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Abstract 28 

The use of mineral pigments, specifically iron-oxide rich mineral pigments called ochre, has been put 29 

forward as a key element in the development of symbolic and non-utilitarian behaviors in human 30 

evolution. However, the processes of ochre procurement, trade and use are difficult to 31 

conceptualize without the identification and characterization of the sources where these materials 32 

were acquired. We present the results of geochemical analyses of ochre source samples collected 33 

from the Swabian Jura, Black Forest, and other localities in southern and eastern Germany. The goal 34 

of this study was to build the groundwork for future investigations on the range of ochre behaviors 35 

at archaeological sites in the region. Our aim was to determine whether certain ochre outcrops 36 

could be differentiated based on their geochemical signatures. Using data from Neutron Activation 37 

Analysis (NAA), we were able to determine that the ochre source regions exhibit greater source 38 

inter-variability than intra-variability when observed using a range of statistical techniques, 39 

therefore satisfying the provenance postulate. Furthermore, the data provide the foundation for a 40 

Central European database of ochre sources to allow the comparison of ochres from different 41 

regions to archaeological ochres from important nearby and perhaps distant sites.  42 

Mineral pigments, ochre, neutron activation analysis (NAA), Europe, multivariate statistics 43 

1. Introduction 44 

The use and manipulation of earth minerals into usable pigments has long been at the 45 

center of models for the emergence of modern behaviors in hominin species (McBrearty and Brooks, 46 

2000, Henshilwood and Marean, 2003, d'Errico and Henshilwood, 2011, Zilhão, 2011, d'Errico, et al., 47 

2003, Nowell, 2010, Wadley, 2001, Wadley, 2003, Wadley, 2006). Of the earth pigments used by 48 

hominins, red ochre (a series of rocks, clays, and sediments containing varying amounts and mineral 49 

phases of iron oxides/hydroxides) is one of the most frequently reported materials and was perhaps 50 

the most widely used pigment producing material in ancient contexts (Dart, 1975, Wreschner, 1981, 51 

Velo and Kehoe, 1990, O'Connor and Fankhauser, 2001, Bernatchez, 2008, Henshilwood, et al., 2009, 52 

Watts, 2009, Roebroeks, et al., 2012, Salomon, et al., 2012, Hodgskiss, 2012, Dayet, et al., 2016, 53 

Zipkin, 2015, Brooks, et al., 2016, Hodgskiss and Wadley, 2017, Rosso, et al., 2017). The presence of 54 

ochre in large quantities at African archaeological sites, in addition to insights from ethnographic 55 

groups, have spurred investigations into the potential range of uses for this material (Rifkin, 2015a, 56 

Rifkin, 2015b, Wadley, 1987, Taçon, 2004, Watts, 1998). These studies have shown the usefulness of 57 

ochre for non-symbolic or “functional” applications (Rifkin, 2015a, Rifkin, 2011, Rifkin, et al., 2015, 58 

Wadley, 2005, Hodgskiss, 2006).  59 
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Though traditional qualitative analyses of archaeological ochre assemblages provide useful 60 

insights on the range of colors, textures, and types of ochre artifacts (Watts, 2009, Hodgskiss, 2012, 61 

Hodgskiss and Wadley, 2017, Rosso, et al., 2017, Watts, 2010, Rosso, et al., 2014, Velliky, et al., 62 

2018), incorporating geochemical data into this repertoire can supplement hypotheses on aspects of 63 

ochre behavior, including mineral selection and exchange (Pradeau, et al., 2014, Anderson, et al., 64 

2018, Bernatchez, 2012, Sajó, et al., 2015, Dayet, et al., 2013, Salomon, 2009, MacDonald, et al., 65 

2013, MacDonald, et al., 2018, Huntley, et al., 2015). Information on the mineralogical aspects can 66 

shed light on geological formation, mineralogical composition and the life-history of ochre materials, 67 

while ochre geochemical fingerprinting can highlight regional acquisition patterns and the 68 

movement of materials in the landscape. Observing these qualitative and quantitative data 69 

collectively allows for a holistic approach to investigating the entire process behind mineral pigment 70 

behaviors of ancient populations. 71 

In European contexts, much research emphasis is placed on identifying early occurrences of 72 

ochre and pigments, specifically regarding Neanderthal symbolic behavioral and cognitive capacities 73 

(Roebroeks, et al., 2012, Salomon, et al., 2012, Hoffmann, et al., 2018, Heyes, et al., 2016, Bodu, et 74 

al., 2014, Dayet, et al., 2014, Dayet, et al., 2019). Moreover, the use of mineral pigments is well 75 

documented for the Upper Paleolithic (UP) (ca. 44-14.5 kcal. BP) of Western (Salomon, et al., 2012, 76 

Pradeau, et al., 2014, Bodu, et al., 2014, Dayet, et al., 2014, Guineau, et al., 2001, d'Errico and 77 

Soressi, 2002, Soressi and d'Errico, 2007, Zilhão, et al., 2010, Román, et al., 2015, de Lumley, et al., 78 

2016, Couraud, 1983, Couraud, 1988, Couraud, 1991) and Southern Europe (Gialanella, et al., 2011, 79 

Peresani, et al., 2013, Cavallo, et al., 2017a, Cavallo, et al., 2017b, Cavallo, et al., 2018, Fontana, et 80 

al., 2009). Yet, ochre research in Central Europe remains comparatively understudied, even though 81 

some of the most well-known and prominent sites of the Upper Paleolithic in Central Europe, such 82 

as Hohle Fels (Velliky, et al., 2018) and Geißenklösterle (Gollnisch, 1988) in southwestern Germany, 83 

have also produced extensive evidence of pigment use.  84 

Here, we present the results of an investigation on ochre sources in southern, western, and 85 

eastern Germany. Following a series of surveys, we collected modern-day source materials from 86 

“local” (<80 km), “regional” (80-300 km), and “distant” (>300 km) ochre sources. These locational 87 

classifications are arbitrarily defined based on our investigative epicenter, the archaeological sites of 88 

the Swabian Jura (Section 2.2). The samples were then geochemically characterized using Neutron 89 

Activation Analysis (NAA) in order to address three questions: 1) what is the degree of inter- and 90 

intra-source elemental variability of the ochre source deposits and sub-outcrops?; 2) do the source 91 

chemistries satisfy the provenance postulate (Weigand, et al., 1977)?; 3) how have environmental 92 

and landscape changes possibly impacted collection opportunities during the Late Pleistocene in this 93 
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region? The results of these investigations allow for a more nuanced approach to exploring potential 94 

areas of ochre acquisition throughout southern and eastern Germany and the possible impacts of 95 

climate and environment on source availability. They will furthermore contribute towards 96 

establishing the necessary groundwork for future ochre comparative studies with archaeological 97 

materials. 98 

2. Background 99 

2.1 Previous Geochemical Studies on Ochre 100 

Geochemical research on minerals found in archaeological contexts have explored and 101 

reconstructed ancient networks of movement, migration, trade and how people interacted and 102 

engaged with these materials. These studies commonly include ceramics, clays, lithic materials, and 103 

metals. Included in this suite is ochre, a colloquial term referring to any earth material containing 104 

enough Fe-oxide or hydroxide to produce a color streak (Watts, 2002), and has been collected by 105 

hominins since at least ca. 270 ka BP (Barham, 2002, McBrearty, 2001). Though ochre can be a 106 

difficult material for provenance studies due to its heterogeneity (any clay, sedi ment, or rock with 107 

>3% Fe-oxide) (MacDonald, et al., 2018, Cornell and Schwertmann, 2003, Popelka-Filcoff, et al., 108 

2007), research on the geological and elemental components of ochre sources and their chemistry 109 

has been successful in attributing different archaeological materials to certain source areas (Dayet, 110 

et al., 2016, Popelka-Filcoff, et al., 2008, MacDonald, et al., 2011). North American researchers have 111 

successfully used NAA (MacDonald, et al., 2013, Popelka-Filcoff, et al., 2007, Popelka-Filcoff, et al., 112 

2008, MacDonald, et al., 2011, Kingery-Schwartz, et al., 2013), Particle Induced X-ray Emission (PIXE) 113 

(Beck, et al., 2012, Erlandson, et al., 1999), Laser Ablation – Inductively Coupled Plasma-Mass 114 

Spectrometry (LA-ICP-MS) (Bu, et al., 2013, Eiselt, et al., 2019) and portable X-ray Fluorescence 115 

(Koenig, et al., 2014) to document ochre sources, their associated archaeological components and 116 

rock art pigment technologies and characteristics. Similar studies in Africa using Inductively Coupled 117 

Plasma-Optical Emission Spectrometry (ICP-OES) (Dayet, et al., 2016, Moyo, et al., 2016), LA-ICP-MS 118 

(Zipkin, et al., 2017) and PIXE (Bernatchez, 2008) documented ochre formations and the interplay 119 

between humans, the landscape and ancient acquisition and use of ochre pigments. Several studies 120 

in Australasia using a similar suite of analytical methods have revealed the diversity in ochre 121 

materials, including those used for rock art pigments (Huntley, et al., 2015, Huntley, 2015, Scadding, 122 

et al., 2015, Jercher, et al., 1998). Other studies in this region have furthermore shown ochre 123 

pigments in rock art sites that pre-date many European contexts and have expanded our knowledge 124 

of the spread and antiquity of this material (Aubert, et al., 2014, Aubert, et al., 2018). 125 
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In Europe, much research concerning the Middle and Upper Paleolithic has focused on 126 

characterizing types of rock art mineral pigments (Hoffmann, et al., 2018, Gialanella, et al., 2011, 127 

Smith, et al., 1999, Chalmin, et al., 2006, Resano, et al., 2007, Chalmin, et al., 2007, Jezequel, et al ., 128 

2011, Lahlil, et al., 2012, Roldán, et al., 2013, Bonjean, et al., 2015, Iriarte, et al., 2009) , ochres from 129 

within archaeological settlement contexts (Salomon, et al., 2012, Pradeau, et al., 2014, Román, et 130 

al., 2015, Salomon, et al., 2008), artifacts with ochre residues (Zilhão, et al., 2010, Capel, et al., 2006, 131 

Cuenca-Solana, et al., 2016), and identifying evidence of heat treatment of ochres in ancient 132 

contexts (Cavallo, et al., 2018, Salomon, et al., 2015). Some recent studies in Italy and Spain have 133 

shown promise for a provenance-based analysis of archaeological materials and local and/or distant 134 

ochre sources using a combination of methods such as X-ray Diffraction (XRD), Raman Spectroscopy, 135 

ICP-MS, XRF, and Scanning Electron Microscopy (SEM-EDX) (Sajó, et al., 2015, Cavallo, et al., 2017a, 136 

Cavallo, et al., 2017b, Román, et al., 2019). To date, no provenance-based studies of ochre materials 137 

and their archaeological counterparts have taken place in Germany, though one study in Hungary 138 

was able to associate a well-known Epi-Gravettian (ca. 14-13 ka BP) hematite source to nearby 139 

archaeological sites in Hungary (Sajó, et al., 2015). 140 

2.2 Ochre artifacts from the Ach Valley cave sites  141 

The Ach Valley of the Swabian Jura (Ger. Schwäbische Alb), in Southwestern Germany, and has 142 

been an area of interest for Paleolithic research since the late 19th century (Fraas, 1872, Riek, 1934, 143 

Riek, 1973, Schmidt, et al., 1912). Archaeological excavations conducted in the cave sites of this 144 

region have yielded numerous symbolic artifacts from the earliest Aurignacian (ca. 44-34 kcal. BP) 145 

sequences in Europe, which include a ‘Venus’ figurine and other statuettes made from mammoth 146 

ivory (Conard, 2003, Conard, 2009, Dutkiewicz, et al., 2018), musical instruments (Conard, et al., 147 

2009), and personal ornaments (Wolf, 2015, Hahn, 1977, Hahn, 1988). Two cave sites in the Ach 148 

Valley yielded numerous ochre and ochre-related artifacts dating to the Upper Paleolithic (ca. 44-149 

14.5 kcal. BP), including ca. 900 ochre pieces from Hohle Fels, some with traces of modification 150 

(Velliky, et al., 2018). Geißenklösterle contains 278 artifacts with several varieties of hematite and 151 

limonite, as well as a supposed ochre layer or Rötelschicht in the Aurignacian layers (Hahn, 1988). 152 

Several painted limestone pieces bearing parallel rows of painted red dots also come from Hohle 153 

Fels (Conard and Malina, 2010, Conard and Malina, 2011, Conard and Malina, 2014, Conard and 154 

Uerpmann, 1999), and a painted limestone fragment with traces of pigment have been reported 155 

from the Geißenklösterle Aurignacian (Hahn, 1988). These artifacts document the range and wealth 156 

of ochre behaviors at these sites, and the presence of numerous other lithic and faunal elements 157 

suggest that the two caves were occupied intensively but intermittently throughout the Upper 158 
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Paleolithic (Niven, 2003, Conard and Moreau, 2004, Münzel and Conard, 2004, Barth, et al., 2009, 159 

Bataille and Conard, 2018, Taller, 2014, Taller and Conard, 2016).  160 

2.3 Regions of study 161 

The goal of our research presented here was to understand the numerous ochre artifacts from 162 

the Ach Valley sites (Hohle Fels, Geißenklösterle; Velliky, et al., 2018, Gollnisch, 1988) in the context 163 

of regional practices of procurement, use and discard, and to evaluate the potential for future 164 

provenance-based studies. With these scopes in mind, we mapped, described, sampled and 165 

performed NAA characterization on samples from potential ochre sources located in the region 166 

immediately surrounding Hohle Fels and Geißenklösterle caves. We investigated the Black Forest (or 167 

Schwarzwald), as this area has a known history of hematite mining extending back to the Neolithic 168 

Linearbandkeramik (LBK) cultural period (Goldenberg, et al., 2003, Schreg, 2009). Lastly, we analyzed 169 

ochres from the Harz Mountains and from Geyer-Erzgebirge in Thüringen, which were donated from 170 

older geological collections. In this section we provide some background information regarding the 171 

geology of these four areas.172 
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Fig. 1: Geological maps of southern and eastern Germany showing all ochre source areas analyzed in this study. Sub-figs are as follows: A) Swabian Jura (local) sources, B) Black Forest 

(regional) ochre sources, as well as two sources (Rudelstetten and Tormerdingen) included in the Swabian Jura sources, C) Harz Mountain and Geyer (distant) ochre sources. Relevant 

Paleolithic cave sites in the Swabian Jura are also noted. Maps based on published data (Geyer and Villinger, 2001, Szenkler, et al., 2003, BGR, 2003), and field observations of the authors.
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2.3.1 Swabian Jura 1 

The Swabian Jura (Fig. 1, detail A and B) is bounded by the Neckar Valley to the north, the 2 

Danube to the south, the Black Forest to the west and the Nördlinger Ries to the east. It is an 3 

extension of the larger Jura mountain range which extends into France and Switzerland. Previous 4 

geological (Borger, et al., 2001), geomorphological (Barbieri, et al., 2018), and archaeological studies 5 

(Schreg, 2009, Reinert, 1956, Reiff and Böhm, 1995), as well as local knowledge (V. Sach and R. 6 

Walter, personal communication, 2017) provided information on locations of known and potential 7 

sources. The bedrock is composed of Jurassic limestone comprising three main types: black, brown 8 

and white (Schwarzer, Brauner, and Weißer Jura) (Geyer and Gwinner, 1991, Schall, 2002). Marls, 9 

mudstones and sandstones also occur, as well as molasse and volcanic rocks formed during the 10 

Miocene (Barbieri, et al., 2018, Geyer and Gwinner, 1991). Numerous karstic features are found in 11 

the landscape, including the caves, which often hold archaeological materials (Barbieri, et al., 2018, 12 

Miller, 2015). Remnants of Tertiary sediments are found throughout the karstic features and dry 13 

valleys; of these, the Bohnerze and associated Bohnerzlehm formations are perhaps the most 14 

relevant in regard to possible Fe-oxide sources. Bohnerze (sing. Bohnerz), or “bean ore”, are highly 15 

compacted pebbles of goethite and hematite, formed by iron precipitating through limestone and 16 

accumulating in karstic fissures (Borger, et al., 2001, Ufrecht, 2008). Bohnerzlehm (bean ore clay) 17 

occurs with the Bohnerze and is an iron-rich kaolinite clay (Borger, et al., 2001, Ufrecht, 2008). These 18 

features once formed a large sheet across the Swabian Jura (Borger, et al., 2001), and remnants of 19 

this formation were a focal point for survey in this region. Other geomorphological studies in the 20 

Swabian Jura report lateritic materials and hematite-rich lateritic pebbles, limonite crusts and iron 21 

concretions in sandstones, and deeper hematite-containing horizons associated with Upper Jurassic 22 

deposits (Borger, et al., 2001).  23 

2.3.2 Black Forest 24 

The Black Forest (Fig. 1, detail B) is one of the oldest and most geologically complex regions 25 

in Germany with a total area of around 6,000 km2 (Walter, et al., 2017, Markl, 2016, Murad, 1974, 26 

Stober and Bucher, 1999, Brockamp, et al., 2003). The bedrock consists of granite and gneiss formed 27 

during the Paleozoic with later Triassic Magmatite inclusions (Stober and Bucher, 1999). The 28 

overlying rock is predominantly red sandstone formed during the Rotliegend period, though other 29 

metamorphic and sedimentary varieties occur. Here, hematite forms in hydrothermal veins with low 30 

contents of non-ferrous metals and Fe-oxides are also found in the exposed red sandstone features 31 

(Brockamp, et al., 2003). So far, it has been established that the hydrothermally formed hematite 32 

was mined from the Neolithic period to the Middle Ages (Goldenberg, et al., 2003, Schreg, 2009). 33 
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Though Alpine Glaciers did not completely cover the Black Forest around the time of the Last Glacial 34 

Maximum (LGM), around 30 ka BP, the southern portion saw intermittent glaciation during the 35 

Würm stadials and interstadials and thus confirmed our decision to focus on the areas that were 36 

accessible before and after the LGM (Ivy‐Ochs, et al., 2008, Litt, et al., 2007, Schlüchter, 1986) .  37 

2.3.3 Harz Mountains 38 

The Harz Mountain range (Fig. 1, detail C) extends across the German states of Lower-39 

Saxony (Niedersachen), Saxony-Anhalt (Sachsen-Anhalt), and Thuringia (Thüringen). Their formation 40 

is the result of intensive folding during the Paleozoic era followed by tectonic uplifting during the 41 

Cretaceous. Much of the overlying layers were eroded and the remaining base rock is what forms 42 

the mountains today (Sano, et al., 2002, Brink, 2011, Ullrich, et al., 2011). Though it is quite 43 

geologically diverse, common rock types include Gabbro (which is still extensively mined today), 44 

granite, limestone, and shale, to name a few. The Harz Mountains have a history of ancient mining 45 

activities (mainly Pb but also Ni and Fe) extending back to the Iron Age (Ullrich, et al., 2011, 46 

Matschullat, et al., 1997, Voigt, 2006, Kaufmann, et al., 2015). The Fe-oxide formations here are 47 

varied and include iron-rich sandstones associated with the larger Buntsandstein formation, 48 

hydrothermal hematite veins occurring along granitic rocks, and early Jurassic ooidal ironstones 49 

formed by early marine deposits (Sano, et al., 2002, Ullrich, et al., 2011, Kaufmann, et al., 2015, 50 

Nadoll, et al., 2018, Young, 1989, Dreesen, et al., 2016), the latter of which constitute the samples 51 

analyzed in this study.  52 

2.3.4 Geyer (Erzgebirge) 53 

Geyer is a town located in the Erzgebirgekreis district in Saxony (Sachsen), Germany. It is 54 

part of a larger formation extending into Bohemia and was formed by the Variscan Orogeny during 55 

the late Paleozoic. The geological basement is mainly formed of medium to high-grade mica schists 56 

and gneisses (Seifert and Sandmann, 2006, Daly, 2018). The region is well-known for its extensive 57 

silver and tin deposits which were mined extensively in the 13th century, but were known as far back 58 

as the Bronze Age (Müller, et al., 2000, Scheinert, et al., 2009). These ores are present in 59 

hydrothermal polymetallic veins throughout the landscape and include iron, copper, lead, and iron 60 

and manganese oxides (Seifert and Sandmann, 2006, Tischendorf and Förster, 1994). It is for these 61 

metallic vein formations that the Erzgebirge is also referred to as the “Ore Mountains” (Daly, 2018, 62 

Scheinert, et al., 2009). Both the Harz Mountains and Geyer-Erzgebirge were ice-free during the late 63 

Pleistocene exhibiting a largely treeless tundra-based environment (Ivy‐Ochs, et al., 2008). 64 

3. Materials and methods 65 
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3.1 Sample selection and description. 66 

We conducted surveys in Swabian Jura and Black Forest in summer and early autumn of 67 

2017, using archaeological and GPS equipment provided by the University of Tübingen.  Ochre 68 

samples from the Harz Mountain and Geyer sources (Fig. 1, detail C) were donated from older 69 

private collections. As such, no physical surveys were conducted in this region. Fig. 1 displays a map 70 

with the source locations. 71 

To clarify terminology, we use ochre source and Fe-oxide source interchangeably to refer to 72 

specific locations where these materials were collected. Source regions refer to the large-scale areas 73 

where several outcrops were mapped, such as the Black Forest or the Swabian Jura, and sub-sources 74 

or outcrops refer to specific confined points where samples were gathered. The materials that we 75 

collected and analyzed in this study are referred to as ochre samples or specimens. 76 

For the Swabian Jura, we focused our survey on a ca. 20 km radius of Hohle Fels and 77 

Geißenklösterle caves (Fig. 1, detail A and B), since this region might have been easily accessed by 78 

the hunter-gatherers that populated the Ach Valley during the Pleistocene. Within this area we 79 

mapped 17 ochre outcrops, collecting 106 samples. At a further distance from this area (ca. 60 km 80 

from Hohle Fels), we analyzed samples from the Rudelstetten (Rudel) ochre source which were 81 

generously donated to the study by R. Walter. For the scope of this paper we consider all these 82 

sources as “local” (<80 km from the Ach Valley). 83 

Additionally, we surveyed the northern and central areas of the Black Forest (Fig. 1, detail B), 84 

due to its proximity to the Swabian Jura (ca. 115 km) and knowledge and advice from geologists 85 

working in the region at the University of Tübingen (U. Neuman, personal communication, 2017). In 86 

these areas, we collected 46 ochre samples from 5 different outcrops. The amounts we collected 87 

from each outcrops varied depending on its size: Rappenloch (Rappen), for example, was a large 88 

deposit and we collected 22 different samples from a total area of ca. 400 m. We consider these 89 

outcrops as “regional” ochre sources (80-300 km from the Ach Valley). 90 

Lastly, we analyzed two ochre nodules which were donated from older geological 91 

collections. The specimens come from two locations: one from the Harz Mountain range, and 92 

another from the locality of Geyer-Erzgebirge in Saxony (Fig. 1, detail C). For the aim of this paper we 93 

regard these samples as distant ochre sources (>300 km). 94 

All sampled outcrops were photographed and described either during or post-survey. For 95 

the fine-fraction we reported color (Munsell Soil Color Book 2009), texture (by “feel” Vos, et al., 96 

2016), and cohesion (USDA-NRCS, 2012). For the coarse fraction we documented shape (Zingg, 97 
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1935), roundness (Powers, 1953), and size (ISO 14688-1:2002 standard). We described also cohesion 98 

(USDA-NRCS, 2012) and color (Munsell Soil Color Book 2009) of iron nodules and concretions. When 99 

possible, we described also stratigraphy and bedding of the sources. 100 

 101 

 102 

Fig. 2: Ochre samples from each of the regions analyzed. Selected analyzed samples from all investigated regions. Sample 103 
ID’s correspond to SI Table C. HZ and GE labels are Harz Mountain samples, RP and HB are Black Forest specimens, and GR, 104 
BO, TM, and RU are Swabian Jura samples. 105 

3.2 Neutron Activation Analysis (NAA)  106 

We characterized the ochre samples from the Swabian Jura, Black Forest, and Harz regions 107 

using Neutron Activation Analysis (NAA), with several sub-samples being taken from individual 108 

source samples to evaluate intra-source variation. In total, we performed measurements on 83 sub-109 

samples from the Swabian Jura ochres, 46 on the materials from the Black Forest, and 10 on the 110 

samples from the Harz region. Table 1 shows a breakdown of the number of NAA measurements 111 

sorted per source region and outcrop. 112 

All NAA measurements were conducted at the Archaeometry Laboratory in The University of 113 

Missouri Research Reactor (MURR) using standard procedures described in greater detail elsewhere 114 
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(MacDonald, et al., 2018, Popelka-Filcoff, et al., 2008, Eiselt, et al., 2011). Two thermal neutron 115 

irradiations were conducted to collect data on elements that produce short-, medium-, and long-116 

lived radioisotopes. Ochre samples and standard reference materials in polyvials were irradiated via 117 

pneumatic tube system for 10 s at a flux of 8 X 1013 n cm-2 s-1. Samples were each allowed to decay 118 

for 25 minutes, at which point gamma ray energies for elements that produce short-lived isotopes 119 

(Al, Ba, Ca, Dy, K, Mn, Na, Ti, and V) were measured by a hyper-pure germanium detector (HPGe) for 120 

12 min. The quartz encapsulated samples were subjected to a 24–hour irradiation at a neutron flux 121 

of 6 x 1013 n cm-2 s-1. After a 7-10 day decay, the radioactive samples were measured for 2000 s to 122 

obtain data on medium-lived isotopes (As, La, Lu, Nd, Sm, U, and Yb), and again after 2-3 weeks for 123 

8200 s to measure for long-lived isotopes (Ce, Co, Cr, Cs, Eu, Fe, Hf, Ni, Rb, Sb, Sc, Sr, Ta, Tb, Th, Zn, 124 

and Zr). The spectral data were calculated to elemental concentrations using in-house software and 125 

calibrated to NIST standard reference materials by comparator method. These analyses generated 126 

elemental concentration values for 33 elements in most of the samples analyzed.  127 

Table 1: List of samples measured with NAA sorted by region and ochre source. 128 

Swabian Jura (n = 83) 
Local <80 km 

Black Forest (n = 46) 
Regional 80-300 km 

Harz Mountains (n = 10) 
Distant >300 km 

Allmendingen (n=12) 

Altheim (n=10) 

Bohnerz 1-8 (n=27) 

Gerhausen (n=5) 

Herz-Jesu Berg (n=5) 

 

Kirchbierlingen (n=1) 

Ringingen (n=5) 

Rudelstetten (n=5) 

Schelklingen (n=8)  

Tormerdingen (n=5) 

 

Hechtsberg (n=9) 

Nussbach (n=5) 

Rappenloch (n=22) 

Schollach (n=5) 

Zindelstein (n=5) 

 

Geyer-Erzgebirge (n=5) 

Harz (n=5) 

 

4. Results 129 

4.1 Source Description 130 

4.1.1 Swabian Jura 131 

4.1.1.1 Allmendingen 132 

In a section exposed within a quarry located some 5 km south of the town of Schelklingen (Fig. 133 

1, detail A), we distinguished three main sedimentary units (SI Fig. D). The upper most unit 134 

corresponds to the modern soil, below this we distinguished a ca. 60 cm thick layer composed of 135 

triaxial to oblate, sub-angular to angular, fine gravel- to boulder-sized fragments of limestone 136 

embedded in brown silty clay. Underneath this sediment, we documented a possible molasse 137 
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deposit, which appeared at least 2 m thick and was composed of triaxial to oblate, well-rounded, 138 

fine gravel- to cobble-sized fragments of limestone, marls and sandstones. The coarse fraction 139 

exhibited upwards fining and often appeared coated with a thin (<1 mm thick) very dusky red to 140 

dark red crust of iron‐‑manganese oxides. The fine fraction (clayey sand to silty clay) was very dense 141 

and exhibited alternating red and yellowish-brown colors, and cemented the coarse fraction 142 

together. Based on the alternating colors of the matrix and difference in grai n size, it was possible to 143 

distinguish cross-beds. All over the ground surface within the quarry, we noticed red to yellowish-144 

red sandy clay to clay outcrops. We characterized representative samples of all the “red clays” 145 

documented in this source with NAA. 146 

4.1.1.2 .Altheim 147 

In a quarry located about 4 km south from Hohle Fels (Fig. 1, detail A), we documented three 148 

sections, each down to ca. 3 m deep. Below the ground surface, the entire exposed sequence 149 

consisted of cross-bedded molasse deposits, which are mainly made from loose, dark yellowish-150 

brown to light yellowish-brown sand and silt. Both sand and silt fractions appeared very rich in 151 

micas. Coarse fraction appeared rare and was composed of triaxial, sub-rounded to well-rounded, 152 

fine to medium gravel of limestone, sandstone, quartz, and dolomite. The Altheim deposits exhibited 153 

numerous reddish greygray to strong brown discontinuous laminations. These laminations appeared 154 

from only a few millimeters to ca. 20 cm thick, and within the latter we identified prolate, sub-155 

angular, up to medium gravel-sized, very dense and strong brown iron nodules. Furthermore, the 156 

sandstone and limestone fragments buried inside these iron-stained laminations appeared 157 

extensively impregnated with iron oxides. We also collected and characterized a sample of these 158 

sandstones with NAA.  159 

4.1.1.3 Bohnerz (1-8)  160 

On top of the plateau and along the hillsides in the surroundings of Hohle Fels cave w e 161 

mapped 8 Bohnerz sources (Fig. 1, detail Bohnerz 1-8). These sources correspond to Bohnerz nodules 162 

embedded in various sediments, and were visible in exposures and depressions resulting from 163 

forestry road construction, historical mining activities, tree fall, and natural erosion. Bohnerz nodules 164 

appear as triaxial to equiaxial, sub-angular to sub-rounded, fine gravel- to cobble-sized, very dense 165 

iron concretions. Smaller Bohnerz (up to medium gravel sized) are usually made from single 166 

individual grains, while larger Bohnerz can be composed of many individual grains cemented 167 

together. The color of Bohnerz varies from black, reddish black, very dusky to dark yellowish brown 168 

(see Table C in SI). 169 
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The loose sediment in which Bohnerz nodules are buried displays high variability, even 170 

within each single source (SI Fig. E). The fine fraction exhibits discontinuous texture (from clayey silt 171 

to clay), and color (from yellowish brown, to dark brown, and red). In most of these sediments, 172 

Bohnerz nodules occur as the main (or only) coarse fraction components. However, in the source 173 

Bohnerz 4 we documented the presence of weathered, triaxial, sub-angular, medium to coarse 174 

gravel-sized fragments of limestone, and in Bohnerz 3 and 5 we identified fresh, triaxial, angular, fine 175 

gravel-sized fragments of limestone generally smaller than 1 cm in diameter (this sediment type is 176 

also known in the region as Bergkies, see Barbieri, 2019). 177 

4.1.1.4 Gerhausen 178 

From this quarry (Fig. 1, detail A) we received a large aggregate of nearly pure, well sorted, 179 

compact, red clay, which we subsampled for with NAA. The sample was collected by R. Walter ca. 3 180 

m below surface during mining activities, and appears to be part of a larger Bohnerzlehm formation 181 

with some larger, sub-rounded Bohnerz nodule inclusions (Fig. 5, detail 1). 182 

4.1.1.5 Herz-Jesu Berg 183 

On top of the hill Herz-Jesu Berg (Fig. 1, detail A), located in the town of Schelklingen, we 184 

mapped Bohnerz outcrops that were visible in exposures resulting from the construction of forestry 185 

roads. We decided to consider the Bohnerz from Herz-Jesu Berg as a separate source since they 186 

display slightly different colors (dark reddish brown to very dark brown) than those from the other 187 

Bohnerz sources. Furthermore, they have been buried together with weathered, triaxial and oblate, 188 

poorly sorted, well-rounded, medium and coarse gravel-sized limestone fragments.  189 

4.1.1.6 Kirchbierlingen 190 

From the Pleistocene-aged terraces located ca. 5 km south from the present day course of 191 

the Danube River (Fig. 1, detail A) we report the occurrence of rare, very dense, triaxial, sub-192 

rounded, fine gravel- to medium gravel-sized, very dark gray to black hematite concretions. We 193 

investigated one of these concretions with NAA. These hematite fragments were visible as surface 194 

finds in recently ploughed fields (yellowish brown, silty clay), where they occur together with triaxial, 195 

sub-rounded to well-rounded, poorly sorted fine to coarse gravel of limestone, sandstone, quartz, 196 

feldspar and dolomite.  197 

4.1.1.7 Ringingen 198 

In a quarry located some 6 km south east from Hohle Fels cave (Fig. 1, detail A), we 199 

investigated two, ca. 8 m deep, exposed sections. These sequences display composition, color, and 200 
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structure generally comparable to the deposits described at Altheim. However, at Ringingen, reddish 201 

grey to strong brown laminations appear more continuous and thicker (up to 50 cm), especially 2 m 202 

below the ground surface. We collected well-sorted loose samples from these features for 203 

characterization with NAA. 204 

4.1.1.8 Rudelstetten 205 

These samples of compacted dusky-red clay were collected by R. Walter from an exposure located 206 

on outskirts of the small town of Radelstetten, located ca. 18 km northeast of Hohle Fels and 207 

situated in the larger White Jura formation (Fig. 1, detail B). The sample is a fine-grained clay to silty-208 

clay (Bohnerzlehm) with very few small (< 1 cm) Bohnerz inclusions.  209 

4.1.1.9 Schelklingen 210 

In 2 sections exposed in limestone quarry located ca. 1 km south from the town of 211 

Schelklingen we mapped a laterally discontinuous Bohnerzlehm deposit composed of triaxial, poorly 212 

sorted, angular medium gravel-sized to cobble-sized weathered fragments of limestone embedded 213 

in a loose, red to yellowish brown, clayey sand to silty clay (Fig. 1, detail A; Fig. 5, detail 2). This 214 

deposit rests in between the modern soil and the limestone bedrock, and it appears up to 2 m thick. 215 

Due to the quarrying activity it was not possible to verify further its structure.  216 

4.1.1.10  Tormerdingen  217 

A large clay block was donated to us by R. Walter from this ochre outcrop, which is situated in 218 

the larger White Jura formation that extends to the northeast of Hohle Fels (Fig. 1, detail A). As such 219 

we do not discuss its original stratigraphic context. The sample itself is a fine-grained clayey sand to 220 

silty clay (Bohnerzlehm) with <1 cm pebble-sized inclusions of Bohnerz nodules (Fig. 2). 221 

4.1.2 Black Forest 222 

4.1.2.1 Hechtsberg 223 

Located in between the towns of Haslach (to the west) and Hausach (to the east), 224 

Hechtsberg is an active quarry mainly of biotite-bearing gneisses (Fig.1, detail B). Here, we 225 

documented a 4 m deep north-facing granite exposure (ca. 50 m east-west) bearing weathered iron-226 

oxide veins on the profile. From this section, we sampled several triaxial hematite fragments which 227 

were generally sub-rounded, showing fine-grained sand to silty textures and ranging from reddish 228 

black to very dusky red in color. 229 

4.1.2.2 Nussbach  230 
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On a hillside north of Nussbach (Fig. 1, detail B), from where reports cite the occurrence of 231 

hematite and quartz associated with granitic porphyries (Leiber, 2000), we identified and sampled a 232 

small (ca. 1 x 1.5 m) section exposed due to construction activities. Along this section, ca. 1 m below 233 

the modern-day surface, we distinguished a Fe-oxide deposit compared of sub-angular pebble to 234 

cobble sized fragments of granite and quartz embedded in a moderately sorted matrix of loose, dark 235 

red sand and clay. In this sediment we also identified semi-compacted sub-angular and rounded 236 

pebble-sized red to dark red iron-rich nodules. The size of the exposure limited extensive sampling 237 

of this source. 238 

4.1.2.3 Rappenloch 239 

The Rappenloch source is a former mine located in the town of Eisenbach in the 240 

“Hochschwarzwald” or High Black Forest (Fig. 1, detail B). The area was mined for Fe and Mn 241 

deposits in mineralized fissures within granitic outcrops. The mine closed in 1942 and has since 242 

experienced significant overgrowth and revegetation (SI Fig. G). In this quarry we sampled several 243 

small pits and exposures ranging from depths of ca. 30 cm – 60 cm along the southern and western 244 

faces of the hill totaling ca. 400 m in length. These exposures showed mostly dark red to reddish-245 

black medium-densely packed sand with sub-angular and sub-rounded pebble to cobble-sized 246 

fragments of granite. We also sampled from an exposed profile (ca. 50 cm - 1.5 m) near the bottom 247 

of the former mine, showing a dusky to very dusky red, predominantly clay-based and relatively 248 

well-sorted sediment capped with medium to coarse grained sand with some sub-angular and 249 

angular sandstone fragments. 250 

4.1.2.4 Schollach 251 

We identified a discontinuous outcrop on a small hillside located ca. 2 km southeast of the 252 

town of Schollach (Fig. 1, detail B), which was exposed due to road construction activities. The 253 

outcrop (ca. 2 x 1.5 m) consisted of dark reddish brown to weak red loosely compacted and 254 

moderately sorted sandy-clay with a low amount of pebble and cobble-sized sub-angular and sub-255 

rounded gravel-sized fragments of calcic silicate rocks (SI Fig. H). 256 

4.1.2.5 Zindelstein 257 

In the Breg valley near the town of Hammereisenbach (Fig.1, detail B), we sampled one 258 

exposed outcrop in an abandoned granite and gneiss quarry with hydrothermal veins containing 259 

fluorite, graphite, quartz and feldspars. The amount of erosion and overgrowth made it difficult to 260 

properly map certain exposures, and we thus focused on one location with a ca. 2 m high wall and 261 
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30 m long (east-west) wall. The analyzed samples come from dark reddish-brown well-sorted iron-262 

rich clay aggregates forming in fissures within the granite outcrops.  263 

4.1.3 Harz and Geyer-Erzgebirge 264 

4.1.3.1 Geyer-Erzgebirge 265 

One large densely compacted ironstone was donated to the study from an older geological 266 

collection. This single piece from the “Ore Mountain” region near the town of Geyer  (Fig.1, detail C)  267 

is a silty dark reddish gray and produces a very dusky red streak; though the exact stratigraphical 268 

context cannot be described, it was likely formed as a mineral deposit in hydro-thermal veins 269 

common to the region. 270 

4.1.3.2 Harz Mountains 271 

Pieces of botryoidal ironstone from the Harz Mountain region (Fig.1, detail C) were donated 272 

for the study from older geological collections, one of which we sub-sampled and characterized with 273 

NAA. The analyzed piece was a densely compacted silty dark reddish-gray ironstone producing a 274 

dark red streak and showing Glaskopf or “kidney ore” morphology (Fig. 2). 275 

4.2 NAA results 276 

In total, 139 ochre survey samples were characterized by NAA. Elemental concentration data 277 

is provided in SI Table G with means and standard deviations shown in SI Tables A-B, as well as more 278 

detailed descriptions of specific elemental characteristics from each ochre source. 279 

4.2.1 Statistical exploration of data 280 

Because the iron content can vary significantly, and that variability can artificially amplify or 281 

dilute the presence of other diagnostic trace elements, it is often advantageous to convert all 282 

elemental concentration values to a ratio of iron content (Fe-normalization). It is also useful in 283 

circumstances where the Fe-oxide deposits may have undergone significant weathering and 284 

subsequent elemental substitution. The atomic structural similarity of some transition metals and 285 

rare earth elements (REEs) to iron readily permits their substitution into Fe-oxide structures (Cornell 286 

and Schwertmann, 2003). Therefore, the data were transformed prior to statistical testing with Fe-287 

normalization and log10. Both of these transformations are used to compensate for the variation in 288 

magnitude between major, minor, and trace elements, and are necessary for scale -dependent, 289 

multivariate discriminant statistics (e.g. PCA) (Dayet, et al., 2016, MacDonald, et al., 2013, Popelka-290 

Filcoff, et al., 2007, Popelka-Filcoff, et al., 2008, MacDonald, et al., 2011). However, it is important 291 

for such data transformations to be assessed for their efficacy before considering those values as 292 
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statistically representative. In our statistical exploration, including iterative bivariate plotting 293 

(element concentrations, log10 Fe-normalized ratios), PCA and CDA, we consistently found that 294 

using data transformed to ratios to Fe content, and subsequently transformed to log10 values 295 

generated the clearest separation of source groups. 296 

Element-pair bivariate plotting did not yield clear separation for most ochre source groups 297 

and was minimally informative (see supplementary text: Results). Both PCA and CDA showed the 298 

same degree of group separation when all sources are plotted together (Fig. 3; SI Fig. C). Here, we 299 

show results of CDA, performed on log10 Fe-normalized values for all possible elements (Sm/Fe, 300 

Ce/Fe, Sc/Fe, La/Fe, U/Fe, Sb/Fe, Cr/Fe, As/Fe; all others excluded due to excessive zero values ). Fig. 301 

3 is a bivariate plot of CD#1 versus CD#2, showing the distribution of sources highlighted by region. 302 

CD#1, which accounts for 70.0% of the variance, is driven primarily by elements Sm (-1.36) and Eu 303 

(1.36), while elements driving CD#2 (16.1% variance) are Sm (-1.10), Eu (1.39), and Sc (-0.56). Table 2 304 

shows the relevant CDA data for Figs 3 and 4, but all CDA scoring coefficients and discriminant 305 

functions are provided in SI Tables E-F. Because CDA tends to maximize inter-group variation, the 306 

separation of sources by region is particularly accentuated. The variation in the Swabian Jura sources 307 

is significantly minimized, suggesting that all groups share similar geochemical characteristics. The 308 

Harz Mountain sources are differentiated from other regions, and the CDA projection shows 309 

stronger separation between the Black Forest sources, suggesting a high degree of chemical 310 

variability within and between sources in that region. The distant ochre sources consistently 311 

associated with each other, and are therefore collectively labeled as the Harz Mountain sources.  The 312 

Rappenloch source, located in the Black Forest, showed high heterogeneity with certain samples, 313 

likely due to their varying Ba content. Based on this, we made the decision to project these as 314 

separate “Rappen” and “RappenB” groups in Fig. 3. 315 

To further investigate if the Swabian Jura sources can be differentiated, a subsequent CDA 316 

was conducted on a sub-set of only Swabian Jura sources. Fig. 4 is a bivariate plot of CD#1 versus 317 

CD#3, showing separation of most Swabian Jura sources. Here, CD#1 accounts for 38.5% of the 318 

variance and is driven by Sm (-0.35) and Eu (-0.27). CD#3 accounts for 20.5% of the variance and is 319 

driven primarily by elements Sm (1.37), Eu (-0.94) and Nd (-0.53) (SI Table F) These results further 320 

highlight regional and sub-regional scale variability in ochre sources. When all sources in all regions 321 

were included, Black Forest and Harz Mountain sources could be reasonably diffe rentiated, 322 

however, the Swabian Jura samples exhibited consistent overlap (see Fig. 3). When Black Forest and 323 

Harz Mountain sources were removed and a new CDA was performed, the Swabian Jura sources 324 

were more readily separated. These results suggest the potential for a moderately consistent 325 
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internal elemental signature, which indicates promise for future local versus non-local artifact 326 

provenance investigations. 327 

 328 

Fig. 3: Bivariate plot of CD#1 versus CD#2 for all sources, highlighted by region. Note how most Swabian Jura groups 329 
overlap. Harz Mountain sources are significantly different, while Black Forest sources exhibit the widest distribution at both 330 
source and sub-source levels. Ellipses are drawn at 90% confidence. 331 

5. Discussion 332 

5.1 Ochre source characterization 333 

Previous research has demonstrated the potential for ochre provenance by bulk elemental 334 

analysis (Dayet, et al., 2016, MacDonald, et al., 2013, MacDonald, et al., 2018, Popelka-Filcoff, et al., 335 

2008, MacDonald, et al., 2011, Kingery-Schwartz, et al., 2013, Zipkin, et al., 2017, Eiselt, et al., 2011, 336 

Pradeau, et al., 2015). The results of this study are consistent with other research in demonstrating 337 

that it is possible to differentiate ochre sources and sub-sources based on elemental chemistry, 338 

when interpreted using a combination of stepwise, multi-element statistical approaches.  339 

From the Swabian Jura, the Bohnerzlehm sources of Gerhausen, Rudelstetten, Schelklingen, 340 

and Tormerdingen consistently group together in both bivariate (SI Figs. A-B) and multivariate (SI Fig. 341 
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C) projections, and exhibit the highest amount of Al (>10%, Table A in SI). This association and 342 

elemental composition is likely indicative of clay-based minerals (possibly kaolinite), which are 343 

commonly reported from Bohnerzlehm deposits (Borger, et al., 2001, Ufrecht, 2008). Most of our 344 

Bohnerz samples display high variability but, as a whole, tend to overlap with the Bohnerzlehm 345 

specimens (Fig. 4; SI Figs. A-C). This could be due to the fact these sources formed in the same region 346 

and likely in similar environment(s) (Borger, et al., 2001, Ufrecht, 2008). In the field, we 347 

distinguished the source of Herz-Jesu Berg from the other Bohnerz outcrops as it contained rounded 348 

gravel inclusions, indicative of fluvial deposition. By comparing the elevation of this outcrop with 349 

river terraces reported from Schmiech, Ach, and Blau valleys, we hypothesize that this sediment 350 

accumulated by the Danube River in the Early Pleistocene (Geyer and Villinger, 2001, Szenkler, et al., 351 

2003, Kaufmann and Romanov, 2008). In bi-elemental comparisons (SI Figs. A-B), the Herz-Jesu Berg 352 

Bohnerz samples tend to plot with the larger Bohnerz group. However, when observed using CDA 353 

(Fig. 4), Herz-Jesu Berg samples separate from the other Bohnerz sources. This difference may be 354 

due to the fact that the Bohnerz fragments from Herz-Jesu Berg might have been eroded from 355 

formations located several tens of kilometers away from the Ach Valley. Samples from the molasse 356 

deposits of Allmendingen and Ringingen appear separated and distinct form Bohnerzlehm and 357 

Bohnerz sources when observed with multivariate statistics (Fig. 4). They contain Al (ca. 3%, Table A 358 

in SI) and exhibit comparatively high concentrations of K (1.5 % to 3%, Table A in SI). This 359 

composition might indicate the presence of kaolinite and illite clays, the latter likely deriving from 360 

the weathering of micas that are abundant in molasses deposits. In our bivariate plots, it was not 361 

always possible to differentiate Kirchbierlingen from Ringingen, or even from the Black Forest 362 

sources. This may be because Kirchbierlingen corresponds to a Pleistocene-aged Danube terrace 363 

made from components eroding from granites located in the Alps and molasse deposits located in 364 

the Swabian Jura (Geyer and Villinger, 2001, Szenkler, et al., 2003). 365 

 366 



21 
 

 367 

Fig. 4: Bivariate plot of CD#1 versus CD#3 for eight Swabian Jura sources. Note that while the single Kirchbierlingen 368 
(Kirschb) sample falls within the ellipse of Ringingen source in this projection, it separates out in other CDA projections. Also 369 
note the similarity of the Bohnerz source group when projected with the other Swabian Jura source samples. Ellipses are 370 
drawn at 90% confidence. 371 

Table 2: Canonical discriminant functions and elemental contributions for CDA plots shown in Figs 3 and 4. 372 

Fig. 3 CD1 CD2  Fig. 4 CD1 CD3 

Variable 70.08 16.10  Variable -0.351 1.370 

Sm/Fe -1.36 -1.10  Sm/Fe -0.265 -0.939 

Eu/Fe 1.36 1.39  Eu/Fe 0.677 -0.531 

La/Fe 0.39 -0.50  Nd/Fe 0.292 0.086 

Ce/Fe 0.06 0.35  Yb/Fe 0.712 0.038 

Tb/Fe -0.14 0.11  Dy/Fe -0.464 -0.020 

Sb/Fe -0.79 0.61  Lu/Fe -0.538 -0.058 

Sc/Fe -0.34 -0.56  Sb/Fe -0.295 0.056 

Cr/Fe 0.54 0.02  Al/Fe 0.593 -0.129 

As/Fe -0.07 -0.46  Th/Fe -0.072 0.159 

Mn/Fe -0.16 -0.01  La/Fe -0.100 -0.064 

U/Fe -0.28 0.13  Sc/Fe -0.351 1.370 
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The Harz Mountain sources (both Harz and Geyer-Erzgebirge) exhibit high Fe and Sb values 373 

and separate from all Black Forest and Swabian Jura samples in the bivariate (SI Figs. A and B) and 374 

multivariate (Fig. 3; SI Fig. C) projections. Regarding the Black Forest sources, though the Rappenloch 375 

samples exhibited high variability due to the high amount of Ba present in some of the samples, they 376 

contained above average light REE concentrations. This may be due to the volcanic rock basic of the 377 

central Black Forest and the formation of these hematite veins in igneous rock exposures (Fleet, 378 

1984, Humphris, 1984). The elemental heterogeneity of the Rappenloch source in the Black Forest is 379 

likely caused by localized instances of element mobility due to weathering (Cornell and 380 

Schwertmann, 2003, Pollard, et al., 2007, Shatrov and Voitsekhovskii, 2013, Babechuk, et al., 2014) , 381 

the relative size of the exposure (ca. 400 m sampled for this project) and the numerous intensive 382 

metamorphic events in the geological history of the central Black Forest (Chen, et al., 2000). It 383 

should be stressed that the labels of the sources are place-names, and should not necessarily always 384 

be treated as the same compositional group when trends in elemental geochemistry strongly 385 

suggest otherwise. It is possible to have two different sub-sources (as indicated by the compositional 386 

groups, Rappen and RappenB) in one larger geographically confined source. It is also important to 387 

note that we were able to identify the variability within the Rappenloch source due to the number of 388 

samples we analyzed (n = 22). It is possible that with more extensive sampling of this source, as well 389 

as the other source analyzed in this study, other patterns of homogeneity or variability may emerge. 390 

5.2 Further prospects: Investigating the environmental and geological processes 391 

responsible for variation in source accessibility 392 

The Swabian Jura has witnessed intense environmental and climatic fluctuations throughout 393 

the Pleistocene, which promoted alternating phases of soil formation, river valley incision, hillside 394 

erosion and floodplain aggradation (Barbieri, et al., 2018, Barbieri, 2019). In this section, we explore 395 

the possibility of a causal link between these events and similar geomorphological processes and 396 

how they might have facilitated or impeded humans from accessing potential ochre sources.  397 

Materials exhibiting composition, texture, color, and compaction comparable to the  Bohnerz 398 

and Bohnerzlehm formations are common in the deposits preserved inside the cave sites of the 399 

Swabian Jura (Fig. 5, detail 2; Miller, 2015, Jahnke, 2013, Barbieri and Miller, 2019a). 400 

Micromorphological analyses conducted at Hohle Fels and Geißenklösterle in the Ach Valley 401 

revealed that aggregates made from compact, red, iron-stained clay occur with high frequency in 402 

deposits dating to the Middle Paleolithic and the late Aurignacian (Miller, 2015, Goldberg, et al., 403 

2003). Results from semi-quantitative analyses conducted at Hohlenstein-Stadel cave in the Lone 404 

Valley, approximately 50 km northeast from Hohle Fels (Fig. 1, detail B),  show that Bohnerz and 405 
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kaolinite aggregates similar to those documented at Hohle Fels are more frequent in the sediments 406 

pre-dating the LGM (Fig. 5, detail 3; Barbieri, et al., 2018, Barbieri, 2019, Barbieri and Miller, 2019a, 407 

Barbieri and Miller, 2019b). These observations are in agreement with coring data from the Lone 408 

Valley where, from a depth of ca. 6 m, Barbieri (et al 2018, 2019) recovered a deposit (GL 315) made 409 

from compact, red kaolinite (with light reddish pale speckles), extensively impregnated with iron 410 

oxides (Fig. 5, detail 4). The core GL 315 may correspond to a Bohnerzlehm deposit that was 411 

reworked downslope into the Lone Valley by colluviation processes, possibly during the Early/Middle 412 

Pleistocene (Barbieri, 2019). Subsequently, GL 315 was incised by the Lone River and covered with a 413 

ca. 30 cm thick colluvial deposit that was remarkably rich in Bohnerz and iron-manganese nodules 414 

(GL 37-41, GL 266; Fig. 6, detail 4). This sediment yielded dates ranging between ca. 36-29 kcal. BP 415 

(Barbieri, et al 2018, 2019). The sediments resting on top of GL 37-41 and GL 266 contained very rare 416 

components which exhibited texture, composition, structure and color comparable with the Bohnerz 417 

and Bohnerzlehm formations (Fig. 6, details 2 and 4). Thus, we conclude that the outcrops of these 418 

formations were likely more visible in the landscape of the Swabian Jura (and potentially exploited 419 

for ochre use) during their more intensive erosional phase before 29 kcal BP. This hypothesis, though 420 

speculative, has the potential to be validated with future analyses. 421 
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 422 

Fig. 5: Bohnerz from the Swabian Jura. 1) Sediment aggregates containing Bohnerz fragments, photo taken during 423 
Swabian Jura survey; 2) Larger Bohnerz fragments identified during sorting of archaeological material excavated at Hohle 424 
Fels (photo: Maria Malina); 3) Core 12 drilled in the Lone Valley opposite from the Hohlenstein caves. The detail shows the 425 
deposits GL36-GL42, which appear rich in Bohnerz and display an extensive iron-manganese impregnation of both fine and 426 
coarse fraction; 4) Core 31 drilled in the Lone Valley downslope from the Bockstein caves. The detail show GL 266, which is 427 
very close in composition to GL36-42 (modified from Barbieri, et al. 2018, Barbieri, 2019), and; 5) Detail of Bohnerz 428 
fragments from GL42. 429 
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 430 

Fig. 6: Clays impregnated with Fe-oxide from the Swabian Jura. 1) Red clay and sand outcropping at Schelklingen, 431 
photographed during Swabian Jura survey; 2) Detail of a clay aggregate from Gerhausen (picture width is ca. 10 cm) (photo: 432 
Rudolf Water); 3) Aggregate composed of clay, silt and sand within Middle Paleolithic sediment at Hohlenstein-Stadel in the 433 
Lone Valley; 4) Core 5 recovered from the Lone Valley opposite from the Hohlenstein caves. The detail shows the deposits 434 
GL315, mainly composed of iron stained kaolinite, and GL316, formed from weathered limestone gravel impregnated with 435 
iron-manganese oxides. Based on cross-correlation with other coring data, these sediments accumulated before 36 kcal. BP 436 
(Barbieri, et al. 2018, Barbieri, 2019). 437 

 438 

Shortly after 30 kcal. BP, the Ach and Lone valleys underwent an intensive erosional phase, 439 

which led to the removal of sediments and archaeological materials from the cave sites in the 440 

region. Erosion was followed by a phase of floodplain aggradation, in which the Ach and Lone valleys 441 

were covered with up to 5 m-thick deposits of reworked loess and frost induced limestone debris 442 

(Barbieri, et al., 2018, Barbieri, 2019). These dramatic geomorphological processes may have 443 

impacted the local ochre sources by decreasing their visibility and accessibility to groups that 444 

inhabited the Swabian Jura after the LGM. On the other hand, the movement of glaciers out of the 445 

Black Forest left numerous tarns, deepened valleys, and exposed geological and topographic 446 

features which may have facilitated the identification of potential ocher source areas in this region 447 

(Ivy‐Ochs, et al., 2008, Keller and Krayss, 1993) . All of these hypotheses have the potential to be 448 

tested in the future with a provenance-based assessment using the data presented here and 449 
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archaeological remains from the Swabian Jura sites. By first establishing that Fe-oxide materials 450 

these respective regions in Germany can be differentiated based solely on their geochemistry, we 451 

have provided a platform upon which to conduct future comparisons with ochre artefacts in order to 452 

identify their geological source origins. It is ultimately our goal to use our data to explore these 453 

hypotheses related to human behavioral complexities surrounding ochre collection, transportation 454 

and interaction.  455 

6. Conclusion 456 

Regarding our first research goal, the results presented here show that Fe-oxide sources in 457 

Germany can be differentiated by elemental composition. Most sources can be distinguished on a 458 

regional and sub-regional scale using stepwise multi-element statistics, indicating the possibility to 459 

distinguish local versus non-local and distant ochre artifact provenance. Regarding our second goal, 460 

we were able to separate Fe-oxide sources on a regional and partially sub-regional scale though 461 

there was some intra-source variability, such as with the Rappenloch source. There was also inter-462 

source grouping as observed with the Schelklingen and Gerhausen sources, though these two 463 

outcrops are located within ca. 5 km of each other and are part of the same Bohnerzlehm formation. 464 

Thus, the provenance postulate (Weigand, et al., 1977) is not supported for all of the sampled 465 

outcrops, though was supported on a larger scale with the regional ochre sources. Lastly, we believe 466 

that the substantial transportation of the Bohnerzlehm features in the Swabian Jura may have 467 

impacted the source geochemistry (like with the Herz-Jesu Berg samples, for instance) and may have 468 

decreased source visibility and accessibility following 30 kcal BP. Based on the dramatic landscape 469 

changes following the LGM, we expect that populations in the Swabian Jura may have sought other 470 

areas for their ochre resources, though socio-cultural factors may also have been the primary driver 471 

for shifts in collection areas and strategies. Our current data, as it stands, cannot confirm either 472 

scenario, though these hypotheses have room for exploration in the future.  473 

Our motive for investigating ochre sources in the region of the Swabian Jura is threefold: 1) 474 

the presence of numerous ochre pigment artifacts throughout the entire Uppe r Paleolithic (ca. 44-475 

14.5 kcal. BP) (Velliky, et al., 2018) suggest an intensive practice of ochre and human interactions, 476 

which requires an extensive knowledge of the landscape and where to collect these materials; 2) the 477 

results presented here can potentially facilitate a provenance-based analysis of these materials that 478 

would be the first of its kind in the Swabian Jura; and 3) the geochemical data of the ochre sources in 479 

the sampled regions can provide the groundwork for expanding a European ochre database. Though 480 

this preliminary study offers promise, we believe that further and more extensive samples of the 481 

sources tested here, as well as other sources within and outside of Germany, may offer more 482 
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valuable insight into the geological varieties of ochre. It is also our hope that the latter motive will 483 

encourage an increased focus on studying the range and depth of ochre behaviors in the Upper 484 

Paleolithic of Europe and foster further landscape and provenance-oriented studies on the 485 

recognition, collection, and transportation of materials during the late Pleistocene. 486 
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