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Boolean networks are a popular modeling framework in computational biology to capture the dynamics of molecular networks, such
as gene regulatory networks. It has been observed that many published models of such networks are defined by regulatory rules
driving the dynamics that have certain so-called canalizing properties. In this paper, we investigate the dynamics of a random Boolean
network with such properties using analytical methods and simulations. From our simulations, we observe that Boolean networks
with higher canalizing depth have generally fewer attractors, the attractors are smaller, and the basins are larger, with implications for
the stability and robustness of the models. These properties are relevant to many biological applications. Moreover, our results show
that, from the standpoint of the attractor structure, high canalizing depth, compared to relatively small positive canalizing depth, has
a very modest impact on dynamics. Motivated by these observations, we conduct mathematical study of the attractor structure of a
random Boolean network of canalizing depth one (i.e., the smallest positive depth). For every positive integer ¢, we give an explicit
formula for the limit of the expected number of attractors of length ¢ in an n-state random Boolean network as n goes to infinity.

1. Introduction

Dynamic mathematical models are a key enabling technology
in systems biology. Depending on the system to be modeled,
the data and information available for their construction, the
questions to be answered, and different modeling frameworks
can be used. For kinetic models, systems of ordinary dif-
ferential equations have a long tradition. Generally, they will
have the very special structure of polynomial equations
representing Michaelis—Menten kinetics, even in the case of
systems, such as gene regulatory networks, that are not proper
biochemical reaction networks. It is this special structure
that gives models desirable properties and aids in model
analysis. Besides continuous models, a range of discrete
models are finding increasingly frequent use, in particular
Boolean network models of a broad variety of biological
systems, from intracellular molecular networks to population-

level compartmental models (see e.g., [1-5]), going back to the
work of Kauffman in the 1960s [6-8]. While Boolean network
models, a collection of nodes, whose regulation by other nodes
is described via a logical rule built from Boolean operators, are
intuitive and mathematically simple to describe, their analysis
is severely limited by the lack of mathematical tools. It generally
consists of simulation results. Any set function on binary
strings that takes on binary values can be represented as a
Boolean function, so that the class of general Boolean networks
is identical to the class of set functions on binary strings of a
given length, making any general analysis impossible. The
search for special classes of Boolean functions that are broad
enough to cover all or most rules that occur in biology, but
special enough to allow for mathematical approaches has a long
history.

It was again Kauffman who proposed a class of functions
[7] with properties inspired by the developmental biology
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concept of canalization, going back to Waddington in the
1940s [9]. There is some evidence that canalizing Boolean
functions do indeed appear disproportionately in published
models and that the dynamics of Boolean network models
consisting of canalizing functions has special properties, in
particular a “small” number of attractors. This is important
since, in the case of intracellular molecular network models,
attractors correspond to the different phenotypes a cell is
capable of. Here, again, the majority of available results are
obtained by simulating large numbers of such networks. The
main question of this paper is as follows: What do the dy-
namics of a random canalizing Boolean network look like?
We approach this question using both computer simulations
and analytical methods, with the main result of the paper being
Theorem 2, which gives a provable formula for the number of
expected attractors of a general Boolean network with a
particular canalization property. In addition to providing
important information about canalizing Boolean network
models, this result can be viewed as a part of a growing body of
mathematical results characterizing this class of networks that
promises to be as rich as that for chemical reaction network
models based on ordinary differential equations.

2. Background

The property of canalization for Boolean functions was
introduced by Kauffman in [7], inspired by the concept of
canalization from developmental biology [9]. A Boolean
function is canalizing if there is a variable and a value of the
variable such that if the variable takes the value, then the
value of the function does not depend on other variables. It
was shown that models defined by such functions often
exhibit less chaotic and more stable behavior [10, 11]. Nested
canalizing functions, obtained by applying the concept of
canalization recursively, were introduced in [2]. They form a
special subset of canalizing functions and have stable dy-
namics [11]. We note that there are other important
properties shared by Boolean networks arising in modeling
(for example, sparsity [7]). In this paper we focus only on
canalization and its impact on the dynamics, and one of the
natural future directions would be to consider several such
properties simultaneously.

To cover more models arising in applications, the
notion of nested canalizing function was relaxed by Layne
et al. [12] by assigning to every Boolean function its
canalizing depth. Noncanalizing functions have canalizing
depth zero, and nested canalizing functions have the
maximal possible canalizing depth equal to the number of
variables. Canalizing depth of a Boolean network is defined
as the minimum of the canalizing depths of the functions
defining the network. In [12], activities and sensitivities of
functions with different canalizing depths and stability and
criticality of Boolean networks composed from such
functions were investigated. It has been observed that
Boolean networks of higher canalizing depth tend to be
more stable and less sensitive. However, increasing the
canalizing depth to the maximum does not improve the
stability significantly compared to moderate positive
canalizing depth. These observations give a strong
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indication of the biological utility of canalizing function,
even with small canalizing depth.

Attractors in Boolean network models can be inter-
preted as distinct cell types [13, p. 202] and their lengths
can be viewed as the variety of different gene expression
patterns corresponding to the cell type. Thus, un-
derstanding the attractor structure of a random Boolean
network defined by functions of a fixed canalizing depth is
important for assessing biological relevance of such
models. Analytic study of the attractor structure of nested
canalizing Boolean networks has been carried out in [11].
For discussion about attractors of length one (i.e., steady
state), we refer to [14].

3. Our Results

The main question of this paper is as follows: What do the
dynamics of a random canalizing Boolean network look like?
We approach this question using both computer simulations
and analytical methods.

In our computational experiments, we generate ap-
proximately 30 million random Boolean networks of all
possible canalizing depths with the number of variables
ranging from 4 to 20. For each of these networks, we
determine sizes of all the attractors and basins of at-
traction and analyze the obtained data. We discover the
following:

(1) For a fixed number of variables, the sample mean of
the number of attractors and average size of an
attractor decrease when the canalizing depth
increases

(2) The decrease of the average size of an attractor is
much greater than the decrease of the number of
attractors as the canalizing depth increases

(3) Both decreases from (8) are substantial when the
canalizing depth changes from zero to small cana-
lizing depths, but a further increase of the canalizing
depth does not lead to a significant decrease for
either the sample means or for the empirical
distributions

(4) The relative decrease of the sample mean of the
number of attractors and the average attractor size
when the canalizing depth changes from zero to one
becomes sharper when the number of variables
increases

Observations (8) and (A.4) are consistent with the results
obtained in [12] for sensitivity and stability. This provides
new evidence that Boolean networks of small positive
canalizing depth are almost as well-suited for modeling as
those with nested canalizing functions, from the point of
view of stability. Since there are many more canalizing
functions of small positive canalizing depth than nested
canalizing functions [15, Section 5], they provide a richer
modeling toolbox.

Motivated by observation (A.4), we conduct a mathe-
matical study of the attractor structure of a random Boolean
network of canalizing depth one (that is, the minimal
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positive depth). Our main theoretical result, Theorem 2,
gives, for every positive integer ¢, a formula for the limit of
the expected number of attractors of length ¢ in a random
Boolean network of depth one. The same formulas are valid
for a random Boolean network defined by canalizing
functions (see Remark 5). In particular, our formulas show
that a large random network of depth one, on average, has
more attractors of small sizes that an average Boolean
network (Remark 6).

Formulas similar to the ones in our proofs (e.g., in
Lemma A.4) have already appeared in the study of the
average number of attractors of a given length in sparse
Boolean networks, e.g., [16, equation (2)] and [17, equation
(6)]. The results of [16, 17] are based on describing the
asymptotic behavior of these formulas in terms of N, the
number of nodes in the network, and the asymptotics is of
the form O(N®). In our case, the average number of
attractors of a given length simply approaches a constant as
N — oo (that is, O (1)), but our methods allow us to find
the exact value of this constant.

The source code we used for generating and analyzing
data is available at https://github.com/MathTauAthogen/
Canalizing-Depth-Dynamics. The raw data are available at
https://github.com/MathTauAthogen/Canalizing-Depth-
Dynamics/tree/master/data.

Structure of the Paper. The rest of the paper is organized
as follows. Section 4 contains necessary definitions about
canalizing functions and Boolean networks. Outlines of
the algorithms used in our computational experiments
are in Section 5. The main observations are summarized
in Section 6. Our main theoretical result about attractors
in a random Boolean network of canalizing depth
one (Theorem 2) is presented in Section 7. Section 8
contains conclusions. The proofs are located in the
Appendix.

4. Preliminaries

Definition 1. A Boolean network isatuplef = (f,, f,,..., f,)
of Boolean functions in # variables. For a state
a, = (a;),a;5,...,a;,) €{0,1}" at time £, we define the state
a,, = f(a) = (a4115--->:,1,) €{0,1}" at time £ + 1 by

Ar1,1 = fl(at,l’ e ’at,n)’
1
At = fn(at,b Tt at,n)'
Definition 2 (attractors and basins). Letf = (f,,..., f,) be

a Boolean network.

(i) A sequence a,,...,a, € {0,1}" of distinct states is
called an attractor of f if f(a;) = a;,, for every
1<i<?and f(a,) = a,.

i+1

(ii) An attractor ay,...
state if € = 1.

,a, €{0,1}" is called a steady

(iii) Let A = (a;,...,a,) € ({0, 1}") be an attractor of f.
The basin of A is the set

(be{0,1}"|3N:f(f(... (fb)...)) € A}. )
N times

Definition 3. A nonconstant function f(x,...,x,) is
canalizing with respect to a variable x; if there exists a
canalizing value a € {0, 1} such that

F(xXp X, X, 05 X,,) = const. (3)

Example 1. Consider f(x,x,)=x,-x, (the product is
understood modulo 2, that is, logical AND). It is canalizing
with respect to x; with canalizing value 0 because f (0, x,) =
0 regardless of the value of x,. Analogously, it is canalizing
with respect to x, with canalizing value 0.

Consider g (x,, x,) = x, + x, (summation is understood
modulo 2, that is, logical XOR). It is not canalizing with
respect to x, because

g(0,x,) = x, # const,

(4)
g(1,x,) = X, # const.

The same argument works for x, as well.

Definition 4. f(xy,...,x,) has canalizing depth [15, Defi-
nition 2.3] k if it can be expressed as

(b, x; =ap,
b,, X; #Fa,X; = a,
f = <
bk’ X ial,xiziaz,. c X Fa5_1» Xi, = Ajo>
| g#b x; #ay, .. X Fay,
(5)
where
(i) iy, ..., 0 are distinct integers from 1 to n
(11) al,. . .,ak,bl,. . "bk € {0, 1}

(iii) g is a noncanalizing function in the variables
{xl,...,xn}/{xil,...,xik}

Example 2. For example, if f(x,x,,x5) = (X + x,)x3,

0, x3 =0,
£ (%05 %5, x3) :‘[ (6)

X, + %, x3#0,

and x, + x, is noncanalizing. Therefore, f has canalizing
depth 1.

Remark 1. Since g in Definition 4 is noncanalizing, every
function has a single well-defined canalizing depth. In
particular, a function of depth two is not considered to have
depth one.
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Definition 5. We say that a canalizing Boolean function
f(xy,...,x,) is nested if f has canalizing depth n, that is,

g=0 or g=1 (see Definition 4). For example,
f(x;,%,,%3) = x;X,%; is nested canalizing because
0, x3 =0,
0, x,#0,x, =0,
f= 0, xz,x3 qé(z),x1 =0, @
1, X1, X9, X3 %0,

so the canalizing depth of f is 3, which is equal to n = 3.

Definition 6. We say that a Boolean network f = (f,,
...» f,) has canalizing depth k if f,,..., f, are Boolean
functions of canalizing depth k.

5. Simulations: Outline of the Algorithms

In our computational experiment, we generated random
Boolean networks of various canalizing depths. For each
network, we store a list of pairs (a;,b;), where g, is the size
of the ith attractor of the network and b; is the size of its
basin. The generated data are available at https://github.
com/MathTauAthogen/Canalizing-Depth-Dynamics/tree/
master/data. To generate the data, we used two algorithms:
one for generating a random Boolean network of a given
canalizing depth and one for finding the sizes of attractors
and their basins (Algorithm 1).

5.1. Generating Random Boolean Functions of a Given Can-
alizing Depth. [12, Section 5] contains a sketch of an al-
gorithm for generating random Boolean functions that
have canalizing depth at least k for a given k. Here, we
generate functions of canalizing depth equal to k and take
a different approach than [12]. In order to ensure that the
probability distribution of possible outputs is uniform, we
use the following structure theorem due to He and
Macaulay [15].

Theorem 1 (see [15], Theorem 4.5). Every Boolean function
f(xy,...,x,)#0 can be uniquely written as
flensx,) = My (M, (- (M, (M, pe+ 1) + 1)) +1) + b,
(8)
where M; = ]_[?:1 (x; +a;) for every 1<i<r, pc#0 is a
! o 7 : .

noncanalizing function, and k=7 k; is the canalizing
depth. Each x; appears in exactly one of {M,,...,M,, pc},
and the only restrictions on equation (8) are the following
“exceptional cases”:

(E1) If po =1 and r#1, then k, >2

(E2)If po=1landr=1and k; =1, then b =0

Example 3. Consider f (x,,x5,x5,x,) = x; (x, + 1) (x3x, +
X3 + x,) can be represented as
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J=(0er +0) (e + D)) (35 + 1) (x4 + 1)) (D) +1) +0,
9)
so M, =(x;+0)(x,+1), M, = (x3+1)(x4+1), b=0,
k =4, and p. = 1. This can be verified by expanding the
brackets in the original and new representations of f.
Consider g(x;,x,, X3, %y, X5) = 1+ x5(x; +x,) (x5 + 1)
x4. It can be represented as

g=(x5+0)(((x3+1)(x,+0)) (%, +x,) + 1) + 1, (10)

so M, = (x5+0), M, = (x,+0)(x5+1),b=1, k=3, and
Pc =X, +x,.

Our algorithm is summarized in Algorithms 2 and 3
below. Correctness of Algorithm 2 follows from Theorem 1,
and correctness of Algorithm 3 can be proved directly by
induction on k.

Remark 2. The complexity of Algorithm 2 is O (1n2") (see
Proposition B.2). Given that the size of the output is O (2"),
and this is nearly optimal.

We measured the runtimes of our implementation of
Algorithm 2 on a laptop with a Core i5 processor (1.60 GHz)
and 8 Gb RAM. Generating a single function with 20 var-
iables (the largest number we used in our simulations) takes
4.9 - 5.5 seconds (faster for smaller canalizing depth). On a
laptop, our implementation can go up to 24 variables ( ~2
minutes to generate a function), and then hits memory
limits. One can go further by using a lower level language
and more careful packing. However, already a Boolean
function in 40 variables would require at least 128 Gb of
memory.

Remark 3. We generate a random noncanalizing function as
follows. We generate a random Boolean function and test for
canalization until we generate a noncanalizing one. Then, we
return it. Since canalizing functions are rare [15, Section 5],
this algorithm is fast enough for our purposes (see Lemma
B.1).

6. Simulations: Results

Notation 1. For a Boolean network f = (f,..., f,), let
N (f) and S(f) denote the number of the attractors of f
and the sum of the sizes of the attractors of f, respectively.

We define the average size of an attractor as AS(f) :=
S(f)/N (f).

6.1. Sample Means of N(f) and AS(f). For every
n=4,...,20 and every 0<k<m, we generate random
Boolean networks in # variables of canalizing depth k and
compute the mean of N (f) and AS(f). Figure 1 shows how
these means depend on k for n =15 (based on 50,000
samples for each k). The shape of the plots is similar for other
values of n we did computation for (that is, n =4,...,20).
Note that although both means are decreasing, the decrease
of the mean of AS(f) is more substantial.
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In: A Boolean network f = (f,..., f,) in n variables
Out: A list of pairs (a;,b;), where a; is the size of the ith attractor of f and b; is the size of its basin

(1) (Network — Graph) Build a directed graph G with 2" vertices corresponding to possible states and a directed edge froma to f (a)
for every a € {0, 1}".

(2) (Attractors) Perform a depth-first search [18, § 22.3] traversal on G viewed as an undirected graph to detect the unique cycle in each
connected component, these cycles are the attractors.

(3) (Basins) For each cycle from Step 2, perform a depth-first search traversal on G with all the edges reversed. The dfs trees will be the
basins.

(4) Return the sizes of the attractors and basins found on Steps 2 and 3.

ArcoriTHM 1: Finding the sizes of the attractors and their basins.

83 1+
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2 57 = ]
57 2404
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= 4 = ]
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FiGure 1: Dependencies of the sample means of N (f) and AS (f) on the canalizing depth. (a) The number of attractors N (f). (b) Average
size of an attractor AS(f).
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Ficure 2: Empirical distributions of N (f) and AS(f) for n =12 and k = 0,1, 3, 12. (a) Distribution of the number of attractors N (f).
(b) Distribution of the average size of an attractor AS(f).
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FIGURE 4: The average number of attractors of fixed length (blue plot) compared to the limiting value from Theorem 2 (orange plot).
(a) Length 1. (b) Length 2. (c) Length 3. (d) Length 4.
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In: Nonnegative integers k and n with k<n

probability
(1) In the notation of Theorem 1, generate the following:
(a) random bits b,a,,...,a, € {0,1};
(b) random subset X C {x,,...,x,} with |X| =k;

(d) random noncanalizing function p. #0 in variables {x,,..
(2) Form a function f (x,,...
for every 1<i<r.

Out: A Boolean function fin n variables of canalizing depth k such that, for fixed k and n, all possible outputs have the same

(c) random ordered partition X = X; U --- U X, of X (using Algorithm 2);
> X%, }/X (see Remark 3).
,X,,) using the data generated in Step 1 as in Theorem 1, where M, involves exactly the variables from X;

(3) If f does not satisfy any of the conditions (E1) or (E2), discard it and run the algorithm again. Otherwise, return f.

ALGORITHM 2: Generating a random Boolean function of a given canalizing depth.

In: A finite set X with |X| =k
the same probability

(1) Compute p, ...
(see [19, equation (9)]).

(2) Generate an integer N uniformly at random from [1, p;].

(4) Randomly select a subset X, ¢ X of size j.

(6) Return X, LI --- UX,.

Out: An ordered partition X = X, U --- U X, into nonempty subsets X, ..

, Pi> where p; is the number of ordered partitions of a set of size i, using the recurrence p; = Z{:Ol < { ) Pj-i»Po =1

N <];>pk—i2N'

(3) Find the minimum integer j between 1 and k such that ZLOI

(5) Generate an ordered partition X, U --- UX, of X/X, recursively.

., X, such that, for a fixed X, all possible outputs have

ALGORITHM 3: Generating a random ordered partition of a given finite set.

6.2. Distributions of N (f) and AS(f). Figure 2 shows the
empirical distributions of N (f) and AS(f) for n = 12 and
k =0,1,3,12 based on 300,000 samples for each k. From the
plot, we can make the following observations:

(i) The distributions become more concentrated and the
peak shifts towards zero when k increases

(ii) The distributions for nonzero canalizing depths
(especially for larger depths) are much closer to each

the sample mean of N ( f) for n variables and canalizing depth k

other that to the distribution for zero canalizing
depth. This agrees with the plots on Figure 1.

6.3. Relative Decreases. From Figure 1, we can observe that,
for both N (f) and AS(f), the sample mean decreases rapidly
for small canalizing depths. In order to understand how this
decrease behaves for large n, we introduce

Nk (n) =

AS, (n) is defined analogously. Figure 3 plots N, (n),
N, (n), N5 (n), and N, (n) and AS, (n), AS, (n), AS; (n), and
AS, (n) as functions of n. From the plots we see that

(i) The relative initial decrease from canalizing depth 0
to canalizing depth 1 becomes even more substantial
when # increases

(ii) The relative decrease from canalizing depth 0 to
canalizing depth 3 is already very close to the relative
decrease from depth zero to the maximal depth (i.e.,
nested canalizing functions)

the sample mean of N ( f) for nvariables and canalizing depth 0’

(11)

7. Theory: The Main Result

We will introduce notation needed to state the main
theorem. Let us fix a positive integer £. For a binary string
a €S :={0,1}°, we define
(i) |«| denotes the number of ones
(ii) @ denotes component-wise negation
(iii) s(a) denotes a cyclic shift to the right

For binary strings a, 8 € {0, 1}, we define



1
Fap=12" favp=p.
(X, =

0, otherwise,

g(a.p) = % (f (@) + f(@B) + f (@ p) + f (&)
(12)

Then, we define a 2¢ x 2¢ matrix G, by

(Gé’)a,b = g(a75(b))7 (13)

where we interpret numbers 1<aandb<2’ as binary se-
quences of length ¢.

Theorem 2. Let A, be the limit of the expected number of
attractors of length € in a random Boolean network of can-
alizing depth one (see Definition 6) when the number of
variables n goes to infinity. Then,

1

Ay = m» (14)

where Pg, is the characteristic polynomial of matrix G, in-
troduced above. In particular, we have

A =1,
2

A, ===10.666...,
3

A= 03386

37189 (15)

A, =0.2856...,

A; =0.2004. ..,

Ag=0.1721....

Remark 4. The plots below show that the result of Theorem 2
agrees with our simulations (Figure 4).

Remark 5. As explained in Remark A.l, Theorem 2 stills
holds if we replace a random Boolean network of canalizing
depth one with a random Boolean network defined by
canalizing functions.

Example 4. Let € = 2. Then, for example, we have f(0,2) =
f(0,1)=1/2 and g(0,1) = g(3,1) = 1/4. In total, we have

Complexity

3/8 1/4 1/4 3/8
1/8 1/4 1/4 1/8

1/8 1/4 1/4 1/8 (16)

3/8 1/4 1/4 3/8

5, 1
P. (t)=t'-2F + £
AL 4 2

Remark 6. Theorem 2 and Corollary A.1 imply that A, > 1/€
for every £>1. On the other hand, a direct computation
shows that the expected number of attractors of length £ in a
random Boolean network (without any canalization re-
quirements) is 1/¢. This is consistent with our observations
from Section 6.1.

Remark 7. A sage script for computing numbers A, is
available at https://github.com/MathTauAthogen/Canalizing-
Depth-Dynamics/blob/master/core/theory.sage.

8. Conclusions

We conducted computational experiments to investigate the
attractor structure of Boolean networks defined by functions
of varying canalizing depth. We observed that networks with
higher canalizing depth tend to have fewer attractors and the
sizes of the attractors decrease dramatically when the can-
alizing depth increases moderately. As a consequence, the
basins tend to grow when the canalizing depth increases.
These properties are desirable in many biological applica-
tions of Boolean networks, so our results give new in-
dications of the biological utility of Boolean networks
defined by functions of positive canalizing depth.

We proved a theoretical result, Theorem 2, which
complements the above observation as follows. The theorem
implies that a large random Boolean network of canalizing
depth one has on average more attractors of small size than a
random Boolean network of the same size although it has
less attractors in total. This also provides an explanation to
the fact that the total size of attractors decreases faster than
the number of attractors as the canalizing depth grows.

Furthermore, we observed that all the statistics we
computed are almost the same in the case of the maximal
possible canalizing depth (so-called nested canalizing
Boolean networks) and in the case of moderate canalizing
depth. This agrees with the results of Layne et al. [12]. This
observation elucidates an interesting and powerful feature of
canalization: even a very moderate canalizing influence in a
Boolean network has a strong constraining influence on
network dynamics. It would be of interest to explore the
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prevalence of these features in published Boolean network
models.

Finally, we provided evidence that the observed phe-
nomena will occur for Boolean networks with larger
numbers of state variables.

Appendix

A. Proofs

Notation A.1. We fix a positive integer £.

(i) For every 1<i< j<¢, we define a subset §;; ¢ S =
{0,1}° by

Sij= {(al,...,ocg) ES‘ocizaj}. (A.1)

(ii) For every 1<i< j<¢,let G, ; be the submatrix of G,
with rows and columns having indices from S, ;.

Lemma A.1. For every ¢, we have

1) GZis stochastic (see [20, § 8.5]), and G, has exactly one
eigenvalue being equal to 1.

(2) Forevery 1 <i< j<¢, there exists a 2°1 x 2! matrix
C,,j with nonnggative entries such that (2£+%/2¢2 —
1)(Gy,j + Cy, j)° is stochastic and has exactly one of
the eigenvalues being equal to 1.

Proof. We will first show that G, is stochastic and irre-
ducible (see [20, § 3.11]).

By definition, showing that G/ is stochastic is equivalent
to proving that, for every B € S = {0, 1}*:

Y g(as(B) =1.

aes

(A.2)

Since shift just permutes binary strings, this sum is equal
to Y gesg (. B). For a fixed ffand k <|B|, the number of a € S
such aVf =f and |a| = k is equal to ( lél ) Thus,

Bl 18l 1
Yhap) =Y A=1= Y g@p =1
B

aes k=0 k €S

(A.3)

To prove irreducibility, we observe that, if 0 € S denotes a
zero binary string, then g (&, 0) # 0 and g (0, a) # 0 for every
a € S. Then, [20, § 3.11, Exercise 12a] implies that GZ is
irreducible.

Since G is stochastic, its largest eigenvalue is equal to 1
[20, § 8.5, p.156]. Since G? is irreducible, [20, Theorem 8.2]
implies that 1 is a simple eigenvalue.

To prove the second part of the lemma, we fix
1<i< j<¢€ We will show that for every f € §;;

2€+2 _

Y glasn<i— L

(A.4)
aeS; ; 2

Indeed, let y be a binary string with all zeroes and one
at the ith position. Then, since g(y,s(f3)) > (1/2/B1+2) >
(1/2%%2), we have

Z g(oc,s(ﬁ))ﬁ <Zg(“>5(/5))> _g(y’s(lg))sl_2€1+2'

a€s; aES

(A.5)

Inequality (A.4) implies that there exists a matrix Cy,; ;
with nonnegative entries such that (2¢2/22 —1)(Gy,;; +
Ce;i,j)T is stochastic.

Since 0 € §; ;, the same argument as in the proof of the
first part of the lemma shows that (2%2/2%2 —1)(G,, ; +

Cy,, j)T is stochastic and has exactly one of the eigenvalues
being equal to 1. O

Corollary A.1. Let P, (t) be the charactersitic polynomial of
G,. Then, for every £> 1, |P,(1)| < 1.

Notation A.2. Fix a positive integer n. For vectors a = (a,
..,a,) € Z% and b= (b,...,b,) € Z%), we denote

al=aqa/l-...-a,,

a’ = alf‘ o al (A.6)

n >

al=a, +---+a,.
1 n

Lemma A.2. Let A be an s x s stochastic matrix with only
one of the eigenvalues being one. We set

(Am)™
C(A) = Z n (A.7)
meZ:,
|m|=n

Let P, (t) be the characteristic polynomial of A. Then,
lim, . C(A), = 1/P(1).

Proof. We recall that the Lambert W function [21] is the
principal branch of the inverse of xe*. We will use the
notation y(z) = -W (~z) from [22] so that y(z) = ze’@.
Function y(z) has a singularity of the square-root type at
z = 1/e and has the following expansion around this point
(see [22, p. 107]):

1
y(z):l—s+§e2—---, wheree = V2 —2ez.  (A.8)
From this, we obtain
1 2
— —=1+e+-¢’—---, wheree=V2-2ez. (A.9)
y(2) 3

The main result of [23] implies that, for every complex
s x s matrix A, we have

Z (Am)mx|m| exn| —x Z m.a. . | = ;
m! P\ &M% ) ™ detlE - Al

s
mezZ,

(A.10)
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Since A” is stochastic, we have Y a; j=1s0

z (Am)™ | ) 1
Syl

m! " det|lE - xA| (A.11)

s
mezZ,

If we perform a substitution x = y(z) and use the
definition of the Lambert W function, we obtain

Z (Am)m |m| 1

z = g (A.12)
mezs, m! det|E — y (2)A|
From this, we obtain
& l’lnC(A)n n (Am)m |m| 1
- A = z = = F(z).
; n! mégo m! det|E - y (2)A] (2)
(A.13)
F(z) can be rewritten as
F(z) ! (A.14)
zZ)=———— .
y(2)°P,(1/y(2))

Finding the asymptotic behavior of the Taylor co-
efficients of F(z) would yield an asymptotic for C(A),. We
will do this using singularity analysis [24, Chapter VI]
(similarly to [22, Theorem 2]). Since |y (2z)| <1 for |z| < 1/e
(see [21, Figure 1]) and all roots of P, lie in the unit circle
due to the stochasticity of A, 1/e is the singularity of F(z)
with the smallest absolute value. Due to Lemma A.l,
P,(t) = (1-1)Q, (), where Q4 (1)#0. Using (A.8), we
obtain the following expansion of F(z) around 1/e:

1

F(Z)= (1—8+"')s(_€_2/3£2+"')QA(1+s+'“)
= Q_zl)(%+~-~>, wheree = V2 — 2ez.
A

(A.15)

Singularity analysis [24, Corollary VI.1] implies that
n'C(A), —e"

P Qs () asn — 0o. (A.16)
Using Stirling’s formula, we get
C(A) et - (A.17)
n~ ~ ,  asm— 00. .
n"Qu (1)V2mn  Q, (1)
Using P, =-Q,+ (1-1Q, we deduce
P! (1) = -Q/, (1), and this finishes the proof. O

Lemma A.3. On the set of all Boolean networks with n states
consider two probability distributions:

(A) All the networks with canalizing depth one have the
same probability, and all others have probability zero

(B) ie probability assigned to each network is pro-
portional to the product of the number of canalizing
variables of the functions defining this network

We fix a positive integer €. By A,, and B,, we denote the
average number of attractors of length € in a random Boolean

Complexity

network with n states with respect to distributions (A) and (B),
respectively. Then,

lim A,,= lim B,,.
n—~o n—~o

(A.18)

Example A.1. We will illustrate the (B) distribution by an
example. Consider the following three networks with two
states:

£, = (%%, + L,x; + x,),
£, = (x1x5, %), (A.19)

f;

(%1%, + 1, x1x,).

Since the canalizing depth of x, + x, is zero, Py (f,), the
probability of f; with respect to B, is zero. Since the can-
alizing depths of x,x, and x, are 2 and 1, respectively, the
ratio Py (f,)/Pg(f5) is equal to (2-1/2-2) = (1/2).

Proof. Let F,, and F; be the number of Boolean functions in
n variables with canalizing depth exactly one and more than
one, respectively. We will use the following bounds:

(1) F <n?-4-4.2"": welook term-by-term. There are
at most n* ways to choose first and second canalizing
variables. There are at most 4 choices for the can-
alizing outputs and at most 4 choices for canalizing
values for these two variables. There are at most 22"
core functions, since that is all possible functions,
which may or may not be canalizing. Since re-
dundant arrangements of canalizing variables are not
accounted for, this must overcount.

(2) F,22"" = (n—-1)-2-2-2%": this is a lower bound
for the number of noncanalizing core function in n —
1 variables because (n—1)-2-2-2" is an upper
bound on the number of canalizing functions in n —
1 variables (obtained in the same way as the bound
above).

We also introduce

- Fa

16n222"" n?
R, : =
F

< _ :
T2 _4(n-1)227 204 _(1/4) (n—-1)
(A.20)

n

For X being (A) or (B) and positive integer n, let Py,
denote the probability (it is always the same) of choosing a
network from distribution X with all functions being of
depth exactly one. Let P, be the maximal probability of
choosing a network from (B) with at least one function
being of depth more than one, respectively. By S, and S we
denote the total number of attractors of length ¢ in net-
works with all functions being of depth exactly one and
with at least one function being of depth more than one,
respectively.

The statement of the lemma is equivalent to the state-
ment that

lim (A, - B,,) = 0.

n—~o

(A.21)
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Using the notation introduced above, we can bound

A, — By, as

a7l
Pn,ASn_Pn,BSn n n—lAKn_Bé’nl<PnAS +pnBS
(A.22)

Then,
from lim U,=0 and

n—>00

We set U, =S,(P,4,~P,p) and V, =P;S;.
(A.21)  would follow
lim, , V, =0, so we will prove these two equalities.
Since any network has at most 2" attractors of length ¢,
S, <2"F7. Since the total sum of the products of canalizing
depths over all Boolean networks does not exceed
(F, +nF;)", we have P, > (1/(F, +nF})"). Since P, , =
1/F};, we have

271( ’11 )an +( Z ) (nR,)* +---+ (an)n.

(1+nR,)"

(A.23)
(A.20) implies that nR,, < 1 for large enough n. Hence, for
large enough n, we have

" 2" 4"’
U,<2'nR

n — 2(2n 2)_4

"(1+nR,)" ~ -(1/4)(n-1)

(A.24)

By similar arguments, P, <#"/F) and S, <2"n(F,+
F)"'F¥, so

o1
V,<2"n"" (F, +F.)" 1F;ﬁs2” " (1+ R,

n

(A.25)

Since R, <1 for large enough #, using (A.20), we have
el nel 22n—1nn+3

V<27 W™ R, < 0. (A.26

" ey |:|)

Remark 8. The proof of Lemma A.3 will be valid if we
replace distribution (B) with any other distribution (C) such
that, for every Boolean network f = (f,,..., f,)

(i) If at least one of f,’s is noncanalizing, P (f) =0
(ii) There exists a constant P, ~ such that, if the cana-
lizing depth of every f; is one, then P (f) = P
(ili) We have (P (f)/P,c) < (Py(f)/P, ) (using nota-

tion from the proof of Lemma A.3)

The above properties hold, for example, for the
following distribution.

(C) All the networks defined by canalizing functions

have the same probability, and all others have
probability zero.

Using this distribution instead of (A), we see that
Theorem 2 holds also for a random Boolean network defined
by canalizing functions.

<4"MR, <—— — 0.
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Lemma A.4. We will use Notation A.1 and notation from
Lemma A.2. Then, for every positive integers € and n, we have

C(Gp),— Y. C(Gyy;),<B,,<C(Gy),, (A.27)
1<i<j<t
Proof. We fix n. Consider a tuple X = (X,,...,X,) of £

distinct elements of {0,1}". For 1<i<n, we denote
X = (Xy;...,X,,;). Fora €S, let

n = |{i]1<i<n X; = af|. (A.28)
Then, ) .1, = n. First, we will show that
P(X;,..., X, forman attractor in this order)
(A.29)

=TT (Zg(a S(6) ’3>a (Gen)”

aeS \ peS
where n = (1, ny,. .., 1))
To prove (A.29), we will use that the functions f;(i =

1,...,n) in the network are chosen independently to de-
compose the left-hand side as
P(X,,..., X, formanattractor in this order)

= ﬁp(fi(X]) ]+1,f0revery1<]<n) (A.30)
i-1

where we use notation X,,,; = X, and the probability of each
Boolean function to be chosen is assumed to be proportional
to the number of its canalizing variables. We show that, for
every 1<i<mn,

P(fi(Xj) = X1 foreverylSan) Zg X,,S(ﬁ)
BeS

(A.31)

Then, (A.29) would follow from multiplying (A.31) for
all i. To prove (A.31), without loss of generality, we consider
i = 1. Consider a set

Q={(f.l)|f: {01} —

{0, 1}, 1 < k <n, x; is canalizing for f},
(A.32)

with a uniform probability distribution P,. Observe that for
a function f with canalizing variables x; , ..., x; , we have

P(f) = Po((fski)) + -+ Po ((f-k))-
If we can show that, for every 1 <k<mn,
PQ(f(X]-) =X, foreveryl<j<n|(f,k)e€ Q)
= g(X,5(Xy)),

(A.33)

(A.34)

then (A.31) would follow by summing up (A.34) over all k
and using the law of total probability.

We consider one of the canalizing variables of f, say, x;.
Let ¢ be the canalizing value of x , and let v be the value
taken by f when x; = c. Then, (c, v) € {0,1}?, and all these
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four cases have the same probability due to the symmetry. As

g(a,s(B) = (1/4) (h(a, B) + h(@&, B) + h(a f) + h (&, B)), it

is sufficient to show that
PQ(f(Xj) =X foreveryl1<j<n|(f,k)

(A.35)
€ Qandc=v=0)=h(X;,s(Xy)),

and then sum for all (c,v) € {0,1}%.
To prove (A.35), consider any j, say j = 1. There are then
4 cases for the values of X, and X, ;:

(1) X, = land X, is 0 or 1. With probability 1/2, we
have f(X,) = X, ,. This is true due to symmetry, as
for any f, which takes on the value w at X, we can
produce another function g thatis equal to 0if X, , =
0 and f, if X,; = L. Then, g(X,) = w.

Complexity

(2) X, =0and X,, = L. Since X, =, the probability
of f(X,)=X,,#v=0is zero.

(3) X1, =X,,=0. Since X,; =c and X,, =v, the
canalization property implies that f (X,) = X, | with
probability one.

The only case in which X, Vs(X;) # s (X},) is where there
is at least one j such that case 2 is realized. In this case, the
probability in the left-hand side of (A.35) will be zero.
Otherwise, each occurrence of case 1 will multiply the total
probability by 1/2 and each occurrence of case 3 will multiply
the total probability by 1. Thus, we show that the left-hand
side of (A.35) is indeed equal to h(X;,s(X})). This finishes
the proof of (A.29).

To finish the proof of the lemma, we set

U= {n € Zio Z n, = n&the support of ndoes notbelongto (J §;; } (A.36)

acs 1<i<j<t
Summing (A.29) over all ¢-tuples (X,...,X,) of dis-  O(k?). Since the first k rows of the Pascal’s triangle can be
tinct elements of {0, 1}"’, we obtain (see (A.7)) precomputed in O(k?), the complexity of step 1 is also
O (k?). Similarly, the complexity of step 3 is O(k?). It re-
B (Gn)" mains to observe that step 2 takes O(1) and step 4 takes
¢By, = Z n <C(Ge),s (A.37) O(k?) (indeed, selecting a subset of size j amounts to

neU

On the other hand, if n is supported on one some §; ;,
then G,n = Gy, ;n| 5, where n| s, denotes the restriction of n

on the coordinates from §; ;. This implies that

C(G(?)n - €B€,n < Z C(GKEi’j)n'

I<i<j<t

(A.38)
This finishes the proof of the lemma. |

Proof of Theorem 2. We fix positive integer €. In the notation
of Lemma A.3, we have A, =lim, A, Lemma A.3
implies that A, = lim,, ,,B,,. We fix any 1<i< j<¢, and
let Cp;; be the matrix given by Lemma A.l. We set
M = (22242 — 1) (Gg; + Cyyj)- Then,

2€+2 -1 n
0<C(Geyj),<C(Geij + Ceiy), = <2€+2> C(M),.
(A.39)

Lemma A.2 implies that lim,_,  C (M), is finite, thus
we have that lim,,_,,C(Gy, ;),, = 0. We finish the proof of
the theorem by considering the limit of (A.27) and applying
Lemma A.2 to G,. (|

B. Complexity analysis
Proposition B.1. Complexity of Algorithm 3 is O (k?).

Proof. First, we show the complexity of a single run the
algorithm, i.e., not taking into account the recursive call, is

selecting and removing j indices). In total, we obtain O (k?).

The depth of the recursion calls is at most k. Since the
complexity of each single call is O (k?), so the total com-
plexity is O (k?). O

Lemma B.1. The average complexity of the algorithm for
generating a function in n>0 variables which is either 1 or
noncanalizing described in Remark 3 is O (n2").

Proof. [25, p. 116] implies that the proportion of functions
which are canalizing in n variables is bounded from above by
4n/2*"". Note that [25] considers constant functions cana-
lizing which we do not. Thus, the probability P, of choosing
a function which is either 1 or noncanalizing is bounded
from above by

an 1 4n —(1/22’“)

22;171 - 22n 22;171

(B.1)

This bound is less than 3/4 for all values of n except 1 and
2, but we can compute directly that P, = 3/4and P, = 13/16.
Therefore, the number of times the generation of a function
needs to be repeated averages to 1/1 — P,, which does not
exceed 4, so the average complexity of the whole procedure is
the same as of a single generation step.

The complexity of a single step consists of generating a
random function (which is O (2")) and checking whether it
is canalizing or not. We perform this check by running
linearly through the table for each variable, so the com-
plexity is O (n2") time. Thus, the total complexity is indeed
O (m2"). O
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Lemma B.2. There is a constant ¢ <1 such that the proba-
bility that a function generated in steps 1 and 2 of Algorithm 2
does not satisfy one of the conditions (E1) or (E2) is bounded
by c for every n.

Proof. Notice that
P((E1l)or (E2)isfalse) = P(r #1)P((El)isfalse|r # 1)
+P(r=1)P((E2)isfalse|r = 1).
(B.2)

We will show that there is a constant ¢ <1 such that
P((El)isfalse|r#1) and P(5.lisfalse|r =1) do not
exceed c.

(i) P((E1)isfalse|r # 1): the probability of having k, =
1 (the only possible k, <2) is just the proportion of
ordered partitions with a single element at the end.
We can construct all of these by picking an element
and then picking a partition of the remaining ele-
ments, so this creates k - p;_, possibilities. Thus, the
probability of this occurring is kp,_,/p;. [19,
equation (5)] implies that this approaches In(2) <1
as n goes to infinity. Thus, there exists such c.

(ii) P((E2)isfalse|r = 1): the probability of ever picking
b =1 is just 1/2, so we can take ¢ = 1/2. O

Proposition B.2. Complexity of Algorithm 2 is O (n2").

Proof. Lemma B.2 implies that the average number of reruns
in step 3 is constant. Thus, the complexity of the algorithm is
the same as of a single run.

Proposition B.1 and Lemma B.1 imply that the com-
plexity of step 1 is O (k> + (n— k)2"F). Step 2 generates a
truth table for the function. There are 2" input-output pairs,
and computing the function takes at most k steps, so this is
O (k2"). In step 3, the conditions (E1) or (E2) are verified in
O (2") time.

Summing everything, we obtain O (k® + (n—k)2" %+
k2") = O (n2") O
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