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It would be very useful to find a way of reducing excited-state effects in lattice QCD calculations of
nucleon structure that has a low computational cost. We explore the use of hybrid interpolators, which
contain a nontrivial gluonic excitation, in a variational basis together with the standard interpolator with
tuned smearing width. Using the clover discretization of the field strength tensor, a calculation using a fixed
linear combination of standard and hybrid interpolators can be done using the same number of quark
propagators as a standard calculation, making this a cost-effective option. We find that such an interpolator,
optimized by solving a generalized eigenvalue problem, reduces excited-state contributions in two-point
correlators. However, the effect in three-point correlators, which are needed for computing nucleon matrix
elements, is mixed: for some matrix elements such as the tensor charge, excited-state effects are suppressed,
whereas for others such as the axial charge, they are enhanced. The results illustrate that the variational
method is not guaranteed to reduce the net contribution from excited states except in its asymptotic regime,
and suggest that it may be important to use a large basis of interpolators capable of isolating all of the

5,6

relevant low-lying states.
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I. INTRODUCTION

One of the most challenging sources of systematic
uncertainty faced by lattice QCD calculations of nucleon
structure is excited-state contamination: the failure to
isolate the ground-state nucleon from the tower of
higher-energy states to which the interpolating operator
can couple. Although the unwanted excited states can be
exponentially suppressed by Euclidean time evolution, this
is hindered by an exponentially decaying signal-to-noise
ratio [1] that makes it impractical to evolve long enough in
Euclidean time.

The variational method [2—4] provides a way of improv-
ing the interpolating operator such that the lowest-lying
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excited states can be systematically removed. Variational
approaches have been used to study nucleon structure in
Refs. [5-9], which used bases of interpolators with different
smearing widths and different site-local spin structures;
Refs. [10-12], which used bases with the standard inter-
polator evolved by different Euclidean time intervals, i.e.,
the generalized pencil-of-function method [13,14]; and
Ref. [15], which used the distillation method to enable
the use of interpolators with a variety of local structures
including covariant derivatives. In these cases, the varia-
tional setup was more computationally expensive than a
standard calculation because of the need for additional
quark propagators with different smeared sources or (for
time-evolved operators) additional source-sink separations.’

In this paper, we present a study of a variational setup
that requires the same number of quark propagators as a
standard calculation, for a fixed choice of optimized

'"The comparison is more difficult when using the distillation
method, which uses timeslice sources rather than the point
sources used in standard calculations.
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interpolator. This is accomplished by supplementing the
standard interpolator with hybrid ones [16] that contain a
gluonic excitation.” In Ref. [16], it was found that the latter
have the next-largest overlaps onto the ground state, after
the standard interpolator, but overlap much more strongly
than the standard interpolator with certain high-lying
excited states. The use of hybrid interpolators presents
the possibility of an improvement over the standard
approach at low computational cost.

It should be stressed that this study, along with all previous
ones in the nucleon sector,” uses only local interpolating
operators, which are poor at isolating multiparticle states. In
practice, the true spectrum that includes Nz- and Nzz-like
states is not identified, meaning that the calculation is notin a
regime where the variational method has been proven to
improve the isolation of the ground state. Therefore, the
question of whether one interpolator is an improvement over
another is an empirical one, to be decided by examining
excited-state contributions in estimators for a variety of
observables.

This paper is organized as follows. Section II discusses
our lattice setup, the basis of interpolating operators, and
two tuning runs. Results for two-point correlators are
discussed in Sec. IIT A, forward matrix elements are shown
in Sec. III B, and form factors are presented in Sec. III C.
Our conclusions are given in Sec. IV.

II. LATTICE SETUP

As this is an exploratory calculation, we use a single lattice
ensemble with a coarse lattice spacing at a heavier-than-
physical pion mass and a relatively small box size; its
parameters are summarized in Table I. This has 2 + 1 flavors
of tree-level improved Wilson-clover quarks coupled to the
gauge links via two levels of HEX smearing [18].

Aside from the interpolating operator, the methodology
used here for computing nucleon matrix elements and form
factors is unchanged from previous work such as Ref. [11];
the reader is referred to that earlier work for details. Our
focus is on seeing whether excited-state contamination
can be reduced, and therefore we use three relatively short
source-sink separations, 7, ranging from 0.70 to 1.16 fm.
We use two methods for determining matrix elements:
the ratio method—for which the asymptotically leading
excited-state contributions decay as e F7/2, where AE is
the energy gap to the lowest excited state—and the
summation method, for which they decay as Te 2T,

Given a set of N interpolating operators {y;}, one would
like to find a linear combination y = v;y; that has a reduced
coupling to excited states. The standard approach is to
compute a matrix of two-point correlators,

“The resulting basis of interpolators is similar to the one called
Bs in Ref. [15].

Bilocal operators were used in Ref. [17], but that was a study
of only spectroscopy and not structure.

Cij(1) = {ri(0x}(0)). (1)
and then solve a generalized eigenvalue problem (GEVP)
C(1)v = AC(11)v (2)

for some choice of (¢, 1,). It has been shown [4] that by
suitably increasing t; and 7, to remove contributions from
higher excited states in the determination of v, one can
define improved estimators for the ground-state energy and
matrix elements, for which the leading excited-state effect
depends on the energy gap to state N + 1 rather than the
second (i.e., first excited) state. However, it is known that
for light pion masses and large volumes, the number of
low-lying excited states with the quantum numbers of the
nucleon is large due to the presence of multiparticle (N,
Nrr, etc.) states [19-26]. Removing the effects of these
states would require that the basis include at least one
operator for each state. In addition, it has been found in
meson spectroscopy calculations that nonlocal multipar-
ticle interpolators must be included in order to correctly
identify the multiparticle spectrum: see, e.g., Ref. [27]. For
nucleons, the need for nonlocal operators is also supported
by chiral perturbation theory, which predicts at leading
order that the ratio of couplings for single nucleon and
nucleon-pion states is the same for all local operators [21].
This defeats the diagonalization procedure of Eq. (2) such
that Nz states cannot be removed.

The challenge of systematically removing all contribu-
tions from the lowest-lying excited states will be left to
future work. Instead, we hope to find an improved local
operator that can be used in existing software with minimal
modifications and with little additional computational cost.
Our standard operator is

X1 = 6abc<ﬁ£C75P+ab)ﬁc7 (3)

where P = (1 +y,4)/2 is a positive parity (nonrelativistic)
projector and g is a smeared quark field. When used in a
two-point or three-point correlator with a polarization
matrix that includes a factor of P, the projector is applied
to all three quarks. This allows for computational cost
savings in the quark propagators used for constructing
correlators: only half of the propagator solves are required
[28]. Of the three possible site-local nucleon operators, y;
is the only one that can be constructed using positive-
parity-projected quark fields (see e.g., Appendixes B and C
of Ref. [29]).

We also consider hybrid operators, introduced in
Ref. [16], which include an insertion of the chromomag-
netic field B; = —%ei jkF ji and are interpreted as having a
nontrivial gluonic excitation. Using the clover discretiza-
tion of F,, [30], no additional quark propagators are
needed for constructing two-point correlators using hybrid
operators. Two different nucleon operators exist that use
positive-parity-projected quark fields:
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TABLE L

Parameters of the ensemble and measurements used in this work. The lattice spacing is taken from Ref. [18], where it is set

using the mass of the Q baryon at the physical point. N .,; refers to the number of gauge configurations analyzed and N, =
2 X Negnt X N i the number of measurements performed. The factor of 2 in N, accounts for the use of forward- and backward-

propagating states.

Size p am,y am a [fm] am,

my [MGV] mﬂL T/a Nconf Nsrc Nmeas

243 x 48 331 -=0.09530 —-0.04 0.11634)

0.1499(7)

254(1) 3.6 {6.8,10} 600 48 57600

X2 = Sabc[(Biﬁ)ZCVjP+ab]7i}’jﬁc
— €apc[BL Cy ;P (Bid), ]y iy ke (4)

X3 = €abc[<Biﬁ>£C7jP+ab]Pijac
- Sabc[f‘aTCVjP+(Bigl)h]Pijﬁm (5)

where P;; = §;; — %y,-y ;- These differ in the spin of the three
quarks: for y; it is § and for x5 it is 3. In both cases, this is
combined with the chromomagnetic field to produce an
overall spin of %

Our production strategy begins with two tuning runs
where only two-point correlators are computed. The first
uses only y; and serves to select the quark smearing
parameters. The second serves for determining the coef-
ficients v; of an optimized operator y ., = v;y;. These are
followed by a production run with higher statistics in which
both two-point and three-point correlators are computed.
The three-point correlators are computed using the standard
operator y; and the linear combination y,, in both cases
keeping the same operator at the source and the sink. For
three-point correlators, using yy at the source and the sink
requires a different sequential propagator than for y,, but
the total number of propagators needed in each case is the
same. We chose not to compute all nine combinations of

source and sink interpolators in three-point correlators
because this would require nine times as many sequential
propagators as a standard calculation.

A. Tuning of quark smearing

We use Wuppertal smearing [31], § o (1 +aH)"gq,
where H is the nearest-neighbor gauge-covariant hopping
matrix constructed using the same smeared links used in the
fermion action. The parameter « is fixed to 3.0, and N is
varied to produce different smearing widths. The smearing
radius is determined by taking a color field ¢(X) with
support only at the origin and then defining a density from
the squared norm of the smeared field: p(X) = |p(X)|>.
Finally, we take the root-mean-squared radius:

_ 25 iPe(x)
s S ©)

For the tuning run, we used N € {20,40,70, 110,160},
which correspond roughly to r/a € {3,4,5,6,7}.

Figure 1 shows the effective mass ame (1) = log C(C;(J:)a)
for each smearing width. For t = 2a and 3a, we can see that
the minimum lies near N = 40 and 70. Based on this, we
decided to use the same smearing parameter, N = 45, that
was used in a previous calculation [11,32,33].

0.95
0.90 -
0.85 4

0.80 -

oRe

g
W
S

smearing scan
t o
b Xopt
4 variational

EETTL Y

FIG. 1.

t/a

Effective mass of the nucleon. The five open gray circles at each 7 show results from the low-statistics tuning of the quark

smearing: the number of smearing steps increases from left to right. Filled symbols are from the full-statistics run: the standard operator
(green circles), yop chosen based on the second tuning run (orange squares), and the variationally optimized operator based on the full-

statistics run (blue diamonds).
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FIG. 2. Components of the generalized eigenvector v;, normal-
ized to v;. The GEVP was solved for f;/a €]l,5] and
(t, — 11)/a € [1,3]. The horizontal lines indicate the values used
in the optimized operator y o, = v;x;, determined from the lower-
statistics tuning run.

B. Tuning of variational operator

The hybrid operators are constructed using a chromo-
magnetic field made from smeared gauge links. We take
the smeared links to which the fermions couple in the
action and then apply additional three-dimensional stout
smearing4 [34]: 20 steps with p = 0.1. The traceless part
of the clover definition of the field strength tensor is used.

For the second tuning run, we computed the full 3 x 3
matrix of two-point correlators. Solving the GEVP yielded
the coefficients v; for y.,; we did this at the largest
available time separations before the noise became too
large. For our choice of operators, the correlator matrix is
real and thus v, are also real. Normalizing such that v; = 1,
we selected yop = x1 — 4.4y, — 7.3x3. The determination
of coefficients from the subsequent full-statistics run is
shown in Fig. 2 for a range of ¢, and £, in the GEVP. Our
selection based on the tuning run is consistent with the
values determined at large times in the full run.

III. RESULTS

A. Two-point correlators

The full 3 x3 matrix of two-point correlators was
computed in the full-statistics run, allowing for a more
detailed analysis. We begin by determining the excited
energy levels using the variational method. Solving the
GEVP at (t,t,) = (3a,5a) yields an eigenvector v, for
each state n. This allows us to define projected correlators
C,(1) = v,,C(t)v, and then compute their effective ener-
gies; these are shown in Fig. 3. The two excited energies
are nearly degenerate and lie in the range from 1 to
1.5 GeV above the ground-state nucleon; this is similar to
the hybrid states observed in Ref. [16]. However, we stress

*We have not studied the effect of varying this.

2.0

1.5 4 ¢ I'

1.0 1
N
*
.’0000000.’+

0.5 1
00 T T T T T T

0 2 4 6 8 10 12

t/a
FIG. 3. Effective energies for the three GEVP-projected corre-

lators at zero momentum (in order of increasing energy: blue
diamonds, orange squares, and green circles) and energies from
the four-state fit (horizontal bands). The colors of the bands
correspond to the effective energy with which they are identified
in Sec. Il A; the additional state has a magenta band. The
horizontal range of the bands indicates the time separations in the
two-point correlator matrix that are fitted.

that this should not be considered a reliable determination
of the spectrum, as many lower-lying excitations are
expected and cannot be identified using our small basis
of three operators.

The presence of residual excited-state effects in the
effective mass (Fig. 1) suggests that more than three states
are needed to describe the two-point correlators. We employ
the fit model

X1 X2 X3 Xopt

FIG. 4. Overlap factors normalized to the ground state,
Z;n/Z; . These are shown for the three operators y; and for
their linear combination y .-
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FIG. 5. Effective energies of the nucleon at nonzero momentum. See the caption of Fig. 1. Note that y and y,, were tuned at zero
momentum, whereas the full variational analysis is retuned at nonzero momentum.

NSIGICS
Cij(1) = Z ZinZjne ", (7)
n=1
with the energies ordered E; < E, < ---. We obtained a

good fit to the range #/a € [3, 12] using Nes = 4, which
yielded y?/dof = 0.89 (p = 0.68). The four energy levels
are shown in Fig. 3. States 3 and 4 are consistent with the

effective energies from the GEVP-projected correlators for
the two excited states with #/a = 3. The additional energy
level, state 2, sits below the two excited states identified by
the GEVP.

This identification of states between the GEVP and the
four-state fit is also supported by Fig 4, which shows
the overlap factors normalized to the ground state,
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FIG. 6. Isovector axial, tensor, and scalar charges (g4, g7, and gg) and isovector momentum fraction (x),_, determined using the

standard interpolator y; (open symbols) and the linear combination of standard and hybrid interpolators y (filled symbols). Ratio-
method data are shown for source-sink separations 7/a = 6 (green diamonds), 8 (orange circles), and 10 (blue squares), and are plotted
versus the operator insertion time z, shifted by half the source-sink separation. Summation-method (magenta triangles) data are based on
the discrete derivative of sums, [S(T + 2a) — S(T)]/(2a); the two points correspond to T/a = 6 and 8.

Z;n/Z;. It also shows the normalized overlap factors for
the operator y,,, which are determined via Zy , = v;Z; -
The fit results indicate that y; has a significant overlap with
state 4, which is eliminated in y,. The overlap of y; with
state 3 is consistent with zero, and this is preserved in y oy
despite the large overlaps of y, and y; with state 3. The
operators show no significant difference in the relative
overlaps with states 1 and 2; because of this, the GEVP was
insensitive to state 2 and was unable to eliminate the
coupling of y,p to it.

Finally, we can compare effective energies produced
using different operators. In addition to y; and y, which
were tuned at zero momentum using reduced statistics, we
also perform a new variational analysis based on the full-
statistics run. In Fig. 1, there is no significant difference
between y,,; and the new variational operator. Both of them
have smaller effective masses than y; at early times,

indicating a significant reduction in excited-state contribu-
tions. However, they also suffer from increased statistical
uncertainty. Figure 5 shows the same comparison at non-
zero momentum. In all cases, y,y, shows smaller excited-
state effects than y;. At the smallest values of ¢, the new
variational operator also shows an improvement over y .
and this effect grows with momentum. This is not surpris-
ing, as the new variational operator is tuned for each
momentum, whereas y,,, was chosen at p = 0.

B. Forward matrix elements

We have only computed two combinations of source and
sink interpolators in three-point correlators: those with the
same interpolator at the source and the sink, which is
chosen to be either y; or y,,. For comparing these two
setups, we start by considering observables computed from
1sovector matrix elements at zero momentum: the axial,
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FIG. 7. [Isovector Dirac and Pauli form factors, F; and Fj, FIG. 8. Isovector axial and induced pseudoscalar form factors,

determined using the standard interpolator y; (open symbols) and
the linear combination of standard and hybrid interpolators y
(filled symbols). Ratio-method data are shown for source-sink
separations 7/a = 6 (green diamonds), 8 (orange circles), and 10
(blue squares). Summation-method (magenta triangles) data are
based on fitting a line to the three sums.

tensor, and scalar charges (g4, g7, and gg), and the average
momentum fraction (x),_,.

Results are shown in the “plateau plots” of Fig. 6. The
behavior depends strongly on the observable. For g4, ¥opi
produces a much stronger dependence on the operator
insertion time, 7, indicating a significant enhancement of
excited-state contributions. The opposite is true for gr,
where excited-state effects appear to be significantly sup-
pressed when using y,. The difference between the two
operators is relatively small for gg and (x),_,. It is particu-
larly problematic that y,, which appears to be an improved
operator based on the two-point correlator, produces signifi-
cantly enhanced excited-state effects in g,. In addition,
across all observables y,, produces consistently larger
statistical uncertainties.

We have also explored the use of simultaneous four-state
fits to two-point and three-point correlators. However, for

G, and Gp. See the caption of Fig. 7.

each operator O the corresponding fit model has ten
independent unknown matrix elements (n'|O|n). Since
we have computed three-point correlators with only two
combinations of source and sink interpolators, the fits are
unable to constrain most of the operator matrix elements.
This prevents the use of four-state fits to understand what
causes the differences between y; and y, for estimating
matrix elements.

C. Form factors

The isovector form factors F| and F, of the electro-
magnetic current are shown in Fig. 7 and the form factors
G4 and Gp of the axial current are shown in Fig. 8. The
results are rather mixed. For F, near ¢>Q* = 0.3 and for
F1, xopt Produces a weaker dependence on the source-sink
separation than y;, indicating the suppression of excited-
state contributions. However, the opposite is true for F, at
lower Q% and for G,. For Gp, the two operators produce
similar excited-state effects, which are very large at low Q2.
Chiral perturbation theory predicts this large excited-state
contribution [25] as a result of nucleon-pion states, which
the hybrid operators are unlikely to help remove.
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IV. CONCLUSIONS

The use of a variational basis comprising a standard
interpolating operator and hybrid ones presents the pos-
sibility of reducing excited-state contamination in nucleon
structure calculations at low computational cost. In two-
point correlators, this is borne out, as seen in Figs. 1 and 5.
However, in nucleon structure observables that depend on
three-point correlators there is no consistent result. The
tensor charge shows significantly reduced excited-state
effects, whereas the axial charge shows increased effects.’
Other observables show little change and for form factors
the result can depend on Q2. If one also takes into account
the increased statistical uncertainty, then the setup using
hybrid interpolators appears to be not worth pursuing
further in its current form.

Results from the four-state fit indicate that the variational
procedure succeeds at suppressing some excited states
while another lower-lying state is unaffected. The presence
of many relevant excited states suggests ways of under-
standing the results: one possibility is that for the axial
charge, the variational procedure spoils a partial cancella-
tion of contributions between two different excited states.
Since operator matrix elements do not play a role in the
GEVP, there is no guarantee that reducing the net con-
tribution from excited states in the two-point correlator will
do the same in three-point correlators.

The opposite effect was seen using a different basis of
interpolators in Ref. [7], where the variational analyses produced
reduced excited-state effects for g, and enhanced excited-state
effects for gy, compared with the interpolator Ss.

Reliably improved results using the variational method
can only be obtained by being in the asymptotic regime of
Ref. [4]. This means that all low-lying excitations must be
identified, including multiparticle states, which in practice
require nonlocal interpolators. Doing so amounts to a
challenging computation; however, as this work has shown,
half-measures (such as using a small number of local
interpolators) do not consistently reduce excited-state
contamination in nucleon structure observables.
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