matrix, we have

‖A − EA‖2 ≤ 6d

√
d

(
n

d − 1

)
(4.1)

with probability at least 1 − e−n.

When d = 2, Theorem 4.3 is a concentration result for Wigner matrices. Our result 
includes the case where d is growing with n. Lemma 2 in [5] is a similar concentration 
result for the adjacency matrix A for random hypergraphs, but with probability 1 −
O(1/n). However, to make our Algorithm 1 succeed with high probability with k =
Θ(

√
n) many clusters, we need a concentration bound of the spectral norm of A with 

exponentially small failure probability since we need to take a union bound over 2k events 
in order to guarantee the algorithm’s success (see Section 8.2).

Proof of Theorem 4.3. Consider the centered matrix M := A −EA, then each entry Mij

is a centered random variable. Let Me = Te − E[Te]. Let Sn−1 be the unit sphere in Rn

(using the l2-norm). By the definition of the spectral norm,

‖M‖2 = sup
x∈Sn−1

|〈Mx, x〉|.

Let N be an ε-net on Sn−1. Then for any x ∈ Sn−1, there exists some y ∈ N such that 
‖x − y‖2 ≤ ε. Then we have

‖Mx‖2 − ‖My‖2 ≤ ‖Mx − My‖2 ≤ ‖M‖2‖x − y‖2 ≤ ε‖M‖2.

For any y ∈ N , if we take the supremum over x, we have

(1 − ε)‖M‖2 ≤ ‖My‖2 ≤ sup
z∈N

‖Mz‖2.

Therefore

‖M‖2 ≤ 1
1 − ε

sup
x∈N

‖Mx‖2 = 1
1 − ε

sup
x∈N

〈Mx, x〉 (4.2)

Now we fix an x = (x1, . . . , xn)� ∈ Sn−1 first, and prove a concentration inequality 
for ‖Mx‖2. Let E be the hyperedge set in a complete d-uniform hypergraph on [n]. We 
have
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〈Mx, x〉 =
∑
i�=j

Mijxixj = 2
∑
i<j

Mijxixj = 2
∑
i<j

(
∑

e∈E:i,j∈e

Me)xixj

= 2
∑
e∈E

(
∑

i,j∈e,i<j

xixj)Me.

Let Ye := (
∑

ij∈e,i<j xixj)Me, then

〈Mx, x〉 = 2
∑
e∈E

Ye

where {Ye}e∈E are independent. Note that |Me| ≤ 1, so we have

|Ye| = |
∑

ij∈e,i<j

xixjMe| ≤ |
∑

ij∈e,i<j

xixj |

By Hoeffding’s inequality,

P (|
∑
e∈E

Ye| ≥ t) ≤ 2 exp
(

− 2t2

4
∑

e∈E |
∑

ij∈e,i<j xixj |2

)
. (4.3)

From Cauchy’s inequality, we have

∑
e∈E

|
∑

ij∈e,i<j

xixj |2 ≤
(

d

2

) ∑
e∈E

∑
ij∈e,i<j

x2
i x2

j ≤
(

d

2

)(
n − 2
d − 2

) ∑
1≤i<j≤n

x2
i x2

j

≤
(

d

2

)(
n − 2
d − 2

)
1
2

(∑
i

x2
i

)2

≤ 1
4d2

(
n

d − 2

)
. (4.4)

Therefore from (4.3) and (4.4),

P (|〈Mx, x〉| ≥ 2t) ≤ 2 exp
(

− 2t2(
n

d−2
)
d2

)
.

Taking t = 3
2d

√
d

(
n

d − 1

)
, we have

P

(
|〈Mx, x〉| ≥ 3d

√
d

√(
n

d − 1

))
≤ 2 exp

(
−

9d
(

n
d−1

)
2
(

n
d−2

)
)

≤ exp(−3n).

Since |N | ≤ (2
ε + 1)n (see Corollary 4.2.11 in [53] for example), we can take ε = 1/2 and 

by a union bound, we have
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Fig. 1. The distribution of eigenvalues of A.

P

(
sup
x∈N

|〈Mx, x〉| ≥ 3d
√

d

√(
n

d − 1

))
≤ 5n exp(−3n) ≤ e−n. (4.5)

So we have from (4.2), (4.5)

P

(
‖M‖2 ≥ 6d

√
d

(
n

d − 1

))
≤ e−n. �

Since |λi(A) −λi(EA)| ≤ ‖A −EA‖2 for 1 ≤ i ≤ n, we see that the largest k eigenvalues 
of A are separated from the remaining n −k by at least 

(
s−2
d−2

)
(p −q)s −12d

√
d
(

n
d−1

)
. Fig. 1

depicts this separation in the eigenvalues, which is necessary to bound the difference in 
the dominant rank-k projectors of A and EA in the next section.

5. Dominant eigenspaces and projectors

Our recovery algorithm is based on the dominant rank-k projector of the adjacency 
matrix A.

Definition 5.1 (Dominant eigenspace). If X is a n ×n Hermitian or real symmetric matrix, 
the dominant r-dimensional eigenspace of X, denoted Er(X), is the subspace of Rn or 
Cn spanned by eigenvectors of X corresponding to its r largest eigenvalues.

Note that by this definition, if λr(X) = λr+1(X), then Er(X) actually has dimension 
> r, but that will never be the case in this analysis.

Definition 5.2 (Dominant rank-r projector). If X is a n × n Hermitian or real symmetric 
matrix, the dominant rank-r projector of X, denoted Pr(X), is the orthogonal projection 
operator onto Er(X).

Pr(X) is a rank-r, self-adjoint operator which acts as the identity on Er(X). It has 
r eigenvalues equal to 1 and n − r equal to 0. If v1, . . . , vr is an orthonormal basis for 
Er(X), then

Pr(X) =
r∑

viv∗
i , (5.1)
i=1
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where v∗ denotes either the transpose or conjugate transpose of v, depending on whether 
we are working over R or C. Let us define Y to be the incidence matrix of C; i.e.,

Yuv :=
{

1 if u, v are in the same part of C,

0 else
(5.2)

Thus, it is our goal to reconstruct Y given H ∼ H(n, d, C, p, q).

Theorem 5.3. Let A, EA, and Ã be defined as in Sections 3 and 4. Then

Pk(EA) = Pk(Ã) = Pk(Y ) = 1
s

Y.

Proof. Let 1Ci
∈ {0, 1}n denote the indicator vector for cluster Ci and Jn the n × n all 

ones matrix. Then we can write

Y =
k∑

i=1
1Ci

1�
Ci

, Ã = (a − b)Y + bJn, EA = Ã − aIn,

for some constants a > b > 0. Thus, 
{

1√
s
1Ci

: i = 1, . . . , k
}

is an orthonormal basis for 
the column space of both Y and Ã, and hence, in accordance with (5.1),

Pk(Y ) = Pk(Ã) =
k∑

i=1

1
s

1Ci
1�

Ci
= 1

s
Y.

Now, observe that the eigenvalues of EA are those of Ã shifted down by a, and v is 
an eigenvector of EA if and only if it is an eigenvector of EA; hence, the dominant 
k-dimensional eigenspace of EA is the same as the column space of Ã, and therefore 
Pk(EA) = Pk(Ã). �

Thus, Pk(EA) = Pk(Ã) gives us all the information we need to reconstruct Y . Unfor-
tunately, a SBM recovery algorithm doesn’t have access to EA or Ã (if it did the problem 
would be trivial), but the following theorem shows that the random matrix Pk(A) is a 
good approximation to Pk(EA) and thus reveals the underlying rank-k structure of A:

Theorem 5.4. Assume (4.1) holds. Then

‖Pk(A) − Pk(EA)‖2 ≤ ε

and

‖Pk(A) − Pk(EA)‖F ≤
√

2kε
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for any ε ≥
6d

√
d
(

n
d−1

)
(

s−2
d−2

)
(p − q)s − 12d

√
d
(

n
d−1

) .

To prove Theorem 5.4, we use the following Lemma from [18, Lemma 4].

Lemma 5.5. Let X, Y ∈ Rn×n be symmetric. Suppose that the largest k eigenvalues of 
both X, Y are at least β, and the remaining n − k eigenvalues of both X, Y are at most 
α, where α < β. Then

‖Pk(X) − Pk(Y )‖2 ≤ ‖X − Y ‖2

β − α
, (5.3)

‖Pk(X) − Pk(Y )‖F ≤
√

2k‖X − Y ‖2

β − α
. (5.4)

Proof of Theorem 5.4. Apply Lemma 5.5 with X = A, Y = EA and

α =
(

s − 2
d − 2

)
(p − q)(s − 1) −

(
n − 2
d − 2

)
q − 6d

√
d

(
n

d − 1

)
,

β = −
(

s − 2
d − 2

)
(p − q) −

(
n − 2
d − 2

)
q + 6d

√
d

(
n

d − 1

)
.

Note that in order for this to work we need α > β, i.e.

(
s − 2
d − 2

)
(p − q)s > 12d

√
d

(
n

d − 1

)
. �

6. Constructing an approximate cluster

In this section we show how to use Pk(A) to construct an “approximate cluster”, i.e. 
a set with small symmetric difference with one of the clusters. We will show that

• If |W | = s and ‖Pk(A)1W ‖2 is large, then W must have large intersection with some 
cluster (Lemma 6.1)

• Such a set W exists among the sets W1, . . . , Wn, where Wv is the indices of the s − 1
largest entries in column v of Pk(A), along with v itself (Lemma 6.2).

The intuition is that if ‖Pk(A) − Pk(EA)‖2 ≤ ε, then

‖Pk(A)1W ‖2
2 ≈ ‖Pk(EA)1W ‖2

2 = 1
s

k∑
i=1

|W ∩ Ci|2,

and this quantity is maximized when W comes mostly from a single cluster Ci.
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Lemmas 6.1 and 6.2 below are essentially the same as Lemmas 18 and 17 in [19]. As 
Pk(A) = 1

s

∑
i 1Ci

1�
Ci

as in the graph case (Theorem 5.3), we can import their proofs 
directly from the graph case. However, we present a simpler proof for Lemma 6.1.

Lemma 6.1. Assume (4.1) holds and 
6d

√
d
(

n
d−1

)
(

s−2
d−2

)
(p − q)s − 12d

√
d
(

n
d−1

) ≤ ε ≤ 1
12 . Let |W | = s

and ||Pk(A)1W ||2 ≥ (1 − 2ε)
√

s. Then |W ∩ Ci| ≥ (1 − 6ε)s for some i.

Proof. By Theorem 5.4,

‖(Pk(A) − Pk(EA))1W ‖2 ≤ ε‖1W ‖2 = ε
√

s.

And by the triangle inequality,

‖Pk(EA)1W ‖2 ≥ ‖Pk(A)1W ‖2 − ε
√

s ≥ (1 − 2ε)
√

s − ε
√

s = (1 − 3ε)
√

s. (6.1)

We will show that in order for this to hold, W must have large intersection with some 
cluster.

Fix t such that s
2 ≤ t ≤ s. Assume by way of contradiction that |W ∩ Ci| ≤ t for all 

i. Observe that by Theorem 5.3

‖Pk(EA)1W ‖2
2 = 1

s

k∑
i=1

|W ∩ Ci|2. (6.2)

Let xi = |W ∩ Ci| and consider the optimization problem

max 1
s

k∑
i=1

x2
i

s.t.
k∑

i=1
xi = s,

0 ≤ xi ≤ t for i = 1, . . . , k.

It is easy to see that the maximum occurs when xi = t, xj = s − t for some i, j, xl = 0
for all l �= i, j, and the maximum is t2

s + (s−t)2

s . Thus, by (6.1) and (6.2) we have

(1 − 3ε)2s ≤ ‖Pk(EA)1W ‖2
2 ≤ t2

s
+ (s − t)2

s
.

Solving for t, this implies that

t ≥
(

1 + 1√
1 − 12ε + 18ε2

)
s > (1 − 6ε)s.
2 2
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Thus, if we choose t ∈ [s/2, (1 − 6ε)s] we have a contradiction. Let us choose t to be 
as large as possible, t = (1 −6ε)s. Then it must be the case that |W ∩Ci| ≥ t = (1 −6ε)s
for some i. Note that for the proof to go through we require 1

2 ≤ 1 −6ε, which is satisfied 
if ε ≤ 1/12. �

This lemma gives us a way to identify an “approximate cluster” using only A; however, 
it would take Ω(ns) time to try all sets W of size s. However, if we define Wv to be v
along with the indices of the s − 1 largest entries of column v of Pk(A) (as in Step 3
of Algorithm 1), then Lemma 6.2 below will show that one of these sets satisfies the 
conditions of Lemma 6.1; thus, we can produce an approximate cluster in polynomial 
time by taking the Wv that maximizes ||Pk(A)1Wv

||2.

Lemma 6.2. Assume (4.1) holds and ε ≥
6d

√
d
(

n
d−1

)
(

s−2
d−2

)
(p − q)s − 12d

√
d
(

n
d−1

) . For v = 1, . . . , n, 

let Wv be defined as in Step 3 of Algorithm 1. Then there exists a column v such that

‖Pk(A)1Wv
‖2 ≥ (1 − 8ε2 − ε)

√
s ≥ (1 − 2ε)

√
s.

Lemmas 6.1 and 6.2 together prove that, as long as (4.1) holds, Steps 2-4 successfully 
construct a set W such that |W | = s and |W ∩Ci| ≥ (1 −6ε)s for some i. In the following 
section we will see how to recover Ci exactly from W .

7. Exact recovery by counting hyperedges

Suppose we have a set W ⊂ [n] such that |W�Ci| ≤ εs for some i (� denotes 
symmetric difference). In the graph case (d = 2) we can use W to recover Ci exactly 
w.h.p. as follows:

(1) Show that w.h.p. for any u ∈ Ci will have at least (p − ε)s neighbors in Ci, while 
any v /∈ Ci will have at most (q + ε)s neighbors in Ci. This follows from a simple 
Hoeffding argument.

(2) Show that, if these bounds hold for any u, v, then (deterministically) any u ∈ Ci will 
have at least (p − 2ε) neighbors in W , while any v /∈ Ci will have at most (q + 2ε)
neighbors in W . Thus, we can use number of vertices in W to distinguish between 
vertices in Ci and vertices in other clusters.

See [19, Lemmas 19-20] for details. The reason we cannot directly apply a Hoeffding 
argument to W is that W depends on the randomness of the instance A, thus the 
number of neighbors a vertex has in W is not the sum of |W | fixed random variables.

To generalize to hypergraphs with d > 2, an obvious analogue of the notion of number 
of neighbors a vertex u has in a vertex set W is to define the random variable
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Fig. 2. When d = 3, Nu,W is the number of hyperedges containing u and 2 vertices in W . In the figure 
above, Nu,W = 3.

Nu,W :=
∑

e:u∈e,e\{u}⊆W

Te,

i.e. the number of hyperedges containing u and d − 1 vertices from W . When d = 2 this 
is simply the number of neighbors u has in W (see Fig. 2 for the case d = 3). We get the 
following analogue to [19, Lemma 19].

Lemma 7.1. Consider cluster Ci and vertex u ∈ [n], and let ε > 0. If u ∈ Ci, then for n
sufficiently large and d = o(s),

Nu,Ci
≥ (p − ε)

(
s

d − 1

)
(7.1)

with probability ≥ 1 − exp
(

−ε2(
s−1
d−1

))
, and if u /∈ Ci, then

Nu,Ci
≤ (q + ε)

(
s

d − 1

)
(7.2)

with probability ≥ 1 − exp
(

−ε2(
s−1
d−1

))
.

Proof. For u ∈ Ci, Nu,Ci
is the sum of 

(
s−1
d−1

)
independent Bernoulli random variables 

with expectation p, so Hoeffding’s inequality yields

P

(
Nu,Ci

≤ (p − ε)
(

s

d − 1

))
= P

(
Nu,Ci

≤
(

p − εs − (d − 1)p
s − d + 1

) (
s − 1
d − 1

))

≤ exp
(

−2
(

εs − (d − 1)p
s − d + 1

)2 (
s − 1
d − 1

))

≤ exp
(

−ε2
(

s − 1
d − 1

))

Note that the last inequality holds for d = o(s) and n sufficiently large.
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For v /∈ Ci, Nv,Ci
is the sum of 

(
s

d−1
)

independent Bernoulli random variables with 
expectation q. So by Hoeffding’s inequality again

P

(
Nu,Ci

≥ (q + ε)
(

s

d − 1

))
≤ exp

(
−2ε2

(
s − 1
d − 1

))
≤ exp

(
−ε2

(
s − 1
d − 1

))
. �

The difficulty is in going from Nu,Ci
to Nu,W , where W is a set such that |W�Ci| ≤ εs. 

We have the following estimate for Nu,W .

Lemma 7.2. Let W ⊂ [n] such that |W | = s and |W ∩ Ci| ≥ (1 − 6ε)s for some i ∈ [k]. 
Then for ε < 1

16d , d = o(s), and n sufficiently large, we have the following:

(1) If j ∈ Ci satisfies (7.1), then Nj,W ≥ (p − 16dε)
(

s

d − 1

)
,

(2) If j /∈ Ci satisfies (7.2), then Nj,W ≤ (q + 16dε)
(

s

d − 1

)
.

Proof. Assume j ∈ Ci and j satisfies (7.1). As |Ci| = s, we have |Ci \ W | ≤ 6εs.
Let Ñj,Ci\W be the number of hyperedges containing j and d − 1 vertices from Ci, 

among which at least one vertex from Ci \ W . We then have

Nj,W ≥ Nj,W ∩Ci
= Nj,Ci

− Ñj,Ci\W

≥ (p − ε)
(

s

d − 1

)
−

d−1∑
m=1

(
�6εs�

m

)(
s

d − 1 − m

)
.

In the inequality above, we bound Ñj,Ci\W by a deterministic counting argument, i.e. 
we count all possible hyperedges that include a vertex j, with m vertices from Ci \ W

and remaining (d − 1 − m) vertices from Ci for 1 ≤ m ≤ d − 1.
Note that we can choose ε <

1
16d

then for n sufficiently large, we have

d−2∑
m=1

(
�6εs�

m

)(
s

d − 1 − m

)
≤

d−2∑
m=1

(
7εs

m

)(
s

d − 1 − m

)

≤
(

s

d − 1

) d−1∑
m=1

(7εs)m (s − d + 1)!(d − 1)!
(s − d + 1 + m)!(d − 1 − m)!

≤
(

s

d − 1

) d−1∑
m=1

(
7εsd

s − d + 2

)m

≤
(

s

d − 1

)
14εsd

s − d + 2 ≤ 15dε

(
s

d − 1

)
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So we have

Nj,W ≥ (p − 16dε)
(

s

d − 1

)
.

If j /∈ Ci, let Ñj,W \Ci
be the number of hyperedges containing j and d − 1 vertices 

from W , among which at least one vertex from W \ Ci. Recall |W \ Ci| ≤ 6εs.

Nj,W ≤ Nj,Ci∪W = Nj,Ci
+ Ñj,W \Ci

≤ (q + ε)
(

s

d − 1

)
+

d−1∑
m=1

(
�6εs�

m

)(
s

d − 1 − m

)

≤ (q + ε)
(

s

d − 1

)
+

d−1∑
m=1

(
7εs

m

)(
s

d − 1 − m

)

≤ (q + 16dε)
(

s

d − 1

)
. �

Lemma 7.2 gives us a way to distinguish vertices j ∈ Ci and j /∈ Ci provided p −16dε >
q + 16dε.

8. Proof of algorithm’s correctness

We now have all the necessary pieces to prove the correctness of Algorithm 1 (Theo-
rem 2.1). The proof is roughly the same as that of [19, Theorem 4].

8.1. Proof of correctness of first iteration

Lemmas 6.1-7.2 above prove that Steps 1-6 of Algorithm 1 correctly recover a single 
cluster in the first iteration.

Theorem 8.1. Assume that (4.1) holds and that for i = 1, . . . , k, (7.1) holds for all u ∈ Ci

and (7.2) holds for all u /∈ Ci with

6d
√

d
(

n
d−1

)
(

s−2
d−2

)
(p − q)s − 12d

√
d
(

n
d−1

) ≤ ε ≤ p − q

32d
.

Then Steps 1-6 of Algorithm 1 exactly recover a cluster Ci in the first iteration.

Proof. By Lemma 6.2, the set W constructed in Step 4 has ||Pk(A)1W ||2 ≥ (1 − 2ε)
√

s. 
By Lemma 6.1 (noting that ε ≤ p−q

32d ≤ 1
12 ), |W ∩ Ci| ≥ (1 − 6ε)s for some i. And by 

Lemma 7.2, Nu,W ≥ (1 − 16ε)s for all u ∈ Ci, while Nu,W ≤ (q + 16dε)s for all u /∈ Ci. 
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If ε <
p − q

32d
, then (p − 16dε)s > (q + 16dε)s. Thus, when we take the s vertices u with 

highest Nu,W in Step 6, for each of them we have

Nu,W ≥ (p − 16dε)s > (q + 16dε)s,

so none of them could possibly come from [n] \ Ci. Therefore, the set C constructed in 
Step 6 must be equal to Ci. �
8.2. The “delete and repeat” step

The difficulty with proving the success of Algorithm 1 beyond the first iteration is 
that the iterations cannot be handled independently: whether or not the t-th iteration 
succeeds determines which vertices will be left in the (t + 1)-st iteration, which certainly 
affects whether or not the (t + 1)-st iteration succeeds. However, notice that there is 
nothing probabilistic in the statement or proof of Theorem 8.1: if certain conditions are 
true, then the first iteration of Algorithm 1 will definitely recover a cluster. In fact, the 
only probabilistic statements thus far are in Theorem 4.3 and Lemma 7.1. Similar to 
the analysis in [19,18], we will show that if certain (exponentially many) conditions are 
met, then all iterations of Algorithm 1 will succeed. We will then show that all of these 
events occur simultaneously w.h.p.; hence, Algorithm 1 recovers all clusters w.h.p.

We begin by introducing some terminology:

Definition 8.2 (Cluster subhypergraph, cluster subtensor). We define a cluster subhy-
pergraph to be a subhypergraph of H induced by a subset of the clusters C1, . . . , Ck. 
Similarly, we define a cluster subtensor to be the principal subtensor of T formed by 
restricting the indices to a subset of the clusters. For J ⊆ [k], we denote by H(J) the 
subhypergraph of H induced by 

⋃
j∈J Cj , and we denote by T (J) the principal subtensor 

of T with indices restricted to 
⋃

j∈J Cj .

We now define two types of events on our probability space H(n, d, C, p, q):

• Spectral events – For J ⊆ [k], let EJ be the event that

‖B − EB‖2 ≤ 6d

√
d

(
m

d − 1

)
,

where B is the adjacency matrix of H(J) and m = s|J | is the number of vertices in 
H(J). Note that B is not simply a submatrix of A, as only a subset of the edges of 
H are counted when computing the entries of B.

• Degree events – For 1 ≤ i ≤ k, 1 ≤ u ≤ n, let Di,u be the event that Nu,Ci
≥

(p − ε)
(

s
)

if u ∈ Ci, or the event that Nu,Ci
≤ (q + ε)

(
s

)
if u /∈ Ci. These 
d − 1 d − 1
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are the events that each vertex u has approximately the correct value of Nu,Ci
for 

each cluster Ci.

Observe that there are 2k spectral events and nk degree events. We will now show 
that if all of these events occur, then Algorithm 1 will definitely succeed in recovering 
all clusters. Again, there is nothing probabilistic in this theorem or its proof.

Lemma 8.3. Assume that EJ holds for all J ⊆ [k] and Di,u holds for all i ∈ [k], u ∈ [n]
with

6d
√

d
(

n
d−1

)
(

s−2
d−2

)
(p − q)s − 12d

√
d
(

n
d−1

) ≤ ε ≤ p − q

32d
. (8.1)

Then Algorithm 1 recovers C1, . . . , Ck exactly.

Proof sketch. We omit the full proof as it is analogous to the proof in [19, Section 7.3]. 
Essentially, we prove by induction that the t-th iteration succeeds for t = 1, . . . , k. If the 
1st through tth iterations succeed, then the (t +1)-st iteration receives as input a cluster 
sub-hypergraph H(J), for some J ⊆ [k]. Hence, EJ and Di,u for i ∈ J , u ∈

⋃
j∈J Cj

ensure the success of the (t + 1)-st iteration. Note that if there are m = |J |s vertices 
remaining, then Theorem 5.4 requires that

ε ≥
6d

√
d
(

m
d−1

)
(

s−2
d−2

)
(p − q)s − 12d

√
d
(

m
d−1

) ,

but this bound is largest when m = n; thus, the condition (8.1) is sufficient for all 
iterations. �

Finally, we show that all of the EJ and Di,u hold simultaneously w.h.p.

Lemma 8.4. EJ and Di,u hold simultaneously for all J ⊆ [k], i ∈ [k], u ∈ [n] with proba-
bility ≥ 1 − 2k · exp(−s) − nk · exp

(
−ε2(

s−1
d−1

))
for any ε satisfying condition (8.1).

Proof. For any fixed J ⊆ [k], H(J) is simply an instance of a smaller HSBM; it has 
distribution H(|J |s, d, 

⋃
j∈J Cj , p, q). Thus,

P
(
EJ

)
≤ exp(−|J |s) ≤ exp(−s)

by Theorem 4.3. And for any i ∈ [k], u ∈ [n],

P
(
Di,u

)
≤ exp

(
−ε2

(
s − 1

))

d − 1
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by Lemma 7.1. The proof is completed by taking a union bound over all J ⊆ [k], i ∈
[k], u ∈ [n]. �

Theorem 2.1 follows as an immediate corollary to Lemmas 8.3 and 8.4.

9. Lower bounds for HSBM recovery

There have been many results which show that, for a fixed number of blocks, (H)SBM 
recovery becomes impossible if the edge probabilities are below a certain threshold. For 
exact recovery of HSBMs with two blocks, it was shown in [43,17,16] that the phase 
transition from impossible to possible occurs in the regime of logarithmic average degree 
by analyzing the minimax risk, and the exact threshold was given in [37] by a general-
ization of the techniques in [2] for graph SBMs. For the detection problem of HSBMs in 
the bounded expected degree regime, a phase transition was conjectured in [9] based on 
belief propagation and the non-backtracking operator. Very recently, a spectral method 
based on the self-avoiding walk was proved to achieve the conjectured threshold [50].

For graph SBMs, a phase transition for the detection problem in the bounded ex-
pected degree regime with finitely many blocks, called the Kesten-Stigum threshold, 
was conjectured in [20] and then proved in [47,45,46] for the 2-block case. Below the 
Kesten-Stigum threshold no algorithms (even with exponential running time) will solve 
the detection problem, while above the threshold detection is not only possible but can 
be done in polynomial time. See [1] for further details. The phase transition behavior for 
the exact recovery problem with two blocks was proved in [2]. Above the threshold, there 
are polynomial time algorithms that solve the problem [2,3,48]. Minimax lower bounds 
for general SBMs with finite or a growing number of blocks were given in [15,35,54].

Relatively little is known in the dense regime, even in the graph case, and most re-
sults focus on the related planted clique problem [7,36] rather than SBM recovery (a.k.a. 
planted partition). It is generally believed that these problems become intractable when 
the size of the clique/blocks is o(

√
n). In this case, one would ideally like to prove that 

these problems are distNP-complete (where distP and distNP are distributional ana-
logues of P and NP [42]). However, showing the existence of a “natural” distNP-complete 
problem is itself a long-outstanding problem in complexity theory [10].

Instead, various authors have shown that certain types of algorithms will provably fail 
if the size of the planted clique/blocks is too small. The first such result dates back to the 
original paper introducing the planted clique problem [36], in which the author showed 
that the Metropolis-Hastings algorithm fails to recover planted cliques of size n1/2−ε

for any ε > 0. It was subsequently shown in [15,22] that certain optimization-based ap-
proaches also fail in this regime, while it was shown in [23] that statistical algorithms
also run into the same barrier. (A statistical algorithm is an algorithm which, instead 
of receiving samples from a distribution, can query an oracle for statistics on the distri-
bution within some tolerance. Such algorithms can be used to simulate many standard 
algorithms on randomized input.)
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Extending these results for planted clique to dense SBM and HSBM recovery appears 
to be a promising direction for future work. In the d-uniform hypergraph case, it is unclear 
whether the barrier should be 

√
n, n1/d or something else. It seems plausible that the 

barrier could be less than 
√

n for d > 2, since d-uniform HSBMs have 
(

n
d

)
independent 

random variables in play compared with only 
(

n
2
)

in the graph case, and thus we may 
expect certain random variables (e.g. degrees) to be more tightly concentrated about 
their expectations. However, it seems doubtful that a spectral algorithm could do better 
than 

√
n using only the adjacency matrix (see Definition 3.1), as this is the error term 

introduced by concentration results for the spectral norm of a random symmetric n × n

matrix (see, e.g., [53]); to break the 
√

n barrier, we suspect that one must use the spectral 
properties of the adjacency tensor and not simply reduce to the adjacency matrix.

While proving lower bounds for efficient HSBM recovery appears to be difficult, one 
can readily prove that exact recovery is impossible for any algorithm, regardless of run-
ning time, if the cluster size is small enough (i.e., an information theoretic lower bound). 
We will follow the proof ideas from [15,34] for graph SBM recovery to prove an informa-
tion theoretic lower bound for HSBMs.

Recall the definition of incidence matrix of a partition (5.2). Conversely, let C(Y )
denote the partition of [n] whose incidence matrix is Y . Let Y be the set of all incidence 
matrices corresponding to partitions of [n] into k parts of size s:

Y := {Y : ∃ k clusters of size s such that Y is the corresponding incidence matrix}.

(9.1)

In addition, recall that the Kullback-Leibler (KL) divergence between two Bernoulli 
random variables with means u and v is given by

D(u‖v) = u log u

v
+ (1 − u) log 1 − u

1 − v
. (9.2)

We are now able to state our theorem for the lower bound on the minimax error proba-
bility of recovering Y ∗.

Theorem 9.1. If 128 ≤ s ≤ n/2 and

(
s − 1
d − 1

)
max{D(p‖q), D(q‖p)} ≤ 1

24 ln(n − s), (9.3)

then

inf
f

sup
Y∗∈Y

P (f(T ) �= Y ∗) ≥ 1
2 .

The infimum is taken over all measurable functions f : Sd({0, 1}n) → Y, where 
Sd({0, 1}n) denotes the set of symmetric d-tensors in {0, 1}nd , and the probability is 
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taken over a random adjacency tensor T sampled from the HSBM distribution corre-
sponding to Y ∗, i.e. T ∼ H(n, C(Y ∗), p, q, d).

From this theorem we know that when p, q are constant, if s = O
(

log
1

d−1 n
)

, then for 
any algorithm there is some “bad” input on which the algorithm will fail with probability 
at least 1/2. When d = 2, this is the result obtained in [15]. It is unclear at present 
whether the exponent 1

d−1 can be improved.
Note that Theorem 9.1 is an information theoretical lower bound. On the other hand, 

our Theorem 2.1 considers only polynomial time solvability, and there is a considerable 
gap between the performance guarantee of Theorem 2.1 and the lower bound given in 
Theorem 9.1. Closing this gap remains an open problem.

Proof of Theorem 9.1. Let m = n − s and Y = {Y0, . . . , Ym} be a subset of Y of size 
m + 1 defined as follows. Let Y0 be the incidence matrix of the partition C1, . . . , Ck, 
where Cl := {(l − 1)s + 1, . . . , ls}. We then define Yi for i > 0 by swapping the cluster 
membership of s and s + i. More formally, if s + i ∈ Cl, then Yi is the incidence matrix 
of the partition C ′

1, . . . , C ′
k, where C ′

1 := C1 ∪ {s + i} \ {s}, C ′
l := Cl ∪ {s} \ {s + i}, and 

C ′
j := Cj for all j �= 1, l.
Let P(Y ∗,T ) be the joint distribution of (Y ∗, T ) where we first sample an incidence 

matrix Y ∗ from Y uniformly at random and then sample a hypergraph adjacency tensor 
T ∼ H(n, C(Y ∗), p, q, d) (see Section 1.2). Then we have

inf
f

sup
Y ∗∈Y

P (f(T ) �= Y ∗) ≥ inf
f

P(Y ∗,T )(f(T ) �= Y ∗) ≥ 1 − I(Y ∗; T ) + 1
log |Y|

, (9.4)

where the last inequality is by Fano’s inequality and I(Y ∗; T ) is the mutual informa-
tion between Y ∗ and T . Let Pi be the probability distribution of the hypergraph H

conditioned on Y ∗ = Yi. By the convexity of KL-divergence we have

I(Y ∗; T ) ≤ 1
(m + 1)2

m∑
i,i′=0

D(Pi‖Pi′) ≤ max
i,i′

D(Pi‖Pi′).

Note that Pi is the product of 
(

n
d

)
many Bernoulli distributions. Let Pi(e) be the prob-

ability distribution of the hyperedge e under the distribution Pi, which is either Ber(p)
or Ber(q). Then for any i �= i′ we have

D(Pi‖Pi′) ≤
∑

e

D(Pi(e)‖Pi′(e)) ≤ 3
(

s − 1
d − 1

)
D(p‖q) + 3

(
s − 1
d − 1

)
D(q‖p) (9.5)

≤ 6
(

s − 1
d − 1

)
max{D(p‖q), D(q‖p)}.

Here the first inequality in (9.5) is due to the fact that KL-divergence is additive for 
products of independent distributions. The second inequality comes from counting terms 
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in which Pi(e) �= Pi′(e). In the worst case we have s + i ∈ Cl and s + i′ ∈ Cl′ for some 
l′ �= l �= 0, in which we get a contribution of D(p||q) from all e containing s + i and d − 1
indices from C1 \ {s}, all e containing s and d − 1 indices from Cl \ {s + i}, and all e
containing s + i′ and d − 1 indices from Cl′ \ {s + i′}, a total of 3

(
s−1
d−1

)
terms; we get a 

contribution of D(q||p) from the same number of terms.
If (9.3) holds, then I(Y ∗; T ) ≤ 1

4 log(n − s) = 1
4 log |Y|. When n ≥ 128, we have 

log |Y| ≥ 4. Then from (9.4) the minimax error probability is at least 1/2. This completes 
the proof. �
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Appendix A. Simple counting algorithm

One can recover HSBMs by simply counting the number of hyperedges containing pairs 
of vertices: with high probability, pairs of vertices in the same cluster will be contained 
in more hyperedges than pairs in different clusters. However, our spectral algorithm 
provides better performance guarantees than this simple counting algorithm.

Algorithm 2
Given H = (V, E), |V | = n, number of clusters k, and cluster size s = n/k:
(1) For each pair of vertices u �= v, compute Auv := number of hyperedges containing u and v.
(2) For each vertex v, let Wv be the set of vertices containing v and the s − 1 vertices u �= v with highest 

Auv (breaking ties arbitrarily). It will be shown that w.h.p. Wv will be the cluster Ci containing v.

Theorem A.1. Let H be sampled from H(n, d, C, p, q), where d ≥ 3, C = {C1, . . . , Ck} and 
|Ci| = s = n/k for i = 1, . . . , k. Then Algorithm 2 recovers C with probability ≥ 1 − 1/n

if

(
s − 2
d − 2

)
(p − q) >

√
6
(

n − 2
d − 2

)
log n.

A simple counting algorithm for graph SBMs was given in [15]. Our algorithm is 
modified from [15] for hypergraphs based on counting hyperedges and it requires d ≥ 3.
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Proof. For each u �= v, Auv =
∑

e:u,v∈e

Te is the sum of 
(

n−2
d−2

)
independent Bernoulli 

random variables of expectation either p or q. Thus, it follows from a straightforward 
application of Hoeffding’s inequality that

Auv ≥
(

n − 2
d − 2

)
q +

(
s − 2
d − 2

)
(p − q) −

√
3
2

(
n − 2
d − 2

)
log n (A.1)

with probability ≥ 1 − 1/n3 if u and v are in the same cluster and

Auv ≤
(

n − 2
d − 2

)
q +

√
3
2

(
n − 2
d − 2

)
log n (A.2)

with probability ≥ 1 − 1/n3 if u and v are in different clusters. Taking a union bound 
over all 

(
n
2
)

pairs, these bounds hold for all pairs u �= v with probability ≥ 1 −1/n. Thus, 
as long as the lower bound in (A.1) is greater than the upper bound in (A.2), for each 
v the s − 1 vertices with highest Auv will be the other vertices in v’s cluster. �

In particular, if we bound the binomial coefficient 
(

a
b

)
by 

(
a
b

)b ≤
(

a
b

)
≤

(
ae
b

)b, we see 
that

s ≥ c1
√

nd

(√
log n

p − q

) 1
d−2

and

p − q ≥ c2(2end) d−2
2

√
log n

sd−2 = c2

(
2ek2d

n

) d−2
2 √

log n

are both sufficient conditions for recovery, where c1 and c2 are absolute constants.

Appendix B. The sparse case

We can also analyze the performance of Algorithm 1 in the sparse case, in which we 
treat k, d as fixed and try to make p and q as small as possible. Our concentration bound 

(4.3) is not optimal in the sparse case. However, when p = ω(log4 n)
nd−1 , we can still get 

a good concentration inequality of the adjacency matrix A using Lemma 5 in [44]. We 
include it here:

Lemma B.1. If p = ω(log4 n)
nd−1 , we have

‖A − EA‖2 ≤ 2d
√

nd−1p (B.1)
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with probability 1 − o(1).

In this case, we get the following analog of Theorem (5.4).

Lemma B.2. Assume (B.1) holds. Then

‖Pk(A) − Pk(EA)‖2 ≤ ε

and

‖Pk(A) − Pk(EA)‖F ≤
√

2kε

for any

ε ≥ 2d
√

nd−1p(
s−2
d−2

)
(p − q)s − 4d

√
nd−1p

. (B.2)

Proof. Apply Lemma 5.5 with X = A, Y = EA, and

α =
(

s − 2
d − 2

)
(p − q)(s − 1) −

(
n − 2
d − 2

)
q − 2d

√
nd−1p,

β = −
(

s − 2
d − 2

)
(p − q) −

(
n − 2
d − 2

)
q + 2d

√
nd−1p.

Note that we need
(

s − 2
d − 2

)
(p − q)s > 4d

√
nd−1p (B.3)

in order for this to work. �
If we assume p = ω(log4 n)

nd−1 , p −q = Θ(p), and k is fixed, condition (B.3) always holds. 
In addition, we want the failure probability to be o(1), so we require

exp
(

−ε2
(

s − 1
d − 1

))
= o((nk)−1).

Putting ε2
(

s − 1
d − 1

)
≥ 3 log n suffices to accomplish this. Therefore, we require that ε ≥

c4
√

log n

n(d−1)/2 for some constant c4 depending only on d, k as an additional lower bound on 

ε. On the other hand, to make the algorithm succeed, we need to have ε <
p − q

32d
from 

the analysis in Section 8. Together we have the following constraint on ε:
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max
{

c4
√

log n

n(d−1)/2 ,
2d

√
nd−1p(

s−2
d−2

)
(p − q)s − 4d

√
nd−1p

}
< ε <

p − q

32d
. (B.4)

To make (B.4) work, assuming p − q > c5p for some constant 0 < c5 < 1, we have

p − q ≥ c6

n(d−1)/3

for some constant c6 > 0 depending on d, k and c5. This yields the following corollary to 
Theorem 2.1:

Theorem B.3 (Sparse case). Let k, d be constant and let H be sampled from H(n, d, C, p, q), 
where C = {C1, . . . , Ck} and |Ci| = s = n/k for i = 1, . . . , k. If p − q > c5p for some 
constant 0 < c5 < 1 and

p − q ≥ c6

n(d−1)/3 (B.5)

for some constant c6 depending on d, k and c5, then Algorithm 1 recovers C w.h.p.

Thus, we see that our algorithm is far from optimal in the sparse case: the algorithms 
developed in [37,43,17,16,29] all provide better performance guarantees. In fact, even the 
trivial hyperedge counting algorithm (Algorithm 2) beats our spectral algorithm in the 
sparse case.

References

[1] Emmanuel Abbe, Community detection and stochastic block models: recent developments, J. Mach. 
Learn. Res. 18 (177) (2018) 1–86.

[2] Emmanuel Abbe, Afonso S. Bandeira, Georgina Hall, Exact recovery in the stochastic block model, 
IEEE Trans. Inf. Theory 62 (1) (2016) 471–487.

[3] Emmanuel Abbe, Jianqing Fan, Kaizheng Wang, Yiqiao Zhong, Entrywise eigenvector analysis of 
random matrices with low expected rank, arXiv preprint, arXiv :1709 .09565, 2017.

[4] Kwangjun Ahn, Kangwook Lee, Changho Suh, Community recovery in hypergraphs, in: Communi-
cation, Control, and Computing (Allerton), 2016 54th Annual Allerton Conference on, IEEE, 2016, 
pp. 657–663.

[5] Kwangjun Ahn, Kangwook Lee, Changho Suh, Hypergraph spectral clustering in the weighted 
stochastic block model, IEEE J. Sel. Top. Signal Process. (2018).

[6] Dan Alistarh, Jennifer Iglesias, Milan Vojnovic, Streaming min-max hypergraph partitioning, in: 
Advances in Neural Information Processing Systems, 2015, pp. 1900–1908.

[7] Noga Alon, Michael Krivelevich, Benny Sudakov, Finding a large hidden clique in a random graph, 
Random Structures Algorithms 13 (3–4) (1998) 457–466.

[8] Brendan P.W. Ames, Guaranteed clustering and biclustering via semidefinite programming, Math. 
Program. 147 (1–2) (2014) 429–465.

[9] Maria Chiara Angelini, Francesco Caltagirone, Florent Krzakala, Lenka Zdeborová, Spectral de-
tection on sparse hypergraphs, in: Communication, Control, and Computing (Allerton), 2015 53rd 
Annual Allerton Conference on, IEEE, 2015, pp. 66–73.

[10] Sanjeev Arora, Boaz Barak, Computational Complexity: A Modern Approach, Cambridge Univer-
sity Press, 2009.

[11] Charles Bordenave, Marc Lelarge, Laurent Massoulié, Nonbacktracking spectrum of random graphs: 
community detection and nonregular Ramanujan graphs, Ann. Probab. 46 (1) (2018) 1–71.

http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6162626532303138636F6D6D756E697479s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6162626532303138636F6D6D756E697479s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib61626265323031366578616374s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib61626265323031366578616374s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6162626532303137656E74727977697365s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6162626532303137656E74727977697365s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib61686E32303136636F6D6D756E697479s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib61686E32303136636F6D6D756E697479s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib61686E32303136636F6D6D756E697479s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib61686E3230313868797065726772617068s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib61686E3230313868797065726772617068s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib616C6973746172683230313573747265616D696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib616C6973746172683230313573747265616D696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib616C6F6E3139393866696E64696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib616C6F6E3139393866696E64696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib616D65733230313467756172616E74656564s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib616D65733230313467756172616E74656564s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib616E67656C696E6932303135737065637472616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib616E67656C696E6932303135737065637472616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib616E67656C696E6932303135737065637472616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib61726F726132303039636F6D7075746174696F6E616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib61726F726132303039636F6D7075746174696F6E616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib626F7264656E617665323031386E6F6E6261636B747261636B696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib626F7264656E617665323031386E6F6E6261636B747261636B696E67s1


72 S. Cole, Y. Zhu / Linear Algebra and its Applications 593 (2020) 45–73
[12] Alain Bretto, Luc Gillibert, Hypergraph-based image representation, in: International Workshop on 
Graph-Based Representations in Pattern Recognition, Springer, 2005, pp. 1–11.

[13] Samuel R. Bulò, Marcello Pelillo, A game-theoretic approach to hypergraph clustering, in: Advances 
in Neural Information Processing Systems, 2009, pp. 1571–1579.

[14] Yudong Chen, Sujay Sanghavi, Huan Xu, Improved graph clustering, IEEE Trans. Inf. Theory 
60 (10) (2014) 6440–6455.

[15] Yudong Chen, Jiaming Xu, Statistical-computational tradeoffs in planted problems and submatrix 
localization with a growing number of clusters and submatrices, J. Mach. Learn. Res. 17 (1) (2016) 
882–938.

[16] I. Chien, Chung-Yi Lin, I-Hsiang Wang, Community detection in hypergraphs: optimal statistical 
limit and efficient algorithms, in: International Conference on Artificial Intelligence and Statistics, 
2018, pp. 871–879.

[17] I. Chien, Chung-Yi Lin, I-Hsiang Wang, On the minimax misclassification ratio of hypergraph 
community detection, arXiv preprint, arXiv :1802 .00926, 2018.

[18] Sam Cole, Recovering nonuniform planted partitions via iterated projection, Linear Algebra Appl. 
576 (2019) 79–107.

[19] Sam Cole, Shmuel Friedland, Lev Reyzin, A simple spectral algorithm for recovering planted parti-
tions, Spec. Matrices 5 (1) (2017) 139–157.

[20] Aurelien Decelle, Florent Krzakala, Cristopher Moore, Lenka Zdeborová, Asymptotic analysis of the 
stochastic block model for modular networks and its algorithmic applications, Phys. Rev. E 84 (6) 
(2011) 066106.

[21] Aurélien Ducournau, Alain Bretto, Soufiane Rital, Bernard Laget, A reductive approach to hyper-
graph clustering: an application to image segmentation, Pattern Recognit. 45 (7) (2012) 2788–2803.

[22] Uriel Feige, Robert Krauthgamer, Finding and certifying a large hidden clique in a semirandom 
graph, Random Structures Algorithms 16 (2000) 195–208.

[23] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S. Vempala, Ying Xiao, Statistical algo-
rithms and a lower bound for detecting planted cliques, J. ACM 64 (2) (April 2017) 8.

[24] Keqin Feng, Wen-Ching Winnie Li, Spectra of hypergraphs and applications, J. Number Theory 
60 (1) (1996) 1–22.

[25] Suzanne Renick Gallagher, Debra S. Goldberg, Clustering coefficients in protein interaction hyper-
networks, in: Proceedings of the International Conference on Bioinformatics, Computational Biology 
and Biomedical Informatics, ACM, 2013, p. 552.

[26] Debarghya Ghoshdastidar, Ambedkar Dukkipati, Consistency of spectral partitioning of uniform 
hypergraphs under planted partition model, in: Advances in Neural Information Processing Systems, 
2014, pp. 397–405.

[27] Debarghya Ghoshdastidar, Ambedkar Dukkipati, A provable generalized tensor spectral method 
for uniform hypergraph partitioning, in: International Conference on Machine Learning, 2015, 
pp. 400–409.

[28] Debarghya Ghoshdastidar, Ambedkar Dukkipati, Spectral clustering using multilinear SVD: anal-
ysis, approximations and applications, in: AAAI, 2015, pp. 2610–2616.

[29] Debarghya Ghoshdastidar, Ambedkar Dukkipati, Consistency of spectral hypergraph partitioning 
under planted partition model, Ann. Statist. 45 (1) (2017) 289–315.

[30] Gene H. Golub, Charles F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University 
Press, Baltimore, MD, USA, 1996.

[31] Ming Gu, Subspace iteration randomization and singular value problems, SIAM J. Sci. Comput. 
37 (3) (2015) A1139–A1173.

[32] Eui-Hong Han, George Karypis, Vipin Kumar, Bamshad Mobasher, Hypergraph based clustering 
in high-dimensional data sets: a summary of results, IEEE Data Eng. Bull. 21 (1) (1998) 15–22.

[33] Matthias Hein, Simon Setzer, Leonardo Jost, Syama Sundar Rangapuram, The total variation on 
hypergraphs-learning on hypergraphs revisited, in: Advances in Neural Information Processing Sys-
tems, 2013, pp. 2427–2435.

[34] Amin Jalali, Qiyang Han, Ioana Dumitriu, Maryam Fazel, Relative density and exact recovery in 
heterogeneous stochastic block models, arXiv preprint, arXiv :1512 .04937, 2015.

[35] Amin Jalali, Qiyang Han, Ioana Dumitriu, Maryam Fazel, Exploiting tradeoffs for exact recovery 
in heterogeneous stochastic block models, in: Advances in Neural Information Processing Systems, 
2016, pp. 4871–4879.

[36] Mark Jerrum, Large cliques elude the Metropolis process, Random Structures Algorithms 3 (4) 
(1992) 347–359.

http://refhub.elsevier.com/S0024-3795(20)30056-2/bib62726574746F3230303568797065726772617068s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib62726574746F3230303568797065726772617068s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib62756C6F3230303967616D65s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib62756C6F3230303967616D65s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6368656E32303134696D70726F766564s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6368656E32303134696D70726F766564s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6368656E32303136737461746973746963616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6368656E32303136737461746973746963616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6368656E32303136737461746973746963616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib636869656E32303138636F6D6D756E697479s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib636869656E32303138636F6D6D756E697479s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib636869656E32303138636F6D6D756E697479s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib636869656E323031386D696E696D6178s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib636869656E323031386D696E696D6178s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib636F6C65323031387265636F766572696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib636F6C65323031387265636F766572696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib636F6C653230313773696D706C65s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib636F6C653230313773696D706C65s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib646563656C6C65323031316173796D70746F746963s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib646563656C6C65323031316173796D70746F746963s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib646563656C6C65323031316173796D70746F746963s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6475636F75726E617532303132726564756374697665s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6475636F75726E617532303132726564756374697665s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib66656967653230303066696E64696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib66656967653230303066696E64696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib66656C646D616E32303137737461746973746963616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib66656C646D616E32303137737461746973746963616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib66656E673139393673706563747261s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib66656E673139393673706563747261s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib67616C6C616768657232303133636C7573746572696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib67616C6C616768657232303133636C7573746572696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib67616C6C616768657232303133636C7573746572696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib67686F7368646173746964617232303134636F6E73697374656E6379s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib67686F7368646173746964617232303134636F6E73697374656E6379s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib67686F7368646173746964617232303134636F6E73697374656E6379s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib67686F736864617374696461723230313570726F7661626C65s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib67686F736864617374696461723230313570726F7661626C65s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib67686F736864617374696461723230313570726F7661626C65s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib67686F7368646173746964617232303135737065637472616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib67686F7368646173746964617232303135737065637472616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib67686F7368646173746964617232303137636F6E73697374656E6379s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib67686F7368646173746964617232303137636F6E73697374656E6379s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib676F6C7562313939366D6174726978s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib676F6C7562313939366D6174726978s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6775323031357375627370616365s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6775323031357375627370616365s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib68616E3139393868797065726772617068s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib68616E3139393868797065726772617068s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6865696E32303133746F74616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6865696E32303133746F74616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6865696E32303133746F74616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6A616C616C693230313572656C6174697665s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6A616C616C693230313572656C6174697665s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6A616C616C69323031366578706C6F6974696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6A616C616C69323031366578706C6F6974696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6A616C616C69323031366578706C6F6974696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6A657272756D313939326C61726765s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6A657272756D313939326C61726765s1


S. Cole, Y. Zhu / Linear Algebra and its Applications 593 (2020) 45–73 73
[37] Chiheon Kim, Afonso S. Bandeira, Michel X. Goemans, Stochastic block model for hypergraphs: 
statistical limits and a semidefinite programming approach, arXiv preprint, arXiv :1807 .02884, 2018.

[38] Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, Chang D. Yoo, Higher-order correlation 
clustering for image segmentation, in: Advances in Neural Information Processing Systems, 2011, 
pp. 1530–1538.

[39] Tamara G. Kolda, Brett W. Bader, Tensor decompositions and applications, SIAM Rev. 51 (3) 
(2009) 455–500.

[40] Luděk Kučera, Expected complexity of graph partitioning problems, Discrete Appl. Math. 57 (2–3) 
(1995) 193–212.

[41] Marius Leordeanu, Cristian Sminchisescu, Efficient hypergraph clustering, in: Artificial Intelligence 
and Statistics, 2012, pp. 676–684.

[42] Leonid A. Levin, Average case complete problems, SIAM J. Comput. 15 (1) (feb 1986) 285–286.
[43] Chung-Yi Lin, I. Eli Chien, I-Hsiang Wang, On the fundamental statistical limit of community de-

tection in random hypergraphs, in: Information Theory (ISIT), 2017 IEEE International Symposium 
on, IEEE, 2017, pp. 2178–2182.

[44] Linyuan Lu, Xing Peng, Loose Laplacian spectra of random hypergraphs, Random Structures Al-
gorithms 41 (4) (2012) 521–545.

[45] Laurent Massoulié, Community detection thresholds and the weak Ramanujan property, in: Proceed-
ings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, ACM, 2014, pp. 694–703.

[46] Elchanan Mossel, Joe Neeman, Allan Sly, Reconstruction and estimation in the planted partition 
model, Probab. Theory Related Fields 162 (3–4) (2015) 431–461.

[47] Elchanan Mossel, Joe Neeman, Allan Sly, A proof of the block model threshold conjecture, Combi-
natorica 38 (3) (2018) 665–708.

[48] Elchanan Mossel, Joe Neeman, Allan Sly, et al., Consistency thresholds for the planted bisection 
model, Electron. J. Probab. 21 (2016).

[49] Samet Oymak, Babak Hassibi, Finding dense clusters via low rank+ sparse decomposition, arXiv 
preprint, arXiv :1104 .5186, 2011.

[50] Soumik Pal, Yizhe Zhu, Community detection in the sparse hypergraph stochastic block model, 
arXiv preprint, arXiv :1904 .05981, 2019.

[51] David A. Papa, Igor L. Markov, Hypergraph partitioning and clustering, in: Handbook of Approx-
imation Algorithms and Metaheuristics, Chapman and Hall/CRC, 2007, pp. 959–978.

[52] Alexei Vazquez, Finding hypergraph communities: a Bayesian approach and variational solution, J. 
Stat. Mech. Theory Exp. 2009 (07) (2009) P07006.

[53] Roman Vershynin, High-Dimensional Probability: An Introduction with Applications in Data Sci-
ence, vol. 47, Cambridge University Press, 2018.

[54] Anderson Y. Zhang, Harrison H. Zhou, Minimax rates of community detection in stochastic block 
models, Ann. Statist. 44 (5) (2016) 2252–2280.

[55] Denny Zhou, Jiayuan Huang, Bernhard Schölkopf, Learning with hypergraphs: clustering, classifica-
tion, and embedding, in: Advances in Neural Information Processing Systems, 2007, pp. 1601–1608.

http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6B696D3230313873746F63686173746963s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6B696D3230313873746F63686173746963s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6B696D32303131686967686572s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6B696D32303131686967686572s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6B696D32303131686967686572s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6B6F6C64613230303974656E736F72s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6B6F6C64613230303974656E736F72s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6B757663657261313939356578706563746564s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6B757663657261313939356578706563746564s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6C656F726465616E7532303132656666696369656E74s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6C656F726465616E7532303132656666696369656E74s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6C6576696E3139383661766572616765s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6C696E3230313766756E64616D656E74616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6C696E3230313766756E64616D656E74616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6C696E3230313766756E64616D656E74616Cs1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6C75323031326C6F6F7365s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6C75323031326C6F6F7365s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6D6173736F756C696532303134636F6D6D756E697479s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6D6173736F756C696532303134636F6D6D756E697479s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6D6F7373656C323031357265636F6E737472756374696F6Es1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6D6F7373656C323031357265636F6E737472756374696F6Es1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6D6F7373656C3230313870726F6F66s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6D6F7373656C3230313870726F6F66s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6D6F7373656C32303136636F6E73697374656E6379s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6D6F7373656C32303136636F6E73697374656E6379s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6F796D616B3230313166696E64696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib6F796D616B3230313166696E64696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib70616C32303139636F6D6D756E697479s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib70616C32303139636F6D6D756E697479s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib676F6E7A616C657A3230303768797065726772617068s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib676F6E7A616C657A3230303768797065726772617068s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib76617A7175657A3230303966696E64696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib76617A7175657A3230303966696E64696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib7665727368796E696E3230313868696768s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib7665727368796E696E3230313868696768s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib7A68616E67323031366D696E696D6178s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib7A68616E67323031366D696E696D6178s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib7A686F75323030376C6561726E696E67s1
http://refhub.elsevier.com/S0024-3795(20)30056-2/bib7A686F75323030376C6561726E696E67s1

	Exact recovery in the hypergraph stochastic block model: A spectral algorithm
	1 Introduction
	1.1 Hypergraph clustering
	1.2 Hypergraph stochastic block models
	1.3 Our results
	1.4 Why dense HSBMs?
	1.5 Comparison with previous results

	2 Spectral algorithm and main results
	2.1 Running time

	3 Reduction to random matrices
	4 Eigenvalues and concentration of spectral norms
	5 Dominant eigenspaces and projectors
	6 Constructing an approximate cluster
	7 Exact recovery by counting hyperedges
	8 Proof of algorithm's correctness
	8.1 Proof of correctness of ﬁrst iteration
	8.2 The "delete and repeat" step

	9 Lower bounds for HSBM recovery
	Acknowledgements
	Appendix A Simple counting algorithm
	Appendix B The sparse case
	References


