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Abstract

The use of mineral pigments, specifically iron-oxide rich mineral pigments called ochre, has been put
forward as a key elementinthe development of symbolicand non-utilitarian behaviorsin human
evolution. However, the processes of ochre procurement, trade and use are difficult to
conceptualize without the identification and characterization of the sources where these materials
were acquired. We present the results of geochemical analyses of ochre source samples collected
fromthe SwabianJura, Black Forest, and otherlocalitiesin southern and eastern Germany. The goal
of this study was to build the groundwork for future investigations on the range of ochre behaviors
at archaeological sitesin the region. Ouraim was to determine whether certain ochre outcrops
could be differentiated based on their geochemical signatures. Using data from Neutron Activation
Analysis (NAA), we were able to determine that the ochre source regions exhibit greatersource
inter-variability than intra-variability when observed using arange of statistical techniques,
therefore satisfying the provenance postulate. Furthermore, the data provide the foundation fora
Central European database of ochre sources to allow the comparison of ochres from different

regionsto archaeological ochres from important nearby and perhaps distant sites.

Mineral pigments, ochre, neutron activation analysis (NAA), Europe, multivariate statistics

1. Introduction

The use and manipulation of earth mineralsinto usable pigments haslongbeen atthe
centerof models for the emergence of modern behaviorsin hominin species (McBrearty and Brooks,
2000, Henshilwood and Marean, 2003, d'Errico and Henshilwood, 2011, Zilhdo, 2011, d'Errico, et al.,
2003, Nowell, 2010, Wadley, 2001, Wadley, 2003, Wadley, 2006). Of the earth pigments used by
hominins, red ochre (aseries of rocks, clays, and sediments containing varyingamounts and mineral
phases of iron oxides/hydroxides) is one of the most frequently reported materials and was perhaps
the most widely used pigment producing materialin ancient contexts (Dart, 1975, Wreschner, 1981,
Veloand Kehoe, 1990, O'Connorand Fankhauser, 2001, Bernatchez, 2008, Henshilwood, et al., 2009,
Watts, 2009, Roebroeks, etal., 2012, Salomon, etal., 2012, Hodgskiss, 2012, Dayet, etal., 2016,
Zipkin, 2015, Brooks, et al., 2016, Hodgskiss and Wadley, 2017, Rosso, et al., 2017). The presence of
ochrein large quantities at African archaeological sites, in addition to insights from ethnographic
groups, have spurred investigations into the potential range of uses for this material (Rifkin, 2015a,
Rifkin, 2015b, Wadley, 1987, Tacon, 2004, Watts, 1998). These studies have shown the usefulness of
ochre for non-symbolicor “functional” applications (Rifkin, 2015a, Rifkin, 2011, Rifkin, etal., 2015,
Wadley, 2005, Hodgskiss, 2006).
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Though traditional qualitative analyses of archaeological ochre assemblages provide useful
insights on the range of colors, textures, and types of ochre artifacts (Watts, 2009, Hodgskiss, 2012,
Hodgskiss and Wadley, 2017, Rosso, etal., 2017, Watts, 2010, Rosso, et al., 2014, Velliky, etal.,
2018), incorporating geochemical datainto this repertoire can supplement hypotheses on aspects of
ochre behavior, including mineral selection and exchange (Pradeau, etal., 2014, Anderson, etal.,
2018, Bernatchez, 2012, Sajd, et al., 2015, Dayet, etal., 2013, Salomon, 2009, MacDonald, et al.,
2013, MacDonald, et al., 2018, Huntley, etal., 2015). Information on the mineralogical aspects can
shed light on geological formation, mineralogical composition and the life-history of ochre materials,
while ochre geochemical fingerprinting can highlight regional acquisition patterns and the
movement of materialsinthe landscape. Observing these qualitative and quantitative data
collectively allows for a holisticapproach to investigating the entire process behind mineral pigment

behaviors of ancient populations.

In European contexts, much research emphasisis placed onidentifying early occurrences of
ochre and pigments, specifically regarding Neanderthal symbolicbehavioral and cognitive capacities
(Roebroeks, etal., 2012, Salomon, etal., 2012, Hoffmann, et al., 2018, Heyes, etal., 2016, Bodu, et
al., 2014, Dayet, etal., 2014, Dayet, etal., 2019). Moreover, the use of mineral pigmentsis well
documented forthe Upper Paleolithic (UP) (ca. 44-14.5 kcal. BP) of Western (Salomon, et al., 2012,
Pradeau, etal., 2014, Bodu, etal., 2014, Dayet, et al., 2014, Guineau, etal., 2001, d'Errico and
Soressi, 2002, Soressi and d'Errico, 2007, Zilhdo, etal., 2010, Roman, et al., 2015, de Lumley, etal.,
2016, Couraud, 1983, Couraud, 1988, Couraud, 1991) and Southern Europe (Gialanella, etal., 2011,
Peresani, etal., 2013, Cavallo, etal., 20173, Cavallo, etal., 2017b, Cavallo, etal., 2018, Fontana, et
al., 2009). Yet, ochre researchin Central Europe remains comparatively understudied, even though
some of the most well-known and prominent sites of the Upper Paleolithicin Central Europe, such
as Hohle Fels (Velliky, etal., 2018) and GeilRenkldsterle (Gollnisch, 1988) in southwestern Germany,

have also produced extensive evidence of pigment use.

Here, we presentthe results of aninvestigation on ochre sourcesin southern, western, and
eastern Germany. Followingaseries of surveys, we collected modern-day source materials from
“local” (<80 km), “regional” (80-300 km), and “distant” (>300 km) ochre sources. These locational
classifications are arbitrarily defined based on ourinvestigative epicenter, the archaeological sites of
the SwabianJura(Section 2.2). The samples were then geochemically characterized using Neutron
Activation Analysis (NAA) in orderto address three questions: 1) whatis the degree of inter- and
intra-source elemental variability of the ochre source deposits and sub-outcrops?; 2) do the source
chemistries satisfy the provenance postulate (Weigand, etal., 1977)?; 3) how have environmental

and landscape changes possibly impacted collection opportunities during the Late Pleistocene in this
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region? The results of these investigations allow for a more nuanced approach to exploring potential
areas of ochre acquisition throughout southern and eastern Germany and the possible impacts of
climate and environment on source availability. They willfurthermore contribute towards
establishing the necessary groundwork forfuture ochre comparative studies with archaeological

materials.
2. Background

2.1 Previous Geochemical Studies on Ochre

Geochemical research on minerals found in archaeological contexts have explored and
reconstructed ancient networks of movement, migration, trade and how people interacted and
engaged with these materials. These studies commonly include ceramics, clays, lithic materials, and
metals. Includedin this suite is ochre, a colloquialterm referring to any earth material containing
enough Fe-oxide or hydroxide to produce a color streak (Watts, 2002), and has been collected by
homininssince atleast ca. 270 ka BP (Barham, 2002, McBrearty, 2001). Though ochre can be a
difficult material for provenance studies due to its heterogeneity (any clay, sediment, orrock with
>3% Fe-oxide)(MacDonald, etal., 2018, Cornell and Schwertmann, 2003, Popelka-Filcoff, etal.,
2007), research on the geological and elemental components of ochre sources and their chemistry
has been successful in attributing different archaeological materials to certain source areas (Dayet,
et al., 2016, Popelka-Filcoff, etal., 2008, MacDonald, et al., 2011). North Americanresearchers have
successfully used NAA (MacDonald, etal., 2013, Popelka-Filcoff, et al., 2007, Popelka-Filcoff, etal.,
2008, MacDonald, et al., 2011, Kingery-Schwartz, etal., 2013), Particle Induced X-ray Emission (PIXE)
(Beck, etal., 2012, Erlandson, etal., 1999), Laser Ablation—Inductively Coupled Plasma-Mass
Spectrometry (LA-ICP-MS) (Bu, etal., 2013, Eiselt, etal., 2019) and portable X-ray Fluorescence
(Koenig, etal., 2014) to document ochre sources, theirassociated archaeological components and
rock art pigmenttechnologies and characteristics. Similar studies in Africa using Inductively Coupled
Plasma-Optical Emission Spectrometry (ICP-OES) (Dayet, et al., 2016, Moyo, etal., 2016), LA-ICP-MS
(Zipkin, etal., 2017) and PIXE (Bernatchez, 2008) documented ochre formations and the interplay
between humans, the landscape and ancientacquisition and use of ochre pigments. Severalstudies
in Australasia using asimilar suite of analytical methods have revealed the diversity in ochre
materials, including those used for rock art pigments (Huntley, etal., 2015, Huntley, 2015, Scadding,
et al., 2015, Jercher, etal., 1998). Otherstudiesinthisregion have furthermore shown ochre
pigmentsinrockart sites that pre-date many European contexts and have expanded our knowledge

of the spread and antiquity of this material (Aubert, etal., 2014, Aubert, etal., 2018).
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In Europe, muchresearch concerningthe Middle and Upper Paleolithic has focused on
characterizing types of rock art mineral pigments (Hoffmann, etal., 2018, Gialanella, etal., 2011,
Smith, etal., 1999, Chalmin, etal., 2006, Resano, etal., 2007, Chalmin, etal., 2007, Jezequel, etal .,
2011, Lahlil,etal., 2012, Roldan, etal., 2013, Bonjean, etal., 2015, Iriarte, etal., 2009), ochresfrom
within archaeological settlement contexts (Salomon, et al., 2012, Pradeau, etal., 2014, Roman, et
al., 2015, Salomon, etal., 2008), artifacts with ochre residues (Zilhdo, etal., 2010, Capel, et al., 2006,
Cuenca-Solana, etal., 2016), and identifying evidence of heat treatment of ochresin ancient
contexts (Cavallo, etal., 2018, Salomon, etal., 2015). Some recent studiesin Italy and Spain have
shown promise fora provenance-based analysis of archaeological materials and local and/or distant
ochre sources usinga combination of methods such as X-ray Diffraction (XRD), Raman Spectroscopy,
ICP-MS, XRF, and Scanning Electron Microscopy (SEM-EDX) (Sajo, etal., 2015, Cavallo, etal., 20173,
Cavallo, etal., 2017b, Roman, et al., 2019). To date, no provenance-based studies of ochre materials
and theirarchaeological counterparts have taken place in Germany, though one study in Hungary
was able to associate a well-known Epi-Gravettian (ca. 14-13 ka BP) hematite source to nearby

archaeological sitesin Hungary (Sajo, etal., 2015).
2.2 Ochre artifacts from the Ach Valley cave sites

The Ach Valley of the Swabian Jura (Ger. Schwdbische Alb), in Southwestern Germany, and has
beenan area of interest for Paleolithic research since the late 19% century (Fraas, 1872, Riek, 1934,
Riek, 1973, Schmidt, etal., 1912). Archaeological excavations conductedin the cave sites of this
region have yielded numerous symbolicartifacts from the earliest Aurignacian (ca. 44-34 kcal. BP)
sequencesin Europe, whichinclude a ‘Venus’ figurine and other statuettes made from mammoth
ivory (Conard, 2003, Conard, 2009, Dutkiewicz, etal., 2018), musical instruments (Conard, etal.,
2009), and personal ornaments (Wolf, 2015, Hahn, 1977, Hahn, 1988). Two cave sitesinthe Ach
Valleyyielded numerous ochre and ochre-related artifacts dating to the Upper Paleolithic(ca. 44-
14.5 kcal. BP), including ca. 900 ochre pieces from Hohle Fels, some with traces of modification
(Velliky, et al., 2018). GeiRenkldsterle contains 278 artifacts with several varieties of hematite and
limonite, as well asa supposed ochre layer or Rételschicht in the Aurignacian layers (Hahn, 1988).
Several painted limestone pieces bearing parallel rows of painted red dots also come from Hohle
Fels (Conard and Malina, 2010, Conard and Malina, 2011, Conard and Malina, 2014, Conard and
Uerpmann, 1999), and a painted limestone fragment with traces of pigment have been reported
fromthe GeiRenklosterle Aurignacian (Hahn, 1988). These artifacts document the range and wealth
of ochre behaviors atthese sites, and the presence of numerous otherlithicand faunal elements

suggest that the two caves were occupied intensively butintermittently throughout the Upper
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Paleolithic (Niven, 2003, Conard and Moreau, 2004, Miinzel and Conard, 2004, Barth, et al., 2009,
Bataille and Conard, 2018, Taller, 2014, Tallerand Conard, 2016).

2.3 Regionsof study

The goal of our research presented here was to understand the numerous ochre artifacts from
the Ach Valleysites (Hohle Fels, GeiRenklosterle; Velliky, etal., 2018, Gollnisch, 1988) inthe context
of regional practices of procurement, use and discard, and to evaluate the potential forfuture
provenance-based studies. With these scopesin mind, we mapped, described, sampled and
performed NAA characterization on samples from potential ochre sources located in the region
immediately surrounding Hohle Fels and GeiRenklosterle caves. We investigated the Black Forest (or
Schwarzwald), as this area has a known history of hematite mining extending back to the Neolithic
Linearbandkeramik (LBK) cultural period (Goldenberg, etal., 2003, Schreg, 2009). Lastly, we analyzed
ochres from the Harz Mountains and from Geyer-Erzgebirgein Thiringen, which were donated from
oldergeological collections. In this section we provide some background information regarding the

geology of these fourareas.
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Fig. 1: Geological maps of southern and eastern Germany showing all ochre source areas analyzed in this study. Sub-figs are as follows: A) Swabian Jura (local) sources, B) Black Forest
(regional) ochre sources, as well as two sources (Rudelstetten and Tormerdingen) included in the Swabian Jura sources, C) Harz Mountain and Geyer (distant) ochre sources. Relevant
Paleolithic cave sites in the Swabian Jura are also noted. Maps based on published data (Geyer and Villinger, 2001, Szenkler, et al., 2003, BGR, 2003), and field observations of the authors.
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2.3.1 Swabian Jura

The Swabian Jura (Fig. 1, detail Aand B) is bounded by the Neckar Valley to the north, the
Danube to the south, the Black Forest tothe westand the NordlingerRiestothe east. Itis an
extension of the larger Jura mountain range which extendsinto France and Switzerland. Previous
geological (Borger, etal., 2001), geomorphological (Barbieri, etal., 2018), and archaeological studies
(Schreg, 2009, Reinert, 1956, Reiff and Bohm, 1995), as well aslocal knowledge (V. SachandR.
Walter, personal communication, 2017) provided information on locations of known and potential
sources. The bedrockis composed of Jurassiclimestone comprising three main types: black, brown
and white (Schwarzer, Brauner, and WeifSer Jura) (Geyerand Gwinner, 1991, Schall, 2002). Marls,
mudstones and sandstones also occur, as well as molasse and volcanicrocks formed during the
Miocene (Barbieri, etal., 2018, Geyerand Gwinner, 1991). Numerous karsticfeatures are foundin
the landscape, including the caves, which often hold archaeological materials (Barbieri, etal., 2018,
Miller, 2015). Remnants of Tertiary sediments are found throughout the karsticfeatures and dry
valleys; of these, the Bohnerze and associated Bohnerzlehm formations are perhaps the most
relevantinregardto possible Fe-oxide sources. Bohnerze (sing. Bohnerz), or “bean ore”, are highly
compacted pebbles of goethite and hematite, formed by iron precipitating through limestone and
accumulatingin karsticfissures (Borger, etal., 2001, Ufrecht, 2008). Bohnerzlehm (bean ore clay)
occurs withthe Bohnerze and is an iron-rich kaolinite clay (Borger, etal., 2001, Ufrecht, 2008). These
features once formedalarge sheetacross the Swabian Jura (Borger, etal., 2001), and remnants of
thisformation were afocal pointfor surveyinthisregion. Other geomorphological studiesin the
Swabian Jurareport lateriticmaterials and hematite-rich lateritic pebbles, limonite crusts andiron
concretionsinsandstones, and deeper hematite-containing horizons associated with UpperJurassic

deposits (Borger, etal., 2001).
2.3.2 Black Forest

The Black Forest (Fig. 1, detail B) is one of the oldestand most geologically complex regions
in Germany with a total area of around 6,000 km? (Walter, etal., 2017, Markl, 2016, Murad, 1974,
Stoberand Bucher, 1999, Brockamp, et al., 2003). The bedrock consists of granite and gneiss formed
duringthe Paleozoicwith later Triassic Magmatite inclusions (Stoberand Bucher, 1999). The
overlyingrockis predominantly red sandstone formed during the Rotliegend period, though other
metamorphicand sedimentary varieties occur. Here, hematite forms in hydrothermal veins with low
contents of non-ferrous metals and Fe-oxides are also found in the exposed red sandstone features
(Brockamp, etal., 2003). So far, ithas been established that the hydrothermally formed hematite
was mined from the Neolithicperiod to the Middle Ages (Goldenberg, etal., 2003, Schreg, 2009).
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Though Alpine Glaciers did not completely cover the Black Forestaround the time of the Last Glacial
Maximum (LGM), around 30 ka BP, the southern portion saw intermittent glaciation during the
Wirm stadials and interstadials and thus confirmed our decision to focus on the areas that were

accessible beforeand afterthe LGM (lvy-Ochs, etal., 2008, Litt, etal., 2007, Schliichter, 1986).
2.3.3 Harz Mountains

The Harz Mountain range (Fig. 1, detail C) extends across the German states of Lower-
Saxony (Niedersachen), Saxony-Anhalt (Sachsen-Anhalt), and Thuringia (Thiiringen). Their formation
isthe result of intensive folding during the Paleozoicerafollowed by tectonicuplifting during the
Cretaceous. Much of the overlyinglayers were eroded and the remaining base rock is whatforms
the mountainstoday (Sano, etal., 2002, Brink, 2011, Ullrich, etal., 2011). Though itis quite
geologically diverse, common rock types include Gabbro (whichis still extensivelymined today),
granite, limestone, and shale, to name a few. The Harz Mountains have a history of ancient mining
activities (mainly Pb but also Niand Fe) extending back to the Iron Age (Ullrich, etal., 2011,
Matschullat, etal., 1997, Voigt, 2006, Kaufmann, etal., 2015). The Fe-oxide formations here are
varied andinclude iron-rich sandstones associated with the larger Buntsandstein formation,
hydrothermal hematite veins occurring along graniticrocks, and early Jurassicooidal iron stones
formed by early marine deposits (Sano, etal., 2002, Ullrich, etal., 2011, Kaufmann, etal., 2015,
Nadoll, etal., 2018, Young, 1989, Dreesen, etal., 2016), the latter of which constitute the samples

analyzedinthis study.
2.3.4 Geyer (Erzgebirge)

Geyerisa townlocatedinthe Erzgebirgekreis districtin Saxony (Sachsen), Germany. Itis
part of a largerformation extendinginto Bohemiaand was formed by the Variscan Orogeny during
the late Paleozoic. The geological basementis mainly formed of mediumto high-grade micaschists
and gneisses (Seifertand Sandmann, 2006, Daly, 2018). The regionis well-known forits extensive
silverand tin deposits which were mined extensively in the 13t century, but were known as far back
as the Bronze Age (Miiller, et al., 2000, Scheinert, etal., 2009). These ores are presentin
hydrothermal polymetallic veins throughout the landscapeandinclude iron, copper, lead, and iron
and manganese oxides (Seifertand Sandmann, 2006, Tischendorf and Forster, 1994). It is for these
metallicvein formations thatthe Erzgebirge is also referred to as the “Ore Mountains” (Daly, 2018,
Scheinert, etal., 2009). Both the Harz Mountains and Geyer-Erzgebirge were ice-free during the late

Pleistocene exhibiting alargely treeless tundra-based environment (lvy-Ochs, et al., 2008).

3. Materials and methods
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3.1 Sample selection and description.

We conducted surveysin SwabianJuraand Black Forestin summerand early autumn of
2017, usingarchaeological and GPS equipment provided by the University of Tiibingen. Ochre
samples from the Harz Mountain and Geyer sources (Fig. 1, detail C) were donated from older
private collections. As such, no physical surveys were conducted in thisregion. Fig. 1displaysamap

with the source locations.

To clarify terminology, we use ochre source and Fe-oxide source interchangeably toreferto
specificlocations where these materials were collected. Source regions referto the large-scale areas
where several outcrops were mapped, such as the Black Forest or the SwabianJura, and sub-sources
or outcrops referto specificconfined points where samples were gathered. The materials that we

collected and analyzed in this study are referred to as ochre samples or specimens.

For the Swabian Jura, we focused oursurveyona ca. 20 km radius of Hohle Fels and
GeilRenklosterle caves (Fig. 1, detail A and B), since this region might have been easily accessed by
the hunter-gatherers that populated the Ach Valley during the Pleistocene. Within thisareawe
mapped 17 ochre outcrops, collecting 106 samples. Ata further distance from this area(ca. 60 km
from Hohle Fels), we analyzed samples from the Rudelstetten (Rudel) ochre source which were
generously donated to the study by R. Walter. For the scope of this paperwe considerall these

sources as “local” (<80 km fromthe Ach Valley).

Additionally, we surveyed the northern and central areas of the Black Forest (Fig. 1, detail B),
due to its proximity to the Swabian Jura(ca. 115 km) and knowledge and advice from geologists
workinginthe region at the University of Tibingen (U. Neuman, personal communication, 2017). In
these areas, we collected 46 ochre samples from 5 different outcrops. The amounts we collected
from each outcrops varied dependingon its size: Rappenloch (Rappen), forexample, was a large
depositand we collected 22 different samples from a total area of ca. 400 m. We considerthese

outcropsas “regional” ochre sources (80-300 km from the Ach Valley).

Lastly, we analyzed two ochre nodules which were donated from older geological
collections. The specimens come from two locations: one from the Harz Mountainrange, and
anotherfromthe locality of Geyer-Erzgebirge in Saxony (Fig. 1, detail C). Forthe aim of this paper we

regard these samples as distant ochre sources (>300 km).

All sampled outcrops were photographed and described either during or post-survey. For
the fine-fraction we reported color (Munsell Soil Color Book 2009), texture (by “feel” Vos, etal.,

2016), and cohesion (USDA-NRCS, 2012). For the coarse fraction we documented shape (Zingg,



98
99
100

101

102

103
104
105

106

107
108
109
110
111
112

113
114

11

1935), roundness (Powers, 1953), and size (ISO 14688-1:2002 standard). We described also cohesion
(USDA-NRCS, 2012) and color (Munsell Soil Color Book 2009) of iron nodules and concretions. When

possible, we described also stratigraphy and bedding of the sources.

HZ.108.2

GR.104.1

B0O10.68.2
RP.129.4

TM.102.1
RPR.135.10

RP.134.9 BO7.62.16

HB.120.1 RU.105.1
O 2cm

Fig. 2: Ochre samples from each of the regions analyzed. Selected analyzed samples from all investigated regions. Sample
ID’s correspond to Sl Table C. HZ and GE labels are Harz Mountain samples, RP and HB are Black Forest specimens, and GR,
BO, TM, and RU are Swabian Jura samples.

3.2 Neutron Activation Analysis (NAA)

We characterized the ochre samples from the Swabian Jura, Black Forest, and Harz regions
using Neutron Activation Analysis (NAA), with several sub-samples being taken fromindividual
source samples to evaluate intra-source variation. In total, we performed measurements on 83 sub-
samples from the Swabian Jura ochres, 46 on the materials from the Black Forest, and 10 on the
samples fromthe Harz region. Table 1 shows a breakdown of the number of NAA measurements

sorted persource region and outcrop.

All NAA measurements were conducted atthe Archaeometry Laboratory in The University of

Missouri Research Reactor (MURR) using standard procedures described in greater detail elsewhere
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(MacDonald, etal., 2018, Popelka-Filcoff, etal., 2008, Eiselt, etal., 2011). Two thermal neutron
irradiations were conducted to collect data on elements that produce short-, medium-, and long-
lived radioisotopes. Ochre samples and standard reference materialsin polyvials were irradiated via
pneumatictube systemfor10s at a flux of 8 X 10'3 n cm2 s, Samples were each allowed to decay
for 25 minutes, at which pointgammaray energies for elements that produce short-lived isotopes
(Al, Ba, Ca, Dy, K, Mn, Na, Ti, and V) were measured by a hyper-pure germanium detector (HPGe) for
12 min. The quartz encapsulated samples were subjected to a 24—hour irradiation at a neutron flux
of 6x 10'3 n cm?s*. Aftera 7-10 day decay, the radioactive samples were measured for 2000 s to
obtain data on medium-lived isotopes (As, La, Lu, Nd, Sm, U, and Yb), and again after 2-3 weeks for
8200 s to measure forlong-lived isotopes (Ce, Co, Cr, Cs, Eu, Fe, Hf, Ni, Rb, Sb, Sc, Sr, Ta, Tb, Th, Zn,
and Zr). The spectral datawere calculated to elemental concentrations usingin-house software and
calibrated to NIST standard reference materials by comparator method. These analyses generated

elemental concentration values for 33 elementsin most of the samples analyzed.

Table 1: List of samples measured with NAA sorted by region and ochre source.

SwabianJura(n = 83) Black Forest(n=46) Harz Mountains (n = 10)
Local <80 km Regional 80-300 km Distant >300 km
Allmendingen (n=12) Kirchbierlingen (n=1) Hechtsberg (n=9) Geyer-Erzgebirge (n=5)
Altheim (n=10) Ringingen (n=5) Nussbach (n=5) Harz (n=5)
Bohnerz 1-8 (n=27) Rudelstetten (n=5) Rappenloch (n=22)
Gerhausen (n=5) Schelklingen (n=8) Schollach (n=5)
Herz-JesuBerg(n=5) Tormerdingen (n=5) Zindelstein (n=5)
4. Results

4.1 Source Description
4.1.1 Swabian Jura

4.1.1.1 Allmendingen

In a section exposed within a quarry located some 5 km south of the town of Schelklingen (Fig.
1, detail A), we distinguished three main sedimentary units (Sl Fig. D). The upper most unit
corresponds tothe modern soil, below this we distinguished a ca. 60 cm thick layer composed of
triaxial to oblate, sub-angulartoangular, fine gravel-to boulder-sized fragments of limestone

embeddedin brownsilty clay. Underneath this sediment, we documented a possible molasse
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deposit, which appeared at least 2 m thickand was composed of triaxial to oblate, well-rounded,
fine gravel-to cobble-sized fragments of limestone, marls and sandstones. The coarse fraction
exhibited upwards fining and often appeared coated with athin (<1 mm thick) very dusky red to
dark red crust of iron--manganese oxides. The fine fraction (clayey sand to silty clay) was very dense
and exhibited alternating red and yellowish-brown colors, and cemented the coarse fraction
together. Based on the alternating colors of the matrix and difference in grain size, it was possible to
distinguish cross-beds. All over the ground surface within the quarry, we noticed red to yellowish -
red sandy clay to clay outcrops. We characterized representativesamples of all the “red clays”

documentedinthissource with NAA.
4.1.1.2 .Altheim

In a quarry located about 4 km south from Hohle Fels (Fig. 1, detail A), we documented three
sections, eachdowntoca. 3 m deep. Below the ground surface, the entire exposed sequence
consisted of cross-bedded molasse deposits, which are mainly made fromloose, dark yellowish-
brownto lightyellowish-brown sand and silt. Both sand and siltfractions appearedveryrichin
micas. Coarse fraction appeared rare and was composed of triaxial, sub-rounded to well-rounded,
fine to medium gravel of limestone, sandstone, quartz, and dolomite. The Altheim deposits exhibited
numerous reddish greygray to strong brown discontinuous laminations. Theselaminations appeared
fromonly a few millimeters to ca. 20 cm thick, and within the latter we identified prolate, sub-
angular, up to medium gravel-sized, very dense and strong brown iron nodules. Furthermore, the
sandstone and limestonefragments buried insidetheseiron-stained laminations appeared
extensivelyimpregnated with iron oxides. We also collected and characterized asample of these

sandstones with NAA.
4.1.1.3 Bohnerz (1-8)

On top of the plateauand alongthe hillsidesin the surroundings of Hohle Fels cave we
mapped 8 Bohnerz sources (Fig. 1, detail Bohnerz 1-8). These sources correspond to Bohnerz nodules
embeddedin various sediments, and were visiblein exposures and depressions resulting from
forestry road construction, historical mining activities, tree fall, and natural erosion. Bohnerz nodules
appearas triaxial to equiaxial, sub-angular to sub-rounded, fine gravel- to cobble-sized,very dense
iron concretions. Smaller Bohnerz (up to medium gravelsized) are usually made from single
individualgrains, while larger Bohnerz can be composed of many individual grains cemented
together. The color of Bohnerz varies from black, reddish black, very dusky to dark yellowish brown

(see Table Cin Sl).
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The loose sedimentin which Bohnerz nodules are buried displays high variability, even
within each single source (Sl Fig. E). The fine fraction exhibits discontinuous texture (from clayey silt
to clay), and color (from yellowish brown, to dark brown, and red). In most of these sediments,
Bohnerznodules occuras the main (or only) coarse fraction components. However, in the source
Bohnerz 4 we documented the presence of weathered, triaxial, sub-angular, medium to coarse
gravel-sized fragments of [imestone, and in Bohnerz 3 and 5 we identified fresh, triaxial, angular, fine
gravel-sized fragments of limestone generally smallerthan 1 cm in diameter (this sedimenttypeis

alsoknowninthe region as Bergkies, see Barbieri, 2019).
4.1.1.4 Gerhausen

From this quarry (Fig. 1, detail A) we received a large aggregate of nearly pure, well sorted,
compact, red clay, which we subsampled for with NAA. The sample was collected by R. Walterca. 3
m below surface during mining activities, and appears to be part of a larger Bohnerzlehm formation

with some larger, sub-rounded Bohnerz nodule inclusions (Fig. 5, detail 1).
4.1.1.5 Herz-JesuBerg

On top of the hill Herz-Jesu Berg (Fig. 1, detail A), located in the town of Schelklingen, we
mapped Bohnerz outcrops that were visible in exposures resulting from the construction of forestry
roads. We decided to considerthe Bohnerz from Herz-Jesu Berg as a separate source since they
display slightly different colors (dark reddish brown to very dark brown) than those from the other
Bohnerz sources. Furthermore, they have been buried together with weathered, triaxial and oblate,

poorly sorted, well-rounded, medium and coarse gravel-sized limestone fragments.
4.1.1.6 Kirchbierlingen

From the Pleistocene-aged terraces located ca. 5 km south from the present day course of
the Danube River (Fig. 1, detail A) we reportthe occurrence of rare, very dense, triaxial, sub-
rounded, fine gravel- to medium gravel-sized, very dark gray to black hematite concretions. We
investigated one of these concretions with NAA. These hematite fragments werevisible as surface
findsinrecently ploughed fields (yellowish brown, silty clay), where they occurtogether with triaxial,
sub-rounded to well-rounded, poorly sorted fine to coarse gravel of imestone, sandstone, quartz,

feldsparand dolomite.
4.1.1.7 Ringingen

In a quarry located some 6 km south eastfrom Hohle Fels cave (Fig. 1, detail A), we

investigated two, ca. 8 m deep, exposed sections. These sequences display composition, color, and
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structure generally comparableto the deposits described at Altheim. However, at Ringingen, reddish
grey to strong brown laminations appear more continuous and thicker (up to 50 cm), especially2m
below the ground surface. We collected well-sorted loose samples from these features for

characterization with NAA.
4.1.1.8 Rudelstetten

These samples of compacted dusky-red clay were collected by R. Walter from an exposure located
on outskirts of the small town of Radelstetten, located ca. 18 km northeast of Hohle Fels and
situated inthe larger White Juraformation (Fig. 1, detail B). The sample is a fine-grained clay tosilty-

clay (Bohnerzlehm) with very few small (<1 cm) Bohnerzinclusions.
4.1.1.9 Schelklingen

In 2 sections exposedin limestone quarry located ca. 1 km south from the town of
Schelklingen we mapped a laterally discontinuous Bohnerzlehm deposit composed of triaxial, poorly
sorted, angular medium gravel-sized to cobble-sized weathered fragments of limestone embedded
ina loose, redtoyellowish brown, clayey sand tosilty clay (Fig. 1, detail A; Fig. 5, detail 2). This
depositrestsin between the modernsoil and the [imestonebedrock, anditappearsupto 2 m thick.

Due to the quarryingactivity it was not possible to verify furtherits structure.
4.1.1.10 Tormerdingen

A large clay block was donated to us by R. Walterfrom this ochre outcrop, whichissituatedin
the larger White Jura formation that extends to the northeast of Hohle Fels (Fig. 1, detail A). As such
we do not discuss its original stratigraphic context. The sample itselfis afine-grained clayey sand to

silty clay (Bohnerzlehm) with <1 cm pebble-sized inclusions of Bohnerz nodules (Fig. 2).
4.1.2 Black Forest
4.1.2.1 Hechtsberg

Locatedin betweenthe towns of Haslach (to the west) and Hausach (to the east),
Hechtsbergis an active quarry mainly of biotite-bearing gneisses (Fig.1, detail B). Here, we
documented a4 m deep north-facing granite exposure (ca. 50 m east-west) bearing weathered iron-
oxide veins onthe profile. From this section, we sampled several triaxial hematite fragments which
were generally sub-rounded, showing fine-grained sand to silty textures and ranging from reddish

black to very dusky red in color.

4.1.2.2 Nussbach
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On a hillside north of Nussbach (Fig. 1, detail B), from where reports cite the occurrence of
hematite and quartz associated with granitic porphyries (Leiber, 2000), we identified and sampled a
small (ca.1 x 1.5 m) section exposed due to construction activities. Along this section, ca. 1 m below
the modern-day surface, we distinguished a Fe-oxide deposit compared of sub-angular pebble to
cobble sized fragments of granite and quartzembedded in amoderately sorted matrix of loose, dark
red sand and clay. In this sediment we also identified semi-compacted sub-angularand rounded
pebble-sized red to darkred iron-rich nodules. The size of the exposure limited extensive sampling

of thissource.
4.1.2.3 Rappenloch

The Rappenloch source isa former mine located inthe town of Eisenbachinthe
“Hochschwarzwald” or High Black Forest (Fig. 1, detail B). The area was mined for Fe and Mn
depositsin mineralized fissures within graniticoutcrops. The mine closed in 1942 and has since
experienced significant overgrowth and revegetation (Sl Fig. G). In this quarry we sampled several
small pits and exposures ranging from depths of ca. 30 cm — 60 cm alongthe southernand western
faces of the hill totaling ca. 400 m in length. These exposures showed mostlydark red to reddish-
black medium-densely packed sand with sub-angularand sub-rounded pebble to cobble-sized
fragments of granite. We also sampled from an exposed profile (ca. 50 cm - 1.5 m) near the bottom
of the formermine, showing a dusky to very dusky red, predominantly clay-based and relatively
well-sorted sediment capped with medium to coarse grained sand with some sub-angularand

angularsandstone fragments.
4.1.2.4 Schollach

We identified a discontinuous outcrop on a small hillside located ca. 2 km southeast of the
town of Schollach (Fig. 1, detail B), which was exposed due to road construction activities. The
outcrop (ca. 2 x 1.5 m) consisted of dark reddish brown to weak red loosely compacted and
moderately sorted sandy-clay with alow amount of pebble and cobble-sized sub-angularand sub-

rounded gravel-sized fragments of calcicsilicaterocks (S| Fig. H).
4.1.2.5 Zindelstein

In the Breg valley nearthe town of Hammereisenbach (Fig.1, detail B), we sampled one
exposed outcropinanabandoned granite and gneiss quarry with hydrothermal veins containing
fluorite, graphite, quartz and feldspars. The amount of erosion and overgrowth made it difficult to

properly map certain exposures, and we thus focused on one location withaca. 2 m high wall and
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30 m long (east-west)wall. The analyzed samples come from dark reddish-brown well-sorted iron-

rich clay aggregates formingin fissures within the granite outcrops.
4.1.3 Harz and Geyer-Erzgebirge
4.1.3.1 Geyer-Erzgebirge

One large densely compacted ironstone was donated to the study from an oldergeological
collection. This single piece from the “Ore Mountain” region nearthe town of Geyer (Fig.1, detail C)
isa silty dark reddish gray and produces a very dusky red streak; though the exact stratigraphical
contextcannotbe described, itwas likely formed as a mineral depositin hydro-thermal veins

commonto theregion.
4.1.3.2 Harz Mountains

Pieces of botryoidal ironstone from the Harz Mountain region (Fig.1, detail C) were donated
for the study from older geological collections, one of which we sub-sampled and characterized with
NAA. The analyzed piece was adensely compacted silty dark reddish-gray ironstone producing a

dark red streak and showing Glaskopf or “kidney ore” morphology (Fig. 2).
4.2 NAAresults

In total, 139 ochre survey samples were characterized by NAA. Elemental concentration data
isprovidedin Sl Table G with means and standard deviations shownin Sl Tables A-B, as well as more

detailed descriptions of specificelemental characteristics from each ochre source.

4.2.1 Statistical exploration of data

Because the iron content can vary significantly, and that variability can artificially amplify or
dilute the presence of otherdiagnostictrace elements, itis often advantageousto convertall
elemental concentration values to a ratio of iron content (Fe-normalization). Itis also useful in
circumstances where the Fe-oxide deposits may have undergone significant weathering and
subsequent elemental substitution. The atomicstructural similarity of some transition metalsand
rare earth elements (REEs) toiron readily permits their substitution into Fe-oxide structures (Cornell
and Schwertmann, 2003). Therefore, the datawere transformed prior to statistical testing with Fe-
normalization and log10. Both of these transformations are used to compensate forthe variationin
magnitude between major, minor, and trace elements, and are necessary for scale-dependent,
multivariate discriminant statistics (e.g. PCA) (Dayet, etal., 2016, MacDonald, et al., 2013, Popelka-
Filcoff, etal., 2007, Popelka-Filcoff, etal., 2008, MacDonald, etal., 2011). However, itisimportant

for such data transformations to be assessed for their efficacy before considering those values as
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statistically representative. In our statistical exploration, including iterative bivariate plotting
(element concentrations, log10Fe-normalized ratios), PCA and CDA, we consistently found that
using data transformed to ratios to Fe content, and subsequently transformed tolog 10values

generated the clearest separation of source groups.

Element-pairbivariate plotting did notyield clear separation for most ochre source groups
and was minimally informative (see supplementary text: Results). Both PCA and CDA showed the
same degree of group separation when all sources are plotted together (Fig. 3; S| Fig. C). Here, we
show results of CDA, performed on log10 Fe-normalized values for all possible elements (Sm/Fe,
Ce/Fe, Sc/Fe, La/Fe, U/Fe, Sb/Fe, Cr/Fe, As/Fe; all others excluded due to excessive zero values). Fig.
3 isa bivariate plot of CD#1 versus CD#2, showingthe distribution of sources highlighted by region.
CD#1, which accounts for 70.0% of the variance, is driven primarily by elements Sm (-1.36) and Eu
(1.36), while elements driving CD#2(16.1% variance) are Sm (-1.10), Eu (1.39), and Sc (-0.56). Table 2
showsthe relevant CDA datafor Figs 3 and 4, but all CDA scoring coefficients and discriminant
functions are providedin Sl Tables E-F. Because CDA tends to maximize inter-group variation, the
separation of sources by regionis particularly accentuated. The variation in the Swabian Jurasources
is significantly minimized, suggesting thatall groups share similar geochemical characteristics. The
Harz Mountain sources are differentiated from otherregions, and the CDA projection shows
strongerseparation between the Black Forest sources, suggesting a high degree of chemical
variability within and between sourcesin that region. The distant ochre sources consistently
associated with each other, and are therefore collectively labeled as the Harz Mountain sources. The
Rappenloch source, located in the Black Forest, showed high heterogeneity with certain samples,
likely due to theirvarying Bacontent. Based on this, we made the decision to project these as

separate “Rappen” and “RappenB” groupsin Fig. 3.

To furtherinvestigateif the Swabian Jurasources can be differentiated, a subsequent CDA
was conducted on a sub-set of only Swabian Jurasources. Fig. 4 is a bivariate plot of CD#1 versus
CD#3, showingseparation of most Swabian Jurasources. Here, CD#1 accounts for 38.5% of the
variance andis driven by Sm (-0.35) and Eu (-0.27). CD#3 accounts for 20.5% of the variance and is
driven primarily by elements Sm (1.37), Eu (-0.94) and Nd (-0.53) (Sl Table F) These results further
highlight regional and sub-regional scale variability in ochre sources. When all sourcesin all regions
were included, Black Forest and Harz Mountain sources could be reasonably diffe rentiated,
however, the Swabian Jurasamples exhibited consistent overlap (see Fig. 3). When Black Forestand
Harz Mountain sources were removed and a new CDA was performed, the Swabian Jurasources

were more readily separated. These results suggest the potential foramoderately consistent
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internal elemental signature, which indicates promise for future local versus non-local artifact

provenance investigations.
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Fig. 3: Bivariate plot of CD#1 versus CD#2 for all sources, highlighted by region. Note how most Swabian Jura groups
overlap. Harz Mountain sources are significantly different, while Black Forest sources exhibit the widest distribution at both
source and sub-source levels. Ellipses are drawn at 90% confidence.

5. Discussion

5.1 Ochre source characterization

Previous research has demonstrated the potential for ochre provenance by bulk elemental
analysis (Dayet, etal., 2016, MacDonald, etal., 2013, MacDonald, etal., 2018, Popelka-Filcoff, etal.,
2008, MacDonald, et al., 2011, Kingery-Schwartz, etal., 2013, Zipkin, etal., 2017, Eiselt, etal., 2011,
Pradeau, etal., 2015). The results of this study are consistent with otherresearch in demonstrating
that itis possible to differentiate ochre sources and sub-sources based on elemental chemistry,

wheninterpreted using acombination of stepwise, multi-element statistical approaches.

From the Swabian Jura, the Bohnerzlehm sources of Gerhausen, Rudelstetten, Schelklingen,

and Tormerdingen consistently group togetherin both bivariate (Sl Figs. A-B) and multivariate (SI Fig.
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C) projections, and exhibit the highestamount of Al (>10%, Table Ain SI). Thisassociation and
elemental compositionis likely indicative of clay-based minerals (possiblykaolinite), which are
commonly reported from Bohnerzlehm deposits (Borger, et al., 2001, Ufrecht, 2008). Most of our
Bohnerz samples display high variability but, as a whole, tend to overlap with the Bohnerzlehm
specimens (Fig. 4; SI Figs. A-C). This could be due to the fact these sources formedin the same region
and likely in similar environment(s) (Borger, et al., 2001, Ufrecht, 2008). Inthe field, we
distinguished the source of Herz-Jesu Berg from the other Bohnerz outcrops as it contained rounded
gravel inclusions, indicative of fluvial deposition. By comparing the elevation of this outcrop with
riverterraces reported from Schmiech, Ach, and Blau valleys, we hypothesize that this sediment
accumulated by the Danube Riverinthe Early Pleistocene (Geyerand Villinger, 2001, Szenkler, etal.,
2003, Kaufmannand Romanov, 2008). In bi-elemental comparisons (Sl Figs. A-B), the Herz-Jesu Berg
Bohnerz samplestendto plot with the larger Bohnerz group. However, when observed using CDA
(Fig.4), Herz-Jesu Berg samples separate from the other Bohnerz sources. This difference may be
due to the fact that the Bohnerz fragments from Herz-Jesu Berg might have been eroded from
formations located several tens of kilometers away from the Ach Valley. Samples from the molasse
deposits of Allmendingen and Ringingen appear separated and distinct form Bohnerzlehm and
Bohnerz sources when observed with multivariate statistics (Fig. 4). They contain Al (ca. 3%, Table A
in Sl) and exhibit comparativelyhigh concentrations of K (1.5 % to 3%, Table Ain SI). This
composition mightindicate the presence of kaoliniteandillite clays, the latterlikely deriving from
the weathering of micas that are abundantin molasses deposits. In our bivariate plots, it was not
always possible to differentiate Kirchbierlingen from Ringingen, oreven from the Black Forest
sources. This may be because Kirchbierlingen corresponds to a Pleistocene-aged Danube terrace
made from components eroding from granites located inthe Alps and molasse deposits located in

the Swabian Jura (Geyerand Villinger, 2001, Szenkler, etal., 2003).



367

368
369
370
371

372

21

2 T
T
TN
DN
Lo
. CL
O
™
P
N Kirschb
= -1k
(]
O Ringin
-2 |
Herzjes
=) l l | l
&) -2 1 0 1 2

co 41 (38.57)

Fig. 4: Bivariate plot of CD#1 versus CD#3 for eight Swabian Jura sources. Note that while the single Kirchbierlingen
(Kirschb) sample falls within the ellipse of Ringingen source in this projection, it separates out in other CDA projections. Also
note the similarity of the Bohnerz source group when projected with the other Swabian Jura source samples. Ellipses are

drawn at 90% confidence.

Table 2: Canonical discriminant functions and elemental contributions for CDA plots shown in Figs 3 and 4.

Fig. 3 cD1 cD2 Fig. 4 cD1 cD3
Variable  70.08 16.10 Variable  -0.351 1.370
Sm/Fe -1.36 -1.10 Sm/Fe -0.265 -0.939
Eu/Fe 1.36 1.39 Eu/Fe 0.677 -0.531
La/Fe 0.39 -0.50 Nd/Fe 0.292 0.086
Ce/Fe 0.06 0.35 Yb/Fe 0.712 0.038
Th/Fe -0.14 0.11 Dy/Fe -0.464 -0.020
Sh/Fe -0.79 0.61 Lu/Fe -0.538 -0.058
Sc/Fe -0.34 -0.56 Sh/Fe -0.295 0.056
Cr/Fe 0.54 0.02 Al/Fe 0.593 -0.129
As/Fe -0.07 -0.46 Th/Fe -0.072 0.159
Mn/Fe -0.16 -0.01 La/Fe -0.100 -0.064
U/Fe -0.28 0.13 Sc/Fe -0.351 1.370
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The Harz Mountain sources (both Harz and Geyer-Erzgebirge) exhibit high Fe and Sb values
and separate from all Black Forest and Swabian Jurasamplesinthe bivariate (Sl Figs. Aand B) and
multivariate (Fig. 3; S| Fig. C) projections. Regarding the Black Forest sources, though the Rappenloch
samples exhibited high variability due to the high amount of Ba presentin some of the samples, they
contained above average light REE concentrations. This may be due to the volcanicrock basic of the
central Black Forest and the formation of these hematite veinsinigneous rock exposures (Fleet,
1984, Humphris, 1984). The elemental heterogeneity of the Rappenloch source inthe Black Forestis
likely caused by localized instances of element mobility due to weathering (Cornell and
Schwertmann, 2003, Pollard, etal., 2007, Shatrovand Voitsekhovskii, 2013, Babechuk, etal., 2014),
the relative size of the exposure (ca. 400 m sampled forthis project) and the numerous intensive
metamorphiceventsinthe geological history of the central Black Forest (Chen, etal., 2000). It
should be stressed that the labels of the sources are place-names, and should not necessarily always
be treated as the same compositional group when trendsin elemental geochemistry strongly
suggestotherwise. Itis possible to have two different sub-sources (as indicated by the compositional
groups, Rappen and RappenB) inone larger geographically confined source. Itisalsoimportantto
note that we were able toidentify the variability within the Rappenloch source due to the number of
samples we analyzed (n=22). It is possible that with more extensive sampling of this source, as well

as the othersource analyzedin this study, other patterns of homogeneity or variability may emerge.

5.2 Further prospects: Investigating the environmental and geological processes

responsible for variation in source accessibility

The Swabian Jura has witnessed intense environmental and climaticfluctuations throughout
the Pleistocene, which promoted alternating phases of soil formation, river valley incision, hillside
erosion and floodplain aggradation (Barbieri, et al., 2018, Barbieri, 2019). In this section, we explore
the possibility of acausal link between these events and similar geomorphological processes and

how they might have facilitated orimpeded humans from accessing potential ochre sources.

Materials exhibiting composition, texture, color, and compaction comparable tothe Bohnerz
and Bohnerzlehm formations are common inthe deposits preserved inside the cave sites of the
SwabianJura (Fig. 5, detail 2; Miller, 2015, Jahnke, 2013, Barbieri and Miller, 2019a).
Micromorphological analyses conducted at Hohle Fels and GeiRenklosterle inthe Ach Valley
revealed thataggregates made from compact, red, iron-stained clay occur with high frequency in
depositsdating to the Middle Paleolithicand the late Aurignacian (Miller, 2015, Goldberg, etal.,
2003). Results from semi-quantitative analyses conducted at Hohlenstein-Stadel cave in the Lone

Valley, approximately 50 km northeast from Hohle Fels (Fig. 1, detail B), show that Bohnerz and
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kaolinite aggregates similarto those documented at Hohle Fels are more frequentin the sediments
pre-datingthe LGM (Fig. 5, detail 3; Barbieri, etal., 2018, Barbieri, 2019, Barbieri and Miller, 20193,
Barbieriand Miller, 2019b). These observations are in agreement with coring datafromthe Lone
Valley where, from adepth of ca. 6 m, Barbieri (etal 2018, 2019) recovered adeposit (GL315) made
from compact, red kaolinite (with light reddish pale speckles), extensively impregnated with iron
oxides (Fig. 5, detail 4). The core GL 315 may correspond to a Bohnerzlehm deposit that was
reworked downslope into the Lone Valley by colluviation processes, possiblyduring the Early/Middle
Pleistocene (Barbieri, 2019). Subsequently, GL315 was incised by the Lone River and covered with a
ca. 30 cm thick colluvial deposit that was remarkably rich in Bohnerz and iron-manganese nodules
(GL37-41, GL 266; Fig. 6, detail 4). Thissedimentyielded dates ranging between ca. 36-29 kcal. BP
(Barbieri, etal 2018, 2019). The sediments restingon top of GL 37-41 and GL 266 contained very rare
components which exhibited texture, composition, structure and color comparable with the Bohnerz
and Bohnerzlehm formations (Fig. 6, details 2and 4). Thus, we conclude that the outcrops of these
formations were likely more visiblein the landscape of the Swabian Jura (and potentially exploited
for ochre use) during their more intensive erosional phase before 29kcal BP. This hypothesis, though

speculative, has the potential to be validated with future analyses.
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Fig. 5: Bohnerz from the Swabian Jura. 1) Sediment aggregates containing Bohnerz fragments, photo taken during
Swabian Jura survey; 2) Larger Bohnerz fragments identified during sorting of archaeological material excavated at Hohle
Fels (photo: Maria Malina); 3) Core 12 drilled in the Lone Valley opposite from the Hohlenstein caves. The detail shows the
deposits GL36-GL42, which appear rich in Bohnerz and display an extensive iron-manganese impregnation of both fine and
coarse fraction; 4) Core 31 drilled in the Lone Valley downslope from the Bockstein caves. The detail show GL 266, which is
very close in composition to GL36-42 (modified from Barbieri, et al. 2018, Barbieri, 2019), and; 5) Detail of Bohnerz
fragments from GL42.
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Fig. 6: Clays impregnated with Fe-oxide from the Swabian Jura. 1) Red clay and sand outcropping at Schelklingen,
photographed during Swabian Jura survey; 2) Detail of a clay aggregate from Gerhausen (picture width is ca. 10 cm) (photo:
Rudolf Water); 3) Aggregate composed of clay, silt and sand within Middle Paleolithic sediment at Hohlenstein-Stadel in the
Lone Valley; 4) Core 5 recovered from the Lone Valley opposite from the Hohlenstein caves. The detail shows the deposits
GL315, mainly composed of iron stained kaolinite, and GL316, formed from weathered limestone gravel impregnated with
iron-manganese oxides. Based on cross-correlation with other coring data, these sediments accumulated before 36 kcal. BP
(Barbieri, et al. 2018, Barbieri, 2019).

Shortly after 30 kcal. BP, the Ach and Lone valleys underwent anintensive erosional phase,
which led to the removal of sediments and archaeological materials from the cave sitesinthe
region. Erosion was followed by a phase of floodplain aggradation, in which the Ach and Lone valleys
were covered with upto 5 m-thick deposits of reworked loess and frostinduced limestone debris
(Barbieri, etal., 2018, Barbieri, 2019). These dramaticgeomorphological processes may have
impacted the local ochre sources by decreasing theirvisibility and accessibility to groups that
inhabited the Swabian Jura afterthe LGM. On the otherhand, the movement of glaciers out of the
Black Forest left numerous tarns, deepened valleys, and exposed geological and topographic
features which may have facilitated the identification of potential ocher source areasinthisregion
(Ivy-Ochs, et al., 2008, Kellerand Krayss, 1993). All of these hypotheses have the potential to be

testedinthe future with a provenance-based assessment using the data presented hereand
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archaeological remains fromthe Swabian Jurasites. By first establishing that Fe-oxide materials
these respectiveregionsin Germany can be differentiated based solely on their geochemistry, we
have provided a platform upon which to conduct future comparisons with ochre artefactsin orderto
identify theirgeological source origins. Itis ultimately our goal to use our data to explore these
hypothesesrelated to human behavioral complexities surrounding ochre collection, transportation

and interaction.

6. Conclusion

Regardingourfirstresearch goal, the results presented hereshow that Fe-oxide sourcesin
Germany can be differentiated by elemental composition. Most sources can be distinguished ona
regional and sub-regional scale using stepwise multi-element statistics, indicating the possibility to
distinguish local versus non-local and distant ochre artifact provenance. Regarding our second goal,
we were able to separate Fe-oxide sources onaregional and partially sub-regional scale though
there was some intra-source variability, such as with the Rappenloch source. There was also inter-
source grouping as observed with the Schelklingen and Gerhausen sources, though these two
outcrops are located within ca. 5 km of each other and are part of the same Bohnerzlehm formation.
Thus, the provenance postulate (Weigand, etal., 1977) is not supported forall of the sampled
outcrops, though was supported on a largerscale with the regional ochre sources. Lastly, we believe
that the substantial transportation of the Bohnerzlehm featuresin the Swabian Juramay have
impacted the source geochemistry (like with the Herz-Jesu Berg samples, forinstance)and may have
decreased source visibility and accessibility following 30 kcal BP. Based onthe dramaticlandscape
changesfollowing the LGM, we expectthat populationsinthe Swabian Jura may have soughtother
areas fortheirochre resources, though socio-cultural factors may also have beenthe primary driver
for shiftsin collection areas and strategies. Our current data, as it stands, cannot confirmeither

scenario, though these hypotheses have room forexplorationinthe future.

Our motive forinvestigating ochre sourcesin the region of the Swabian Jurais threefold: 1)
the presence of numerous ochre pigment artifacts throughout the entire Uppe r Paleolithic(ca. 44-
14.5 kcal. BP) (Velliky, etal., 2018) suggest anintensive practice of ochre and human interactions,
which requires an extensive knowledge of the landscape and where to collect these materials; 2) the
results presented here can potentially facilitate a provenance -based analysis of these materials that
would be the first of its kind in the Swabian Jura; and 3) the geochemical data of the ochre sourcesin
the sampledregions can provide the groundwork for expanding a European ochre database. Though
this preliminary study offers promise, we believe that furtherand more extensive samples of the

sourcestested here, aswell as othersources within and outside of Germany, may offer more
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valuable insightinto the geological varieties of ochre. Itis also our hope that the latter motive will
encourage anincreased focus on studyingthe range and depth of ochre behaviorsinthe Upper
Paleolithicof Europe and foster furtherlandscape and provenance-oriented studies on the

recognition, collection, and transportation of materials during the late Pleistocene.
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