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Boolean networks are a popular modeling framework in computational biology to capture the dynamics of molecular networks, such
as gene regulatory networks. It has been observed that many published models of such networks are de�ned by regulatory rules
driving the dynamics that have certain so-called canalizing properties. In this paper, we investigate the dynamics of a randomBoolean
network with such properties using analytical methods and simulations. From our simulations, we observe that Boolean networks
with higher canalizing depth have generally fewer attractors, the attractors are smaller, and the basins are larger, with implications for
the stability and robustness of the models. �ese properties are relevant to many biological applications. Moreover, our results show
that, from the standpoint of the attractor structure, high canalizing depth, compared to relatively small positive canalizing depth, has
a very modest impact on dynamics. Motivated by these observations, we conduct mathematical study of the attractor structure of a
random Boolean network of canalizing depth one (i.e., the smallest positive depth). For every positive integer ℓ, we give an explicit
formula for the limit of the expected number of attractors of length ℓ in an n-state random Boolean network as n goes to in�nity.

1. Introduction

Dynamic mathematical models are a key enabling technology
in systems biology. Depending on the system to be modeled,
the data and information available for their construction, the
questions to be answered, and di�erent modeling frameworks
can be used. For kinetic models, systems of ordinary dif-
ferential equations have a long tradition. Generally, they will
have the very special structure of polynomial equations
representing Michaelis–Menten kinetics, even in the case of
systems, such as gene regulatory networks, that are not proper
biochemical reaction networks. It is this special structure
that gives models desirable properties and aids in model
analysis. Besides continuous models, a range of discrete
models are �nding increasingly frequent use, in particular
Boolean network models of a broad variety of biological
systems, from intracellular molecular networks to population-

level compartmental models (see e.g., [1–5]), going back to the
work of Kau�man in the 1960s [6–8]. While Boolean network
models, a collection of nodes, whose regulation by other nodes
is described via a logical rule built from Boolean operators, are
intuitive and mathematically simple to describe, their analysis
is severely limited by the lack ofmathematical tools. It generally
consists of simulation results. Any set function on binary
strings that takes on binary values can be represented as a
Boolean function, so that the class of general Boolean networks
is identical to the class of set functions on binary strings of a
given length, making any general analysis impossible. �e
search for special classes of Boolean functions that are broad
enough to cover all or most rules that occur in biology, but
special enough to allow formathematical approaches has a long
history.

It was again Kau�man who proposed a class of functions
[7] with properties inspired by the developmental biology
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concept of canalization, going back to Waddington in the
1940s [9]. 0ere is some evidence that canalizing Boolean
functions do indeed appear disproportionately in published
models and that the dynamics of Boolean network models
consisting of canalizing functions has special properties, in
particular a “small” number of attractors. 0is is important
since, in the case of intracellular molecular network models,
attractors correspond to the different phenotypes a cell is
capable of. Here, again, the majority of available results are
obtained by simulating large numbers of such networks. 0e
main question of this paper is as follows: What do the dy-
namics of a random canalizing Boolean network look like?
We approach this question using both computer simulations
and analytical methods, with themain result of the paper being
0eorem 2, which gives a provable formula for the number of
expected attractors of a general Boolean network with a
particular canalization property. In addition to providing
important information about canalizing Boolean network
models, this result can be viewed as a part of a growing body of
mathematical results characterizing this class of networks that
promises to be as rich as that for chemical reaction network
models based on ordinary differential equations.

2. Background

0e property of canalization for Boolean functions was
introduced by Kauffman in [7], inspired by the concept of
canalization from developmental biology [9]. A Boolean
function is canalizing if there is a variable and a value of the
variable such that if the variable takes the value, then the
value of the function does not depend on other variables. It
was shown that models defined by such functions often
exhibit less chaotic andmore stable behavior [10, 11]. Nested
canalizing functions, obtained by applying the concept of
canalization recursively, were introduced in [2]. 0ey form a
special subset of canalizing functions and have stable dy-
namics [11]. We note that there are other important
properties shared by Boolean networks arising in modeling
(for example, sparsity [7]). In this paper we focus only on
canalization and its impact on the dynamics, and one of the
natural future directions would be to consider several such
properties simultaneously.

To cover more models arising in applications, the
notion of nested canalizing function was relaxed by Layne
et al. [12] by assigning to every Boolean function its
canalizing depth. Noncanalizing functions have canalizing
depth zero, and nested canalizing functions have the
maximal possible canalizing depth equal to the number of
variables. Canalizing depth of a Boolean network is defined
as the minimum of the canalizing depths of the functions
defining the network. In [12], activities and sensitivities of
functions with different canalizing depths and stability and
criticality of Boolean networks composed from such
functions were investigated. It has been observed that
Boolean networks of higher canalizing depth tend to be
more stable and less sensitive. However, increasing the
canalizing depth to the maximum does not improve the
stability significantly compared to moderate positive
canalizing depth. 0ese observations give a strong

indication of the biological utility of canalizing function,
even with small canalizing depth.

Attractors in Boolean network models can be inter-
preted as distinct cell types [13, p. 202] and their lengths
can be viewed as the variety of different gene expression
patterns corresponding to the cell type. 0us, un-
derstanding the attractor structure of a random Boolean
network defined by functions of a fixed canalizing depth is
important for assessing biological relevance of such
models. Analytic study of the attractor structure of nested
canalizing Boolean networks has been carried out in [11].
For discussion about attractors of length one (i.e., steady
state), we refer to [14].

3. Our Results

0e main question of this paper is as follows: What do the
dynamics of a random canalizing Boolean network look like?
We approach this question using both computer simulations
and analytical methods.

In our computational experiments, we generate ap-
proximately 30 million random Boolean networks of all
possible canalizing depths with the number of variables
ranging from 4 to 20. For each of these networks, we
determine sizes of all the attractors and basins of at-
traction and analyze the obtained data. We discover the
following:

(1) For a fixed number of variables, the sample mean of
the number of attractors and average size of an
attractor decrease when the canalizing depth
increases

(2) 0e decrease of the average size of an attractor is
much greater than the decrease of the number of
attractors as the canalizing depth increases

(3) Both decreases from (8) are substantial when the
canalizing depth changes from zero to small cana-
lizing depths, but a further increase of the canalizing
depth does not lead to a significant decrease for
either the sample means or for the empirical
distributions

(4) 0e relative decrease of the sample mean of the
number of attractors and the average attractor size
when the canalizing depth changes from zero to one
becomes sharper when the number of variables
increases

Observations (8) and (A.4) are consistent with the results
obtained in [12] for sensitivity and stability. 0is provides
new evidence that Boolean networks of small positive
canalizing depth are almost as well-suited for modeling as
those with nested canalizing functions, from the point of
view of stability. Since there are many more canalizing
functions of small positive canalizing depth than nested
canalizing functions [15, Section 5], they provide a richer
modeling toolbox.

Motivated by observation (A.4), we conduct a mathe-
matical study of the attractor structure of a random Boolean
network of canalizing depth one (that is, the minimal
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positive depth). Our main theoretical result, 0eorem 2,
gives, for every positive integer ℓ, a formula for the limit of
the expected number of attractors of length ℓ in a random
Boolean network of depth one. 0e same formulas are valid
for a random Boolean network defined by canalizing
functions (see Remark 5). In particular, our formulas show
that a large random network of depth one, on average, has
more attractors of small sizes that an average Boolean
network (Remark 6).

Formulas similar to the ones in our proofs (e.g., in
Lemma A.4) have already appeared in the study of the
average number of attractors of a given length in sparse
Boolean networks, e.g., [16, equation (2)] and [17, equation
(6)]. 0e results of [16, 17] are based on describing the
asymptotic behavior of these formulas in terms of N, the
number of nodes in the network, and the asymptotics is of
the form O(Nα). In our case, the average number of
attractors of a given length simply approaches a constant as
N⟶∞ (that is, O(1)), but our methods allow us to find
the exact value of this constant.

0e source code we used for generating and analyzing
data is available at https://github.com/MathTauAthogen/
Canalizing-Depth-Dynamics. 0e raw data are available at
https://github.com/MathTauAthogen/Canalizing-Depth-
Dynamics/tree/master/data.

Structure of the Paper. 0e rest of the paper is organized
as follows. Section 4 contains necessary definitions about
canalizing functions and Boolean networks. Outlines of
the algorithms used in our computational experiments
are in Section 5. 0e main observations are summarized
in Section 6. Our main theoretical result about attractors
in a random Boolean network of canalizing depth
one (0eorem 2) is presented in Section 7. Section 8
contains conclusions. 0e proofs are located in the
Appendix.

4. Preliminaries

Definition 1. ABoolean network is a tuple f � (f1, f2, . . . , fn)

of Boolean functions in n variables. For a state
at � (at,1, at,2, . . . , at,n) ∈ 0, 1{ }n at time t, we define the state
at+1 ≔ f(at) � (at+1,1, . . . , at+1,n) ∈ 0, 1{ }n at time t + 1 by

at+1,1 � f1 at,1, . . . , at,n􏼐 􏼑,

⋮

at+1,n � fn at,1, . . . , at,n􏼐 􏼑.

(1)

Definition 2 (attractors and basins). Let f � (f1, . . . , fn) be
a Boolean network.

(i) A sequence a1, . . . , aℓ ∈ 0, 1{ }n of distinct states is
called an attractor of f if f(ai) � ai+1 for every
1≤ i< ℓ and f(aℓ) � a1.

(ii) An attractor a1, . . . , aℓ ∈ 0, 1{ }n is called a steady
state if ℓ � 1.

(iii) Let A � (a1, . . . , aℓ) ∈ ( 0, 1{ }n)ℓ be an attractor of f .
0e basin of A is the set

􏼈b ∈ 0, 1{ }
n

|∃N : f(f(. . . (fb) . . .))􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽
N times

∈ A􏼉.
(2)

Definition 3. A nonconstant function f(x1, . . . , xn) is
canalizing with respect to a variable xi if there exists a
canalizing value a ∈ 0, 1{ } such that

f x1, . . . , xi− 1, a, xi+1, . . . , xn( 􏼁 ≡ const. (3)

Example 1. Consider f(x1, x2) � x1 · x2 (the product is
understood modulo 2, that is, logical AND). It is canalizing
with respect to x1 with canalizing value 0 because f(0, x2) �

0 regardless of the value of x2. Analogously, it is canalizing
with respect to x2 with canalizing value 0.

Consider g(x1, x2) � x1 + x2 (summation is understood
modulo 2, that is, logical XOR). It is not canalizing with
respect to x1 because

g 0, x2( 􏼁 � x2 ≠ const,

g 1, x2( 􏼁 � x2 ≠ const.
(4)

0e same argument works for x2 as well.

Definition 4. f(x1, . . . , xn) has canalizing depth [15, Defi-
nition 2.3] k if it can be expressed as

f �

b1, xi1
� a1,

b2, xi1
≠ a1, xi2

� a2,

⋮

bk, xi1
≠ a1, xi2

≠ a2, . . . , xik− 1
≠ ak− 1, xik

� ak,

g≢bk, xi1
≠ a1, . . . , xik

≠ ak,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where

(i) i1, . . . , ik are distinct integers from 1 to n
(ii) a1, . . . , ak, b1, . . . , bk ∈ 0, 1{ }

(iii) g is a noncanalizing function in the variables
x1, . . . , xn􏼈 􏼉/ xi1

, . . . , xik
􏽮 􏽯

Example 2. For example, if f(x1, x2, x3) � (x1 + x2)x3,

f x1, x2, x3( 􏼁 �
0, x3 � 0,

x1 + x2, x3 ≠ 0,
􏼨 (6)

and x1 + x2 is noncanalizing. 0erefore, f has canalizing
depth 1.

Remark 1. Since g in Definition 4 is noncanalizing, every
function has a single well-defined canalizing depth. In
particular, a function of depth two is not considered to have
depth one.

Complexity 3

https://github.com/MathTauAthogen/Canalizing-Depth-Dynamics
https://github.com/MathTauAthogen/Canalizing-Depth-Dynamics
https://github.com/MathTauAthogen/Canalizing-Depth-Dynamics/tree/master/data
https://github.com/MathTauAthogen/Canalizing-Depth-Dynamics/tree/master/data


Definition 5. We say that a canalizing Boolean function
f(x1, . . . , xn) is nested if f has canalizing depth n, that is,
g � 0 or g � 1 (see Definition 4). For example,
f(x1, x2, x3) � x1x2x3 is nested canalizing because

f �

0, x3 � 0,

0, x3 ≠ 0, x2 � 0,

0, x2, x3 ≠ 0, x1 � 0,

1, x1, x2, x3 ≠ 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

so the canalizing depth of f is 3, which is equal to n � 3.

Definition 6. We say that a Boolean network f � (f1,

. . . , fn) has canalizing depth k if f1, . . . , fn are Boolean
functions of canalizing depth k.

5. Simulations: Outline of the Algorithms

In our computational experiment, we generated random
Boolean networks of various canalizing depths. For each
network, we store a list of pairs (ai, bi), where ai is the size
of the ith attractor of the network and bi is the size of its
basin. 0e generated data are available at https://github.
com/MathTauAthogen/Canalizing-Depth-Dynamics/tree/
master/data. To generate the data, we used two algorithms:
one for generating a random Boolean network of a given
canalizing depth and one for finding the sizes of attractors
and their basins (Algorithm 1).

5.1. Generating Random Boolean Functions of a Given Can-
alizing Depth. [12, Section 5] contains a sketch of an al-
gorithm for generating random Boolean functions that
have canalizing depth at least k for a given k. Here, we
generate functions of canalizing depth equal to k and take
a different approach than [12]. In order to ensure that the
probability distribution of possible outputs is uniform, we
use the following structure theorem due to He and
Macaulay [15].

Theorem 1 (see [15], 0eorem 4.5). Every Boolean function
f(x1, . . . , xn)≢ 0 can be uniquely written as
f x1, . . . , xn( 􏼁 � M1 M2 · · · Mr− 1 MrpC + 1( 􏼁 + 1( 􏼁 · · ·( 􏼁 + 1( 􏼁 + b,

(8)

where Mi � 􏽑
ki

j�1(xij
+ aij

) for every 1≤ i≤ r, pC ≢ 0 is a
noncanalizing function, and k � 􏽐

r
i�1ki is the canalizing

depth. Each xi appears in exactly one of M1, . . . , Mr, pC􏼈 􏼉,
and the only restrictions on equation (8) are the following
“exceptional cases”:

(E1) If pC ≡ 1 and r≠ 1, then kr ≥ 2
(E2) If pC ≡ 1 and r � 1 and k1 � 1, then b � 0

Example 3. Consider f(x1, x2, x3, x4) � x1(x2 + 1)(x3x4 +

x3 + x4) can be represented as

f � x1 + 0( 􏼁 x2 + 1( 􏼁( 􏼁 x3 + 1( 􏼁 x4 + 1( 􏼁( 􏼁(1) + 1( 􏼁 + 0,

(9)
so M1 � (x1 + 0)(x2 + 1), M2 � (x3 + 1)(x4 + 1), b � 0,
k � 4, and pC � 1. 0is can be verified by expanding the
brackets in the original and new representations of f.

Consider g(x1, x2, x3, x4, x5) � 1 + x5(x1 + x2)(x3 + 1)

x4. It can be represented as

g � x5 + 0( 􏼁 x3 + 1( 􏼁 x4 + 0( 􏼁( 􏼁 x1 + x2( 􏼁 + 1( 􏼁 + 1, (10)

so M1 � (x5 + 0), M2 � (x4 + 0)(x3 + 1), b � 1, k � 3, and
pC � x1 + x2.

Our algorithm is summarized in Algorithms 2 and 3
below. Correctness of Algorithm 2 follows from0eorem 1,
and correctness of Algorithm 3 can be proved directly by
induction on k.

Remark 2. 0e complexity of Algorithm 2 is O(n2n) (see
Proposition B.2). Given that the size of the output is O(2n),
and this is nearly optimal.

We measured the runtimes of our implementation of
Algorithm 2 on a laptop with a Core i5 processor (1.60GHz)
and 8Gb RAM. Generating a single function with 20 var-
iables (the largest number we used in our simulations) takes
4.9 − 5.5 seconds (faster for smaller canalizing depth). On a
laptop, our implementation can go up to 24 variables ( ∼2
minutes to generate a function), and then hits memory
limits. One can go further by using a lower level language
and more careful packing. However, already a Boolean
function in 40 variables would require at least 128Gb of
memory.

Remark 3. We generate a random noncanalizing function as
follows. We generate a random Boolean function and test for
canalization until we generate a noncanalizing one.0en, we
return it. Since canalizing functions are rare [15, Section 5],
this algorithm is fast enough for our purposes (see Lemma
B.1).

6. Simulations: Results

Notation 1. For a Boolean network f � (f1, . . . , fn), let
N(f) and S(f) denote the number of the attractors of f
and the sum of the sizes of the attractors of f , respectively.
We define the average size of an attractor as AS(f) ≔
S(f)/N(f).

6.1. Sample Means of N(f) and AS(f). For every
n � 4, . . . , 20 and every 0≤ k≤ n, we generate random
Boolean networks in n variables of canalizing depth k and
compute the mean of N(f) and AS(f). Figure 1 shows how
these means depend on k for n � 15 (based on 50,000
samples for each k).0e shape of the plots is similar for other
values of n we did computation for (that is, n � 4, . . . , 20).
Note that although both means are decreasing, the decrease
of the mean of AS(f) is more substantial.
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Figure 1: Dependencies of the sample means of N(f) and AS(f) on the canalizing depth. (a) 0e number of attractors N(f). (b) Average
size of an attractor AS(f).
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Figure 2: Empirical distributions of N(f) and AS(f) for n � 12 and k � 0, 1, 3, 12. (a) Distribution of the number of attractors N(f).
(b) Distribution of the average size of an attractor AS(f).

In: A Boolean network f � (f1, . . . , fn) in n variables
Out: A list of pairs (ai, bi), where ai is the size of the ith attractor of f and bi is the size of its basin

(1) (Network⟶ Graph) Build a directed graphGwith 2n vertices corresponding to possible states and a directed edge from a to f(a)

for every a ∈ 0, 1{ }n.
(2) (Attractors) Perform a depth-first search [18, § 22.3] traversal onG viewed as an undirected graph to detect the unique cycle in each

connected component, these cycles are the attractors.
(3) (Basins) For each cycle from Step 2, perform a depth-first search traversal on G with all the edges reversed.0e dfs trees will be the

basins.
(4) Return the sizes of the attractors and basins found on Steps 2 and 3.

ALGORITHM 1: Finding the sizes of the attractors and their basins.

Complexity 5



4 6 8 10 12 14 16 18 20
# of variables

0.8

0.6

0.4

0.2

0.0

Re
la

tiv
e d

ec
re

as
e

N1(n)
N2(n) Nn(n)

N3(n)

(a)

0.8

0.6

0.4

0.2

0.0

Re
la

tiv
e d

ec
re

as
e

4 6 8 10 12 14 16 18 20
# of variables

AS1(n)
AS2(n) ASn(n)

AS3(n)

(b)

Figure 3: Dependence of the relative decreases of the sample means of N(f) and AS(f) on the number of variables n. (a) Relative decrease of
the number of attractors. (b) Relative decrease of the average size of an attractor.
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Figure 4: 0e average number of attractors of fixed length (blue plot) compared to the limiting value from 0eorem 2 (orange plot).
(a) Length 1. (b) Length 2. (c) Length 3. (d) Length 4.
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6.2. Distributions of N(f) and AS(f). Figure 2 shows the
empirical distributions of N(f) and AS(f) for n � 12 and
k � 0, 1, 3, 12 based on 300,000 samples for each k. From the
plot, we can make the following observations:

(i) 0e distributions becomemore concentrated and the
peak shifts towards zero when k increases

(ii) 0e distributions for nonzero canalizing depths
(especially for larger depths) are much closer to each

other that to the distribution for zero canalizing
depth. 0is agrees with the plots on Figure 1.

6.3. Relative Decreases. From Figure 1, we can observe that,
for both N(f) and AS(f), the sample mean decreases rapidly
for small canalizing depths. In order to understand how this
decrease behaves for large n, we introduce

Nk(n) ≔
the samplemean of N(f) for n variables and canalizing depth k

the sample mean of N(f) for n variables and canalizing depth 0
. (11)

ASk(n) is defined analogously. Figure 3 plots N1(n),
N2(n), N3(n), and Nn(n) and AS1(n), AS2(n), AS3(n), and
ASn(n) as functions of n. From the plots we see that

(i) 0e relative initial decrease from canalizing depth 0
to canalizing depth 1 becomes even more substantial
when n increases

(ii) 0e relative decrease from canalizing depth 0 to
canalizing depth 3 is already very close to the relative
decrease from depth zero to the maximal depth (i.e.,
nested canalizing functions)

7. Theory: The Main Result

We will introduce notation needed to state the main
theorem. Let us fix a positive integer ℓ. For a binary string
α ∈ S ≔ 0, 1{ }ℓ, we define

(i) |α| denotes the number of ones
(ii) α denotes component-wise negation
(iii) s(α) denotes a cyclic shift to the right

For binary strings α, β ∈ 0, 1{ }ℓ, we define

In: Nonnegative integers k and n with k≤ n

Out: A Boolean function f in n variables of canalizing depth k such that, for fixed k and n, all possible outputs have the same
probability

(1) In the notation of 0eorem 1, generate the following:
(a) random bits b, a1, . . . , an ∈ 0, 1{ };
(b) random subset X ⊂ x1, . . . , xn􏼈 􏼉 with |X| � k;
(c) random ordered partition X � X1 ⊔ · · · ⊔Xr of X (using Algorithm 2);
(d) random noncanalizing function pC ≢ 0 in variables x1, . . . , xn􏼈 􏼉/X (see Remark 3).
(2) Form a function f(x1, . . . , xn) using the data generated in Step 1 as in0eorem 1, where Mi involves exactly the variables from Xi

for every 1≤ i≤ r.
(3) If f does not satisfy any of the conditions (E1) or (E2), discard it and run the algorithm again. Otherwise, return f.

ALGORITHM 2: Generating a random Boolean function of a given canalizing depth.

In: A finite set X with |X| � k

Out: An ordered partition X � X1 ⊔ · · · ⊔Xr into nonempty subsets X1, . . . , Xr such that, for a fixed X, all possible outputs have
the same probability

(1) Compute p0, . . . , pk, where pi is the number of ordered partitions of a set of size i, using the recurrence pj � 􏽐
j− 1
i�0

j

i
􏼠 􏼡pj− i, p0 � 1

(see [19, equation (9)]).
(2) Generate an integer N uniformly at random from [1, pk].
(3) Find the minimum integer j between 1 and k such that 􏽐

j− 1
i�0

k

i
􏼠 􏼡pk− i ≥N.

(4) Randomly select a subset X1 ⊂ X of size j.
(5) Generate an ordered partition X2 ⊔ · · · ⊔Xr of X/X1 recursively.
(6) Return X1 ⊔ · · · ⊔Xr.

ALGORITHM 3: Generating a random ordered partition of a given finite set.

Complexity 7



f(α, β) ≔

1
2|β|

, if α∨ β � β,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

g(α, β) ≔
1
4

(f(α, β) + f(α, β) + f(α, β) + f(α, β)).

(12)

0en, we define a 2ℓ × 2ℓ matrix Gℓ by

Gℓ( 􏼁a,b � g(a, s(b)), (13)

where we interpret numbers 1≤ a and b≤ 2ℓ as binary se-
quences of length ℓ.

Theorem 2. Let Aℓ be the limit of the expected number of
attractors of length ℓ in a random Boolean network of can-
alizing depth one (see Definition 6) when the number of
variables n goes to infinity. Een,

Aℓ �
1

ℓPGℓ
′ (1)

, (14)

where PGℓ
is the characteristic polynomial of matrix Gℓ in-

troduced above. In particular, we have

A1 � 1,

A2 �
2
3

� 0.666 . . . ,

A3 �
64
189

� 0.3386 . . . ,

A4 � 0.2856 . . . ,

A5 � 0.2004 . . . ,

A6 � 0.1721 . . . .

(15)

Remark 4. 0eplots below show that the result of0eorem 2
agrees with our simulations (Figure 4).

Remark 5. As explained in Remark A.1, 0eorem 2 stills
holds if we replace a random Boolean network of canalizing
depth one with a random Boolean network defined by
canalizing functions.

Example 4. Let ℓ � 2. 0en, for example, we have f(0, 2) �

f(0, 1) � 1/2 and g(0, 1) � g(3, 1) � 1/4. In total, we have

G2 �

3/8 1/4 1/4 3/8

1/8 1/4 1/4 1/8

1/8 1/4 1/4 1/8

3/8 1/4 1/4 3/8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

PG2
(t) � t

4
−
5
4
t
3

+
1
2
t
2
.

(16)

Remark 6. 0eorem 2 and Corollary A.1 imply that Aℓ > 1/ℓ
for every ℓ > 1. On the other hand, a direct computation
shows that the expected number of attractors of length ℓ in a
random Boolean network (without any canalization re-
quirements) is 1/ℓ. 0is is consistent with our observations
from Section 6.1.

Remark 7. A sage script for computing numbers Aℓ is
available at https://github.com/MathTauAthogen/Canalizing-
Depth-Dynamics/blob/master/core/theory.sage.

8. Conclusions

We conducted computational experiments to investigate the
attractor structure of Boolean networks defined by functions
of varying canalizing depth. We observed that networks with
higher canalizing depth tend to have fewer attractors and the
sizes of the attractors decrease dramatically when the can-
alizing depth increases moderately. As a consequence, the
basins tend to grow when the canalizing depth increases.
0ese properties are desirable in many biological applica-
tions of Boolean networks, so our results give new in-
dications of the biological utility of Boolean networks
defined by functions of positive canalizing depth.

We proved a theoretical result, 0eorem 2, which
complements the above observation as follows. 0e theorem
implies that a large random Boolean network of canalizing
depth one has on average more attractors of small size than a
random Boolean network of the same size although it has
less attractors in total. 0is also provides an explanation to
the fact that the total size of attractors decreases faster than
the number of attractors as the canalizing depth grows.

Furthermore, we observed that all the statistics we
computed are almost the same in the case of the maximal
possible canalizing depth (so-called nested canalizing
Boolean networks) and in the case of moderate canalizing
depth. 0is agrees with the results of Layne et al. [12]. 0is
observation elucidates an interesting and powerful feature of
canalization: even a very moderate canalizing influence in a
Boolean network has a strong constraining influence on
network dynamics. It would be of interest to explore the
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prevalence of these features in published Boolean network
models.

Finally, we provided evidence that the observed phe-
nomena will occur for Boolean networks with larger
numbers of state variables.

Appendix

A. Proofs

Notation A.1. We fix a positive integer ℓ.

(i) For every 1≤ i< j≤ ℓ, we define a subset Si,j ⊂ S �

0, 1{ }ℓ by

Si,j ≔ α1, . . . , αℓ( 􏼁 ∈ S αi � αj

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛. (A.1)

(ii) For every 1≤ i< j≤ ℓ, let Gℓ;i,j be the submatrix of Gℓ
with rows and columns having indices from Si,j.

Lemma A.1. For every ℓ, we have

(1) GT
ℓ is stochastic (see [20, § 8.5]), and Gℓ has exactly one

eigenvalue being equal to 1.
(2) For every 1≤ i< j≤ ℓ, there exists a 2ℓ− 1 × 2ℓ− 1 matrix

Cℓ;i,j with nonnegative entries such that (2ℓ+2/2ℓ+2 −

1)(Gℓ;i,j + Cℓ;i,j)
T is stochastic and has exactly one of

the eigenvalues being equal to 1.

Proof. We will first show that GT
ℓ is stochastic and irre-

ducible (see [20, § 3.11]).
By definition, showing that GT

ℓ is stochastic is equivalent
to proving that, for every β ∈ S ≔ 0, 1{ }ℓ:

􏽘
α∈S

g(α, s(β)) � 1. (A.2)

Since shift just permutes binary strings, this sum is equal
to 􏽐β∈Sg(α, β). For a fixed ß and k≤ |β|, the number of α ∈ S

such α∨ β � β and |α| � k is equal to |β|

k
􏼠 􏼡. 0us,

􏽘
α∈S

h(α, β) � 􏽘

|β|

k�0

|β|

k

⎛⎝ ⎞⎠
1
2|β|

� 1⟹ 􏽘
β∈S

g(α, β) � 1. (A.3)

To prove irreducibility, we observe that, if 0 ∈ S denotes a
zero binary string, then g(α, 0)≠ 0 and g(0, α)≠ 0 for every
α ∈ S. 0en, [20, § 3.11, Exercise 12a] implies that GT

ℓ is
irreducible.

Since GT
ℓ is stochastic, its largest eigenvalue is equal to 1

[20, § 8.5, p.156]. Since GT
ℓ is irreducible, [20, 0eorem 8.2]

implies that 1 is a simple eigenvalue.
To prove the second part of the lemma, we fix

1≤ i< j≤ ℓ. We will show that for every β ∈ Si,j

􏽘
α∈Si,j

g(α, s(β))≤
2ℓ+2 − 1
2ℓ+2

. (A.4)

Indeed, let c be a binary string with all zeroes and one
at the ith position. 0en, since g(c, s(β))≥ (1/2|β|+2) ≥
(1/2ℓ+2), we have

􏽘
α∈Si,j

g(α, s(β))≤ 􏽘
α∈S

g(α, s(β))⎛⎝ ⎞⎠ − g(c, s(β))≤ 1 −
1

2ℓ+2
.

(A.5)

Inequality (A.4) implies that there exists a matrix Cℓ;i,j
with nonnegative entries such that (2ℓ+2/2ℓ+2 − 1)(Gℓ;i,j +

Cℓ;i,j)T is stochastic.
Since 0 ∈ Si,j, the same argument as in the proof of the

first part of the lemma shows that (2ℓ+2/2ℓ+2 − 1)(Gℓ;i,j +

Cℓ;i,j)T is stochastic and has exactly one of the eigenvalues
being equal to 1. □

Corollary A.1. Let Pℓ(t) be the charactersitic polynomial of
Gℓ. Een, for every ℓ > 1, |Pℓ′(1)|< 1.

Notation A.2. Fix a positive integer n. For vectors a � (a1,

. . . , an) ∈ Zn
≥0 and b � (b1, . . . , bn) ∈ Zn

≥0, we denote

a! ≔ a1! · . . . · an!,

ab ≔ a
b1
1 · . . . · a

bn

n ,

|a| ≔ a1 + · · · + an.

(A.6)

Lemma A.2. Let A be an s × s stochastic matrix with only
one of the eigenvalues being one. We set

C(A)n ≔ 􏽘

m∈Zs
≥0

|m|�n

(Am)m

nn
.

(A.7)

Let PA(t) be the characteristic polynomial of A. 0en,
limn⟶∞C(A)n � 1/PA

′ (1).

Proof. We recall that the Lambert W function [21] is the
principal branch of the inverse of xex. We will use the
notation y(z) � − W(− z) from [22] so that y(z) � zey(z).
Function y(z) has a singularity of the square-root type at
z � 1/e and has the following expansion around this point
(see [22, p. 107]):

y(z) � 1 − ε +
1
3
ε2 − · · · , where ε �

������
2 − 2ez

√
. (A.8)

From this, we obtain
1

y(z)
� 1 + ε +

2
3
ε2 − · · · , where ε �

������
2 − 2ez

√
. (A.9)

0e main result of [23] implies that, for every complex
s × s matrix A, we have

􏽘
m∈Zs
≥0

(Am)m

m!
x

|m| exp − x 􏽘
i,j

mjai,j
⎛⎝ ⎞⎠ �

1
det|E − xA|

.

(A.10)
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Since AT is stochastic, we have 􏽐
n
i�1ai,j � 1, so

􏽘
m∈Zs
≥0

(Am)m

m!
x

|m|
e

− x|m|
�

1
det|E − xA|

. (A.11)

If we perform a substitution x � y(z) and use the
definition of the Lambert W function, we obtain

􏽘
m∈Zs
≥0

(Am)m

m!
z

|m|
�

1
det|E − y(z)A|

. (A.12)

From this, we obtain

􏽘

∞

n�0

nnC(A)n

n!
z

n
� 􏽘

m∈Zs
≥0

(Am)m

m!
z

|m|
�

1
det|E − y(z)A|

≕F(z).

(A.13)

F(z) can be rewritten as

F(z) �
1

y(z)sPA(1/y(z))
. (A.14)

Finding the asymptotic behavior of the Taylor co-
efficients of F(z) would yield an asymptotic for C(A)n. We
will do this using singularity analysis [24, Chapter VI]
(similarly to [22, 0eorem 2]). Since |y(z)|< 1 for |z|< 1/e
(see [21, Figure 1]) and all roots of PA lie in the unit circle
due to the stochasticity of A, 1/e is the singularity of F(z)

with the smallest absolute value. Due to Lemma A.1,
PA(t) � (1 − t)QA(t), where QA(1)≠ 0. Using (A.8), we
obtain the following expansion of F(z) around 1/e:

F(z) �
1

(1 − ε + · · ·)s − ε − 2/3ε2 + · · ·( )QA(1 + ε + · · ·)

�
− 1

QA(1)

1
ε

+ · · ·􏼒 􏼓, where ε �
������
2 − 2ez

√
.

(A.15)

Singularity analysis [24, Corollary VI.1] implies that

nnC(A)n

n!
∼

− en

QA(1)
����
2πn

√ , as n⟶∞. (A.16)

Using Stirling’s formula, we get

C(A)n ∼
− n!en

nnQA(1)
����
2πn

√ ∼
− 1

QA(1)
, as n⟶∞. (A.17)

Using PA
′ � − QA

′ + (1 − t)Qℓ, we deduce
PA
′ (1) � − QA

′ (1), and this finishes the proof. □

Lemma A.3. On the set of all Boolean networks with n states
consider two probability distributions:

(A) All the networks with canalizing depth one have the
same probability, and all others have probability zero
(B) İe probability assigned to each network is pro-
portional to the product of the number of canalizing
variables of the functions defining this network

We fix a positive integer ℓ. By Aℓ,n and Bℓ,n we denote the
average number of attractors of length ℓ in a random Boolean

network with n states with respect to distributions (A) and (B),
respectively. Een,

lim
n⟶∞

Aℓ,n � lim
n⟶∞

Bℓ,n. (A.18)

Example A.1. We will illustrate the (B) distribution by an
example. Consider the following three networks with two
states:

f1 � x1x2 + 1, x1 + x2( 􏼁,

f2 � x1x2, x1( 􏼁,

f3 � x1x2 + 1, x1x2( 􏼁.

(A.19)

Since the canalizing depth of x1 + x2 is zero, PB(f1), the
probability of f1 with respect to B, is zero. Since the can-
alizing depths of x1x2 and x1 are 2 and 1, respectively, the
ratio PB(f2)/PB(f3) is equal to (2 · 1/2 · 2) � (1/2).

Proof. Let Fn and F∗n be the number of Boolean functions in
n variables with canalizing depth exactly one and more than
one, respectively. We will use the following bounds:

(1) F∗n ≤ n2 · 4 · 4 · 22n− 2 : we look term-by-term. 0ere are
at most n2 ways to choose first and second canalizing
variables. 0ere are at most 4 choices for the can-
alizing outputs and at most 4 choices for canalizing
values for these two variables. 0ere are at most 22n− 2

core functions, since that is all possible functions,
which may or may not be canalizing. Since re-
dundant arrangements of canalizing variables are not
accounted for, this must overcount.

(2) Fn ≥ 22
n− 1

− (n − 1) · 2 · 2 · 22n− 2 : this is a lower bound
for the number of noncanalizing core function in n −

1 variables because (n − 1) · 2 · 2 · 22n− 2 is an upper
bound on the number of canalizing functions in n −

1 variables (obtained in the same way as the bound
above).

We also introduce

Rn ≔
F∗n
Fn

≤
16n222n− 2

22n− 1
− 4(n − 1)22n− 2 �

n2

2 2n− 2( )− 4 − (1/4)(n − 1)
.

(A.20)

For X being (A) or (B) and positive integer n, let PX,n

denote the probability (it is always the same) of choosing a
network from distribution X with all functions being of
depth exactly one. Let P∗n be the maximal probability of
choosing a network from (B) with at least one function
being of depth more than one, respectively. By Sn and S∗n we
denote the total number of attractors of length ℓ in net-
works with all functions being of depth exactly one and
with at least one function being of depth more than one,
respectively.

0e statement of the lemma is equivalent to the state-
ment that

lim
n⟶∞

Aℓ,n − Bℓ,n􏼐 􏼑 � 0. (A.21)
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Using the notation introduced above, we can bound
Aℓ,n − Bℓ,n as

Pn,ASn − Pn,BSn − P
∗
n S
∗
n ≤ Aℓ,n − Bℓ,n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Pn,ASn + Pn,BSn.

(A.22)

We set Un ≔ Sn(Pn,A − Pn,B) and Vn ≔ P∗n S∗n . 0en,
(A.21) would follow from limn⟶∞Un � 0 and
limn⟶∞Vn � 0, so we will prove these two equalities.

Since any network has at most 2n attractors of length ℓ,
Sn ≤ 2nFn

n. Since the total sum of the products of canalizing
depths over all Boolean networks does not exceed
(Fn + nF∗n )n, we have Pn,B ≥ (1/(Fn + nF∗n )n). Since Pn,A �

1/Fn
n, we have

Un ≤ 2
n
F

n
n

1
Fn

n

−
1

Fn + nF∗n( 􏼁
n􏼠 􏼡 � 2n 1 −

1
1 + nRn( 􏼁

n􏼠 􏼡

� 2n

n

1
􏼠 􏼡nRn +

n

2
􏼠 􏼡 nRn( 􏼁

2
+ · · · + nRn( 􏼁

n

1 + nRn( 􏼁
n .

(A.23)

(A.20) implies that nRn < 1 for large enough n. Hence, for
large enough n, we have

Un ≤ 2
n
nRn

2n

1 + nRn( 􏼁
n ≤ 4

n
nRn ≤

4nn3

2 2n− 2( )− 4 − (1/4)(n − 1)
⟶ 0.

(A.24)

By similar arguments, P∗n ≤ nn/Fn
n and S∗n ≤ 2nn(Fn +

F∗n )n− 1F∗n , so

Vn ≤ 2
n
n

n+1
Fn + F

∗
n( 􏼁

n− 1
F
∗
n

1
Fn

n

≤ 2n
n

n+1 1 + Rn( 􏼁
n− 1

Rn.

(A.25)

Since Rn < 1 for large enough n, using (A.20), we have

Vn ≤ 2
2n− 1

n
n+1

Rn ≤
22n− 1nn+3

2 2n− 2( )− 4 − (1/4)(n − 1)
⟶ 0. (A.26)

□

Remark 8. 0e proof of Lemma A.3 will be valid if we
replace distribution (B) with any other distribution (C) such
that, for every Boolean network f � (f1, . . . , fn)

(i) If at least one of fi’s is noncanalizing, PC(f) � 0
(ii) 0ere exists a constant Pn,C such that, if the cana-

lizing depth of every fi is one, then PC(f) � Pn,C

(iii) We have (PC(f)/Pn,C)≤ (PB(f)/Pn,B) (using nota-
tion from the proof of Lemma A.3)
0e above properties hold, for example, for the
following distribution.
(C) All the networks defined by canalizing functions
have the same probability, and all others have
probability zero.

Using this distribution instead of (A), we see that
0eorem 2 holds also for a random Boolean network defined
by canalizing functions.

Lemma A.4. We will use Notation A.1 and notation from
Lemma A.2. Een, for every positive integers ℓ and n, we have

C Gℓ( 􏼁n − 􏽘
1≤i<j≤ℓ

C Gℓ;i,j􏼐 􏼑
n
≤ ℓBℓ,n ≤C Gℓ( 􏼁n. (A.27)

Proof. We fix n. Consider a tuple X � (X1, . . . , Xℓ) of ℓ
distinct elements of 0, 1{ }n. For 1≤ i≤ n, we denote
Xi ≔ (X1,i, . . . , Xn,i). For α ∈ S, let

nα ≔ i 1≤ i≤ n, Xi � α
􏼌􏼌􏼌􏼌􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (A.28)

0en, 􏽐α∈Snα � n. First, we will show that

P X1, . . . , Xℓ form an attractor in this order( 􏼁

� 􏽙
α∈S

􏽘
β∈S

g(α, s(β))
nβ

n
⎛⎝ ⎞⎠

nα

�
Gℓn( 􏼁

n

nn
,

(A.29)

where n � (n0, n1, . . . , n2ℓ − 1).
To prove (A.29), we will use that the functions fi(i �

1, . . . , n) in the network are chosen independently to de-
compose the left-hand side as

P X1, . . . , Xℓ form an attractor in this order( 􏼁

� 􏽙
n

i�1
P fi Xj􏼐 􏼑 � Xj+1,i for every 1≤ j≤ n􏼐 􏼑,

(A.30)

where we use notation Xn+1 � X1 and the probability of each
Boolean function to be chosen is assumed to be proportional
to the number of its canalizing variables. We show that, for
every 1≤ i≤ n,

P fi Xj􏼐 􏼑 � Xj+1,i for every 1≤ j≤ n􏼐 􏼑 � 􏽘
β∈S

g Xi, s(β)( 􏼁
nβ

n
.

(A.31)

0en, (A.29) would follow from multiplying (A.31) for
all i. To prove (A.31), without loss of generality, we consider
i � 1. Consider a set

Ω � (f, k) f : 0, 1{ }
n

􏼌􏼌􏼌􏼌 ⟶ 0, 1{ }, 1≤ k≤ n, xk is canalizing forf􏽮 􏽯,

(A.32)

with a uniform probability distribution PΩ. Observe that for
a function f with canalizing variables xk1

, . . ., xks
, we have

P(f) � PΩ f, k1( 􏼁( 􏼁 + · · · + PΩ f, ks( 􏼁( 􏼁. (A.33)

If we can show that, for every 1≤ k≤ n,

PΩ f Xj􏼐 􏼑 � Xj+1,1 for every 1≤ j≤ n |(f, k) ∈ Ω􏼐 􏼑

� g X1, s Xk( 􏼁( 􏼁,

(A.34)

then (A.31) would follow by summing up (A.34) over all k
and using the law of total probability.

We consider one of the canalizing variables of f, say, xk.
Let c be the canalizing value of xk1

, and let v be the value
taken by f when xk1

� c. 0en, (c, v) ∈ 0, 1{ }2, and all these
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four cases have the same probability due to the symmetry. As
g(α, s(β)) � (1/4)(h(α, β) + h(α, β) + h(α, β) + h(α, β)), it
is sufficient to show that

PΩ f Xj􏼐 􏼑 � Xj+1,1 for every 1≤ j≤ n |(f, k)􏼐

∈ Ω and c � v � 0) � h X1, s Xk( 􏼁( 􏼁,
(A.35)

and then sum for all (c, v) ∈ 0, 1{ }2.
To prove (A.35), consider any j, say j � 1. 0ere are then

4 cases for the values of X1,k and X2,1:

(1) X1,k � 1 and X2,1 is 0 or 1. With probability 1/2, we
have f(X1) � X2,1. 0is is true due to symmetry, as
for any f1 which takes on the value w at X1, we can
produce another function g that is equal to 0 ifX1,k �

0 and f1 if X1,k � 1. 0en, g(X1) � w.

(2) X1,k � 0 and X2,1 � 1. Since X1,k � c, the probability
of f(X1) � X2,1 ≠ v � 0 is zero.

(3) X1,k � X2,1 � 0. Since X1,k � c and X2,1 � v, the
canalization property implies that f(X1) � X2,1 with
probability one.

0e only case in which X1 ∨ s(Xk)≠ s(Xk) is where there
is at least one j such that case 2 is realized. In this case, the
probability in the left-hand side of (A.35) will be zero.
Otherwise, each occurrence of case 1 will multiply the total
probability by 1/2 and each occurrence of case 3 will multiply
the total probability by 1. 0us, we show that the left-hand
side of (A.35) is indeed equal to h(X1, s(Xk)). 0is finishes
the proof of (A.29).

To finish the proof of the lemma, we set

U ≔ n ∈ ZS
≥0 􏽘

α∈S
nα

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� n& the support of n does not belong to ⋃

1≤i<j≤ℓ
Si,j

⎧⎨

⎩

⎫⎬

⎭. (A.36)

Summing (A.29) over all ℓ-tuples (X1, . . . , Xℓ) of dis-
tinct elements of 0, 1{ }n, we obtain (see (A.7))

ℓBℓ,n � 􏽘
n∈U

Gℓn( 􏼁
n

nn
≤C Gℓ( 􏼁n. (A.37)

On the other hand, if n is supported on one some Si,j,
then Gℓn � Gℓ;i,jn|Si,j

, where n|Si,j
denotes the restriction of n

on the coordinates from Si,j. 0is implies that

C Gℓ( 􏼁n − ℓBℓ,n ≤ 􏽘
1≤i<j≤ℓ

C Gℓ;i,j􏼐 􏼑
n
. (A.38)

0is finishes the proof of the lemma. □

Proof ofEeorem 2. We fix positive integer ℓ. In the notation
of Lemma A.3, we have Aℓ � limn⟶∞Aℓ,n. Lemma A.3
implies that Aℓ � limn⟶∞Bℓ,n. We fix any 1≤ i< j≤ ℓ, and
let Cℓ;i,j be the matrix given by Lemma A.1. We set
M ≔ (2ℓ+2/2ℓ+2 − 1)(Gℓ;i,j + Cℓ;i,j). 0en,

0≤C Gℓ;i,j􏼐 􏼑
n
≤C Gℓ;i,j + Cℓ;i,j􏼐 􏼑

n
�

2ℓ+2 − 1
2ℓ+2

􏼠 􏼡

n

C(M)n.

(A.39)

Lemma A.2 implies that limn⟶∞C(M)n is finite, thus
we have that limn⟶∞C(Gℓ;i,j)n � 0. We finish the proof of
the theorem by considering the limit of (A.27) and applying
Lemma A.2 to Gℓ. □

B. Complexity analysis

Proposition B.1. Complexity of Algorithm 3 is O(k3).

Proof. First, we show the complexity of a single run the
algorithm, i.e., not taking into account the recursive call, is

O(k2). Since the first k rows of the Pascal’s triangle can be
precomputed in O(k2), the complexity of step 1 is also
O(k2). Similarly, the complexity of step 3 is O(k2). It re-
mains to observe that step 2 takes O(1) and step 4 takes
O(k2) (indeed, selecting a subset of size j amounts to
selecting and removing j indices). In total, we obtain O(k2).

0e depth of the recursion calls is at most k. Since the
complexity of each single call is O(k2), so the total com-
plexity is O(k3). □

Lemma B.1. Ee average complexity of the algorithm for
generating a function in n> 0 variables which is either 1 or
noncanalizing described in Remark 3 is O(n2n).

Proof. [25, p. 116] implies that the proportion of functions
which are canalizing in n variables is bounded from above by
4n/22n− 1 . Note that [25] considers constant functions cana-
lizing which we do not. 0us, the probability Pn of choosing
a function which is either 1 or noncanalizing is bounded
from above by

4n

22n− 1 −
1
22n �

4n − 1/22n− 1
􏼐 􏼑

22n− 1 . (B.1)

0is bound is less than 3/4 for all values of n except 1 and
2, but we can compute directly that P1 � 3/4 and P2 � 13/16.
0erefore, the number of times the generation of a function
needs to be repeated averages to 1/1 − Pn, which does not
exceed 4, so the average complexity of the whole procedure is
the same as of a single generation step.

0e complexity of a single step consists of generating a
random function (which is O(2n)) and checking whether it
is canalizing or not. We perform this check by running
linearly through the table for each variable, so the com-
plexity is O(n2n) time. 0us, the total complexity is indeed
O(n2n). □
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Lemma B.2. Eere is a constant c< 1 such that the proba-
bility that a function generated in steps 1 and 2 of Algorithm 2
does not satisfy one of the conditions (E1) or (E2) is bounded
by c for every n.

Proof. Notice that

P((E1) or (E2) is false) � P(r≠ 1)P((E1) is false | r≠ 1)

+ P(r � 1)P((E2) is false | r � 1).

(B.2)

We will show that there is a constant c< 1 such that
P((E1) is false | r≠ 1) and P(5.1 is false | r � 1) do not
exceed c.

(i) P((E1) is false | r≠ 1): the probability of having kr �

1 (the only possible kr < 2) is just the proportion of
ordered partitions with a single element at the end.
We can construct all of these by picking an element
and then picking a partition of the remaining ele-
ments, so this creates k · pk− 1 possibilities. 0us, the
probability of this occurring is kpk− 1/pk. [19,
equation (5)] implies that this approaches ln(2)< 1
as n goes to infinity. 0us, there exists such c.

(ii) P((E2) is false | r � 1): the probability of ever picking
b � 1 is just 1/2, so we can take c � 1/2. □

Proposition B.2. Complexity of Algorithm 2 is O(n2n).

Proof. Lemma B.2 implies that the average number of reruns
in step 3 is constant. 0us, the complexity of the algorithm is
the same as of a single run.

Proposition B.1 and Lemma B.1 imply that the com-
plexity of step 1 is O(k3 + (n − k)2n− k). Step 2 generates a
truth table for the function. 0ere are 2n input-output pairs,
and computing the function takes at most k steps, so this is
O(k2n). In step 3, the conditions (E1) or (E2) are verified in
O(2n) time.

Summing everything, we obtain O(k3 + (n − k)2n− k+

k2n) � O(n2n) □

Data Availability

Python/sage code and the results of simulations used to
support the findings of this study have been deposited at
https://github.com/MathTauAthogen/Canalizing-Depth-
Dynamics.
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