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Abstract
We establish a Primitive Element Theorem for fields equipped with several commuting
operators such that each of the operators is either a derivation or an automorphism.
More precisely, we show that for every extension F' C E of such fields of zero
characteristic such that
e FE is generated over F by finitely many elements using the field operations and the
operators,
e every element of E satisfies a nontrivial equation with coefficient in F involving
the field operations and the operators,
e the action of the operators on E is irredundant
there exists an element a € E such that E is generated over F by a using the field
operations and the operators. This result generalizes the Primitive Element Theorems
by Kolchin and Cohn in two directions simultaneously: we allow any numbers of
derivations and automorphisms and do not impose any restrictions on the base field
F.

Keywords Primitive element - Differential field - Difference field - Fields with
operators

Mathematics Subject Classification Primary 12H05, 12HO0S; Secondary 12F99

1 Introduction
1.1 Overview and prior results

The Primitive Element Theorem [37, Section 40] is a fundamental result in the field
theory that says that for every separable finitely generated algebraic extension of fields
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F C E,thereexistsa € E suchthat E = F(a). Apart from its theoretical importance,
it is also one of the main tools for computing with algebraic extensions [22, Section
5].

Fields with commuting derivations. Consider an extension C C C(x, ¢*). The field
C(x, €*) cannot be generated over C by one element because the functions x and ¢*
are algebraically independent. However, the formulas

x=a—a+1 and e =o' —1, wherea :=x +¢*

imply that C(x, ¢*) is generated over C by « if we allow taking derivatives as well as
the field operations.

Fields equipped with commuting derivations are central objects in the algebraic
studies of differential equations initiated by Ritt [31] and Kolchin [18]. In this setting,
Kolchin proved the following analogue of the Primitive Element Theorem:

Theorem 1.1 (Kolchin, [17, Section 4]) Let F C E be an extension of fields of zero
characteristic and E be equipped with commuting derivations 81, ..., 8s such that F
is closed under the derivations. Assume that

(1) there existay, ...,a, € E such that
E:F((S‘l"1 L8Bai 1< j<n, ar, .0 6220).

(2) forevery 1 < j < n, aj satisfies a nonzero polynomial PDE over F, that is, the

elements of{S(f” .. .Sgsaj | ar, ..., a5 € Zxo) are algebraically dependent over
F;

(3) there exist by, ..., by € F with nondegenerate Jacobian, that is, det(5; bj)‘iY =1 *
0.

Then there exists a € E such that E = F(S‘l)’l L85 aay, ..., o € Z>0).

Theorem 1.1 and its improvements [30,35] have been used, for example, in algo-
rithms and effective bounds for differential-algebraic equations [8,9,11,13,25], Galois
theory of differential and difference equations [5,15], model theory of differential fields
[23,38], control theory [3,12], and for connecting algebraic and analytic approaches
to differential-algebraic equations [33,34,36].

In our earlier paper [30], for the case of one derivation (m = 1), condition (3) has
been relaxed to the condition that E contains a nonconstant, i.e. that the derivation is
not zero. Unlike Theorem 1.1, this refined statement is applicable, for example, to the
extension C C C(x, ¢*) discussed above and to extensions of the form C C C(X),
where C is the field of rational functions on an irreducible algebraic variety X and the
derivation on C(X) is induced by a vector field on X. It is an open problem whether
such relaxation is true for the case of several commuting derivations.

Problem 1 Prove or disprove that Theorem 1.1 is still true if condition (3) is replaced
with (3’) there exist by, . .., by € E (not F) with nondegenerate Jacobian.
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Fields with an automorphism. Consider the extension C ¢ C(x, I'(x)), where I"(x)
is the gamma function. Since x and I'(x) are algebraically independent, C(x, I"(x))
cannot be generated over C by one element. The difference equation for the gamma
function I'(x + 1) = xI"(x) implies that the shift of the argument f(x) — f(x + 1)
induces an automorphism on C(x, I'(x)). Then the formula x = % implies that
C(x, I'(x)) is generated over C by I'(x) if we allow integer shifts of the argument as
well as the field operations.

Algebraic theory of nonlinear difference equations founded by Ritt and Cohn exten-
sively uses fields equipped with an automorphism. Cohn established the following
version of the Primitive Element Theorem (to keep the presentation simple, we restrict

ourselves to the zero characteristic case):

Theorem 1.2 (Cohn [10, p. 203, Theorem II]) Let F C E be an extension of fields of
zero characteristicand o : E — E be an automorphism such that o (F) C F. Assume
that

(1) there existay, ..., a, € E such that E = F(oi(aj) lieZ, 1 <j<n);

(2) forevery 1 < j < n, aj satisfies a nonzero difference-algebraic equation over F,
that is, the elements of {0 (aj) | i € Z} are algebraically dependent over F;

(3) o has infinite order on F, that is, there is no integer k > 1 such that, for every
ackl, Gk(a) =a.

Then there exists a € E such that E = F(o/(a) | j € 7).

Theorem 1.2 has been used, for example, in model theory of fields with an auto-
morphism [7] and for proving approximation theorem for difference equations [2].
However, Theorem 1.2 is not applicable to our example C C C(x, I'(x)) because the
automorphism acts trivially on the base field C.

Problem 2 Prove or disprove that Theorem 1.2 is still true if Condition (3) is replaced
with (3°) o has inifinite order on E (not F).

Positive solution (i.e., “prove”) to Problem 2 would have, for example, the following
application. Let C ¢ C(X), where C(X) is the field of rational functions on an
irreducible algebraic variety X. Consider an automophism o of X of infinite order.
The dual o : C(X) — C(X) is an automorphism of C(X) of infinite order. Then the
positive solution to Problem 2 would imply that there exists f € C(X) such that the
orbit of f under al generates C(X) over C. In particular, our main result, Theorem 2.1,
implies the existence of such f.

More general cases. Although fields with several commuting automorphisms and
fields with several derivations and automorphisms commuting with each other have
been studied from the standpoints of algebra [10,21], model theory [6,24,32], and
symbolic computation [14,20], we are not aware of any analogues of the Primitive
Element Theorem for such fields.
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Problem 3 Derive an analogue of the Primitive Element Theorem for fields with sev-
eral commuting derivations and automorphisms.

Another common generalization of fields equipped with a derivations and fields
equipped with an automorphism is the theory of fields with free operators introduced
in [26,27] (see also [4,16]). We are not aware of any analogues of the Primitive Element
Theorem for such fields.

1.2 Our contribution

Our main result, Theorem 2.1, generalizes Theorems 1.1 and 1.2 in two directions
simultaneously

e We establish a Primitive Element Theorem for fields equipped with s derivations
and ¢ automorphisms such that all these operators commute. This solves Problem 3.

e We remove all the assumptions on the base field F other than being closed under
the operators. Instead of this, we require the derivations and automorphisms to be
“independent” on the bigger field E. In particular, this solves Problems 1 and 2
(see Remark 2.1). We show (see Example 3.4) that the condition on E cannot be
removed.

1.3 Outline of the approach

One of the main challenges in proving such a general version of the Primitive Element
Theorem is to find an appropriate general form of a primitive element. Proofs of
Kolchin [17] and Cohn [10] follow the same strategy as the standard proof of the
algebraic Primitive Element Theorem, namely they construct a primitive element of
an extension F' C E as a F-linear combination of the original generators.

However, Examples 3.2 and 3.3 show that if F is a constant field, then it can happen
that none of the linear combinations of the original generators is a primitive element
even in the case of only one operator. To strengthen Kolchin’s theorem (Theorem 1.1)
in the case of one derivation, in our earlier paper [30], we used an involved two-stage
construction of a primitive element as a polynomial in the original generators.

In this paper, we approach finding a primitive element from the perspective of
the Taylor series expansion. More precisely, a primitive element is constructed as a
truncated multivariate Taylor series in the original generators and their derivatives
(see formulas (4) and (14)). The order of truncation is derived based on the Kolchin
polynomial of the extension. Formally, a truncated Taylor series is simply a polynomial
written in a special form with factorials in the denominators, so the search space for a
primitive element is almost the same as in [30]. However, this representation turns out
to be a key to interpreting a polynomial system that relates the original generators and
apotential primitive element in terms of solutions some special system of linear PDEs.
This interpretation allows us to show that the original generators can be expressed in
terms of the potential primitive element (see Lemmas 5.3 and 6.6), so this element
is indeed primitive. As was pointed out to me by Jonathan Kirby, one can view the
difference between the representations of a primitive element in [30] and in the present
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paper as the difference between usual generating series and exponential generating
series.

We refer a reader who wants to see more details but does not want to read the whole
proof to Sect. 5. This section contains a proof of the main theorem for differential
fields (i.e., fields equipped with a derivation). It is much shorter than the main proof
but demonstrates some of the key techniques we developed.

1.4 Structure of the paper

The rest of the paper is organized as follows. Sect. 2 contains definitions used in the
statement of the main result and the main result, Theorem 2.1. Section 3 contains
examples that illustrate the main result. Section 4 contains the definitions and notation
used in the proofs. Section 5 contains the proof of the main result in the special case
of fields with a derivation. This proof demonstrates some of the key ingredients of
the proof of Theorem 2.1 in a simpler setting allowing the reader to understand of the
general approach without going into technical details. Section 6 contains the proof
of the main result. For the convenience of the reader, the corresponding lemmas in
Sect. 5 and 6 are cross-referenced.

2 Definitions and the main result

All fields are assumed to be of zero characteristic.

Definition 2.1 (A-X-rings) Let A = {§1,...,8s;} and & = {01, ..., o;} be finite sets
of symbols. We say that a commutative ring R is a A-X-ring if

1. 61, ..., 85 acton R as derivations, that is, §; (a + b) = §; (a) + 8; (b) and §; (ab) =
8i(a)b + ad;(b) forevery 1 <i <sanda,b € R;

2. o1, ...,07 acton R as automorphisms;

3. every two operators in A U ¥ commute.

A A-X-ring that is a field is called A-X-field.

Example 2.1 Natural examples of A-X-fields include the following.

o Let E=C(x), A = {0}, and X = {o}. We can define a structure of A-X-field on
E by

0
S(f(x)) = af(x), and o(f(x)) = f(x+1) forevery f(x) € E.

In the same way, one can define n derivations and n automorphisms on
C(xy, ..., xn)-

e Let E be the field of meromorphic functions on C, A = {§}, and ¥ = {01, 02}.
We can define a structure of A-X-field on E by

§(f(@) = fl@), oi(f() = fz+1), 02(f(2)) = f(z+1i)forevery f € E.
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e Let E be the field of meromorphic functions on C, A = {§}, and ¥ = {o}. For
every nonzero g € C, we can define a structure of A-X-field on E by

§(f () =zf"(2), o(f(2)) = f(qz) forevery f € E.

Definition 2.2 (Extension of A-X-fields) An extension of fields F C E where E and
F are A-X-fields is said to be an extension of A-X-fields if the action of A U ¥ on
F coincides with the restriction to F of the action of A U ¥ on E.

Notation 2.1 For every o := (a1, ..., ;) € ZS}O and every B := (B1, ..., B;) € Z',
we introduce

8% =06 ... 5% and of =0l . o/

Theorem 2.1 (Main result) Let F C E be an extension of A-X-fields such that

(1) there exist ay, ...,a, € E such that E = F(S“Uﬂ(aj) |1 <j<n ac
ZS;O’ ﬁ c Zl),'
(2) for every 1 < j < n, the elements of {S“Uﬂ(aj) | @ € Z‘;O, B € 7'} are
algebraically dependent over F;
(36) 61, ..., 85 are linearly independent over E;
(3o) o1, ..., 0, are multiplicatively independent over 7Z, that is, for every B € ZL,
ol =id < B=0.

Then there exists a € E such that E = F((S"‘aﬁ(a) | € ZS)O, B e Z’).

Remark 2.1 Setting s = 0 and ¢+ = 1, we obtain a statement stronger than Cohn’s
theorem [10, p. 203, Theorem III] in the case of zero characteristic. Lemma 6.1 implies
that the requirement on the base field F' in Kolchin’s theorem [17, Section 4] is the
same as the condition (30) on E in Theorem 2.1. Thus, Theorem 2.1 strengthens
Kolchin’s theorem as well.

3 Examples

Notation 3.1 Let F C FE be an extension of A-X-fields. Foray, ..., a, € E, we set
Flay, ..., a,) = F(é“aﬂ(aj) [1<j<n, a GZ;O, B EZI).

Example 3.1 This example illustrates how Theorem 2.1 can be applied to classical

special functions. Let A = {d,,9;} and ¥ = @. Let M(C, H) denote the field of

bivariate meromorphic functions on C x H in variables z and 7, where H = {t € C |

Im(7) > 0}. We consider M(C, H) as a A-field by letting 9, and 9, act as the partial
derivatives with respect to z and 7, respectively. Let

o0
01(z,7) 1= —i Z (_l)je(j+l/2)2nire(2j+l)rriz

j=—00
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be one of the Jacobi theta functions [1, § 10.7]. 61(z, t) satisfies the following form
of the heat equation [28, p. 433]

0201 (z, ) = 4mid 01 (2, 7).

This implies that 0 (z, t) as well as 01(2z, t) and 6;(3z, T) are A-X-algebraic over
C. Thus, Theorem 2.1 applied to the extension

F:=CcCE :=C(z,1),01(22,7),61(32, 7))

implies that there exists a function f(z,7) € E such that 0;(z, t),01(2z, T), and
01(3z, T) can be written as rational functions in f and its partial derivatives. Note that
the original Kolchin’s theorem (Theorem 1.1) is not applicable to this extension.

Examples 3.2 and 3.3 show that it might be impossible to construct a primitive
element of an extension as a linear combination of the original generators even in the
case of one operator (see also [30, Remark 2]).

Example 3.2 Let A = {§} and ¥ = @.Field E := C(x, Inx, In(1 —x)) isa A-X-field
with §(f(x)) = f'(x) for every f € E. Since x = ﬁ, E = C{lnx, In(1 — x)).
Since each of In x and In(1—x) satisfies an algebraic differential equation with constant

coefficients, the extension
F:=CcE=C{nx,In(l —x))

satisfies the conditions of Theorem 2.1. Consider arbitrary o, 8 € F and set a =
alnx+BIn(l—x).Sincea’ € C(x), F{a) C F(a, x). The latter has the transcendence
degree at most two over F but Ostrowski’s theorem [29] implies that In x, In(1 — x),
and x are algebraically independent, so trdegr E = 3. Hence, F(a) # E. Thus, such
a cannot be a primitive element of the extension F C E.

Example 3.3 Let ¢(z,s5) = 2310 m be the Hurwitz zeta function [1, § 1.3]. Let
M(C) be the field of meromorphic functions on C. Let E := C(z, ¢(z, 2), {(1—2z,2))
be a subfield in M (C). We define a A-X-structure on M(C) with A = Fand X = {0}
by

o(f(z)) = f(z+ 1) forevery f € C.

Since

1 1
G(C(Z,2))=§(Z,2)—Z—2 and O(C(l—Z,Z))=§(1—Z,2)+Z—, ey

E is a A-X-subfield of M(C), and E = C(¢(z,2),¢(1 — z,2)). (1) implies that
£(z,2) and ¢(1 — z, 2) are A-X-algebraic over C, so the extension
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satisfies the conditions of Theorem 2.1. We claim that trdegy E = 3. Assume the
contrary, that is, ¢(z,2), ¢(1 — z,2), and z are algebraically dependent over C. Let
C:={f €e M) | a(f) = f}. Since ¢(z,2) + ¢(1 — z,2) € C, the algebraic
dependence between ¢(z, 2), ¢(1 — z,2), and z implies that ¢ (z, 2) is algebraic over
C(z2).Let P(z,t) € C(z)[¢] be its minimal monic polynomial and we set d := deg, P.
By applying o to P(z, {(z,2)) and using the minimality of P, we show that

P(z, 1) =P(z+ 1,1 —1/7%).

Then the coefficient g(z) € C(z) of 147! in P satisfies g(z+ 1) = g(z) + ;iz. One can
check (using, for example, the function ratpolysols in MAPLE) that there is no such
rational function for d # 0. Thus, trdeg E = 3.

Consider arbitrary «, B € F and seta := «{(z,2) + f¢(1 — z,2). (1) implies that
o(a) € C(z),s0 Fa) C F(a, z). Hence trdegy F(a) < 2. Hence, F(a) # E. Thus,
such a cannot be a primitive element of the extension F C E.

Example 3.4 This example shows that neither of the conditions (3§) and (30') in Theo-
rem 2.1 can be removed. We fix s, ¢ € Z>0, A = {01, ..., 8}, and ¥ = {01, ..., 01}
Consider a free A-32-extension of Q with two generators, x| and x,:

QCE:=Q@%Px |la €l BeZ, i=1,2),

where all %08 x; are algebraically independent and A U ¥ acts naturally (see (2)).
[19, Theorem 3.5.38] implies that this extension Q C E cannot be generated by one
element as a A-X-field extension.

Let Ay := A U {8s41}. We choose rational numbers c1, ..., c; and make E a
A1-X-field by defining 8541(a) := c161(a) + - - - + ¢s65(a) for every a € E. For
every a € E, the subfield generated by a using Ay U X is the same as the subfield
generated by AU X. Thus, Q C E cannot be generated by one element as an extension
of A1-X-fields. On the other hand, every a € E is A-X-algebraic over QQ because it
satisfies c181a + ... + ¢s6sa — 854-1a = 0. Thus, the condition (38) in Theorem 2.1
cannot be removed. A similar argument with a superfluous automorphism o;41 :=

olk ! O'é( z... o,k’ ,whereky, ..., k; € Z,show that the condition (30) cannot be removed.

4 Definitions and notation used in proofs

In the proofs, we will write 8% a instead of %o P (a)

Definition 4.1 (A-X-algebraicity) Let F C E be an extension of A-X-fields. An
element a € E is A-X-algebraic over F if the set

8%cPa e e 2l B eZy)

is algebraically dependent over F.
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Definition 4.2 (Nondegenerate A-3-field) A A-X-field E is called nondegenerate if
it satisfies conditions (38) and (30') of Theorem 2.1, namely,

(3%) 81, ..., are linearly independent over E;
(30) o1, ..., o0, are multiplicatively independent over Z, that is, for every B € Z!,
oPlp=id < B=0.

Definition 4.3 (A-X-constants) An element a € E of a A-X-field E is said to be a
constant if 6;a = 0 forevery 1 <i < s and oja = a for every 1 < j < t. Constants
form a subfield in E. We will denote this subfield by C(E).

Definition 4.4 (A-X-polynomials) Let R be a A-X-ring. Consider the following ring
of polynomials over R

Rix} := R [(wgﬂx leeZy, Be Z;O] ,

where each 8% 8x is a separate variable. We can extend the structure of A-X-ring
from R to R{x} by

3i (6“0’3)6) =5*ighx  and oj (8“0‘%) = 8% PHlix, 2)
where 1; and 1; denote the i-th basis vector in Z* and the j-th basis vector in /il

respectively. Elements of R{x} are called A-X-polynomials in x.

Notation 4.1 Let n be a positive integer.

e Forv = (vy,...,v,) € Z", we define [v] := |vi| + -+ + |v,]. If v € ZY ), then
we also define v! := vy!... v,
e For a positive integer m, we define Z% ,(m) := {v € Z | [v| < m}.

Definition 4.5 (Nonperiodic elements) Let E be a A-Z-field.

e Anelementa € E is said to be nonperiodic if, for every nonzero 8 € Z',08a +# a.
e For a positive integer m, an element a € E is called m-nonperiodic if

(G‘xazaﬂa & d,ﬂEZ;O(m)> — ﬂ:d.

Notation 4.2 Let K be a field and K[[xy, ..., x,] be the formal power series ring over
K . For an element

f= 2 ax ek, ... xl,

keZ’go

we denote its truncation at order m by

[fln= D>, ax*eKlx.....xl

ke{0,1,...,m}"
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5 Proof for differential fields

In this section, we consider the case A = {§} and ¥ = &. We will denote a by a’
and say “differential field” and “differentially algebraic” instead of “A-X-field” and
“A-X-algebraic”, respectively.

Lemma 5.1 (Special case of Lemma 6.4) Let 9 = % be the standard derivation on
K[ x]l. Let D € K[9] be a differential operator of order m. Then, for every f € K[[t],

(Df =0 & [fln=0) = f=0.

Proof Since D has d-constant coefficients, every solution of D is uniquely defined by
its first m Taylor coefficients. Since f has the same first m Taylor coefficients as the
zero solution, f = 0. O

For the rest of the section, for a differential field £, we extend the derivation from
E to E[lx] by

) ' 4 ) ' ) '
(Z cix’) = Zc;x' for every Zc,-x' € E[x]. 3)
i=0 i=0

i=0

Lemma 5.2 (Special case of Lemma 6.5) Let E be a differential field. Let a € E be a
nonconstant element. For m € Zx, we introduce the following subset of E[[x] (with
the derivation defined in (3))

S, = {(e“X)W 10<r< m}

Then the elements of Sy, are linearly independent over E.

Proof. We will prove the lemma by induction on m. The base case m = 0 is true
because Sop = {e**}. Assume that we have proved the lemma for some m > 0. Let V
be a space of all polynomials from E[x] of degree at most m. Then S,,, C V, := Ve®*.
Hence it is sufficient to prove that S,,+1\S, = {(e”x)(’”“)} does not belong to V.
This is true because

™)™ tD = (@/x)" 1™  (mod V,) and a’ #O. o

Lemma 5.3 (Special case of Lemma 6.6) Let F C E be an extension of differential

fields, and the derivation on E[[x] is defined as in (3). Let a € E be a nonconstant
element such that there exists a nontrivial F-linear combination of the truncations

™ Lmsns [ Tagmenys - [ ™ amir)

that belongs to F[x]. Thena € F.
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Proof We are given that there exist cy, .. ., ¢, € F not all zero such that

cole™ lagm+1) + - + cml (€)™ lagni1y = f € Flx].
O

Step 1 There exists a nonzero polynomial C(x) € E[x] of degree at most m such that
coe™ 4 -+ cp(e®™)™ = C(x)e™.

Note that every E-linear combination of e**, .. ., ()M js a product of ¢** and an
element of E[x] of degree at most m. Since not all ¢y, . .., ¢, are zeros, Lemma 5.2
implies that C(x) # 0.

Step 2 Let E O E beanalgebraic closure of E. For every field automorphismt : E —
E such that t|r = id, we have t(a) = a.

Let S := Ce®™ — 7(C)e™@~. Since 7| = id, [Slagn+1) = 0. Since deg C(x) < m,
we have

DS =0, where D:= (@ —a)"" 0 — ()™t

Since the order of D is 2(m + 1) and [S]2(u+1) = 0, Lemma 5.1 implies that § = 0.
Then ¢®* and e ¥ are linearly dependent over E (x). This is possible only ifa = 7 ().

Step3 a e F.

If a ¢ F, then there exists an automorphism t: E — E such that | = id and
a # t(a). This is impossible due to Step 2.

Theorem 5.1 Let F C E be an extension of differential fields such that

(1) there existay, ...,a, € E suchthat E = F{ay, ..., a,);
(2) forevery 1 < j < m, a; is differentially algebraic over F';
(3) E contains a nonconstant element.

Then there exists a € E such that E = F{(a).
Proof Sinceeachofay, ..., a,isdifferentially algebraic over F, M := trdeg; E < 00

[18, Corollary 1, p. 112]. We will prove by induction on ¢ that, for every 0 < £ < n,
there exists by € E such that

o b, #0;
o E=F(by,ap+1,.-.,an).

Since E = F (b,), proving the existence of such by, ..., b, will prove the theorem.
For the base case £ = 0, we choose b to be any nonconstant element of E. Assume
that we have constructed b, for some £ > 0. We introduce a set of variables

O©:={6| —1<i<2(M+1)
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and extend the derivation from E to E[®] by making the elements of ® constants. Let

241
Beyy :=60_1a¢41 + Z —;big- 4)
=0

i!
We regard any point ¢ € Q!®! as a function ¢: ® — Q and extend it to a E-algebra
homomorphism ¢: E[®] — E.

Claim 1 There exists a Zariski open nonempty subset Uy C QI®! such that

F{@o(Be+1)) = F(b¢, agy1) forevery ¢ € Uy.

Since

(M)

oiq) < trdegp Flagyr, be) < M,

trdegr @) F(®, Bet1, By y,....B
Byt Bé IRTREET Béfl) are algebraically dependent over F(®). Thus, there exists a

differential polynomial R € F(®)[z, 7, ...,z ] such that R(Bg4) = 0. We will
assume that R is chosen to be of the minimal possible total degree. We introduce

oR
Ri:= —=(Byy1) for0<i <M and
az(l)
oR .
jo L= E(B(J,_]) for — 1 < J < 2(M+ 1)
J

The minimality of the degree of R implies that not all of R; are zero. Consider any
0 < j <2(M +1). Differentiating R(B;) = 0 with respect to §;, we obtain

M INO)

(by)
Y Ri—-—=—Rq,. ®)
i=0 J:

Consider the power series ring E{[x ]| with the derivation defined in (3). We multiply (5)
by x/ and sum such equations over all 0 < j < 2(M + 1). We obtain

M 2(M+1)

| (PO — _ J
§R, [P ]2<M+1> - ZO Ry, . ©)
= Jj=

We apply Lemma 5.3 to (6) witha = by and F = F(®, By+1), and deduce that by €
F(®, Byy1). Then there exist nonzero differential polynomials P, P, € F[O]{z}

such that
_ Pi(By)

T P(B)

We define Uy := {p € Q‘®| | (P2(By)) # 0 and ¢(6—1) # 0}. Since P, is a nonzero
polynomial, U; is nonempty. For every ¢ € Uy, (17) implies that by € F(¢p(B¢+1)).

(N
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Since p(0-1) # 0, ag+1 € F(@(Br+1)), s0 F(@(Be+1)) = F(be, ag41). The claim is
proved.

Claim2 Let U, := {p € Q® | 9(Byy1) # 0). Then U, is a nonempty Zariski open
set.

Since U, is defined by an inequation, it is open. Consider ¢y € QI®! defined by

@o(01) = 1 and ¢(0;) = O for j # 1. Then ¢o(B¢y1) = be. Thus, ¢y € Uz, U # @.
The claim is proved.

We finish the proof by considering ¢ € U; N U and defining by41 1= @(By+1).

O

6 Proof for the general case
6.1 Choosing a sufficiently nonconstant element

Notation 6.1 Let F be A-X-field. For ay,...,a, € F, we denote their Jacobian
matrix by

81(11 32(11 N 55(11
Siax Srapy ... OSsan
J(ai, ..., a,) =
Sia, brag ... Ssay
For n = s = 0, we will use a convention det J (ay, ..., a,) = 1.

Lemma 6.1 Let E be a A-X-field. Then the following statements are equivalent

(1) 61, ..., 85 are linearly independent over C(E) (see Definition 4.3);

(2) 61, ..., 85 are linearly independent over E;
(3) there existay, ay, ...,as € E such that det J(ay, ..., ag) # O.
Proof (3) = (1). Assume that (1) does not hold. Then there existb = (by, ..., by) €

E® such that §|p = 0, where § := b161 + ...+ byds. We have
Sar,...,a)"T = J(ay, ..., a5)b".

Since J(aji, ..., as) is nondegenerate, the latter is nonzero for every nonzero b. Thus,
da; is nonzero for at least one 1 < j < s, so we arrived at the contradiction.

(1) = (3). Let r be the maximal integer such that there exist ay, ...,a, € E
such that J(ay, ..., a,) has rank r. If r = s, then we are done. If r < s then we will
arrive at the contradiction with (1) in the two following steps.

Step 1: There exist by, ..., by € E not all zero such that b181 + - - - + bs 85 defines
a zero derivation on E. Reenumerating 81, ..., ds if necessary, we can assume
that the first  columns in J(ay, ..., a,) are linearly independent. For every 1 <
i < r+ 1, we denote the determinant of the matrix consisting of the first r 4 1
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columns of J(ay, ..., a,) except the i-th by A;. Then A,4; # 0. Consider an
arbitrary a € E. The maximality of » implies that rank J(a, aj, ..., a;) = r, so
every (r + 1) x (r + 1)-minor of J(a, ay, ..., a;) is degenerate. Expanding the
determinant of the matrix consisting of the first » + 1 columns of J (a, a1, ..., a,)
along the first row, we obtain

Ar(d1a) — Az (8a) + -+ (=1) Arg1(8ra) = 0.

Since A,+1 # 0, A181 — A28 + -+ + (—=1)" A, 16, is a nontrivial E-linear
combination of 81, ..., §; that defines a zero derivation on E.

Step 2: There exist by, ..., bs € C(E) not all zero such that b181 + - - - + b8y is
a zero derivation on E. Among all nontrivial linear combinations of 41, ..., &g
defining a zero derivation on E, consider a combination with the minimal possible
number, say g, of nonzero coefficients. Reenumerating 1, .. ., §5, we can assume
that this combination is of the form § = b1y + --- + by, for some nonzero
by,...,by; € E. Moreover, by dividing the combination by b1, we can further
assume that by = 1. If by, ..., b,; € C(E), then we are done. If at least one of
them, say b», does not belong to C (E), then there are two options:

e There exists 1 < i < s such that §;b> # 0. Then consider
[8i, 8] = (8ib2)862 + -+ - + (8ibg)dy.
Then [§;, §]is anontrivial E-linear combination of 81, ..., 8 such that [§;, §]|g =
0. This contradicts the minimality of q.
e There exists 1 < i <t such that ;b # by. Then consider

080, — 8 = (0iby — b2)2 + - - - + (3iby — by)d,.

Then aiéai_l — § is a nontrivial E-linear combination of 81, ..., §; such that
(aiéoi_l — &)|g = 0. This contradicts the minimality of g.

|
Lemma 6.2 Let E be a A-X-field. Let ay, ..., a, be elements of E such that s < n
and det J(ay, ...,as) # 0. Then there exists a nonempty Zariski open subset U C
{P € Qlx1,...,x,]| deg P < 2} such that, for every P € U,
det J(61Pg4, ..., 8sPy) #0, where P, := P(ay, ..., an). (8)
Proof The inequation (8) defines an open subsetin {P € Q[xy, ..., x,] | deg P < 2}.
It remains to show that this subset is nonempty. We introduce new variables A :=
{A1,..., Ay} and set §;A; = O forevery 1 < i, j < s. Consider

S
P(xi, ..., xp) =Z)»gag +af+--~+a32.
=1
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Then J(A) :=det J(61P,, ..., 8;P;) € E[A]. We will consider J(A) as a polyno-
mial in A over E and show that J(A) # 0. J(A) is the determinant of the matrix
whose (i, j)-th entry is

s N S
3i6; <Z Aeag+at -+ af) = Z Aedidjar+ 2(20651'5,‘(1@ +2(8iap)($jap)).
=1 =1 (=1
©
If we set Ay = —2a, for 1 < £ < s, then the right-hand side of (9) can be written as
s N N
> apsisiac+ Y (2aisjar + 2(8iap)($ar)) =2 (8iae)(8jar).
=1 =1 =1

Thus, we can write

J(=2ay.....—2a5) = 2det (J(al, o a)I T, ... ,as)) £ 0.
Since J(A) is a nonzero polynomial, there exist A},...,A} € Q@ such that
JA, ... AY) # 0. Then P* := Afxy + - + Afxg +x7 + -+ + x2 is a witness
of the nonemptyness of U. O

Lemma 6.3 Consider an extension of A-X fields F C E such that

e E=Flay,...,a,)withs < n;
e E is nondegenerate (see Definition 4.2);
e detJ(ay,...,as) #0.

Then, for every m, there exists a polynomial P € Fl[xy,...,x,]| of degree at
most two such that P, := P(ay, ..., ay) is m-nonperiodic (see Definition 4.5) and
det J(61Py,...,8:P;) #0O.

Proof We will extend the set ay, ..., a, of generators of E over F by some elements
of F as follows. For every pair a, § € Z;O(m) such that a # B, since 0® P | # id,
there are two options:

e if 0 B | #id, then we take a € F such that 0%a # oPa and add it to the set of
generators;
e otherwise, if 08| = id, there exists 1 < i < n such that 0® Ba; # a;.

Using this procedure we construct an extended set of generators ay, .. ., ay such that

® ayt1,...,ay € F and
e for every pair «, B € Z’>0(m) such that & # B, there exists 1 < i(a, ) < N
such that Cfaai(a”g) # O'ﬂai(a,,g).
LetV :={P € Q[x,...,xy] | deg P < 2}.Let U C V be a nonempty open Zariski

subset given by Lemma 6.2.
For every pair «, B € Z;O(m) such that o # B, consider

Ugp:={P eV |o*Pal,...,ay) #PP(a,...,an)} C V.
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Since Uy, g is defined by an inequation, it is an open subset of V. Moreover, since
Xi(,8) € Ua,g, Ug,p # 2. Then the intersection of U and all the subsets Uy g with
o, B eZ >0 and & # f is a nonempty open subset of V. Let Py be an element of
this subset. Then Py := Py(x1, ..., X0, an+1,...,an) € Flx1,...,x,] is a desired
polynomial. O

6.2 Core lemmas
The following lemma generalizes Lemma 5.1.

Lemma 6.4 Let K be a field. We denote the partial derivatives of K [x1, ..., x, ]| with

respect t0 X1, ..., X, by 91, ..., 0y, respectively. Let D1 € K[d1], ..., D, € K[0;]

be differential operators of order at most m. For every f € K[x1, ..., x,],
(le:"':an:O & [f]m:()) — f:()

Proof Let

Z ckxk e Kl[x1,...,x,.

kezgo

We will show that ¢, = 0 forevery k € Z o byinductionon |k|. Letk = (ki, ..., ky).
If ki < m forevery 1 < i < n, then ck = 0 because [ f],, = 0. Assume that there
exists I < i < n such that k;, > m. Then D; f = 0 implies that ¢ is a linear
combination of cx_1,, ..., ck—m1,, where 1; is the i-th basis vector of Z". Due to the
induction hypothesis, these coefficients are all equal to zero, so cx = 0. O

For every positive integer n, throughout the rest of the paper, for a A-X-field E,

we extend the operators from E to E[[x1, ..., x,] by
o o o
q‘)( Z ckxk) = Z ¢(ck)xk for every Z ckxk € Ellx1,...,x,]
keZ")O keZ"}O keZ"?0
and¢p € AU X. (10)

The following lemma generalizes Lemma 5.2.

Lemma 6.5 Let E be a A-X-field and ay,...,a, be elements of E such that
rank J(ay, ..., a,) =s. Weextend AUX to E[[x1, ..., x,] asin (10). Form € Zx,
we introduce the following subset of E[[x1, ..., x,]l

Sy 1= {(Svtea1x1+~.+anxﬂ | o € Z;O(m)} .

Then the elements of Sy, are linearly independent over E.
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Proof We will use notation (a, X) := ajx| + - - - + a,x,. We will prove the lemma by
induction on m. The base case m = 0 is true because Sy = {e®@¥)}.
Assume that we have proved the lemma for some m > 0. Let V be a space of all

polynomials from E[xy, ..., x,] of degree at most m. Then S,, C V, := Ve@¥,
Hence it is sufficient to prove that the elements of S,,1\S;, are linearly independent
modulo V. Forevery @ = (a1, ..., as5) € Z%,(m + 1), we have

N
5% = [ (@, )%™ (mod V).

i=1

Thus, it is sufficient to prove that the elements of {]_[‘;=1 (5;(a,x)% |a € Z;O(m +1)}
are linearly independent over E. Assume the contrary. Then there exists a nonzero
homogeneous polynomial P € E[yq, ..., ys] of degree m + 1 such that

P(i(a, x),...,58(a,x)) =0.

However, since rank J(ay, ...,a,) = s, linear forms §;(a, X), ..., §s(a, x) are lin-
early independent, so P cannot vanish on them. O

The following lemma generalizes Lemma 5.3.

Lemma 6.6 Let ' C E be an extension of A-X-fields. Let ay, .. ., a, be elements of
E such that
e rankJ(ay,...,a,)=s;

e ay is 2M-nonperiodic.

Let N =2(M + D!t We extend AU X 10 E[[x1, ..., x,] as in (10). If there exists
a nontrivial F-linear combination of

{smaPenst=tanny o e 2L (M), B e Zhy(h)] (an

that belongs to Fx1, ..., x,], thenay € F.

Proof We are given that there exist cq,g € F not all zero such that

Z ca’ﬂ[Sagﬂea1x1+~--+anxn]N — Z Ca,ﬂsaaﬂealx1+-~+a,,xn
®€ZL (M), a€ZL (M),
ﬂEZ';()(M) ﬂEZ;()(M) N
= f € Flxi,...,xnl (12)

Collecting together the terms with the same exponential part, we can write

Z ca’ﬂaaaﬂea1X1+~-~+anxn — Z Cﬂe(dﬂal))ﬂ+"'+(Uﬁan)xn,
aez~r>()(M), ﬂeng(M)
BeZ,, (M)
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where Cg € E[x1, ..., x,].
Step 1 There exists B € Z;O(M) such that Cg # 0.

Consider any f such that Cg = 0. Since
rankJ (ay, ...,ay)=5 — rankJ(a‘Bm, ... ,aﬂan)z s,

Lemma 6.5 implies that (5% e@Panxitt@Panx, | a € ZL (M)} are E-linearly
independent. Thus, Cg = 0 implies that, for every a € Z;O(M ), cq,p = 0. Thus, if

Cpg = Oforevery B € Z;O(M ), we arrive at contradiction with the fact that not all
Cq,p Are Zeros.

Step 2 Let E be an algebraic closure of E (we do not assume that E has a structure
of A-Z-field). Let Ag :== {B | Cg # 0} C Z;O(M). For every field automorphism

t: E — E such that t|p = id and every B, € Ao, there exists B, € Ao such that
r(aﬂlal) = aﬂZal.

Let T act on E[[x], ..., x, ]| coefficient-wise. Applying 7 to (12), we obtain

Z Cﬂe(aﬂal)x|+~~+(oﬂan)xn

BEZ o (M) N
—f= Z T(Cﬂ)er(aﬁa})x1+~~+r(0’ga,,)x,,
BEZL o (M) N
Let
S = Z C‘Be(aﬂal)xl+"'+(Uﬂan)xn _ Z -L—(Cﬂ)ef(o-ﬁal)xl+"'+T(Uﬂan)xn'
BEZL o(M) BEZL o(M)

Since, for every 8 € Z;O(M ), the total degree of Cg does not exceed M, we have

D;S = 0, where D; := ]_[ 0; — oBa)M+1. ]_[ 0; — t(cPa;))MH!
BEZL (M) BEZL o(M)

forevery 1 < i < n. Since the order of D; is does not exceed 2(M + 1) - |Z’>0(M)| <
2(M 4+ 1)t = N and [S]y = 0, Lemma 6.4 implies that S = 0.

Since a; is 2M-nonperiodic, the set {oBa; | B € Ao} contains |Ag| distinct ele-
ments. If the number of distinct elements in the set

{oBa; | B e Ao} U(r(cPar) | B € Ao)
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is greater than |Ag], then there is B € Ao such that

toPoa; ¢ (oPar | B € Ao} Ult(0Par) | B € Ao, B # Bo)-

Then the equation § = 0 implies that the exponential power series
et @Poanxi+tt@Panr, can be written as a E(x1,...,x,)-linear combination of
exponential power series with the exponents different from t(cfoaj)x; + --- +

7(cPoa,)x,, and this is impossible. Thus, forevery 8, € Ao, t(cPoay) € {oBay | B €
Ao}

Step3 a; € F.

Consider B, € Ag. Step 2 implies that every element conjugate to oPoay in E over F
is of the form o#a;, where B € Ag. In particular, 0504y is algebraic over F. Consider
the minimal polynomial P(t) € F|[t] for oPoay over F. The roots of P(r) form a
subset in {oBa; | B € Ag}. We define Ap := {B € Ao | P(cPar) =0}. Let B, and
B, be the smallest and the largest elements of A p with respect to the lexicographic
ordering, respectively. Let

0(t) :=oP"Bip(r) € F[1).

Then the set of roots of Q in E is exactly {cfa; | B € B, — B; + A p}. We will show
that

ApN(By—B1+Ap) =By} (13)

Assume that there is an element B3 in the intersection such that 83 # f,. Then
B3 — B> + By € Ap. The maximality of 8, implies that B3 — B, <jex 0. Then
B3 — B, + B <iex By, and this contradicts the minimality of 8, and proves (13).
Consider any common root of P and Q. This root can be written as 0834, where
B3 € Ap and as oB4a; where B, € B, — B + Ap. Then o#3tPig) = oBatbigy,
Since |B3 + B1| < 2M, |B4 + B1| < 2M, and the a; is 2M-nonperiodic, we obtain
B3 = B4. Using (13), we see that §, = B3 = B4, so the only common root of P
and Q is aﬂ2a1. Then 052a1 is the only root of gcd(P, Q) € F|[¢], so aﬂZal e F.
Applying o B2, we obtain a; € F. O

6.3 Proof of Theorem 2.1

Proof of Theorem 2.1 Lemma 6.1 implies that there are elements ¢y, ..., ¢s € E such
that det J (cy, . .., ¢5) # 0. Adding these elements to the set ay, ..., a, of generators
of E over F if necessary, we will further assume that rankJ (ay, ..., a,)=s.

For fi, ..., f; € E and a positive integer m, we introduce

trdeg(fi. ..., frim) := trdegy F (5“oﬂf,- |1<i<r aeZiym), Be Z;O(m)> .
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Since every element of E is A-X-algebraic over F, [20, Theorem 2.1] implies that
there exists a polynomial p(z) € Q[z] of degree less than s + ¢ such that

trdeg(ay, ..., ap;m) < p(m) forevery m € Zxy.

Since

s t

‘{(Ot,ﬂ) | € ZLy(m), B € Z;O(m)}) _ <m+s> <m +t>

and ("7*)("") is a polynomial of degree s +  in m, there exists M € Zx such that

trdeg(an, ..., @i M+ ) = p(M +n) < |((@. B) | @ € ZLo(M), B € Zo(M)].

We will prove by induction on £ that, for every 0 < £ < n, there exists by € E such
that

(R1) by is 2M -nonperiodic;
(R2) det J(81by, ..., 8sbe) #0;
(R3) E = F(bg,ap+1, - -, an);

(R4) trdeg(by, apy1s ... an; M +n—2£) < Dy = |{(a, B) | & € Z;O(M), B e

Z;O(M)} .
Since E = F(b,), proving the existence of such by, . .., b, will prove the theorem.
Consider the base case £ = 0. Lemma 6.3 implies that there exists a polyno-
mial P € F[xy,...,x,] such that by := P(ay,...,a,) is 2M-nonperiodic and
det J(81bo, ..., 8sbg) # 0. Thus, by satisfies (R1) and (R2). (R3) is trivially sat-
isfied. Finally, since bg € F(ay, ..., a,), we have

trdeg(bo, ay, - .., an; M + n) = trdeg(ay, . .., ay; M + n),
so (R4) also holds.
Assume that we have constructed by for some £ > 0. We set N := 2(M + 1)'t!
(as in Lemma 6.6) and I" := {0, ..., N}t ¢ Z*t!, introduce a set variables

O:={0y |y eT}U{O_1},

and extend the action of A U X from E to E(®) by making all elements of ® to be
A-%-constants. Let

(%)
Beyi = 0-1ae11+ ) Lb) G160 ... (8:b0)". (14)
yell ©°

We regard any point ¢ € Q!®! as a function ¢: ® — Q and extend it to a E-algebra
homomorphism ¢: E[®] — E.
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Claim 1 There exists a Zariski open nonempty subset Uy C QI®! such that

F{o(Be+1)) = Fb¢, agy1) forevery ¢ € Uy.
Since

trdeg () F (O, (8%0P By | @ € Zo(M), B € Zy(M)))
< trdeg(agy 1, be, 82by, . .., 8sbg; M)
< trdeg(agy1, be; M + 1) < trdeg(by, ag+1, - .., an; M+ 1) < Dy,

the elements of {§%6# By, | o € Z;O(M), B e Z;O(M)} are algebraically depen-

dent over F(®). Thus, there exists a A-X-polynomial R € F(®)[8%Pz | a €
7%,(M), B € Z;O(M)] such that R(B¢+1) = 0. We will assume that R is chosen to
be of the minimal possible total degree. We introduce

dR
Ryp:= W(BH]) fore € ZLo(M), B € Zy(M) and
dR
Ry, 1 = ——(Byy1) fory €T
6y

The minimality of the degree of R implies that not all of R, g are zero. Consider any
y € I'. Differentiating R(B,) = 0 with respect to 6),, we obtain

B S1b)Y ... (85by)V
Z Rmﬂsaaﬂ< y (81be) (85b¢) >=—R9y. 15)

|
@€l (M), y:
BEZL, (M)

We extend the action of A U X from E(®) to E(®)[[x1,...,xs]] as in (10). We
multiply (15) by x(’)/o ...x)* and sum such equations over all y € I'". We obtain

Z Ra.p |:5aaﬂebex0+(51bz)x1+.‘.+(55be)xs:|N — Z _Reyx())/o - .x;/s. (16)
ozeZ;()(M), yell
BeZ, (M)

We apply Lemma 6.6 to (16) with a; = bg,ap = 681by,...,a54+1 = JSsb¢ and
F = F(®, B¢+1), and deduce that by, € F(®, B¢4+1). Then there exist nonzero A-X
polynomials Py, P, € F[®]{z} such that

_ Pi(Be41)

= . 17
¢ P(By+1) (0

We define U; = {¢ € Q® | ¢(P2(Bes1)) # 0and p(H_1) # 0}. Since P> is a
nonzero polynomial, Uj is nonempty. Consider ¢ € Uj. Then (17) implies that b, €
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F(p(Be+1)). Since 9(0-1) # 0, a¢41 € F(@(Bey1)), 50 F(@(Bet1)) = F(be, apt1).
The claim is proved.

Claim2 Let
Us :={p € Q9| det J(510(Bey1), ..., 80(Bry1)) # 0and p(Byy 1) is 2M — nonperiodic}.

Then U, is a nonempty Zariski open set.

The fact that ¢ (B4 1) is 2M-nonperiodic can be expressed by a system of inequations
as in the proof of Lemma 6.3. Thus, U; is defined by a system of inequations, so it is
open. Consider ¢y € Q'®! defined by

1, ify = (1,0,...,0),
0 = 9_ =0
) 0, otherwise, v00-1)

Then ¢o(B¢+1) = be. We have det J(81by, ..., 8:b¢) # 0 due to (R2) and by is
2M -nonperiodic due to (R1). Thus, ¢y € Ua, so Uy # &. The claim is proved.

Consider ¢ € U; N U, and define by := ¢(B¢+1). Then (R3) holds because ¢ €
Ui, (R1) and (R2) hold because ¢ € U,. Since byy+1 € F(ag+1, be, $1by, - - ., 85b¢),
we have

trdeg(bet1, g2, .. ans M +n—£—1)
< trdeg(by, ag41, ..., an; M +n —£) < Dy

This proves (R4) for by, and finishes the proof of the existence of by, ..., b, such
that (R1), (R2), (R3), and (R4) hold. O

Acknowledgements The author is grateful to Lei Fu, Alexey Ovchinnikov, Thomas Scanlon, and the
referee for their suggestions and helpful discussions. This work has been partially supported by NSF Grants
CCF-1564132, CCF-1563942, DMS-1853482, DMS-1853650, and DMS-1760448, by PSC-CUNY Grants
#69827-0047 and #60098-0048.

References

1. Andrews, G .E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, Cambridge (1999). https://doi.org/10.1017/CB0O9781107325937

2. Bélair, L.: Approximation for Frobenius algebraic equations in Witt vectors. J. Algebra 321(9), 2353—
2364 (2009). https://doi.org/10.1016/j.jalgebra.2009.01.021

3. Bell, DJ., Lu, X.Y.: Differential algebraic control theory. IMA J. Math. Control Inf. 9(4), 361-383
(1992). https://doi.org/10.1093/imamci/9.4.361

4. Blossier, T., Hardouin, C., Martin-Pizarro, A.: Sur les automorphismes bornés de corps munis
d’opérateurs. Math. Res. Lett. 24(4), 955-978 (2017). https://doi.org/10.4310/MRL.2017.v24.n4.a2

5. Brouette, Q., Point, F.: On differential Galois groups of strongly normal extensions. Math. Logic Q.
64(3), 155-169 (2018). https://doi.org/10.1002/malq.201600098

6. Chatzidakis, Z.: Model theory of fields with operators—a survey. In : Villaveces A, Kossak R, Kontinen
J, Hirvonen A (eds) Logic Without Borders—Essays on Set Theory, Model Theory, Philosophical Logic
and Philosophy of Mathematics, pp. 91-114. (2015). https://doi.org/10.1515/9781614516873.91


https://doi.org/10.1017/CBO9781107325937
https://doi.org/10.1016/j.jalgebra.2009.01.021
https://doi.org/10.1093/imamci/9.4.361
https://doi.org/10.4310/MRL.2017.v24.n4.a2
https://doi.org/10.1002/malq.201600098
https://doi.org/10.1515/9781614516873.91

A primitive element theorem for fields with commuting... Page230f24 57

7.

8.

9.

10.

11.

12.

14.

16.
17.
18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31

32.

33.

34.

Chatzidakis, Z., Hrushovski, E.: Model theory of difference fields. Trans. Am. Math. Soc. 351, 2997—
3071 (1999). https://doi.org/10.1090/S0002-9947-99-02498-8

Cluzeau, T., Hubert, E.: Resolvent representation for regular differential ideals. Appl. Algebra Eng.
Commun. Comput. 13(5), 395-425 (2003). https://doi.org/10.1007/s00200-002-0110-4

Cluzeau, T., Hubert, E.: Probabilistic algorithms for computing resolvent representations of regular
differential ideals. Appl. Algebra Eng. Commun. Comput. 19(5), 365-392 (2008). https://doi.org/10.
1007/500200-008-0079-8

Cohn, R.M.: Difference Algebra. Interscience Publishers, Geneva (1965)

D’Alfonso, L., Jeronimo, G., Solerno, P.: Quantitative aspects of the generalized differential Liiroth’s
theorem. J. Algebra 507, 547-570 (2018). https://doi.org/10.1016/j.jalgebra.2018.01.050

Fliess, M.: Generalized controller canonical form for linear and nonlinear dynamics. IEEE Trans.
Autom. Control 35(9), 994-1001 (1990). https://doi.org/10.1109/9.58527

. Freitag, J., Li, W.: Simple Differential Field Extensions and Effective Bounds. Lecture Notes in Com-

puter Science, vol. 9582, pp. 343-357. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
32859-1_29

Gao, X., Van der Hoeven, J., Yuan, C., Zhang, G.: Characteristic set method for differential-difference
polynomial systems. J. Symb. Comput. 44(9), 1137-1163 (2009). https://doi.org/10.1016/j.jsc.2008.
02.010

. Hardouin, C., Singer, M.E.: Differential Galois theory of linear difference equations. Math. Ann. 342(2),

333-377 (2008). https://doi.org/10.1007/s00208-008-0238-z

Kamensky, M.: Tannakian formalism over fields with operators. Int. Math. Res. Notices 2013(24),
5571-5622 (2013). https://doi.org/10.1093/imrn/rns190

Kolchin, E.R.: Extensions of differential fileds. Ann. Math. 43(4), 724-729 (1942)

Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)
Kondratieva, M.V., Levin, A.B., Mikhalev, A.V., Pankratiev, E.V.: Differential and Difference Dimen-
sion Polynomials. Springer, Dordrecht (2010)

Levin, A.B. : Multivariate difference-differential dimension polynomials and new invariants of
difference-differential field extensions. In: Proceedings of the 38th International Symposium on Sym-
bolic and Algebraic Computation, ISSAC *13, pp. 267-274, (2013). https://doi.org/10.1145/2465506.
2465521

Levin, A.B.: Difference Algebra. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-
6947-5

Loos, R.: Computing in Algebraic Extensions, pp. 173—187. Springer, Vienna (1983). https://doi.org/
10.1007/978-3-7091-7551-4_12

Marker, D.: Chapter 2: Model Theory of Differential Fields, of Lecture Notes in Logic, vol. 5, pp.
38-113. Springer, Berlin, (1996). https://projecteuclid.org/euclid.Inl/ 1235423156

Medina, R.E.B.: Differentially closed fields of characteristic zero with a generic automorphism. Rev.
de Mat. Teor. y Apl. 14(1), 81-100 (2007). https://doi.org/10.15517/rmta.v14i1.282

Miller, R., Ovchinnikov, A., Trushin, D.: Computing constraint sets for differential fields. J. Algebra
407, 316-357 (2014). https://doi.org/10.1016/j.jalgebra.2014.02.032

Moosa, R., Scanlon, T.: Jet and prolongation spaces. J. Inst. Math. Jussieu 9(2), 391-430 (2010).
https://doi.org/10.1017/S1474748010000010

Moosa, R., Scanlon, T.: Model theory of fields with free operators in characteristic zero. J. Math. Logic
14(2), 1450009 (2014). https://doi.org/10.1142/S0219061314500093

Ohyama, Y.: Differential relations of theta functions. Osaka J. Math. 32(2), 431-450 (1995)
Ostrowski, A.: Uber Dirichletsche Reihen und algebraische Differentialgleichungen. Math. Z. 8(3—4),
241-298 (1920). https://doi.org/10.1007/BF01206530

Pogudin, G.: The primitive element theorem for differential fields with zero derivation on the base
field. J. Pure Appl. Algebra 219(9), 4035-4041 (2015). https://doi.org/10.1016/j.jpaa.2015.02.004
Ritt, J.E.: Differential Equations from the Algebraic Standpoint. Colloquium Publications. American
Mathematical Society, Providence (1932)

Sanchez, O.L.: On the model companion of partial differential fields with an automorphism. Isr. J.
Math. 212(1), 419-442 (2016). https://doi.org/10.1007/s11856-016-1292-y

Seidenberg, A.: Abstract differential algebra and the analytic case. II. In: Proceedings of the American
Mathematical Society, vol. 23, no. 3, pp. 689-691, (1969). URL https://www.jstor.org/stable/203661 1
Seidenberg, A.: Abstract differential algebra and the analytic case. In: Proceedings of the American
Mathematical Society, vol. 9, no. 1, pp. 159-164, (1958). URL https://www.jstor.org/stable/2033416


https://doi.org/10.1090/S0002-9947-99-02498-8
https://doi.org/10.1007/s00200-002-0110-4
https://doi.org/10.1007/s00200-008-0079-8
https://doi.org/10.1007/s00200-008-0079-8
https://doi.org/10.1016/j.jalgebra.2018.01.050
https://doi.org/10.1109/9.58527
https://doi.org/10.1007/978-3-319-32859-1_29
https://doi.org/10.1007/978-3-319-32859-1_29
https://doi.org/10.1016/j.jsc.2008.02.010
https://doi.org/10.1016/j.jsc.2008.02.010
https://doi.org/10.1007/s00208-008-0238-z
https://doi.org/10.1093/imrn/rns190
https://doi.org/10.1145/2465506.2465521
https://doi.org/10.1145/2465506.2465521
https://doi.org/10.1007/978-1-4020-6947-5
https://doi.org/10.1007/978-1-4020-6947-5
https://doi.org/10.1007/978-3-7091-7551-4_12
https://doi.org/10.1007/978-3-7091-7551-4_12
https://projecteuclid.org/euclid.lnl/1235423156
https://doi.org/10.15517/rmta.v14i1.282
https://doi.org/10.1016/j.jalgebra.2014.02.032
https://doi.org/10.1017/S1474748010000010
https://doi.org/10.1142/S0219061314500093
https://doi.org/10.1007/BF01206530
https://doi.org/10.1016/j.jpaa.2015.02.004
https://doi.org/10.1007/s11856-016-1292-y
https://www.jstor.org/stable/2036611
https://www.jstor.org/stable/2033416

57

Page 24 of 24 G. Pogudin

35.

36.
. van der Waerden, B.: Algebra. Springer, New York (1991)
38.

Seidenberg, A.: Some basic theorems in differential algebra (characteristic p, arbitrary). Trans. Am.
Math. Soc. 73(1), 174-190 (1952)
Singer, M.F.: The model theory of ordered differential fields. J. Symb. Logic 43(1), 82-91 (1978)

Wood, C.: Prime model extensions for differential fields of characteristic p # 0.J. Symb. Logic 39(3),
469-477 (1974). https://doi.org/10.2307/2272889

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


https://doi.org/10.2307/2272889

	A primitive element theorem for fields with commuting derivations and automorphisms
	Abstract
	1 Introduction
	1.1 Overview and prior results
	1.2 Our contribution
	1.3 Outline of the approach
	1.4 Structure of the paper

	2 Definitions and the main result
	3 Examples
	4 Definitions and notation used in proofs
	5 Proof for differential fields
	6 Proof for the general case
	6.1 Choosing a sufficiently nonconstant element
	6.2 Core lemmas
	6.3 Proof of Theorem 2.1

	Acknowledgements
	References




