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Abstract
Weestablish a Primitive Element Theorem for fields equippedwith several commuting
operators such that each of the operators is either a derivation or an automorphism.
More precisely, we show that for every extension F ⊂ E of such fields of zero
characteristic such that

• E is generated over F by finitely many elements using the field operations and the
operators,

• every element of E satisfies a nontrivial equation with coefficient in F involving
the field operations and the operators,

• the action of the operators on E is irredundant

there exists an element a ∈ E such that E is generated over F by a using the field
operations and the operators. This result generalizes the Primitive Element Theorems
by Kolchin and Cohn in two directions simultaneously: we allow any numbers of
derivations and automorphisms and do not impose any restrictions on the base field
F .

Keywords Primitive element · Differential field · Difference field · Fields with
operators

Mathematics Subject Classification Primary 12H05, 12H05; Secondary 12F99

1 Introduction

1.1 Overview and prior results

The Primitive Element Theorem [37, Section 40] is a fundamental result in the field
theory that says that for every separable finitely generated algebraic extension of fields
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F ⊂ E , there exists a ∈ E such that E = F(a). Apart from its theoretical importance,
it is also one of the main tools for computing with algebraic extensions [22, Section
5].

Fields with commuting derivations. Consider an extension C ⊂ C(x, ex ). The field
C(x, ex ) cannot be generated over C by one element because the functions x and ex

are algebraically independent. However, the formulas

x = α − α′ + 1 and ex = α′ − 1, where α := x + ex

imply that C(x, ex ) is generated over C by α if we allow taking derivatives as well as
the field operations.

Fields equipped with commuting derivations are central objects in the algebraic
studies of differential equations initiated by Ritt [31] and Kolchin [18]. In this setting,
Kolchin proved the following analogue of the Primitive Element Theorem:

Theorem 1.1 (Kolchin, [17, Section 4]) Let F ⊂ E be an extension of fields of zero
characteristic and E be equipped with commuting derivations δ1, . . . , δs such that F
is closed under the derivations. Assume that

(1) there exist a1, . . . , an ∈ E such that

E = F
(
δ
α1
1 . . . δαs

s a j | 1 � j � n, α1, . . . , αs ∈ Z�0
)
.

(2) for every 1 � j � n, a j satisfies a nonzero polynomial PDE over F, that is, the
elements of {δα1

1 . . . δ
αs
s a j | α1, . . . , αs ∈ Z�0} are algebraically dependent over

F;
(3) there exist b1, . . . , bs ∈ F with nondegenerate Jacobian, that is, det(δi b j )

s
i, j=1 �=

0.

Then there exists a ∈ E such that E = F(δ
α1
1 . . . δ

αs
s a | α1, . . . , αs ∈ Z�0).

Theorem 1.1 and its improvements [30,35] have been used, for example, in algo-
rithms and effective bounds for differential-algebraic equations [8,9,11,13,25], Galois
theory of differential and difference equations [5,15],model theory of differential fields
[23,38], control theory [3,12], and for connecting algebraic and analytic approaches
to differential-algebraic equations [33,34,36].

In our earlier paper [30], for the case of one derivation (m = 1), condition (3) has
been relaxed to the condition that E contains a nonconstant, i.e. that the derivation is
not zero. Unlike Theorem 1.1, this refined statement is applicable, for example, to the
extension C ⊂ C(x, ex ) discussed above and to extensions of the form C ⊂ C(X),
where C is the field of rational functions on an irreducible algebraic variety X and the
derivation on C(X) is induced by a vector field on X . It is an open problem whether
such relaxation is true for the case of several commuting derivations.

Problem 1 Prove or disprove that Theorem 1.1 is still true if condition (3) is replaced
with (3’) there exist b1, . . . , bs ∈ E (not F) with nondegenerate Jacobian.
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Fields with an automorphism. Consider the extension C ⊂ C(x, �(x)), where �(x)
is the gamma function. Since x and �(x) are algebraically independent, C(x, �(x))
cannot be generated over C by one element. The difference equation for the gamma
function �(x + 1) = x�(x) implies that the shift of the argument f (x) �→ f (x + 1)

induces an automorphism on C(x, �(x)). Then the formula x = �(x+1)
�(x) implies that

C(x, �(x)) is generated over C by �(x) if we allow integer shifts of the argument as
well as the field operations.

Algebraic theory of nonlinear difference equations founded byRitt and Cohn exten-
sively uses fields equipped with an automorphism. Cohn established the following
version of the Primitive Element Theorem (to keep the presentation simple, we restrict
ourselves to the zero characteristic case):

Theorem 1.2 (Cohn [10, p. 203, Theorem III]) Let F ⊂ E be an extension of fields of
zero characteristic and σ : E → E be an automorphism such that σ(F) ⊂ F. Assume
that

(1) there exist a1, . . . , an ∈ E such that E = F(σ i (a j ) | i ∈ Z, 1 � j � n);
(2) for every 1 � j � n, a j satisfies a nonzero difference-algebraic equation over F,

that is, the elements of {σ i (a j ) | i ∈ Z} are algebraically dependent over F;
(3) σ has infinite order on F, that is, there is no integer k � 1 such that, for every

a ∈ F, σ k(a) = a.

Then there exists a ∈ E such that E = F(σ j (a) | j ∈ Z).

Theorem 1.2 has been used, for example, in model theory of fields with an auto-
morphism [7] and for proving approximation theorem for difference equations [2].
However, Theorem 1.2 is not applicable to our example C ⊂ C(x, �(x)) because the
automorphism acts trivially on the base field C.

Problem 2 Prove or disprove that Theorem 1.2 is still true if Condition (3) is replaced
with (3’) σ has inifinite order on E (not F).

Positive solution (i.e., “prove”) to Problem2would have, for example, the following
application. Let C ⊂ C(X), where C(X) is the field of rational functions on an
irreducible algebraic variety X . Consider an automophism α of X of infinite order.
The dual α� : C(X) → C(X) is an automorphism of C(X) of infinite order. Then the
positive solution to Problem 2 would imply that there exists f ∈ C(X) such that the
orbit of f under α� generatesC(X) overC. In particular, ourmain result, Theorem 2.1,
implies the existence of such f .

More general cases. Although fields with several commuting automorphisms and
fields with several derivations and automorphisms commuting with each other have
been studied from the standpoints of algebra [10,21], model theory [6,24,32], and
symbolic computation [14,20], we are not aware of any analogues of the Primitive
Element Theorem for such fields.
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Problem 3 Derive an analogue of the Primitive Element Theorem for fields with sev-
eral commuting derivations and automorphisms.

Another common generalization of fields equipped with a derivations and fields
equipped with an automorphism is the theory of fields with free operators introduced
in [26,27] (see also [4,16]).We are not aware of any analogues of the Primitive Element
Theorem for such fields.

1.2 Our contribution

Our main result, Theorem 2.1, generalizes Theorems 1.1 and 1.2 in two directions
simultaneously

• We establish a Primitive Element Theorem for fields equipped with s derivations
and t automorphisms such that all these operators commute. This solves Problem3.

• We remove all the assumptions on the base field F other than being closed under
the operators. Instead of this, we require the derivations and automorphisms to be
“independent” on the bigger field E . In particular, this solves Problems 1 and 2
(see Remark 2.1). We show (see Example 3.4) that the condition on E cannot be
removed.

1.3 Outline of the approach

One of the main challenges in proving such a general version of the Primitive Element
Theorem is to find an appropriate general form of a primitive element. Proofs of
Kolchin [17] and Cohn [10] follow the same strategy as the standard proof of the
algebraic Primitive Element Theorem, namely they construct a primitive element of
an extension F ⊂ E as a F-linear combination of the original generators.

However, Examples 3.2 and 3.3 show that if F is a constant field, then it can happen
that none of the linear combinations of the original generators is a primitive element
even in the case of only one operator. To strengthen Kolchin’s theorem (Theorem 1.1)
in the case of one derivation, in our earlier paper [30], we used an involved two-stage
construction of a primitive element as a polynomial in the original generators.

In this paper, we approach finding a primitive element from the perspective of
the Taylor series expansion. More precisely, a primitive element is constructed as a
truncated multivariate Taylor series in the original generators and their derivatives
(see formulas (4) and (14)). The order of truncation is derived based on the Kolchin
polynomial of the extension. Formally, a truncated Taylor series is simply a polynomial
written in a special form with factorials in the denominators, so the search space for a
primitive element is almost the same as in [30]. However, this representation turns out
to be a key to interpreting a polynomial system that relates the original generators and
a potential primitive element in terms of solutions some special system of linear PDEs.
This interpretation allows us to show that the original generators can be expressed in
terms of the potential primitive element (see Lemmas 5.3 and 6.6), so this element
is indeed primitive. As was pointed out to me by Jonathan Kirby, one can view the
difference between the representations of a primitive element in [30] and in the present



A primitive element theorem for fields with commuting... Page 5 of 24 57

paper as the difference between usual generating series and exponential generating
series.

We refer a reader who wants to see more details but does not want to read the whole
proof to Sect. 5. This section contains a proof of the main theorem for differential
fields (i.e., fields equipped with a derivation). It is much shorter than the main proof
but demonstrates some of the key techniques we developed.

1.4 Structure of the paper

The rest of the paper is organized as follows. Sect. 2 contains definitions used in the
statement of the main result and the main result, Theorem 2.1. Section 3 contains
examples that illustrate the main result. Section 4 contains the definitions and notation
used in the proofs. Section 5 contains the proof of the main result in the special case
of fields with a derivation. This proof demonstrates some of the key ingredients of
the proof of Theorem 2.1 in a simpler setting allowing the reader to understand of the
general approach without going into technical details. Section 6 contains the proof
of the main result. For the convenience of the reader, the corresponding lemmas in
Sect. 5 and 6 are cross-referenced.

2 Definitions and themain result

All fields are assumed to be of zero characteristic.

Definition 2.1 (�-�-rings) Let � = {δ1, . . . , δs} and � = {σ1, . . . , σt } be finite sets
of symbols. We say that a commutative ring R is a �-�-ring if

1. δ1, . . . , δs act on R as derivations, that is, δi (a + b) = δi (a) + δi (b) and δi (ab) =
δi (a)b + aδi (b) for every 1 � i � s and a, b ∈ R;

2. σ1, . . . , σt act on R as automorphisms;
3. every two operators in � ∪ � commute.

A �-�-ring that is a field is called �-�-field.

Example 2.1 Natural examples of �-�-fields include the following.

• Let E = C(x), � = {∂}, and � = {σ }. We can define a structure of �-�-field on
E by

δ( f (x)) = ∂

∂x
f (x), and σ( f (x)) = f (x + 1) for every f (x) ∈ E .

In the same way, one can define n derivations and n automorphisms on
C(x1, . . . , xn).

• Let E be the field of meromorphic functions on C, � = {δ}, and � = {σ1, σ2}.
We can define a structure of �-�-field on E by

δ( f (z)) = f ′(z), σ1( f (z)) = f (z + 1), σ2( f (z)) = f (z + i) for every f ∈ E .
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• Let E be the field of meromorphic functions on C, � = {δ}, and � = {σ }. For
every nonzero q ∈ C, we can define a structure of �-�-field on E by

δ( f (z)) = z f ′(z), σ ( f (z)) = f (qz) for every f ∈ E .

Definition 2.2 (Extension of �-�-fields) An extension of fields F ⊂ E where E and
F are �-�-fields is said to be an extension of �-�-fields if the action of � ∪ � on
F coincides with the restriction to F of the action of � ∪ � on E .

Notation 2.1 For every α := (α1, . . . , αs) ∈ Z
s
�0 and every β := (β1, . . . , βt ) ∈ Z

t ,
we introduce

δα := δ
α1
1 . . . δαs

s and σβ := σ
β1
1 . . . σ

βt
t .

Theorem 2.1 (Main result) Let F ⊂ E be an extension of �-�-fields such that

(1) there exist a1, . . . , an ∈ E such that E = F
(
δασβ(a j ) | 1 � j � n, α ∈

Z
s
�0, β ∈ Z

t
)
;

(2) for every 1 � j � n, the elements of {δασβ(a j ) | α ∈ Z
s
�0, β ∈ Z

t } are
algebraically dependent over F;

(3δ) δ1, . . . , δs are linearly independent over E;
(3σ ) σ1, . . . , σt are multiplicatively independent over Z, that is, for every β ∈ Z

t ,
σβ |E = id ⇐⇒ β = 0.

Then there exists a ∈ E such that E = F
(
δασβ(a) | α ∈ Z

s
�0, β ∈ Z

t
)
.

Remark 2.1 Setting s = 0 and t = 1, we obtain a statement stronger than Cohn’s
theorem [10, p. 203, Theorem III] in the case of zero characteristic. Lemma 6.1 implies
that the requirement on the base field F in Kolchin’s theorem [17, Section 4] is the
same as the condition (3σ ) on E in Theorem 2.1. Thus, Theorem 2.1 strengthens
Kolchin’s theorem as well.

3 Examples

Notation 3.1 Let F ⊂ E be an extension of �-�-fields. For a1, . . . , an ∈ E , we set

F〈a1, . . . , an〉 := F
(
δασβ(a j ) | 1 � j � n, α ∈ Z

s
�0, β ∈ Z

t).

Example 3.1 This example illustrates how Theorem 2.1 can be applied to classical
special functions. Let � = {∂z, ∂τ } and � = ∅. Let M(C,H) denote the field of
bivariate meromorphic functions on C ×H in variables z and τ , whereH = {τ ∈ C |
Im(τ ) > 0}. We considerM(C,H) as a �-field by letting ∂z and ∂τ act as the partial
derivatives with respect to z and τ , respectively. Let

θ1(z, τ ) := − i
∞∑

j=−∞
(−1) j e( j+1/2)2π iτ e(2 j+1)π i z
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be one of the Jacobi theta functions [1, § 10.7]. θ1(z, τ ) satisfies the following form
of the heat equation [28, p. 433]

∂2z θ1(z, τ ) = 4π i∂τ θ1(z, τ ).

This implies that θ1(z, τ ) as well as θ1(2z, τ ) and θ1(3z, τ ) are �-�-algebraic over
C. Thus, Theorem 2.1 applied to the extension

F := C ⊂ E := C(θ1(z, τ ), θ1(2z, τ ), θ1(3z, τ ))

implies that there exists a function f (z, τ ) ∈ E such that θ1(z, τ ), θ1(2z, τ ), and
θ1(3z, τ ) can be written as rational functions in f and its partial derivatives. Note that
the original Kolchin’s theorem (Theorem 1.1) is not applicable to this extension.

Examples 3.2 and 3.3 show that it might be impossible to construct a primitive
element of an extension as a linear combination of the original generators even in the
case of one operator (see also [30, Remark 2]).

Example 3.2 Let� = {δ} and� = ∅. Field E := C(x, ln x, ln(1− x)) is a�-�-field
with δ( f (x)) = f ′(x) for every f ∈ E . Since x = 1

(ln x)′ , E = C〈ln x, ln(1 − x)〉.
Since each of ln x and ln(1−x) satisfies an algebraic differential equationwith constant
coefficients, the extension

F := C ⊂ E = C〈ln x, ln(1 − x)〉

satisfies the conditions of Theorem 2.1. Consider arbitrary α, β ∈ F and set a =
α ln x+β ln(1−x). Sincea′ ∈ C(x), F〈a〉 ⊂ F(a, x). The latter has the transcendence
degree at most two over F but Ostrowski’s theorem [29] implies that ln x, ln(1 − x),
and x are algebraically independent, so trdegF E = 3. Hence, F〈a〉 �= E . Thus, such
a cannot be a primitive element of the extension F ⊂ E .

Example 3.3 Let ζ(z, s) = ∑∞
n=0

1
(z+n)s

be the Hurwitz zeta function [1, § 1.3]. Let
M(C) be the field of meromorphic functions onC. Let E := C(z, ζ(z, 2), ζ(1−z, 2))
be a subfield inM(C).We define a�-�-structure onM(C)with� = ∅ and� = {σ }
by

σ( f (z)) = f (z + 1) for every f ∈ C.

Since

σ(ζ(z, 2)) = ζ(z, 2) − 1

z2
and σ(ζ(1 − z, 2)) = ζ(1 − z, 2) + 1

z2
, (1)

E is a �-�-subfield of M(C), and E = C〈ζ(z, 2), ζ(1 − z, 2)〉. (1) implies that
ζ(z, 2) and ζ(1 − z, 2) are �-�-algebraic over C, so the extension

F := C ⊂ E = C〈ζ(z, 2), ζ(1 − z, 2)〉
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satisfies the conditions of Theorem 2.1. We claim that trdegF E = 3. Assume the
contrary, that is, ζ(z, 2), ζ(1 − z, 2), and z are algebraically dependent over C. Let
C := { f ∈ M(C) | σ( f ) = f }. Since ζ(z, 2) + ζ(1 − z, 2) ∈ C, the algebraic
dependence between ζ(z, 2), ζ(1 − z, 2), and z implies that ζ(z, 2) is algebraic over
C(z). Let P(z, t) ∈ C(z)[t] be its minimal monic polynomial and we set d := degt P .
By applying σ to P(z, ζ(z, 2)) and using the minimality of P , we show that

P(z, t) = P(z + 1, t − 1/z2).

Then the coefficient g(z) ∈ C(z) of td−1 in P satisfies g(z + 1) = g(z)+ d
z2
. One can

check (using, for example, the function ratpolysols in Maple) that there is no such
rational function for d �= 0. Thus, trdegF E = 3.

Consider arbitrary α, β ∈ F and set a := αζ(z, 2) + βζ(1− z, 2). (1) implies that
σ(a) ∈ C(z), so F〈a〉 ⊂ F(a, z). Hence trdegF F〈a〉 � 2. Hence, F〈a〉 �= E . Thus,
such a cannot be a primitive element of the extension F ⊂ E .

Example 3.4 This example shows that neither of the conditions (3δ) and (3σ ) in Theo-
rem 2.1 can be removed. We fix s, t ∈ Z�0, � = {δ1, . . . , δs}, and � = {σ1, . . . , σt }.
Consider a free �-�-extension of Q with two generators, x1 and x2:

Q ⊂ E := Q(δασβxi | α ∈ Z�0, β ∈ Z, i = 1, 2),

where all δασβxi are algebraically independent and � ∪ � acts naturally (see (2)).
[19, Theorem 3.5.38] implies that this extension Q ⊂ E cannot be generated by one
element as a �-�-field extension.

Let �1 := � ∪ {δs+1}. We choose rational numbers c1, . . . , cs and make E a
�1-�-field by defining δs+1(a) := c1δ1(a) + · · · + csδs(a) for every a ∈ E . For
every a ∈ E , the subfield generated by a using �1 ∪ � is the same as the subfield
generated by�∪�. Thus,Q ⊂ E cannot be generated by one element as an extension
of �1-�-fields. On the other hand, every a ∈ E is �1-�-algebraic over Q because it
satisfies c1δ1a + . . . + csδsa − δs+1a = 0. Thus, the condition (3δ) in Theorem 2.1
cannot be removed. A similar argument with a superfluous automorphism σt+1 :=
σ
k1
1 σ

k2
2 · · · σ kt

t , where k1, . . . , kt ∈ Z, show that the condition (3σ ) cannot be removed.

4 Definitions and notation used in proofs

In the proofs, we will write δασβa instead of δασβ(a)

Definition 4.1 (�-�-algebraicity) Let F ⊂ E be an extension of �-�-fields. An
element a ∈ E is �-�-algebraic over F if the set

{δασβa | α ∈ Z
s
�0, β ∈ Z

t
�0}

is algebraically dependent over F .
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Definition 4.2 (Nondegenerate �-�-field) A �-�-field E is called nondegenerate if
it satisfies conditions (3δ) and (3σ ) of Theorem 2.1, namely,

(3δ) δ1, . . . , δs are linearly independent over E ;
(3σ ) σ1, . . . , σt are multiplicatively independent over Z, that is, for every β ∈ Z

t ,
σβ |E = id ⇐⇒ β = 0.

Definition 4.3 (�-�-constants) An element a ∈ E of a �-�-field E is said to be a
constant if δi a = 0 for every 1 � i � s and σ j a = a for every 1 � j � t . Constants
form a subfield in E . We will denote this subfield by C(E).

Definition 4.4 (�-�-polynomials) Let R be a �-�-ring. Consider the following ring
of polynomials over R

R{x} := R
[
δασβx | α ∈ Z

s
�0, β ∈ Z

t
�0

]
,

where each δασβx is a separate variable. We can extend the structure of �-�-ring
from R to R{x} by

δi

(
δασβx

)
:= δα+1i σβx and σ j

(
δασβx

)
:= δασβ+1 j x, (2)

where 1i and 1 j denote the i-th basis vector in Z
s and the j-th basis vector in Z

t ,
respectively. Elements of R{x} are called �-�-polynomials in x .

Notation 4.1 Let n be a positive integer.

• For v = (v1, . . . , vn) ∈ Z
n , we define |v| := |v1| + · · · + |vn|. If v ∈ Z

n
�0, then

we also define v! := v1! . . . vn !.
• For a positive integer m, we define Z

n
�0(m) := {v ∈ Z

n
�0 | |v| � m}.

Definition 4.5 (Nonperiodic elements) Let E be a �-�-field.

• An element a ∈ E is said to be nonperiodic if, for every nonzeroβ ∈ Z
t , σβa �= a.

• For a positive integer m, an element a ∈ E is called m-nonperiodic if

(
σαa = σβa & α,β ∈ Z

t
�0(m)

)
�⇒ β = α.

Notation 4.2 Let K be a field and K [[x1, . . . , xn]] be the formal power series ring over
K . For an element

f =
∑

k∈Zn
�0

ckx
k ∈ K [[x1, . . . , xn]],

we denote its truncation at order m by

[ f ]m :=
∑

k∈{0,1,...,m}n
ckx

k ∈ K [x1, . . . , xn].
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5 Proof for differential fields

In this section, we consider the case � = {δ} and � = ∅. We will denote δa by a′
and say “differential field” and “differentially algebraic” instead of “�-�-field” and
“�-�-algebraic”, respectively.

Lemma 5.1 (Special case of Lemma 6.4) Let ∂ = ∂
∂x be the standard derivation on

K [[x]]. Let D ∈ K [∂] be a differential operator of order m. Then, for every f ∈ K [[t]],
(
Df = 0 & [ f ]m = 0

) �⇒ f = 0.

Proof Since D has ∂-constant coefficients, every solution of D is uniquely defined by
its first m Taylor coefficients. Since f has the same first m Taylor coefficients as the
zero solution, f = 0.

For the rest of the section, for a differential field E , we extend the derivation from
E to E[[x]] by

( ∞∑

i=0

ci x
i

)′
=

∞∑

i=0

c′
i x

i for every
∞∑

i=0

ci x
i ∈ E[[x]]. (3)

Lemma 5.2 (Special case of Lemma 6.5) Let E be a differential field. Let a ∈ E be a
nonconstant element. For m ∈ Z�0, we introduce the following subset of E[[x]] (with
the derivation defined in (3))

Sm :=
{
(eax )(r) | 0 � r � m

}
.

Then the elements of Sm are linearly independent over E.

Proof. We will prove the lemma by induction on m. The base case m = 0 is true
because S0 = {eax }. Assume that we have proved the lemma for some m � 0. Let V
be a space of all polynomials from E[x] of degree at mostm. Then Sm ⊂ Ve := Veax .
Hence it is sufficient to prove that Sm+1\Sm = {(eax )(m+1)} does not belong to Ve.
This is true because

(eax )(m+1) ≡ (a′x)m+1eax (mod Ve) and a′ �= 0.

Lemma 5.3 (Special case of Lemma 6.6) Let F ⊂ E be an extension of differential
fields, and the derivation on E[[x]] is defined as in (3). Let a ∈ E be a nonconstant
element such that there exists a nontrivial F-linear combination of the truncations

[eax ]2(m+1), [(eax )′]2(m+1), . . . , [(eax )(m)]2(m+1)

that belongs to F[x]. Then a ∈ F.
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Proof We are given that there exist c0, . . . , cm ∈ F not all zero such that

c0[eax ]2(m+1) + · · · + cm[(eax )(m)]2(m+1) = f ∈ F[x].

Step 1 There exists a nonzero polynomial C(x) ∈ E[x] of degree at most m such that

c0e
ax + · · · + cm(eax )(m) = C(x)eax .

Note that every E-linear combination of eax , . . . , (eax )(m) is a product of eax and an
element of E[x] of degree at most m. Since not all c0, . . . , cm are zeros, Lemma 5.2
implies that C(x) �= 0.

Step 2 Let E ⊃ E beanalgebraic closure of E. For every field automorphism τ : E →
E such that τ |F = id, we have τ(a) = a.

Let S := Ceax − τ(C)eτ(a)x . Since τ |F = id, [S]2(m+1) = 0. Since degC(x) � m,
we have

DS = 0, where D := (∂ − a)m+1(∂ − τ(a))m+1.

Since the order of D is 2(m + 1) and [S]2(m+1) = 0, Lemma 5.1 implies that S = 0.
Then eax and eτ(a)x are linearly dependent over E(x). This is possible only if a = τ(a).

Step 3 a ∈ F.

If a /∈ F , then there exists an automorphism τ : E → E such that τ |F = id and
a �= τ(a). This is impossible due to Step 2.

Theorem 5.1 Let F ⊂ E be an extension of differential fields such that

(1) there exist a1, . . . , an ∈ E such that E = F〈a1, . . . , an〉;
(2) for every 1 � j � n, a j is differentially algebraic over F;
(3) E contains a nonconstant element.

Then there exists a ∈ E such that E = F〈a〉.
Proof Since eachofa1, . . . , an is differentially algebraic over F ,M := trdegF E < ∞
[18, Corollary 1, p. 112]. We will prove by induction on � that, for every 0 � � � n,
there exists b� ∈ E such that

• b′
� �= 0;

• E = F〈b�, a�+1, . . . , an〉.
Since E = F〈bn〉, proving the existence of such b0, . . . , bn will prove the theorem.

For the base case � = 0, we choose b0 to be any nonconstant element of E . Assume
that we have constructed b� for some � � 0. We introduce a set of variables

� := {θi | − 1 � i � 2(M + 1)}
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and extend the derivation from E to E[�] by making the elements of� constants. Let

B�+1 := θ−1a�+1 +
2(M+1)∑

i=0

θi

i ! b
i
�. (4)

We regard any point ϕ ∈ Q
|�| as a function ϕ : � → Q and extend it to a E-algebra

homomorphism ϕ : E[�] → E .

Claim 1 There exists a Zariski open nonempty subset U1 ⊂ Q
|�| such that

F〈ϕ(B�+1)〉 = F〈b�, a�+1〉 for every ϕ ∈ U1.

Since

trdegF(�) F(�, B�+1, B
′
�+1, . . . , B

(M)
�+1) � trdegF F〈a�+1, b�〉 � M,

B�+1, B ′
�+1, . . . , B

(M)
�+1 are algebraically dependent over F(�). Thus, there exists a

differential polynomial R ∈ F(�)[z, z′, . . . , z(M)] such that R(B�+1) = 0. We will
assume that R is chosen to be of the minimal possible total degree. We introduce

Ri : = ∂R

∂z(i)
(B�+1) for 0 � i � M and

Rθ j : = ∂R

∂θ j
(B�+1) for − 1 � j � 2(M + 1).

The minimality of the degree of R implies that not all of Ri are zero. Consider any
0 � j � 2(M + 1). Differentiating R(B�) = 0 with respect to θ j , we obtain

M∑

i=0

Ri
(b j

� )(i)

j ! = −Rθ j . (5)

Consider the power series ring E[[x]]with the derivation defined in (3).Wemultiply (5)
by x j and sum such equations over all 0 � j � 2(M + 1). We obtain

M∑

i=0

Ri

[
(eb�x )(i)

]

2(M+1)
=

2(M+1)∑

j=0

−Rθ j x
j . (6)

We apply Lemma 5.3 to (6) with a = b� and F = F〈�, B�+1〉, and deduce that b� ∈
F〈�, B�+1〉. Then there exist nonzero differential polynomials P1, P2 ∈ F[�]{z}
such that

b� = P1(B�)

P2(B�)
. (7)

We defineU1 := {ϕ ∈ Q
|�| | ϕ(P2(B�)) �= 0 and ϕ(θ−1) �= 0}. Since P2 is a nonzero

polynomial, U1 is nonempty. For every ϕ ∈ U1, (17) implies that b� ∈ F〈ϕ(B�+1)〉.
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Since ϕ(θ−1) �= 0, a�+1 ∈ F〈ϕ(B�+1)〉, so F〈ϕ(B�+1)〉 = F〈b�, a�+1〉. The claim is
proved.

Claim 2 Let U2 := {ϕ ∈ Q
|�| | ϕ(B�+1)

′ �= 0}. Then U2 is a nonempty Zariski open
set.

Since U2 is defined by an inequation, it is open. Consider ϕ0 ∈ Q
|�| defined by

ϕ0(θ1) = 1 and ϕ(θ j ) = 0 for j �= 1. Then ϕ0(B�+1) = b�. Thus, ϕ0 ∈ U2, U2 �= ∅.
The claim is proved.

We finish the proof by considering ϕ ∈ U1 ∩ U2 and defining b�+1 := ϕ(B�+1).

6 Proof for the general case

6.1 Choosing a sufficiently nonconstant element

Notation 6.1 Let F be �-�-field. For a1, . . . , an ∈ F , we denote their Jacobian
matrix by

J (a1, . . . , an) :=

⎛

⎜⎜
⎜
⎝

δ1a1 δ2a1 . . . δsa1
δ1a2 δ2a2 . . . δsa2

...
...

. . .
...

δ1an δ2as . . . δsan

⎞

⎟⎟
⎟
⎠

.

For n = s = 0, we will use a convention det J (a1, . . . , an) = 1.

Lemma 6.1 Let E be a �-�-field. Then the following statements are equivalent

(1) δ1, . . . , δs are linearly independent over C(E) (see Definition 4.3);
(2) δ1, . . . , δs are linearly independent over E;
(3) there exist a1, a2, . . . , as ∈ E such that det J (a1, . . . , as) �= 0.

Proof (3) �⇒ (1).Assume that (1) does not hold. Then there existb = (b1, . . . , bs) ∈
Es such that δ|E = 0, where δ := b1δ1 + . . . + bsδs . We have

δ(a1, . . . , as)
T = J (a1, . . . , as)bT .

Since J (a1, . . . , as) is nondegenerate, the latter is nonzero for every nonzero b. Thus,
δa j is nonzero for at least one 1 � j � s, so we arrived at the contradiction.

(1) �⇒ (3). Let r be the maximal integer such that there exist a1, . . . , ar ∈ E
such that J (a1, . . . , ar ) has rank r . If r = s, then we are done. If r < s then we will
arrive at the contradiction with (1) in the two following steps.

Step 1: There exist b1, . . . , bs ∈ E not all zero such that b1δ1 +· · ·+bsδs defines
a zero derivation on E . Reenumerating δ1, . . . , δs if necessary, we can assume
that the first r columns in J (a1, . . . , ar ) are linearly independent. For every 1 �
i � r + 1, we denote the determinant of the matrix consisting of the first r + 1
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columns of J (a1, . . . , ar ) except the i-th by Ai . Then Ar+1 �= 0. Consider an
arbitrary a ∈ E . The maximality of r implies that rank J (a, a1, . . . , ar ) = r , so
every (r + 1) × (r + 1)-minor of J (a, a1, . . . , ar ) is degenerate. Expanding the
determinant of the matrix consisting of the first r + 1 columns of J (a, a1, . . . , ar )
along the first row, we obtain

A1(δ1a) − A2(δ2a) + · · · + (−1)r Ar+1(δr a) = 0.

Since Ar+1 �= 0, A1δ1 − A2δ2 + · · · + (−1)r Ar+1δr is a nontrivial E-linear
combination of δ1, . . . , δs that defines a zero derivation on E .
Step 2: There exist b1, . . . , bs ∈ C(E) not all zero such that b1δ1 + · · · + bsδs is
a zero derivation on E . Among all nontrivial linear combinations of δ1, . . . , δs
defining a zero derivation on E , consider a combination with the minimal possible
number, say q, of nonzero coefficients. Reenumerating δ1, . . . , δs , we can assume
that this combination is of the form δ = b1δ1 + · · · + bqδq for some nonzero
b1, . . . , bq ∈ E . Moreover, by dividing the combination by b1, we can further
assume that b1 = 1. If b2, . . . , bq ∈ C(E), then we are done. If at least one of
them, say b2, does not belong to C(E), then there are two options:

• There exists 1 � i � s such that δi b2 �= 0. Then consider

[δi , δ] = (δi b2)δ2 + · · · + (δi bq)δq .

Then [δi , δ] is a nontrivial E-linear combination of δ1, . . . , δs such that [δi , δ]|E =
0. This contradicts the minimality of q.

• There exists 1 � i � t such that σi b2 �= b2. Then consider

σiδσ
−1
i − δ = (σi b2 − b2)δ2 + · · · + (σi bq − bq)δq .

Then σiδσ
−1
i − δ is a nontrivial E-linear combination of δ1, . . . , δs such that

(σiδσ
−1
i − δ)|E = 0. This contradicts the minimality of q.

Lemma 6.2 Let E be a �-�-field. Let a1, . . . , an be elements of E such that s � n
and det J (a1, . . . , as) �= 0. Then there exists a nonempty Zariski open subset U ⊂
{P ∈ Q[x1, . . . , xn] | deg P � 2} such that, for every P ∈ U,

det J (δ1Pa, . . . , δs Pa) �= 0, where Pa := P(a1, . . . , an). (8)

Proof The inequation (8) defines an open subset in {P ∈ Q[x1, . . . , xn] | deg P � 2}.
It remains to show that this subset is nonempty. We introduce new variables � :=
{λ1, . . . , λs} and set δiλ j = 0 for every 1 � i, j � s. Consider

P(x1, . . . , xn) =
s∑

�=1

λ�a� + a21 + · · · + a2s .
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Then J (�) := det J (δ1Pa, . . . , δs Pa) ∈ E[�]. We will consider J (�) as a polyno-
mial in � over E and show that J (�) �= 0. J (�) is the determinant of the matrix
whose (i, j)-th entry is

δiδ j

(
s∑

�=1

λ�a� + a21 + · · · + a2s

)

=
s∑

�=1

λ�δiδ j a� +
s∑

�=1

(2a�δiδ j a� +2(δi a�)(δ j a�)).

(9)
If we set λ� = −2a� for 1 � � � s, then the right-hand side of (9) can be written as

s∑

�=1

−2a�δiδ j a� +
s∑

�=1

(2a�δiδ j a� + 2(δi a�)(δ j a�)) = 2
s∑

�=1

(δi a�)(δ j a�).

Thus, we can write

J (− 2a1, . . . ,− 2as) = 2 det
(
J (a1, . . . , as)J

T (a1, . . . , as)
)

�= 0.

Since J (�) is a nonzero polynomial, there exist λ∗
1, . . . , λ

∗
s ∈ Q such that

J (λ∗
1, . . . , λ

∗
s ) �= 0. Then P∗ := λ∗

1x1 + · · · + λ∗
s xs + x21 + · · · + x2s is a witness

of the nonemptyness of U .

Lemma 6.3 Consider an extension of �-� fields F ⊂ E such that

• E = F〈a1, . . . , an〉 with s � n;
• E is nondegenerate (see Definition 4.2);
• det J (a1, . . . , as) �= 0.

Then, for every m, there exists a polynomial P ∈ F[x1, . . . , xn] of degree at
most two such that Pa := P(a1, . . . , an) is m-nonperiodic (see Definition 4.5) and
det J (δ1Pa, . . . , δs Pa) �= 0.

Proof We will extend the set a1, . . . , an of generators of E over F by some elements
of F as follows. For every pair α,β ∈ Z

t
�0(m) such that α �= β, since σα−β |E �= id,

there are two options:

• if σα−β |F �= id, then we take a ∈ F such that σαa �= σβa and add it to the set of
generators;

• otherwise, if σα−β |F = id, there exists 1 � i � n such that σα−βai �= ai .

Using this procedure we construct an extended set of generators a1, . . . , aN such that

• an+1, . . . , aN ∈ F and
• for every pair α,β ∈ Z

t
�0(m) such that α �= β, there exists 1 � i(α,β) � N

such that σαai(α,β) �= σβai(α,β).

Let V := {P ∈ Q[x1, . . . , xN ] | deg P � 2}. LetU ⊂ V be a nonempty open Zariski
subset given by Lemma 6.2.

For every pair α,β ∈ Z
t
�0(m) such that α �= β, consider

Uα,β := {P ∈ V | σαP(a1, . . . , aN ) �= σβ P(a1, . . . , aN )} ⊂ V .
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Since Uα,β is defined by an inequation, it is an open subset of V . Moreover, since
xi(α,β) ∈ Uα,β , Uα,β �= ∅. Then the intersection of U and all the subsets Uα,β with
α,β ∈ Z

t
�0 and α �= β is a nonempty open subset of V . Let P0 be an element of

this subset. Then P1 := P0(x1, . . . , xn, an+1, . . . , aN ) ∈ F[x1, . . . , xn] is a desired
polynomial.

6.2 Core lemmas

The following lemma generalizes Lemma 5.1.

Lemma 6.4 Let K be a field. We denote the partial derivatives of K [[x1, . . . , xn]] with
respect to x1, . . . , xn by ∂1, . . . , ∂n, respectively. Let D1 ∈ K [∂1], . . . , Dn ∈ K [∂n]
be differential operators of order at most m. For every f ∈ K [[x1, . . . , xn]],

(
D1 f = · · · = Dn f = 0 & [ f ]m = 0

) �⇒ f = 0.

Proof Let

f =
∑

k∈Zn
�0

ckx
k ∈ K [[x1, . . . , xn]].

Wewill show that ck = 0 for every k ∈ Z
n
�0 by induction on |k|. Let k = (k1, . . . , kn).

If ki < m for every 1 � i � n, then ck = 0 because [ f ]m = 0. Assume that there
exists 1 � i � n such that ki � m. Then Di f = 0 implies that ck is a linear
combination of ck−1i , . . . , ck−m1i , where 1i is the i-th basis vector of Z

n . Due to the
induction hypothesis, these coefficients are all equal to zero, so ck = 0.

For every positive integer n, throughout the rest of the paper, for a �-�-field E ,
we extend the operators from E to E[[x1, . . . , xn]] by

φ
( ∞∑

k∈Zn
�0

ckx
k) =

∞∑

k∈Zn
�0

φ(ck)x
k for every

∞∑

k∈Zn
�0

ckx
k ∈ E[[x1, . . . , xn]]

and φ ∈ � ∪ �. (10)

The following lemma generalizes Lemma 5.2.

Lemma 6.5 Let E be a �-�-field and a1, . . . , an be elements of E such that
rank J (a1, . . . , an) = s. We extend �∪� to E[[x1, . . . , xn]] as in (10). For m ∈ Z�0,
we introduce the following subset of E[[x1, . . . , xn]]

Sm :=
{
δαea1x1+···+anxn | α ∈ Z

s
�0(m)

}
.

Then the elements of Sm are linearly independent over E.
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Proof We will use notation (a, x) := a1x1 + · · · + anxn . We will prove the lemma by
induction on m. The base case m = 0 is true because S0 = {e(a,x)}.

Assume that we have proved the lemma for some m � 0. Let V be a space of all
polynomials from E[x1, . . . , xn] of degree at most m. Then Sm ⊂ Ve := Ve(a,x).
Hence it is sufficient to prove that the elements of Sm+1\Sm are linearly independent
modulo Ve. For every α = (α1, . . . , αs) ∈ Z

s
�0(m + 1), we have

δαe(a,x) ≡
s∏

i=1

(δi (a, x))αi e(a,x) (mod Ve).

Thus, it is sufficient to prove that the elements of {∏s
i=1(δi (a, x))

αi | α ∈ Z
s
�0(m+1)}

are linearly independent over E . Assume the contrary. Then there exists a nonzero
homogeneous polynomial P ∈ E[y1, . . . , ys] of degree m + 1 such that

P(δ1(a, x), . . . , δs(a, x)) = 0.

However, since rank J (a1, . . . , an) = s, linear forms δ1(a, x), . . . , δs(a, x) are lin-
early independent, so P cannot vanish on them.

The following lemma generalizes Lemma 5.3.

Lemma 6.6 Let F ⊂ E be an extension of �-�-fields. Let a1, . . . , an be elements of
E such that

• rankJ (a1, . . . , an)= s;
• a1 is 2M-nonperiodic.

Let N = 2(M + 1)t+1. We extend � ∪ � to E[[x1, . . . , xn]] as in (10). If there exists
a nontrivial F-linear combination of

{
[δασβea1x1+···+anxn ]N | α ∈ Z

s
�0(M), β ∈ Z

t
�0(M)

}
(11)

that belongs to F[x1, . . . , xn], then a1 ∈ F.

Proof We are given that there exist cα,β ∈ F not all zero such that

∑

α∈Zs
�0(M),

β∈Zt
�0(M)

cα,β [δασβea1x1+···+anxn ]N =

⎡

⎢⎢⎢⎢
⎣

∑

α∈Zs
�0(M),

β∈Zt
�0(M)

cα,βδασβea1x1+···+anxn

⎤

⎥⎥⎥⎥
⎦

N

= f ∈ F[x1, . . . , xn]. (12)

Collecting together the terms with the same exponential part, we can write

∑

α∈Zs
�0(M),

β∈Zt
�0(M)

cα,βδασβea1x1+···+anxn =
∑

β∈Zt
�0(M)

Cβe
(σβa1)x1+···+(σβan)xn ,
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where Cβ ∈ E[x1, . . . , xn].
Step 1 There exists β ∈ Z

t
�0(M) such that Cβ �= 0.

Consider any β such that Cβ = 0. Since

rankJ (a1, . . . , an)= s �⇒ rankJ (σβa1, . . . , σ
βan)= s,

Lemma 6.5 implies that {δαe(σβa1)x1+···+(σβan)xn | α ∈ Z
s
�0(M)} are E-linearly

independent. Thus, Cβ = 0 implies that, for every α ∈ Z
s
�0(M), cα,β = 0. Thus, if

Cβ = 0 for every β ∈ Z
t
�0(M), we arrive at contradiction with the fact that not all

cα,β are zeros.

Step 2 Let E be an algebraic closure of E (we do not assume that E has a structure
of �-�-field). Let �0 := {β | Cβ �= 0} ⊂ Z

t
�0(M). For every field automorphism

τ : E → E such that τ |F = id and every β1 ∈ �0, there exists β2 ∈ �0 such that
τ(σβ1a1) = σβ2a1.

Let τ act on E[[x1, . . . , xn]] coefficient-wise. Applying τ to (12), we obtain

⎡

⎢
⎣

∑

β∈Zt
�0(M)

Cβe
(σβa1)x1+···+(σβan)xn

⎤

⎥
⎦

N

= f =
⎡

⎢
⎣

∑

β∈Zt
�0(M)

τ (Cβ)eτ(σβa1)x1+···+τ(σβan)xn

⎤

⎥
⎦

N

Let

S :=
∑

β∈Zt
�0(M)

Cβe
(σβa1)x1+···+(σβan)xn −

∑

β∈Zt
�0(M)

τ (Cβ)eτ(σβa1)x1+···+τ(σβan)xn .

Since, for every β ∈ Z
t
�0(M), the total degree of Cβ does not exceed M , we have

Di S = 0, where Di :=
∏

β∈Zt
�0(M)

(∂i − σβai )
M+1 ·

∏

β∈Zt
�0(M)

(∂i − τ(σβai ))
M+1

for every 1 � i � n. Since the order of Di is does not exceed 2(M + 1) · |Zt
�0(M)| �

2(M + 1)t+1 = N and [S]N = 0, Lemma 6.4 implies that S = 0.
Since a1 is 2M-nonperiodic, the set {σβa1 | β ∈ �0} contains |�0| distinct ele-

ments. If the number of distinct elements in the set

{σβa1 | β ∈ �0} ∪ {τ(σβa1) | β ∈ �0}
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is greater than |�0|, then there is β0 ∈ �0 such that

τσβ0a1 /∈ {σβa1 | β ∈ �0} ∪ {τ(σβa1) | β ∈ �0, β �= β0}.

Then the equation S = 0 implies that the exponential power series
eτ(σβ0a1)x1+···+τ(σβ0an)xn can be written as a E(x1, . . . , xn)-linear combination of
exponential power series with the exponents different from τ(σβ0a1)x1 + · · · +
τ(σβ0an)xn , and this is impossible. Thus, for everyβ0 ∈ �0, τ(σβ0a1) ∈ {σβa1 | β ∈
�0}.

Step 3 a1 ∈ F.

Consider β0 ∈ �0. Step 2 implies that every element conjugate to σβ0a1 in E over F
is of the form σβa1, where β ∈ �0. In particular, σβ0a1 is algebraic over F . Consider
the minimal polynomial P(t) ∈ F[t] for σβ0a1 over F . The roots of P(t) form a
subset in {σβa1 | β ∈ �0}. We define �P := {β ∈ �0 | P(σβa1) = 0}. Let β1 and
β2 be the smallest and the largest elements of �P with respect to the lexicographic
ordering, respectively. Let

Q(t) := σβ2−β1 P(t) ∈ F[t].

Then the set of roots of Q in E is exactly {σβa1 | β ∈ β2 − β1 + �P }. We will show
that

�P ∩ (β2 − β1 + �P ) = {β2}. (13)

Assume that there is an element β3 in the intersection such that β3 �= β2. Then
β3 − β2 + β1 ∈ �P . The maximality of β2 implies that β3 − β2 <lex 0. Then
β3 − β2 + β1 <lex β1, and this contradicts the minimality of β1 and proves (13).

Consider any common root of P and Q. This root can be written as σβ3a1 where
β3 ∈ �P and as σβ4a1 where β4 ∈ β2 − β1 + �P . Then σβ3+β1a1 = σβ4+β1a1.
Since |β3 + β1| � 2M , |β4 + β1| � 2M , and the a1 is 2M-nonperiodic, we obtain
β3 = β4. Using (13), we see that β2 = β3 = β4, so the only common root of P
and Q is σβ2a1. Then σβ2a1 is the only root of gcd(P, Q) ∈ F[t], so σβ2a1 ∈ F .
Applying σ−β2 , we obtain a1 ∈ F .

6.3 Proof of Theorem 2.1

Proof of Theorem 2.1 Lemma 6.1 implies that there are elements c1, . . . , cs ∈ E such
that det J (c1, . . . , cs) �= 0. Adding these elements to the set a1, . . . , an of generators
of E over F if necessary, we will further assume that rankJ (a1, . . . , an)= s.

For f1, . . . , fr ∈ E and a positive integer m, we introduce

trdeg( f1, . . . , fr ;m) := trdegF F
(
δασβ fi | 1 � i � r , α ∈ Z

s
�0(m), β ∈ Z

t
�0(m)

)
.
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Since every element of E is �-�-algebraic over F , [20, Theorem 2.1] implies that
there exists a polynomial p(z) ∈ Q[z] of degree less than s + t such that

trdeg(a1, . . . , an;m) < p(m) for every m ∈ Z�0.

Since

∣∣∣{(α,β) | α ∈ Z
s
�0(m), β ∈ Z

t
�0(m)}

∣∣∣ =
(
m + s

s

)(
m + t

t

)

and
(m+s

s

)(m+t
t

)
is a polynomial of degree s + t in m, there exists M ∈ Z�0 such that

trdeg(a1, . . . , an; M + n) = p(M + n) <

∣∣∣{(α,β) | α ∈ Z
s
�0(M), β ∈ Z

t
�0(M)}

∣∣∣ .

We will prove by induction on � that, for every 0 � � � n, there exists b� ∈ E such
that

(R1) b� is 2M-nonperiodic;
(R2) det J (δ1b�, . . . , δsb�) �= 0;
(R3) E = F〈b�, a�+1, . . . , an〉;
(R4) trdeg(b�, a�+1, . . . , an; M + n − �) < DM :=

∣∣∣{(α,β) | α ∈ Z
s
�0(M), β ∈

Z
t
�0(M)}

∣
∣∣.

Since E = F〈bn〉, proving the existence of such b0, . . . , bn will prove the theorem.
Consider the base case � = 0. Lemma 6.3 implies that there exists a polyno-

mial P ∈ F[x1, . . . , xn] such that b0 := P(a1, . . . , an) is 2M-nonperiodic and
det J (δ1b0, . . . , δsb0) �= 0. Thus, b0 satisfies (R1) and (R2). (R3) is trivially sat-
isfied. Finally, since b0 ∈ F(a1, . . . , an), we have

trdeg(b0, a1, . . . , an; M + n) = trdeg(a1, . . . , an; M + n),

so (R4) also holds.
Assume that we have constructed b� for some � � 0. We set N := 2(M + 1)t+1

(as in Lemma 6.6) and � := {0, . . . , N }s+1 ⊂ Z
s+1, introduce a set variables

� := {θγ | γ ∈ �} ∪ {θ−1},

and extend the action of � ∪ � from E to E(�) by making all elements of � to be
�-�-constants. Let

B�+1 := θ−1a�+1 +
∑

γ∈�

θγ

γ !b
γ0
� (δ1b�)

γ1 . . . (δsb�)
γs . (14)

We regard any point ϕ ∈ Q
|�| as a function ϕ : � → Q and extend it to a E-algebra

homomorphism ϕ : E[�] → E .
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Claim 1 There exists a Zariski open nonempty subset U1 ⊂ Q
|�| such that

F〈ϕ(B�+1)〉 = F〈b�, a�+1〉 for every ϕ ∈ U1.

Since

trdegF(�) F(�, {δασβB�+1 | α ∈ Z
s
�0(M), β ∈ Z

t
�0(M)})

� trdeg(a�+1, b�, δ2b�, . . . , δsb�; M)

� trdeg(a�+1, b�; M + 1) � trdeg(b�, a�+1, . . . , an; M + 1) < DM ,

the elements of {δασβB�+1 | α ∈ Z
s
�0(M), β ∈ Z

t
�0(M)} are algebraically depen-

dent over F(�). Thus, there exists a �-�-polynomial R ∈ F(�)[δασβ z | α ∈
Z
s
�0(M), β ∈ Z

t
�0(M)] such that R(B�+1) = 0. We will assume that R is chosen to

be of the minimal possible total degree. We introduce

Rα,β : = ∂R

∂δασβ z
(B�+1) for α ∈ Z

s
�0(M), β ∈ Z

t
�0(M) and

Rθγ : = ∂R

∂θγ
(B�+1) for γ ∈ �.

The minimality of the degree of R implies that not all of Rα,β are zero. Consider any
γ ∈ �. Differentiating R(B�) = 0 with respect to θγ , we obtain

∑

α∈Zs
�0(M),

β∈Zt
�0(M)

Rα,βδασβ

(
bγ0
� (δ1b�)

γ1 . . . (δsb�)
γs

γ !

)

= −Rθγ . (15)

We extend the action of � ∪ � from E(�) to E(�)[[x1, . . . , xs]] as in (10). We
multiply (15) by xγ0

0 . . . xγs
s and sum such equations over all γ ∈ �. We obtain

∑

α∈Zs
�0(M),

β∈Zt
�0(M)

Rα,β

[
δασβeb�x0+(δ1b�)x1+...+(δsb�)xs

]

N
=

∑

γ∈�

−Rθγ x
γ0
0 . . . xγs

s . (16)

We apply Lemma 6.6 to (16) with a1 = b�, a2 = δ1b�, . . . , as+1 = δsb� and
F = F〈�, B�+1〉, and deduce that b� ∈ F〈�, B�+1〉. Then there exist nonzero �-�
polynomials P1, P2 ∈ F[�]{z} such that

b� = P1(B�+1)

P2(B�+1)
. (17)

We define U1 := {ϕ ∈ Q
|�| | ϕ(P2(B�+1)) �= 0 and ϕ(θ−1) �= 0}. Since P2 is a

nonzero polynomial, U1 is nonempty. Consider ϕ ∈ U1. Then (17) implies that b� ∈



57 Page 22 of 24 G. Pogudin

F〈ϕ(B�+1)〉. Since ϕ(θ−1) �= 0, a�+1 ∈ F〈ϕ(B�+1)〉, so F〈ϕ(B�+1)〉 = F〈b�, a�+1〉.
The claim is proved.

Claim 2 Let

U2 := {ϕ ∈ Q
|�| | det J (δ1ϕ(B�+1), . . . , δsϕ(B�+1)) �= 0 and ϕ(B�+1) is 2M − nonperiodic}.

Then U2 is a nonempty Zariski open set.

The fact that ϕ(B�+1) is 2M-nonperiodic can be expressed by a system of inequations
as in the proof of Lemma 6.3. Thus, U2 is defined by a system of inequations, so it is
open. Consider ϕ0 ∈ Q

|�| defined by

ϕ0(θγ ) =
{
1, if γ = (1, 0, . . . , 0),

0, otherwise,
ϕ0(θ−1) = 0.

Then ϕ0(B�+1) = b�. We have det J (δ1b�, . . . , δsb�) �= 0 due to (R2) and b� is
2M-nonperiodic due to (R1). Thus, ϕ0 ∈ U2, so U2 �= ∅. The claim is proved.

Consider ϕ ∈ U1 ∩U2 and define b�+1 := ϕ(B�+1). Then (R3) holds because ϕ ∈
U1, (R1) and (R2) hold because ϕ ∈ U2. Since b�+1 ∈ F(a�+1, b�, δ1b�, . . . , δsb�),
we have

trdeg(b�+1, a�+2, . . . , an; M + n − � − 1)

� trdeg(b�, a�+1, . . . , an; M + n − �) < DM .

This proves (R4) for b�+1 and finishes the proof of the existence of b0, . . . , bn such
that (R1), (R2), (R3), and (R4) hold.
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