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434 P. L. Combettes, J.-C. Pesquet

1 Introduction

In [11], we investigated the asymptotic behavior of abstract stochastic quasi-Fejér
fixed point iterations in a Hilbert space H and applied these results to establish almost
sure convergence properties for randomly activated block-coordinate, stochastically
perturbed extensions of algorithms employed in fixed point theory, monotone operator
splitting, and optimization. The basic property of the operators used in the underlying
model was that of quasinonexpansiveness. Recall that an operator T : H — H with
fixed point set Fix T is quasinonexpansive if

(Vz e FixT)(Vx e H) |[Tx—z|| < |x — 2], (1.1)

and strictly quasinonexpansive if the above inequality is strict whenever x ¢ Fix T [6].
The fixed point problem under investigation in [11] was the following.

Problem 1.1 Let (H;)1<;<m be separable real Hilbert spaces andletH = H;®- - -®H,,
be their direct Hilbert sum. For every n € N, let T, : H - H : x = (T » X)1<i<m
be a quasinonexpansive operator where, foreveryi € {1,...,m}, T;, : H — H; is
measurable. Suppose that F = (), . Fix T, # @. The problem is to find a point in F.

In[11], Problem 1.1 was solved via the following block-coordinate algorithm. The
main advantages of a block-coordinate strategy is to reduce the computational load
and the memory requirements per iteration. In addition, our approach adopts random
sweeping rules to select arbitrarily the blocks of variables that are activated at each
iteration, and it allows for stochastic errors in the implementation of the operators.

Algorithm 1.2 Let (1,),cn be a sequence in ]0, 1] and set D = {0, 1}"\{0}. Let x¢
and (a,),en be H-valued random variables, and let (&,),<n be identically distributed
D-valued random variables. Iterate

forn=0,1,...
Lfori:l,...,m (1.2)
in,n+1 = Xin + 3i,n)\n (Tt,n (xl,na ceey xm,n) +dain — xi,n)~

At iteration n of Algorithm 1.2, A, €]0, 1] is a relaxation parameter, a; , an H;-
valued random variable modeling some stochastic error in the application of the
operator T; ,, and ¢; , an {0, 1}-valued random variable that signals the activation
of the ith block T;, of the operator T,. Almost sure weak and strong convergence
properties of this scheme were established in [11]. In the present paper, we comple-
ment these results by proving mean-square and linear convergence properties for the
orbits of (1.2) under the additional assumption that each operator T,, in Problem 1.1
satisfies the property

(31, €10, 1ID(VZz € FixT)(Vx € H) [[Tox — 2| < JTullx — 2], (1.3)

which implies that T, is strictly quasinonexpansive and that Fix T, is a singleton.
Our results appear to be the first of this kind regarding the block-coordinate algorithm
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Stochastic quasi-Fejér block-coordinate fixed point... 435

(1.2), even in the case of a single-block, when it reduces to the stochastically perturbed
iteration

forn=0,1,...
7 1.4
an—kl = Xn +)¥n(Tnxn + an _xn), (14)
special cases of which are studied in [2,12,24].
The problem we address is more precisely described as follows.

Problem 1.3 Let (H;)<;<n be separable real Hilbert spaces, setH = H{ @ - - - ©Hy,,
and let {7; ,}1<i<m C [0, 1[. Foreveryn € N, let T, : H - H: X~ (T; 1, X)1<i<m
be measurable and quasinonexpansive with common fixed point X = (X;)1<i<m, and
such that

m
(Vn e N)(Yx e H) [Tx —X|> <) mialxi — %I (1.5)
i=1

The problem is to find X.

The proposed mean-square convergence results are the most comprehensive avail-
able to date for stochastic block-iterative fixed point methods at the level of generality
and flexibility of Algorithm 1.2. Special cases concerning finite-dimensional mini-
mization problems involving a smooth function with restrictions in the implementation
of (1.2) are discussed in [18,20,21].

The remainder of the paper consists of three sections. In Sect. 2, we provide our
notation and preliminary results. Section 3 is dedicated to the mean-square conver-
gence analysis of Algorithm 1.2 and it discusses its linear convergence properties.
Applications are presented in Sect. 4.

2 Notation, background, and preliminary results

Notation H is a separable real Hilbert space with scalar product (- | -), associated
norm || - ||, Borel o-algebra B, and identity operator Id. The underlying probability
space is (€2, F, P). A H-valued random variable is a measurable map x : (2, %) —
(H, B) [14,15]. The o -algebra generated by a family ® of random variables is denoted
by o (®). Let # = (F,)nen be a sequence of sub-sigma algebras of F such that
(Vn € N) F,, C F,+1. We denote by £, (%) the set of sequences of [0, +oo[-valued
random variables (&,),en such that, for every n € N, &, is F,-measurable. We set

(Vp €10, +o0D) £1(F) = {(s,,)neN € L (F) ‘ Y& < 400 Pas.f. @21
neN

(Fn)nen be a sequence of sub-sigma algebras of F such

Lemma 2.1 Let ¥ =
Fn C Fns1. Let (ap)nen € L (F), let (On)nen € €4 (F), let

that (Vn € N)
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436 P. L. Combettes, J.-C. Pesquet

(M) neN E_E+(35), and suppose that there exists a sequence (Xn)neN in [0, +00[
such that lim x, < 1 and

(Vn eN) E (anH ‘ 9—“,,) + v, < xnoty + 1, P-as. (2.2)

Then the following hold:

(i) Set (vneN) T, =3"%_o ([Thepss x¢) E (ﬁk ‘ %) and 7, = Y g —o ([Tr=g+1 x¢)
E (nk ‘ 3’0> (with the convention HZH -=1). Then

(Vn e N) E (an+1 ‘ C-FO> 9, < (]_[ Xk) @ +7, Pas. (23
k=0

(i) Suppose that Eay < 400 and ), . En, < +00. Then ), . Ea,, < +00 and
Y nen EPn < oo

Proof (i) Let n € N\{0}. We deduce from (2.2) that

Srn—l) +E (Un

EFn—l) +E <77n

%—1)

3'",1_1> P-a.s.
(2.4)

£ (& (ensr [F0) |Famt) +E (9] Fum1) <E (e

= xnE (Oln

However, since ¥F,,_1 C F,,, we have E (E <an+1 ‘ ffn> ‘ 3'",,_1) =E (ozn+1 ‘ 3'“,,_1>.
Therefore (2.4) yields

s—fn_l) —E (ﬁn

Srn_l) P-a.s.
(2.5)

E (an+1 ‘ 3:rz—l) < xnE (Oln

EFn—l) +E (nn

By proceeding by induction and observing that g is Fp-measurable, we obtain (2.3).
(i1) We derive from (2.3) that

n
(Vn € N) Eayq1 +ED, < (l_[ Xk) Eao + E7,

k=0
— (]_[ Xk) Eao+ ) ( [] m) Ene.  (2.0)
k=0 k=0 \l=k+1

On the other hand, there exist g € N and p € ]0, 1[ such that, for every integer n > ¢,
Xn < p and, therefore,
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q a /[ 4 n
Eotny1 + EDp < (1_[ Xk) p"IEap + ) < [1 Xz) p"TUEm A+ Y " Em
k=0

k=0 \e=k+1 k=g+1

q q
— V4
< (l_[ Xk) o 1Eap+ max (—HZ_S“L; X )
k=0 P 0<k<

\\q

n
A fY e
k=0

2.7)

Since ),y p" < +ooand ), En, < +oo, it follows from standard properties
of the discrete convolution that (ZZZO p”_kEn_k)neN is summable. We then deduce
from (2.7) that ), .y Eay < 400 and )", yE¥, < +o00. Thus, the inequalities

(Vn e N) E®, < Z ( ]_[ Xg) Ed, = ED, (2.8)

k=0 \f=k+1
yield ), . E¥y < +o0. O

Lemma 2.2 Let ¢ : [0, +o0[— [0, +00[ be a strictly increasing function such that
lim;— {5 ¢ (1) = +00, let (x,)nenN be a sequence of H-valued random variables, and
let (F,)nen be a sequence of sub-sigma-algebras of F such that

(VneN) o(xp,...,xn) CFy CTFpy1. (2.9)

Suppose that there exist z € H, (9n)nen € L (F), Mn)neN € L+(F), and a sequence
(Xn)nen in [0, +00[ such that lim x,, < 1 and

(vn €M) E (¢ =20 | F0) + 00 < sub e — 21D+ P-aus. 2.10)

Set (Yn € N) 9 = 33 ([Tompr1 x0)E (ﬁk ‘ rfO) and 7, = 3} (ITi—ks1 xe)
E <77k ‘ ffo>. Then the following hold:

() (vn € NYE ((vast — 2D | Fo) + 9 < (TTizg 1) $(Ulxo —2I) +77, P-as
(ii) Let p €10, +o0o[ and set ¢ = | - |P. Suppose that xg € LP (2, F, P; H) and that
Y nen Enn < +oo. Then the following hold:
(@) Ellx, —z||” - 0and ), N EV, < +o0.
(b) Suppose that (Ny)neN € ﬁi(?). Then (x,),eN converges strongly P-a.s. to
zZ

Proof We apply Lemma 2.1(i) with (Vn € N) o, = ¢ (||xp — 2])).

(1) See Lemma 2.1(1).
(iia) Since LP(2,JF,P;H) is a vector space [25, Théoreme 5.8.8 and Proposi-
tion 5.8.9] that contains xg and z, it also contains xg — z. Hence Exg = E||xg —
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z||” < +o00, and it follows from Lemma 2.1(ii) that ), . Ellx, — z[|? < +o0
and ), .y E¥, < +o00. Consequently,

Ellx, — z||” — O. @2.11)

(iib) In view of (2.10), since (1,)neN € E}._(ﬁ), it follows from [12, Proposi-
tion 3.1(ii1)] that (||x, — z||)nen converges P-a.s. However, we derive from
(2.11) that there exists a strictly increasing sequence (k,),en in N such that
lxk, — zll — O P-a.s. [25, Corollaire 5.8.11]. Altogether |x, — z|| —
0 P-a.s. |

Theorem 2.3 Let (A,),eN be a sequence in 10, 1] such that inf,en Ay, > 0, and let
(t)neN, (Xn)neN, and (ep)neN be sequences of H-valued random variables. Further,
let (F,)nen be a sequence of sub-sigma-algebras of F such that

(VneN) o(xg,...,x5) CF, C Fpypr. (2.12)

Suppose that the following are satisfied:

[a] (Vn € N) xpp1 = x5 + An(tn + €n — Xn).
[b] There exists a sequence (&,),en in [0, +00[ such that

> Ve < +o0 (2.13)

neN

and (vn € N E (lleal| 5,) < &

[c] There existz € H, (6n)neN € L (F), WnneN € L (F), and a sequence (y)neN
in [0, +oo[ such that lim u, < 1 and

(Vn e N) E (||t,, —z))? ‘ ?n) + 6, < pnllxn —zlI> + vy P-as.  (2.14)

Set
Yoo =1 =+ hnitn + VErn(1 = Xn 4 Any/Tin)
=) [ I m}xk(E (6 | F0) + (1 = 20 (llx = x| %))
kn=0 er/l<+1
(Vn e N) | = Z[ l_[ Xz]/\k(E (Vk‘%>
k=0 = {=k+1
+<1 — Ak + )\k(ZE (ﬁ ‘ ff()) + \/,Uv_k)>«/§_k—|— )Mké:k)-
(2.15)
Then the following hold:

n
() (vn € N)E (Ilvnsr — 2017 | F0) + 9, < (1‘[ Xk) lxo — zI* +7, P-as.
k=0
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(i1) Suppose that xg € L*(Q, F, P; H) and that

Z Ev, < +00. (2.16)
neN

Then the following hold:
(@) Efx, —2z[* — 0.
(b) > ,en Ebn < +o0.

©) Y en( = A)Elty — xn[1? < +o00.
(d) Suppose that (v,),eN € EL/Z(,EZ). Then (x,),eN converges strongly P-a.s. to

Z.

Proof (i) Set A = inf,,en A,,. Then
Vn e N) xu < 1= (= pw)h+ VE(1+ V). (2.17)

Since lim i, < 1 and lim &, = 0, we have lim x,, < 1. In addition, we derive from
[a], [6, Corollary 2.15], and (2.14) that

Vn e N) |xps1 — 2|2
= (1 = A) (X — 2) + An(ta — 2)|I°
+ 22 ((1 = 1)t — 2) + An (10 — 2) | €n) + A2 ]lenl?
= (1 = A lxn — 2l + Alltn — 2l = 2 (1= A 1w — X011
+ 201 = &) (i — 2) + A (tn — 2) | €n) + Al llenll* P-ass. (2.18)

Hence, [c] implies that

vneN) E(lwnp -2 |,)

< =2 =212+ (Itn =212 | T ) =2 (1 = 2)E (tn =501 | T2 )

+ 2 ((1—An>||xn—z||+xn\/ E (I 21| ff)) \/E (Heat?| %) +22E (Newl? | )

<A =2 1xn — 2 + don (1nllxn — 2I> 4 va — 6,)

= (1= 2 (ltw = 3] | T2 )

+ 2 (1= Al = 2+ A sl — 212+ )y E (llenll? | 52 )

+ 32 (lleal® ‘ T,) Pas. (2.19)
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Now set

O = Jnbn + 2 (1 = A)E (It = 50l | 5, )
(€N Yy = v + 22/ [E (el | F2) + 22E (lleal?| 5,) 220
Nn = AnVn + )\n(l —An+ )\n(zm‘F «//Ln))\/s_n"’ )\rzléj-n

It follows from [b] that

(vn e M) E (Il =217 | 5)

< (1= + ) 0 = 22 4+ 200 (1= oy + A )50 — 21 [E (lleall? | 53

- 0)1 + Kn
< (1= hn + A %0 — 207 + (1 = Ay 4+ An /) (120 — 21> + 1)

x \[E (llenl | F2) = 9 +

< xnllxn — 2% — Op + 1 P-as. 2.21)

The result then follows by applying Lemma 2.2(i) with ¢ = | - |*.

(iia) According to (2.20), for every n € N,

Enn = 2nEvn + dn (1 = A + 2y QE/V + /1) )V En + 2260
= JnEvy + (1= Ay + I AavEn + 202VE E/vy + (/&)

<Evy + (14 Jun)VE + 2(sup \@) Ev, + (V&) (2.22)
keN

where we have used the fact that A, € ]0, 1] and Jensen’s inequality. We deduce from
(2.22), (2.13), and (2.16) that ), En, < +o00c. Hence it follows from (2.21) and
Lemma 2.2(iia) that E||x, — z||> — 0 and that ZneN Ev, < +oo. In view of (2.20),
we obtain (iib) and (iic).

(iid) In view of (2.20), if (,)nen € £5°(F), then (n,)neny € L (F) and the
strong convergence claim follows from Lemma 2.2(iib). O

Remark 2.4 (i) Under the assumptions of Theorem 2.3, if v, = 0 and &, = 0, then

71, = 0 and it follows from (i) that (E (||xn — z||2 ‘ i}"o))neN converges linearly to

0.
(i1) The weak and strong almost sure convergences of a sequence (x,),eN governed
by [a] and (2.14) were established in [11, Theorem 2.5] under different assumptions

on (tn)neN, (Vn)nen, and (e,),eN.
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3 Mean-square and linear convergence of Algorithm 1.2

We complement the almost sure weak and strong convergence results of [11] on the
convergence of the orbits of Algorithm 1.2 by establishing mean-square and linear
convergence properties.

3.1 Main results

The next theorem constitutes our main result in terms of mean-square convergence. For
added flexibility, this convergence will be evaluated in anorm |||- ||| on H parameterized
by weights (w;)1<i<m € 10, +00[™ and defined by

m
(vx e H) [IIX|II> =" wilxl?. 3.1)
i=1

Theorem 3.1 Consider the setting of Problem 1.3 and Algorithm 1.2, and let (F,,)eN
be a sequence of sub-sigma-algebras of F such that

Vn e N) o(x0,...,%n) C Fp C Fpir. (3.2)

Assume that the following are satisfied:

[a] inf, ey Ap > O.
[b] There exists a sequence (aty)nen in [0, +00[ such that ), .y /0n < +00 and,

foreveryn € N, E (||an||2 ‘ Srn> < ay.

[c] Foreveryn € N, &, = o (e,) and &, are independent.
[d] Foreveryi e {1,...,m}, pi =Plg;o=1]>0.

Then the following hold:

(i) Let (wi)1<i<m € 10, +00[™ be such that

Vie{l,...,m})) limrt, < wp;
max w;p; = 1, (33)
1<i<m
set
6 = om0,
(Vn € N) . SIS Tin (3.4)
Mp =1 — 12}1&1 <pl - w—l>
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and define
Xn =1—=2,(1 — pp) + \/é_n)\n(l —An+ )Vn\/E)
vneN) {_ [ r (3.5)
M= [ ] Xz])»k(l — Mk + Men/Tk + hic/Ee) V-
k=0 " t=k+1
Then

m
(vn eN) 3" i (i =%l | Fo)

i=1

n m
< (]‘[ Xk> (Z wi |l xi.0 —ii,ouZ) +7, P-as. (3.6)
k=0 i=1

(i1) Suppose that xg € L2(2,F,P;H) and (Vi € {1,...,m)}) mn,n < 1. Then
Ellx, — X||*> = 0and x, — X P-a.s.

Proof (1) We are going to apply Theorem 2.3 in the Hilbert space (H, ||| - |||) defined
by (3.1). Set

(VneN) t, = (xi,n + gi,n(Ti,n Xn — xi’”))lgigm and e, = (gi,nai,n)1<i<m~
(3.7)

Then it follows from (1.2) that
VneN) xpp1=x,+ )‘n(tn +ep — xn), (3.8)

while [b] implies that

vneN  E(lleall?|F,) <E(lllanl?|F,) <an max o =&. (3.9)

Ixm

We note that it also follows from [b] that >, v/, < +00. Now define

VneN)Vie{l,....m}) Qn:HxXxD—>R:(X € xi—X + € (T,x—x)|>
(3.10)

Then, forevery n € Nand every i € {1, ..., m}, the measurability of T; , implies that
of the functions (q; , (-, €))eep. However, for every n € N, [c] asserts that the events
([en = €])eep constitute an almost sure partition of 2 and are independent from

F, while the random variables (q; , (X, €))1<;<m are F,-measurable. Therefore, we

D
derive from [16, Section 28.2] that €

@ Springer



Stochastic quasi-Fejér block-coordinate fixed point... 443

(vn € N)(¥i € {1, ..m)) B (Ibxin + 80 (T X0 — i) = %ill? | 53

= E(qi,n(xn, €n) Z 1[9,,:6] ffrn)

eecD
=Y E (i Ole,=ar | F2)
eecD
—Z (1[6‘”—6] )Chn(xm €)
eeD
= Z Ple, = €]q; x(x,,€) P-as. (3.11)
eeD

Combining this identity with (3.1), (3.7), [d], (3.3), and (1.5) yields
vn e E(llits =X | )

m
= Za)iE(Hxi,n + gi,n(Ti,n Xn — xi,n) — X H2 ‘ 9”)

m
=Y i Y Ple, = €lqin(xn. )
i €

I

—_
m
O

m
=Y o[ Y, Plea=ellTinx,—%l>+ > Ples=elllxin—x|°

i=1 ecD,e;=1 eeD, ;=0

m m
=Y 0ipilTnxn = %il> + D @i (1= pi)llxin — %>

i=1 i=1

m m
~ 2 ~ 2
max w;p; E I TinXn — X |7 + E w; (1 — pi)llxin — Xl
1<i<m

/N

m
<1112 =12 —_—
= [llxn = X|[I” + [ITux, —X| —E wiPi llXi,n — Xl

m
—i2 — 2
x, — X]]] +E (Tin — 0iPi) Ixin — X |l

<
i=1

m

=Y oi(1+ = = )i — Xl
wj
i=1
< min m ))|Hxn—xH| P-a.s. (3.12)
1<im wj

Altogether, properties [a]—[c] of Theorem 2.3 are satisfied with

VneN) 6, =v, =0. (3.13)
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On the other hand, it follows from (3.3) and (3.4) that lim u,, < 1. Hence, we derive
from Theorem 2.3(i) that

n
vn e M) E(lllxasr =X | Fo) < (HXk) llxo = X|[* +7, P-as.

k=0
(3.14)
(i1) Consider (i) when (Vi € {1, ..., m}) w; = 1/p;. The convergence then follows
from the inequalities
v H i ; < < ; 3.15
(Vx € H) 1gglélmpzlllxlll [Ix]] lrgniégmpzlllxlll (3.15)
and Theorem 2.3(ii). |

3.2 Linear convergence

As an offspring of the results in Sect. 3.1, we obtain the following perturbed linear
convergence result.

Corollary 3.2 Consider the setting of Problem 1.3 and Algorithm 1.2, suppose that
[a]-[d] in Theorem 3.1 are satisfied, and define (x,)neN and (,,)neN as in (3.5), where

o
é'-n = ; .
S min p;
max limzt;, <1 and (Vn € N) 1<i<im (3.16)
ISism wn =1— min p,-(l — Tin)-
1<i<m '
Then
1<iem [
— rxm — —
(vn e M) E (I — I Fo) < == (H Xk) lxo —XI* +7, P-as.
min p;
1<i<m k=0

(3.17)

Proof In view of (3.15), the claim follows from Theorem 3.1(i) applied with (Vi €
{1,....m}) w;i =1/p;. O

Let us now make some observations to assess the consequences of Corollary 3.2
in terms of bounds on convergence rates, and the potential impact of the activation
probabilities of the blocks (p;)1<i<m on them. Let us consider the case when o, = 0,
i.e., when there are no errors. Set

(VneN) y,=1—4, min pi(l—1,). (3.18)

<ikm
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Then we derive from (3.5) and (3.16) that

1o P

— im —

WneN)Eoum4—xWM%)<——f——<f1m>Wm—xW P-as.
min p;
1<i<m

Since (3.16) yields sup, .y x» < 1, a linear convergence rate is thus obtained.
For simplicity, let us further assume that the blocks are processed uniformly in the
sense that (Vi € {1,...,m}) p; = p. Set

x =1 inf (,\n(l — max r,-,n)) € [0, 1. (3.20)
neN 1<i<m
Then
VneN) y,=1-— knp<1 — max Ti,n) <1—(1-=yp. 3.21)
1<i<m

When p = 1, the upper bound in (3.21) on the convergence rate is minimal and equal
to x. This is consistent with the intuition that frequently activating the coordinates
should favor the convergence speed as a function of the iteration number. On the other
hand, activating the blocks less frequently induces a reduction of the computational
load per iteration. In large scale problems, this reduction may actually be imposed
by limited computing or memory resources. In Algorithm 1.2, the cost of computing
Tin(X1,n, ..., Xm.n) 1s on the average p times smaller than in the standard non block-
coordinate approach. Hence, if we assume that this cost is independent of i and the
iteration number n, N iterations of the block-coordinate algorithm have the same
computational cost as pN iterations of a non block-coordinate approach. In view of
(3.21), let us introduce the quantity

In(1— (1= x)p)
p

o(p) = — (3.22)

to evaluate the convergence rate normalized by the probability p accounting for com-
putational cost. Under the above assumptions, (3.21) yields

vneN) []x <exp(—o@p@+1). (3.23)
k=0

Elementary calculations show that, if x # 0,
1 —

X < o(p) <
Inyx o)

1. (3.24)

For example, if x > 0.2, then o(p)/o(1) € [0.49, 1]. This shows that, for values of x
not too small, the decrease in the normalized convergence rate remains limited with
respect to a deterministic approach in which all the blocks are activated. This fact is
illustrated by Fig. 1, where the graph of o is plotted for several values of .
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Fig. 1 Variations of o(p)/0(1) as a function of p for various values of x

Remark 3.3 Let us consider the special case in which, for every i € {1,...,m},
7, » = 7;. Then (3.18) becomes
VneN) xy,=1—2i, min p;(1 —1;). (3.25)
1<i<m

Now, let us further assume that, at each iteration n, only one of the operators
(Ti,n)1<i<m 1s activated randomly. In this case, Z;-":l p; = 1 and choosing

(-

(Viefl,...,m}) pi=zm (1—1)1
j=1 J

(3.26)

leads to a minimum value of y,,.

4 Applications

In variational analysis, commonly encountered operators include resolvent of mono-
tone operators, projection operators, proximity operators of convex functions, gradient
operators, and various compositions and combinations thereof [6,23]. Specific
instances of such operators used in iterative processes which satisfy property (1.5) can
be found in [5,6,8-10,13,19,22,23,26]. In this section we highlight a couple of exam-
ples in the area of splitting methods for systems of monotone inclusions. The notation
is that used in Problem 1.3. In addition, let A : H — 2" be a set-valued operator. We
denote by zer A = {x eH ‘ 0¢e Ax} the set of zeros of A and by Ja = (Id + A)~! the
resolvent of A. Recall that, if A is maximally monotone, then Ja is defined everywhere
on H and nonexpansive [6]. In the particular case when A is the Moreau subdifferential
of of a proper lower semicontinuous convex function f : H —] — 00, +00], Ja 1s the
proximity operator prox; of f [6,17].

Example 4.1 Foreveryi € {1,...,m},letA; : H — 2" be a maximally monotone
operator, and consider the coupled inclusion problem
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0e€Aixy +x1 —X2
0 € Axxo + X2 — X3
find x = (x;)1<i<m € H such that ; 4.1)

0 € An—1Xm—1+ Xm—1 — Xm

0 € ApXm + X — X1.

For instance, in the case when each A; is the normal cone operator to a nonempty
closed convex set, (4.1) models limit cycles in the method of periodic projections [4].
Another noteworthy instance is when m = 2, A; = df;, and A, = 9f,, where f; and f;
are proper lower semicontinuous functions from H to | — oo, +00]. Then (4.1) reduces
to the joint minimization problem

1
minimize f;(x1) 4+ f20x) + = [Ix1 — x2|%, (4.2)
(x1,x2)€eH 2

studied in [1]. Now set

A:x— (AiX),...,AuXn) and B: X+ (X — X2, X2 — X3, ..., X, — X1).
4.3)

Then it follows from [6, Proposition 20.23] that A is maximally monotone. On the
other hand, B is linear, bounded, and monotone since

2
1Bx)*

(VX € H) (Bx|x)=——>0. (4.4)

Itis therefore maximally monotone [6, Example 20.34]. Altogether, A+B is maximally
monotone by [6, Corollary 25.5(1)]. In addition, suppose that each A; is strongly
monotone with constant §; € |0, 4+00[. Then A is strongly monotone with constant
ming;<m 8, and so is A + B. We therefore deduce from [6, Corollary 23.37(ii)]
that it possesses a unique zero X, which is the unique solution to (4.1). Let us also
note that, for every i € {1,...,m}, the resolvent Ja, is Lipschitz continuous with
constant n; = 1/(1 + §;) €10, 1[ [6, Proposition 23.13]. Next, define T : H — H :
X — (T X)1<i<m, Where, forevery i € {1,...,m}, T; : H— H; : X = Ja, X; 1, with
the convention X,,1-1 = X;. Then we derive from (4.1) that Tx = X. Moreover,

m
(Vn e N)(Yx e H) [Tx—X[* =) [Jaxis1 — Xl
i=1
m
=D axitt —IaXistll?
=1

i=

nHIxis1 — Xis1ll%, (4.5)

-

<
1

~
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which shows that (1.5) is satisfied upon choosing T, = T and, foreveryi € {1, ..., m},
Tipn = 77,~2- In this scenario, Algorithm 1.2 becomes

forn=0,1,...
fori=1,...,m—1
in,n+1 = Xin + & nhn (JA,-xi+1,n +ajn — xi,n)
Xmn+l = Xm,n + 8m,n)\n (JAmxl,n +amn — xm,n)y

(4.6)

and Theorem 3.1 describes its asymptotic behavior. In the particular case of (4.2), for
/1 and f7 strongly convex, (4.6) with A, = 1 and no error, reduces to

forn=0,1,...
Xintl = Xin+ E1n (prOXf1x2,n - xl,n) 4.7)
X2n+l = X2.n + 2.0 (PFOXf2X1,n - x2,n)-

In the deterministic setting in which €1 , = 1 and 3, = 1, the resulting sequence
(x2.n)neN 1s that produced by the alternating proximity operator method of [1], further
studied in [7].

Example 4.2 We consider an m-agent model investigated in [3]. For every i €
{1,...,m}, let A; : H; — 2" be a maximally monotone operator modeling some
abstract utility of agent i and let B; : H — H; be a coupling operator. It is assumed
that the operator B : H — H : x — (B; X)1<igm 18 B-cocoercive [6] for some
B €10, +o0l, that is,

(Vx € H)(Yy € H) (x —y | Bx — By) > 8|Bx — By|*. (4.8)
The equilibrium problem is to
find x € H suchthat (Vi € {1,...,m}) 0€Ajx +Bi(xi,....Xn). (4.9)

For every i € {1,...,m}, let us further assume that A; is ;-strongly monotone for
some §; € ]0, +o0[ or, equivalently, that M; = A; — §;ld is monotone. Since B is
maximally monotone [6, Example 20.31], arguing as in Example 4.1, we arrive at the
conclusion that A 4 B has exactly one zero X, and that X is the unique solution to (4.9).
Let

8= min §;, and (Vn e N) 6,€[0,8] and y, €]0, +ool. (4.10)
1<is<m

Set

m
C,:H— 2" x> X (M + (6 — 0,)Id)x
i=1

(Vn € N) 4.11)

Tn == Jyncn O (Id - )/nDn).
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Now let n € N. We first observe that
zer (¥4Cn + ¥uDpn) = zer (A + B) = {X} = Fix T, (4.12)

and derive from [6, Proposition 23.17(1)] that

Xi
J,c, i X— <J aM; ( )) . (4.13)
v G \ 1+ ¥u(8i — 6n) 1<i<m

Hence (4.10) entails thatJ,, ¢, is Lipschitz continuous with constant 1/ (14, (§ —6,)).
On the other hand, since B is f-cocoercive, there exists a nonexpansive operator
R : H — Hsuch that B = (Id + R)/2 [6, Remark 4.34(iv)]. We have

Id — y,D, = (1 — YO — %) Id — ;—;R. (4.14)

In turn, a Lipschitz constant of Id — y,,D,, is |1 — v,(6,, + 1/(2B))| + vu/(28), and
hence one for T, is

1=l + 1/2B) | + v/ 2P)

4.15
o 1+ Ya(8 — 6,) 1>
Note that
1 — .6 2
_ TV <1, if y, < —'B;
L+ yu(8 — 6y) 1 4286,
& = (4.16)
Yn(On +1/8) — 1 . 28 2p
<1, if — <y, < .
1+ yn(8 — 6y) 1+ 286, 1+ B(26, —9)
Consequently, imposing
2p
Vo < 4.17)
1+ B(26, —95)
places us in the framework of Problem 1.3 with (Vi € {1,...,m}) t;, = ;,12. Algo-
rithm 1.2 for solving (4.9), that is,
forn=0,1,...
fori=1,...,.m
(I = ¥nbn)Xin—vuBixy
. — . | M ’ C oy ,
L%,n—i—l Xin + &in n( l+y:(:'3\f—0n) ( I Vn((si ~6,) +ain — Xin
(4.18)

is then an instance of the block-coordinate forward-backward algorithm of [11, Sec-
tion 5.2]. Its convergence properties in the present setting are given in Theorem 3.1.
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Remark 4.3 In view of (4.4), (4.1) constitutes a special case of (4.9) and it can also
be solved via (4.18). In Example 4.1, we have exploited the special structure of B to
obtain tighter coefficients (7; »)1<i<m,neN in (1.5).

Example 4.4 Let g : H — R be a convex function which is differentiable with a
B _I—Lipschitzian gradient for some B € ]0, +oo[ and, for every i € {1,...,m}, let
f; : Hi =] — 00, +00] be a proper lower semicontinuous §;-strongly convex function
for some §; € ]0, +00[. We consider the optimization problem

X1 €Hy,..., Xm E€Hm

m
minimize Y () + @(X1. .. .. Xn). (4.19)
i=1

Then it results from standard facts [6, Section 28.5] that this problem is the special
case of Example 4.2 in which B = Vg and, forevery i € {1, ..., m}, A; = 0f;. Now
set (Vi e {l,...,m}) h; =1 — 6] - ||2/2. Then (4.18) assumes the form

forn=0,1, ...
fori=1,....m
Xin+1 = Xijn + Einkn (4.20)
(pI‘OX ot ((1 — Yn)Xin — Y Vi g(xn)> ¥, —x; n) ’
T~ 14 vu(8i — 6n) ’ ’

where V; g : H — H; is the ith component of Vg.

Remark 4.5 In the case of a non block-coordinate implementation, i.e., m = 1, a
mean-square convergence result for the forward-backward algorithm can be found
in [24] under different assumptions than ours and, in particular, the requirement that
the proximal parameters (y,),eN must go to 0.

Remark 4.6 In connection with the linear convergence of (4.20) deriving from Corol-
lary 3.2, letus note that a similar result was obtained in [20] by imposing the restrictions

1

Vie{l,....m})) Hi=RM, pp=—, and (VueN) i,=1and a, =0.
m

4.21)

In this specific setting the proximal parameter in [20] was chosen differently for each
block: it is not allowed to vary with the iteration n as in (4.20), but it can be chosen
differently for each i. In the case when, forevery i € {1, ..., m},f; = 0, more freedom
was given to the choice of (p;)1<;<m in [20], but by still activating only one block
at each iteration. Further narrowing the problem to the minimization of a smooth
strongly convex function on R, a coordinate descent method is proposed in [21]
which requires, forevery i € {1, ..., m}, H; = R and allows for multiple coordinates
to be randomly updated at each iteration, as in (4.20).
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