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THE DOUGLAS-RACHFORD ALGORITHM CONVERGES ONLY
WEAKLY™
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Abstract. We show that the weak convergence of the Douglas—Rachford algorithm for finding
a zero of the sum of two maximally monotone operators cannot be improved to strong convergence.
Likewise, we show that strong convergence can fail for the method of partial inverses.
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The original Douglas—Rachford splitting algorithm was designed to decompose
positive systems of linear equations [3]. It evolved in [5] into a powerful method for
finding a zero of the sum of two maximally monotone operators in Hilbert spaces,
a problem which is ubiquitous in applied mathematics (see [1] for background on
monotone operators). In this context, the Douglas—Rachford algorithm constitutes a
prime decomposition method in areas such as control, partial differential equations,
optimization, statistics, variational inequalities, mechanics, optimal transportation,
machine learning, and signal processing. Its asymptotic behavior is described next.

THEOREM 1. Let H be a real Hilbert space, and let A and B be set-valued maz-
imally monotone operators from H to 2% with resolvents J4 = (Id + A)~! and
Jg = (Id + B)™'. Suppose that zer (A + B) = {z € H | 0 € Az + Bx} # @, let
Yo € H, and iterate

(1) (Vn € N) Tn =JBYn and Ypt1 = Yn + JA(an - yn) — T

Then the following hold for some (y,x) € graph Jp:

(i) e =Ja2z —y), yn — y, and x € zer (A + B).

(ii) x, — .

Property (i) was established in [5]. Let us note that, since Jp is not weakly
sequentially continuous in general, the weak convergence of (y,)nen in (i) does not
imply (ii). The latter was first established in [7] (see also [1, Theorem 26.11(iii)] for
an alternative proof). While various additional conditions on A and B have been
proposed to ensure the strong convergence of the sequence (z,)nen in (1) [1, 2, 5],
it remains an open question whether it can fail in the general setting of Theorem 1.
We show that this is indeed the case. Our argument relies on a result of Hundal [4]
concerning the method of alternating projections.

COUNTEREXAMPLE 2. In Theorem 1, suppose that H is infinite-dimensional and
separable. Let (ey)ren be an orthonormal basis of H, let V = {eg}*, let yo = ea, and
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let K be the smallest closed convexr cone containing the set

(2)
{exp(—100§3)eo +C05<g(f - LfJ))eLgﬁl +sin(g(§ - LfJ))€L§J+2 ’ §€ [07+00[}7

where | €] denotes the integer part of £ € [0, 4+00[. Let proj,, and projy be the projec-
tion operators onto V and K, and set

Vit o difxeV,

-1
and B = (projy o projx o proj —Id.
o ifsdv (projy o proj o projy)

(3) A:am—){

Then A and B are mazimally monotone, and the sequence (x,)en constructed in
Theorem 1 converges weakly, but not strongly, to a zero of A+ B.

Proof. We first note that A is maximally monotone by virtue of [1, Examples 6.43
and 20.26]. Now set T' = projy, oproj g oprojy,. Then it follows from [1, Example 4.14]
that T is firmly nonexpansive, that is,

(4) (Vo e H)(Vy €H) (z—y|Tz—Ty) > Tz - Ty

In turn, we derive from [1, Proposition 23.10] that B = T—! — Id is maximally
monotone. Next, we observe that 0 € zer A and that, since K is a closed cone,
0 € K. Thus, 0 = (projy, o projg o projy, )0, which implies that 0 € zer B. Hence,

(5) 0 € zer (A + B).
Now set
(6) zo = exp(—100)eg + e and (Vn € N)  z,41 = projg (projy zn).

Then, by nonexpansiveness of projy,

(Vn € N) |lznpal* = [[proj (projy zn) — proj 0|
< [[projy znl®

(7) = [lzall* = [projy 2z — 2nll®
and, therefore,
(8) Projy zn — zn — 0.
As shown in [4], we also have
(9) zn — 0 and 2z, /A 0.
On the other hand, we derive from (3) that
(10) Ja =proj,, and Jp = projy o projg o projy
and from (6) that projy,zo = e2 = yo. It thus follows from (1) and (6) that xy =
projy (proj k (projyyo)) = projy (proj g (projy zo0)) = projy z1. Now, assume that, for
some n € N, y, = projy 2z, and x, = projy z,+1. Since x,, and y, lie in V', we derive

from (1) and (10) that

(11) Yn+1 = Yn + projV(an —Yn) — Tp =Ty = PIOjy Zn+1
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and hence that

Tat1 = (projy o projy o projy,) (projy zn+1)
= projy (prOjK (projvzn+1))
(12) = Projy Zn42.
We have thus proven by induction that
(13) (Vn e N) x, = projy zn+1.
In view of (8), we obtain x,, — z,4+1 — 0 and therefore derive from (9) and (5) that
xn, — 0€zer(A+ B) and z, /4 0. |

Next, we settle a similar open question for Spingarn’s method of partial inverses
[6] by showing that its strong convergence can fail.

THEOREM 3 (see [6]). Let H be a real Hilbert space, let B: H — 27 be mazimally
monotone, and let V be a closed vector subspace of H. Suppose that the problem

(14) find x €V and uw € V" such that u € Bz
has at least one solution. Let xo € V, let ug € V-, and iterate
(15) (Vn €N)  @pq1 =projy (J(@n+un)) and tnq1 = projy i (Jp-1(zp+un)).

Then (Zn, Un)nen converges weakly to a solution to (14).

COUNTEREXAMPLE 4. Define H, V, K, and B as in Counterezample 2, and set
xo = ez and ug = 0. Then (0,0) solves (14) and the sequence (Ty, Un)nen constructed
in Theorem 3 converges weakly, but not strongly, to (0,0).

Proof. Since Jp = projy, o projg o projy, and Jg-1 = Id — Jp, (15) implies that

(16) (YneN) Tnil = (pr?jv © Proj © projv).(xn N un), .
Upt+1 = Projy L (:En + Uy — (prq]v o projy o pIOJV)(xn + un))

We therefore obtain inductively that

(17) (Vn € N) @41 = projy (projgay,) and u, = 0.

Now define (2, )nen as in (6). Then, by induction, (Vn € N) z,, = projy z,. Hence, in

view of (8) and (9), we conclude that 0<£ z, — 0. 0
REFERENCES

[1] H. H. BAUSCHKE AND P. L. COMBETTES, Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, 2nd ed., Springer, New York, 2017.

[2] P. L. COMBETTES, Iterative construction of the resolvent of a sum of mazimal monotone oper-
ators, J. Convex Anal., 16 (2009), pp. 727-748.

[3] J. DoucLAs AND H. H. RACHFORD, On the numerical solution of heat conduction problems in
two or three space variables, Trans. Amer. Math. Soc., 82 (1956), pp. 421-439.

[4] H. S. HUNDAL, An alternating projection that does not converge in norm, Nonlinear Anal., 57
(2004), pp. 35-61.

[5] P. L. LioNs AND B. MERCIER, Splitting algorithms for the sum of two nonlinear operators, STAM
J. Numer. Anal., 16 (1979), pp. 964-979, https://doi.org/10.1137/0716071.

[6] J. E. SPINGARN, Partial inverse of a monotone operator, Appl. Math. Optim., 10 (1983), pp.
247-265.

[7] B. F. SVAITER, On weak convergence of the Douglas—Rachford method, STAM J. Control Optim.,
49 (2011), pp. 280287, https://doi.org/10.1137/100788100.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



	References

