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We present a lattice QCD study of the valence parton distribution inside the pion within the framework of
Large Momentum Effective Theory. We use a mixed action approach with 1-HYP smeared valence Wilson
clover quarks on 2 + 1 flavor HISQ sea with the valence quark mass tuned to 300 MeV pion mass. We use

483 x 64 lattice at a fine lattice spacing a = 0.06 fm for this computation. We renormalize the quasi parton
distribution function matrix element in the nonperturbative regularization independent momentum subtraction
(RI-MOM) scheme. As a byproduct, we test the validity of a 1-loop matching procedure by comparing the
RI-MOM renormalized quasi parton distribution function matrix element with off-shell quark external states
as computed in the continuum 1-loop perturbation theory with the lattice results at a = 0.04 and 0.06 fm. By

applying the RI-MOM to MS one-loop matching, implemented through a fit to phenomenologically
motivated parton distribution functions, we obtain the valence parton distribution function of pion.
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I. INTRODUCTION

QCD factorization allows us to calculate the cross
section of hard hadronic processes in terms of the con-
volution of partonic cross section and parton distribution
functions [1]. Parton distribution for a hadron can be
defined using hadronic matrix elements of appropriately
chosen gauge invariant operators separated along the light
cone. For example, the quark parton distribution function
(PDF) of a hadron H can be defined in terms of an operator
bilocal in quark field y as [1,2]

7l =g, [dee™ S (PN W OwlO)IH(P)
0

. & — A+
where W(&7,0) = Pe" JS A s the path-ordered
straight Wilson line on the light cone, and the light-cone
coordinates £+ = (f & z)/+/2. A straightforward first prin-
ciple calculation of PDF is not possible because lattice
QCD is formulated in the Euclidean space-time, and, thus,
it cannot access quantities defined on the light cone. To
circumvent this problem, it has recently been proposed to
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calculate the quasi parton distribution function (qPDF),
G(x, P.), defined in terms of matrix elements of equal time,
but spatially separated, quark bilinears [3] evaluated in a
hadron state boosted to a large momentum P, :

5P = [dze P (H P WO O)|H(P.),
@)

where I' is either y, or y, for the unpolarized parton
distribution addressed in this paper. Here, W(z,0) is a
straight spatial Wilson line joining the quark and antiquark.
For sufficiently boosted hadrons, one can use the Large
Momentum Effective Theory (LaMET) [4] to relate the
gPDF to PDF through a convolution with a matching
kernel C as

) = [ “"yc(f i ”—L)f<y,u>. ()

o\ e P,

Here y; and p are the renormalization scales of the schemes
in which the gPDF and PDF are defined. For the latter, MS
scheme is used and y is referred to as the factorization scale.
The matching kernel is perturbative and hence universal for
all the hadrons. Therefore, it is calculated using quark
external states in a chosen gauge. Such calculations at
1-loop order have been performed using the cutoff scheme
[5] as well as in the MS scheme [6-8]. There are also
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related approaches to calculate the PDF from the lattice that
use similar logic but differ in details, like the pseudo-PDF
approach proposed in Refs. [9,10] and the use of good
lattice cross sections [11,12]. The latter includes the
current-current correlators [13].

Using LaMET and related approaches, various attempts
have been made to calculate the unpolarized and polarized
isovector quark distribution of the nucleon [7,14—17]. The
first studies of the valence quark distribution for the pion
have also been presented [13,18]. One important issue in
the calculation of the PDF from the lattice is the renorm-
alization and matching. As indicated above, the PDF and
gPDF are usually defined in different renormalization
schemes. The qPDF, which is calculated on the lattice,
needs a nonperturbative renormalization scheme because
of the self-energy divergence of the Wilson line [19], and
this is usually implemented using the regularization inde-
pendent momentum subtraction (RI-MOM) scheme [20]
defined using external off-shell quark states accessible on
the lattice. Then, one has to match the qPDF in this lattice
renormalization scheme to the PDF in the MS scheme
through Eq. (3). This is achieved through the convolution
using the matching kernel between the RI-MOM and MS
schemes that is perturbatively calculated in the continuum
theory using dimensional regularization [8]. One could also
define the qPDF operator in the MS scheme and then
perform the matching between PDF and qPDF [6,21]. The
current status of this field, including the comparison with
the phenomenological PDF and the issue of renormaliza-
tion, is reviewed in Refs. [22-24].

In principle, Eq. (3) offers a way to calculate PDF from
the lattice, but it is unclear as to what extent this is actually
feasible given the various assumptions that go along with
the equation implicitly. For example, at any finite hadron
momentum P, the Eq. (3) suffers from O(Agcp/(¥*P3))
higher twist corrections. This is closely related to the
assumption that the perturbative calculation, currently
truncated at 1-loop order, is able to capture the renormal-
ization as well as the matching of the qPDF matrix element
over a range of quark-antiquark separations, z—to be in the
perturbative regime, one would expect z to be smaller than
or about O(1) fm. It is also important to ensure that aP, <
1 to make sure we are not overcome with lattice artifacts
[25]. Therefore, a closer look at this new methodology is
warranted and is actively being studied [7,26]. The aim of
this paper is to explore these issues further by using finer
lattices than what are being used in the qPDF literature, and
use the pion as a case study. The smaller mass of the pion
makes it easier to achieve a large boost, the numerical
calculations are expected to be less expensive, and it also
helps suppress the target mass correction by ensuring
m, < P,. We focus on the valence PDF of the pion since
it can be accessed using the isotriplet u — d PDF, and,
thereby, avoid mixing with the gluon sector. In our study,
we will use the renormalization and matching strategy

outlined in [7,20]. The pion valence PDF has been
determined through leading-order and next-to-leading-
order analyses of the experimental data [27-35], but it is
much less constrained than the nucleon PDF, and, there-
fore, the lattice calculations may have more impact in this
case, especially in constraining the x — 1 limit which is not
yet well established.

The paper is organized as follows. In Sec. II, we discuss
our lattices setup. In Sec. III, we present the calculations
of the two-point function of the boosted pion and check
how reliable the extractions of the ground state and the first
excited state are. In Sec. IV, we present our results for the
pion three-point function that defines the qPDF. Here, we
also discuss the problem of excited state contamination. In
Sec. V, we discuss the nonperturbative renormalization as
well as the validity of 1-loop matching. Our results on the
renormalized pion qPDF and the matching to PDF are
presented in Sec. VI. Some technical aspects of the calcu-
lations are discussed in the Appendices. Preliminary
results on this work have been reported in conference
proceedings [36-38].

II. LATTICE SETUP

We performed the calculations of the pion two-point and
three-point functions needed to obtain the qPDF using the
Wilson-Clover action for valence quarks on 1-HYP smeared
gauge configurations [39] and the highly improved staggered
quark (HISQ) action [40] in the sea. We used the 2 + 1 flavor
gauge configurations corresponding to lattice size 48° x 64
and the lattice spacing of a = 0.06 fm generated by the
HotQCD collaboration [41]. In addition to this ensemble, we
also used 64* highly improved staggered quark lattices [41]
with the lattice spacing a = 0.04 fm for the study of the
nonperturbative renormalization (NPR). In both the ensem-
bles, the sea quark mass was tuned to a pion mass of
160 MeV. A similar setup was used by the PNDME
collaboration, albeit for 2 + 1 4+ 1 flavor MILC configura-
tions (c.f., Ref. [7]). For the valence quark masses, we used the
values am = —0.0388 (i.e., k = 0.12623) for the a =
0.06 fm ensemble and am = —0.033 (i.e., k = 0.12604)
for the a = 0.04 fm ensemble, which are tuned such that
the pion mass, m,, is 300 MeV. We did not see any
exceptional configurations for these valence quark masses
in our calculations.

We used higher statistics at smaller quark-antiquark
separations z than at larger ones; to be exact, we used
216, 100, and 48 gauge configurations for |z|/a € [0, 8],
(8, 16], and (16, 24], respectively. We further improved the
statistics by using the All-Mode Averaging (AMA) [42]
technique in the computations of the two- and three-point
functions, with 32 sloppy calculations to one exact solve
for each configuration. For the exact and sloppy inversions,
we used the stopping criterion of 107! and 107#, respec-
tively. In our study, we will consider the valence quark
distribution, which in turn is related to the isovector u — d

034516-2



VALENCE PARTON DISTRIBUTION FUNCTION OF PION ...

PHYS. REV. D 100, 034516 (2019)

quark distribution in the pion, and thus we do not compute
the quark line disconnected diagrams.

For a reliable extraction of qPDF, a good overlap of the
source operator with the pion state is necessary so as to
project out the ground state at as small source-sink separation
as possible. The quark sources with a Gaussian profile,
typically implemented through a gauge covariant Wuppertal
smearing [43], are used for this purpose when the hadron is at
rest. However, for the fast moving hadrons that are required
in the qPDF framework, the use of the Gaussian sources is no
longer sufficient, and this necessitates the usage of the
boosted Gaussian sources [44] instead. Since we are inter-
ested in the calculation of the pion two- and three-point
function at several values of the pion momenta and several
source-sink separations, we found it more practical to
implement the Gaussian sources by using the Coulomb
gauge instead of implementing the Wuppertal smearing. We
found the optimal size of the Gaussian profile to be about
0.3 fm, which roughly corresponds to 90 steps of Wuppertal
smearing. We checked that in terms of the signal-to-noise
ratio, the Wuppertal and Coulomb-gauge Gaussian sources
are similar (see Appendix E). In the next section, we discuss
the boosted sources in detail and the energy levels of the
boosted pion. In Appendix A, we have explained the
construction of boosted sources in detail.

Out of 216 gauge configurations used in our calculations,
24 gauge configurations were analyzed using the graphics
processing unit (GPU) cluster in Brookhaven National Lab
to calculate two-point and three-point correlation functions.
These calculations were performed entirely on GPU using
the QUDA suite [45-47], including the inversion of the
fermion operator with a multigrid algorithm, communication
between GPU devices to perform covariant shifts, and the
necessary spin-color matrix multiplications. In QUDA, the
communications between GPUs on the same node are
implemented through message passing interface or as direct
peer-to-peer communications between the GPU devices. We
have found that on rare occasion the QUDA peer-to-peer
communications did not finish by the time the computations
started. These rare glitches happened randomly. We checked,
however, that these glitches did not affect our results
noticeably compared to other errors.

III. TWO-POINT FUNCTION
OF THE BOOSTED PION

We calculated the two-point functions of the positively
charged pion (zt = du),

Cop(t. P;) = ([ (t. P)[z (0. P)]"), (4)
for a spatial pion momentum P = (0,0,P,) which is
nonzero only along the z-direction, using the pion source
and sink 7, (0, P) and 7 (1, P), respectively. The values of
momenta in lattice units are aP, = £2zn,/48 for n,
ranging from O to 5, which in physical units correspond

to P, =0, 0.43, 0.86, 1.29, 1.72, and 2.15 GeV, respec-
tively. We always used the Coulomb gauge Gaussian
smeared-source (s = S), and either a smeared-sink
(s’ = 8) or point-sink (s’ = P). In the rest of the paper,
we will refer to the smeared-source and smeared-sink setup
to be SS, and we will refer to the smeared-source point-sink
set-up as SP.

For the lowest two momenta, we used the usual Gaussian
sources. To improve the signal for the higher momenta, we
followed Ref. [44] and used boosted sources in which the
valence quarks are boosted to a momentum k, = (P, with
£ being a tunable parameter. Naively, one might expect
that the optimal choice would be { = 0.5. However, we
found that the optimal choice of { for the pion in terms of
the signal-to-noise ratio is between 0.6-0.75. For P, =
0.86 GeV the signal-to-noise ratio is not very sensitive to
the value of {. These findings are in agreement with
Ref. [44]. We discuss the optimization of boosted sources
further in Appendix E. Since we need to create a source for
each value of ¢, we used k, = 2(27/48) for n, = 2, 3 and
k, = 3(27z/48) for n, = 4, 5, corresponding to the choices
of the parameter { = 1,2/3,3/4, and 3/5 for n, = 2, 3, 4,
and 5, respectively. We have shown the corresponding
effective masses for the SS two-point functions in Fig. 1.
By using the boosted smeared sources, one can see that a
reasonable signal for the two-point correlation function
can be obtained up to source-sink separations ¢ = 12a
for all momenta except for the highest momentum
P, =2.15 GeV. Simply from the data points in Fig. 1,
we see that the effective masses approach a plateau
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FIG. 1. The effective masses E.; from the pion two-point
functions with the boosted Coulomb gauge Gaussian source and
sink for different momenta as a function of the source-sink
separation . The horizontal lines are the energy levels from the
continuum dispersion relation with m, = 300 MeV.
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corresponding to the continuum dispersion relation

E.(P.) = \/P? 4+ m2, shown as the horizontal lines. The
effective mass approaches the plateau region at larger
source-sink separations when the momentum is increased,
as one would expect from the shrinking gap between the
ground and excited states as the pion is boosted.

As we will discuss next, we used source-sink separations
t = 8a, 10a, and 12a for the computation of three-point
functions. Therefore, we needed to analyze the excited state
contribution to the SS and SP correlators to perform the
infinite source-sink extrapolations. For this, we performed
multiexponential fits on the SS and SP pion two-point
functions in the interval ¢ € [tiy, fnax] in Order to extract
the energy levels. For fixed t,,,, we varied ¢,,,, and checked
the sensitivity of the result to 7,,,,. Then, we repeated the
procedure for different values of t,,;,,. We found that we
were able to reliably extract the ground state E,(P.) as well
as the first excited state E;(P,) using the four-parameter
two-state fits to the SP correlator instead of using the SS
correlator. This could be due to the fact that the contribu-
tions from the high-lying energy levels are smaller in the SP

0.8 ———————————— 0.8 —

"PL=0 | SS

0.7+ P.=0 SP 2-state ¢
| 2-state prior 6 |

0.6 1 0.7 3-state prior &

< 0 | Ty EE - .
204t 5www§§% S 061 g
Toa 1 sl §%

ol B , G

0.4

O P S S S S S S P S S S S S
12345678910 123456738

tmin/@ tmin/a
0.9 B 1l
P.=129GeV SP P.=129 GeV 5SS
08 1 2-state ©
S0 ) I 2-state prior © ]
3-state prior &
0.7 t E 09+t E
I~ SO 3
= RIRIK I~
woo | BECERSS | ol B
5 E ) g §
0.5 E 0.7+
E, y
04 | oo 0.6 5% 2
ol Oo
12345678910 123456738
tmin/@ typin/@

FIG.2. The systematical dependence of the ground state £, and
the first excited state E| on the fit range [y, fmax) 1S Shown. In
the left panels, we show such a dependence for the pion SP
correlator at two different P,. For each ?,;,, data from 7,,,, = 24a
and 32a are shown. The black solid line is the value of E,
expected from the continuum dispersion relation. The red
patterned band is our best estimate of E; using the SP correlator.
In the right panels, the fit systematics of E for the SS correlator is
shown. The red band is the prior used for E; from the SP
correlator (same as the one in the left panels). The different
symbols are the various fit strategies.

correlator compared to the SS correlator stemming from the
possible cancellations between the positive as well as the
negative amplitudes that are allowed in the SP correlator. In
the top-left and bottom-left panels of Fig. 2, we have shown
the systematics of the two-state fits to the SP correlator.
In the top-left and the bottom-left figures, we have shown
the dependence of the best fit values of £, (blue circles) and
E| (black circles) as a function of ¢, used in the fits. For a
given t.,;,, the data points from two values of 7., have
been clubbed together for P, = 0 and 1.29 GeV, respec-
tively, and it demonstrates that there is no dependence on
tmax- The ground state is seen to compare well with the
expectation from the dispersion relation shown by the black
solid lines. The red band shows the values of E; chosen as
the best estimate of the first excited state.

On the top-right and bottom-right panels of Fig. 2, we
show similar plots for the first excited state E| as estimated
using the SS correlator. The statistical errors of the excited
state energy FE; in the simple two-state fits (magenta
diamond) quickly grow large with increasing f;,, and,
thus, these fits turned out to be of limited use. Therefore, we
performed constrained two- and three-state exponential fits
for the SS correlator with the ground state energy fixed to
E, = +\/P?+ m% with m, =300 MeV, and imposing a
prior on E; using its best estimate from the SP correlator—
that is, we added the term (E| — E\ prior)*/0pi, to the °
with E por and oy, being the mean and error of E,,
respectively, as determined from the SP correlator. The #,,;,
dependence of the resulting £; from the constrained two-
state fit (black circles) and constrained three-state fit (blue
triangles) are shown in the top-right and bottom-right
panels. The two-state fits of the SS two-point correlator
largely overestimate the energy of the first excited state for
small 7,.;, whether or not priors are used, and there is a
significant dependence on #,,,;,. One should use ?,;;, > 6a to
obtain reliable results for the first excited state from the SS
correlator. The three-state fits with priors on E, and E;| give
energies of excited states that are the same within errors for
the SS two-point correlators and show almost no f;,
dependence. In summary, we determined the lowest three
energy levels using the SP correlator and then determined
the corresponding amplitudes |A, | = |(0|z§ (0, P)|E,, P.)|
of these excited states in the SS correlator through a
constrained fit analysis.

In Fig. 3, we show the three energy levels obtained from
the different fits discussed above, as a function of P,.
For P, = 0, we compare our result with the energy levels
that would correspond to the pion resonances 7(1300) and
7(1800) from the particle data group (PDG) [48]. In order
to account for the 300 MeV pion mass, we shifted the
PDG values by 0.161 GeV as an approximation and
these are shown as the two arrows in Fig. 3. Our estimate
of the first excited state energy agrees with this shifted
mass of 7(1300). We also show the expected P_-depend-
ence of E|(P,) assuming a particlelike dispersion, and this
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FIG. 3. The energies of the ground state and the first two
excited states as functions of P_. The red, blue, and black symbols
correspond to E,, E;, and E,, respectively. For each color, the
different symbols correspond to different fitting methods (2-state
and 3-state fit with or without prior on the ground state) and the
types of source-sink (SP or SS). The lines show the expected
dispersion relations for the pion and its first excited state. The
arrows are the PDG values of z(1300) and z(1800) which are
shifted to account for m, = 300 MeV.

describes the actual data very well. The energy of the
second excited state is much larger than expected, meaning
that the third state effectively parametrizes several higher
lying states. As one can see from the figure the energy gap
between E,; and E; shrinks with increasing P, as expected.
The results on the excited state energies will be important
for the analysis of the pion three-point function discussed in
the next section.

IV. EXTRACTION OF THE BARE QUASI-PDF
MATRIX ELEMENTS FROM THE
THREE-POINT FUNCTIONS

The next step is the calculation of the bare qPDF matrix
element

hIIE(Z’Pz) = <En’Pz|OF(Z;T)|Eﬂ’PZ>’ (5)

where the bilocal u —d qPDF operator in a time-slice 7
involving a quark and an antiquark separated along the
z-direction by £ = (0,0,0, z) is given by

OF(Z;T> = Z(ux Wx,x+£rux+[l - ax Wx,x+£rdx+£) , where

X
x+L

F:J/tvyz’ I; Wx,x+£ = H U3(x/)’ (6)
xX'=x

and it is made gauge-invariant by the Wilson line W, ., /.
The Dirac y matrices in the qPDF operator are in the

Minkowskian convention. The state |E,, P.) denotes the
on-shell ground state pion with momentum P_. In addition
to the natural choices of I' = y, and y, that approach y* in
the light-cone limit, we also considered I"' = 1. This choice
of I is needed because under renormalization, O, (z) mixes
with O;(z) [6]. We applied one-level of HYP smearing to
the links entering W, ., » in order to reduce the noise. Since
the qPDF calculation involves values of z~ O(a), we
checked that there is no significant difference between the
renormalized matrix elements using the smeared and
unsmeared Wilson line. To obtain the bare matrix element
hB(P, z), we computed the three-point function at different
source-sink separations ¢ and operator insertion point ,

Ot 752, P) = (7§ (1, P)|Or(z:9)[w5 (0. P))F), ()

and constructed the ratio of the three-point function to two-
point function,

C3 (1,732, P,)

Cop(t, P:)

R(t,7;z, P, T) =

(8)

The reader can refer to Appendix B for a detailed
description of the construction of three-point functions.
The two-point function is always real when the source and
sink are of the same type. The three-point function for the
u — d qPDF operator Or(z) in a pion external state is real at
all z for I' =y, y, and purely imaginary for I' = 1 (refer
Appendix C). Inserting a complete set of states in the above
equation,

R(t,7;z,P_,T)
_En‘n/A”A;:/<En,P|Or(Z)|En/,P)>e_(E,,/—En)T—Ent
a POV L ’

with £, | > E,, and E; = E. It is easy to see that in the
infinite ¢ limit, R(z,7;z, P,,T) is equal to hZ(z, P). The
above equation holds for the infinite time extent. For a
finite time extent, the effects of the periodic boundary
condition should be taken into account. This turns out to be
important for P, = 0, while for nonzero P, the effect is
negligible as discussed in Appendix G. In practice, one
truncates the sums in Eq. (9) at some value n, and then
obtains hg(z, P.) by fitting the ¢ and the = dependence of
R(t,7;z,P_,T') using (E,, P|Or(z)|E,, P)) as fit parame-
ters. In the fits, the values of A, and E, were held fixed at
values determined from the two-state fit analysis on the SS
correlators. In what follows, we will refer to this method of
fitting using n-state ansatz to the data between 7/a > 7,
and t/a <t/a—r1, as Fit(n,7,). In this method, the
excited states are suppressed by exp(—(E, — E,)t/2). For
z = 0, itis easy to see that R(7, 7; z, P_,I") is symmetric in 7
around the midpoint 7 — #/2. For z # 0 and P, # 0, we only
have the following relation (see Appendix D):

©)
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(E,,P.|Or(2)|Ey, P,))* = ¢r(E,,—P,|Or(2)|E,,—P,)), is larger for I' =y, than for I“:.y,. Furthermore, the
excited state contribution grows with increasing z. The

(10) nonsymmetric nature of R(z,7;z, P.,I') for z # 0 is also

apparent in the figure. We expect that i(z = 0, P) = 1 for

where ¢ = 1 forT' = y,,1 and @ = —1 forI" = y,. Thus, ' =y, because of the charge conservation once a proper
generically the matrix elements (E,, P.|Op(z)|E,,P,))  renormalization is implemented and the continuum limit is
and (E,s, P,|Op(z)|E,, P.)) are independent and the num-  taken. Our extrapolation procedure gives a result for the

ber of fit parameters is thereby increased. Based on the  bare matrix element which is larger than one at all the

above relation, we constructed appropriate averages using  values of momenta as can be seen in Fig. 4, as well as from

both the positive and negative values of momenta to  Fig. 22 in Appendix G, where, in addition, one can also see

increase the statistics. However, in practice the gain was  that hZ(z=0,P,) is independent of P,. Thus, any

marginal. deviation of hZ(z=0,P,) away from unity should be
We demonstrate the extraction of the matrix element  taken care of by the renormalization. We will see in Sec. V

using the fit method in Fig. 4, where the ratios  that this is indeed the case.

R(t,7;z,P,,T") are shown for I' =y, and y, qPDFs for Alternatively we can use the summation method [49] to

the P, = 1.29 GeV pion. The results on R(#,7;z,P.,I')  obtain hZ. Here one sums over all 7/a minus a certain

and the extraction of matrix elements for the other values of number of end points 7,

P, are given in Appendix G. In the figure, we show the data

at t/a =8, 10, and 12 along with the result of Fit(2,2). ta=z

Using the fit, the results for the + — oo extrapolations are Rym(1:2.T) = Z R(t.7:2,P..T). (11)

shown with the horizontal bands. We also performed the #/a=z,

three-state fit of R(z,7:z,P,.I') and the picture looks  We will refer to this method as sum(sum(z, )). For large 7,
similar. In this case, the data points at all 7 —#/2 could  gne would find a linear behavior in ¢ of Ry, as
be described by the fit. The  — oo extrapolations from the

three-state fit gave results consistent with the two-state Rgum(1:2,T) = (1 = 22,)hB(z, P.) 4 const 4+ O(e~(Fr=Ex)r),
ones, albeit with larger errors. A closer look at Fig. 4 (and

also from Fig. 21) reveals that the excited state contribution (12)
1.12 0.68 0.26
P. =129 GeV P, =1.29 GeV P, =129 GeV
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0.22
: ? - I
N &
& « 0.18
© ©
& &

: 0.1
6 1 2 0 2 1 6 6 1 2 0 3 1 6 6 130 2 1 6
(r—t/2)a! (r—t/2)a! (r—t/2)a!
1.05 0.7 0.3
P, =129 GoV
—8-g Z;a ; N P. = 1.29 GeV P. = 1.29 GeV
t =10 o~ = —4 _
1ht =12 oA 0.65 zla 0.25 #fa=8
- - [ ——
< 06 _ G2
& &
i T 1 5l
S055 1 S 015
= } = m/a/a’“‘km\m
05 ) 3

o O 0.1 o w Tty 7
@
@ $ } = @
o
0.45 0.05
—6 —4 -2 0 2 4 6 —6 —4 -2 0 2 4 6
(r—t/2)a! (r—t/2)a™t

FIG. 4. The ratio of the three-point function to the two-point function, R(z, 7; z, P,,T') is shown as function of = — #/2 for y, (top row)
and y, (bottom row) for z/a = 0, 4 and 8 (from left to right) and P, = 1.29 GeV. The central values of the two-state fits of the lattice
results for different source-sink separations are shown as the curves. The horizontal band corresponds to the extrapolated result for the
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12 P, =1.29 GeV
z/a=0

7 8 9 10 11 12 13 14
t/a

FIG. 5. The r dependence of Ry, (r;z=0,y.) for P, =
1.29 GeV with 7, =1 (red) and 7z, = 2 (blue). The solid lines
are the straight line fit 1/ (z, P, )t + const to the data. The dashed
lines are the expected curve for Ry, (#;z = 0,7.) using the £it
(2,2) best fit parameters.

The advantage of this method is that the excited state
contributions are suppressed as exp[—(E, — E,)t] instead
of being suppressed as exp[—(E, — E,)t/2] in the fitting
method. We show a sample result using sum(1) and sum(2)
inFig. 5 forI" =y, and z = 0. We see that Ry, (#; z,7.) can
be well fitted by a straight line in ¢, and the slope gives the
value of the matrix element. As a cross check, we also show
the expected curve for Ry, (; z,I') using our best fit from
Fit(2,2) as the dashed curves. It can be seen that the
difference between a simple straight line fit and the curve
from Fit(2,2) is small. One can also note that sum(1) and
sum(2) are almost parallel, meaning that the extracted
matrix element is independent of z, confirming that the
method works well.

To better understand the systematic effects due to excited
state contaminations, one can look at the case z =0 in
detail, where the statistical errors are the smallest. The bare
matrix element hﬁ (z=0,P,) after renormalization is
expected to be proportional to the hadron velocity,
P./E.(P.). One can take the ratio of matrix elements
h}(z=0,P,)/h;(z =0, P,) toavoid the issues of renorm-
alization. The results for this ratio of matrix elements is

shown in Fig. 6 along with the curve for P,/+/P? + m2. We
see that our lattice results follow the expectations reasonably
with small 3—4% deviations from the expected result at small
P.. Areason for this could be the large systematic uncertainty
in y, matrix element due to the relatively larger excited state
extrapolations required. We see that within errors, the two-
state fit, three-state fit, and the summation methods are
consistent.

In Fig. 7, we show the results for hZ(z, P,) as functions
of z for the two highest momenta P, = 1.29 and 1.72 GeV
determined using the HYP smeared Wilson line. Since the
real part is symmetric, about z = 0, we have only shown the
data for z > 0. At each z/a, we have shown the resulting
t — oo extrapolated results using Fit(3,1), Fit(2,2),

A
=)
Il
2
S
<
=
Q; 3-state —a—s
‘ﬁ 0.4 2-state —8— ]
n summation —e—
o 02 t/a=10 —o— |
< -
0 ‘ ___DJ/E ,
0 0.5 1 1.5 2
P, (GeV)

FIG. 6. Theratio of the matrix elements for y, to y, as a function
of P.. The curve shows the expected result, P./E, (P,).

sum(2), and sum(2) methods, and these points at a given
z/a are slightly displaced for better visibility. We see that
the results from all these methods agree with each other
within the errors. For y,, some tension between the
summation method, and the two- and three-state fits is
observed at larger |z|. At larger values of z the matrix
elements are suppressed partly because of the larger value
of P, and in part by the divergent self-energy contribution
in the spatial Wilson line. The latter will be removed upon
renormalization as we will see in the next section. Having
demonstrated a robust determination of the matrix element
using multiple ¢ — oo strategies, we will use the matrix
elements obtained using Fit(2,2) in the rest of the paper.

So far we discussed results on the three-point function
obtained using 1-HYP smearing for the spatial link. We
also performed calculations using the unsmeared spatial
Wilson line. In this case, the bare matrix element rapidly
decreased with z due to the larger value of the Wilson line
self-energy divergence. However, we found that the results,
after nonperturbative renormalization (discussed next in
Sec. V), were similar to those obtained with smeared
Wilson lines within errors. The main difference between
the renormalized three-point function obtained with the
smeared and unsmeared Wilson line is that, for the latter,
the statistical errors at large z are significantly larger.

V. RI-MOM NONPERTURBATIVE
RENORMALIZATION AND ITS
COMPARISON WITH 1-LOOP

In the last section, we discussed the extraction of the bare
gPDF matrix element which has to be renormalized. The
renormalizability of gPDF has been recently demonstrated
to all orders of perturbation theory [50,51]. In addition to
the quark wave function renormalization Z, and the
composite operator renormalization required for z =0,
the qPDF operator at nonzero z requires additional renorm-
alization due to the UV divergence present in the Wilson
line connecting the quark and antiquark [52]. When a
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FIG.7. The bare matrix elements h2 (z, P_) (left) and hfz (z, P,) (right) as a function of quark-antiquark separation z. The panels in the
top row show results for P, = 1.29 GeV, while the panels in the bottom row show the results for P, = 1.72 GeV. The different symbols

are from various methods of 1 — oo extrapolation.

lattice fermion that breaks chiral symmetry at finite lattice
spacings is used, as is the case in this paper, it has been
shown that only the renormalization of the y, qPDF
operator is purely multiplicative, while the y, qPDF
operator mixes with the scalar qPDF [6,20]. A renormal-
ization scheme that is implementable on the Euclidean
lattice is the RI-MOM scheme, and it is now standard in the
lattice QCD literature. The corresponding RI-MOM
counter-term for the qPDF operator in leading-order
perturbation theory has been worked out using off-shell
quark external states [8], and it is one of the ingredients
used in the perturbative matching of the RI-MOM renor-
malized gPDF to the MS PDF. In this section, we discuss
the renormalization procedure, and then compare the
running of the renormalization constants as determined
on the lattice with the corresponding perturbative expect-
ations. This allows us to quantitate the validity of the
leading-order perturbation theory and matching.

For nonperturbative renormalization, we compute the
expectation value of qPDF operator between off-shell quark
external states with momentum p. We refer to the momentum
of quark in the direction of the Wilson line as p, and the
magnitude of the component perpendicular to the Wilson line
as p | . For these computations, we use Landau gauge fixing.
Let Ar(z, p) be the quark-line amputated bare qPDF,

Ar(z, p) = (Q(p))"{a(p)Or(z.1)u(p))(Q(p)~". (13)
where Q(p) is the quark propagator (u(p)u(p)) and
u(p) = > uce™P*. Let us define the bare qPDF after
projection as
qr(z. p) = Tr[PAr(z. p)). (14)

consistent with the definition used in perturbative calcula-
tions. Here, P is the operator used to project onto one of the y-
matrices I' = y,,, and Tr(...) is a trace over both color and
Dirac indices. Based on previous works [8,20], we will use p-
projection for which P = p/(12p,,). Alternatively, one can
use P = I" [21] or the minimal projection [8]. In the case of
I' = y,, since the renormalization is simply multiplicative,
the renormalized quark qPDF is given by

qy(z, p, p*) = Z,,,(z. P)q,,(z, p), (15)
where the z-dependent RI-MOM renormalization constant Z
is determined using the renormalization condition set at
momentum pX as

(2, p, )|y pr = €75, (16)
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FIG. 8. The RI-MOM renormalization constants using p-projection at lattice spacing a = 0.06 fm at renormalization scale
p, =129 GeV, p, = 1.49 GeV are shown. In the top-left panel, the real and imaginary parts of the renormalization constant for
v, qPDF operator are shown as a function of quark-antiquark separation z in physical units. On the top-right panel, the self-energy
divergent part e~ of the Wilson line is removed from renormalization constant for y, qPDF. Similarly, in the bottom-left panel, the
diagonal part Z, , and the mixing term Z, ; are shown, and the corresponding values after the removal of self energy divergence are

shown in the bottom-right panel.

The right-hand side of the above equation is the tree-level
value of g, . The renormalization constant so obtained is in

general a complex number. For I = y_, we have to take care
of mixing with the scalar I' = 1. Hence, the renormalized
gPDF is defined as

qy (z.p. P*) =2, (2.p%)q, (2. p) + Z,1(z. PF)q1 (z. ).
(17)

The diagonal part Z,, and the mixing term Z, , are
determined using the two RI-MOM conditions [20]:

Q}IS. (Z’ D, pR)|p:pR = eipfz’

Z,, (2, pP)TeA, (2, p) + Z,1(z, PR)TrA (2, p)] p—pr = 0.
(18)

Using the renormalization constants Z determined above

using quark external states, the renormalized pion qPDF can
also be determined by

hf,i(Z, Pz7 pR) = ZqZ;'m<Z7 pR)hﬁ (Z’Pz>7
hfz (z, P, pf) = z,z,,(z pR)hf,i (z, P,)

+2,Z,1hi(z, P,), (19)
where Z, is the quark renormalization, that can be deter-
mined using the condition [53]

Z,(p) ! S TH(Q(PM) Quee(p) = 1.

(20)
where Q(p) is the quark propagator determined using the
Landau gauge, and Q.. is the free quark propagator for
which we use the free massless Wilson-Dirac propagator.
In Fig. 8, we show the renormalization factors using the
above RI-MOM renormalization conditions on the 0.06 fm
ensemble. On the top-left panel of Fig. 8, we show the real
and imaginary parts of Z, , determined at pX = 1.29 GeV
and pR =149 GeV. The rapid, almost exponential,
increase in Z with z is due to the self-energy divergence
present in the bare Wilson line that connects the quark and
antiquark in the gPDF operator. This divergent piece, <%/,
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cannot be captured perturbatively, and it needs to be
determined nonperturbatively in a particular scheme.
However, this might not be an issue for the one-loop
matching if ¢l cancels exactly between the renormalization
factors and the bare qPDF operator. Therefore, we remove
¢“l#l from the renormalization constant that is shown in the
top-left panel, and display the result in the top-right panel.
The value of ¢ for our a = 0.04 fm ensemble was determined
in [54], and for 1-HYP Wilson line ca = 0.1586. This
removal of Wilson line self-energy reduces the almost
exponential dependence of Z(z) to a weak dependence on
z. Infact, we see that both the real and imaginary partsof Z,
remain O(1) even up to z =1 fm, thereby providing a
qualitative justification for the usage of leading-order per-
turbation theory to describe the lattice data at short z and at
high quark momenta. We show similar data in the bottom-left
and -right panels for the Z-factors for y, qPDF. In this case,
we have the diagonal factor Z, , as well as the off-diagonal
factor Z, ; to take care of mixing with scalar on the lattice. We
show Z, , and Z, ; as the filled and unfilled symbols in the
bottom panels, respectively. We observe that the imaginary
partof Z, , is small compared to the real part. This is not the
case for Z, , , which in turn will affect the asymmetry of the
u — d qPDF g, _,(x) of pion, about x = 0. We also note that
the mixing of y, with the scalar is a minor 5-10% effect, but
we nevertheless take care of it in our calculation.

As we discussed in the last section, the matrix element at
z =0, h,, is the local current operator which will be exactly
conserved in the continuum limit. Hence, Z,Z, , (z = 0) is
the vector current renormalization factor Z, and the
dependence of Zy, on p will give us an idea of the leading
(pa)? perturbative lattice artifacts for values of p > Agcp
as well as the other higher order (or perhaps nonperturba-
tive) contributions to this lattice correction to Zy at smaller
renormalization scales [53]. In Fig. 9, we show Z,

a = 0.06 fm
1.1+ Z47(0) —a— 1
- Zq ——
E Zy —e—
1.05 | 3
gy
-
- -
-
Ty
1t % e oy -
S
Rt gy, e M WD
0'9 1 1 1 1 1
0 1 2 3 4 5 6

FIG. 9. The (pa)? dependence of the renormalization factors
Z, (black squares), Z,,(z=0) (red triangles), and Z, =
72,Z,,(0) (blue diamonds) are shown for the a = 0.06 fm
ensemble.

determined using Eq. (20), the value of Z,, at z =0 as
well as their product Zy, as a function of (pa)?. One sees a
reasonable plateau for Zy ~ 0.97 only for (pa)? > 2. For
comparison, the value of Zy, as obtained from the bare pion
isospin charge A (z =0, P, = 0) is 0.961(3). The values
of Zy determined from hf, (z =0, P.) at the other nonzero
P, also give consistent values. With the uncertainties of
choosing the scaling region in (pa)? to take the (pa) — 0
limit of Zy, we expect the Zy to be in the range 0.97 to
0.99. For relatively smaller values of renormalization
momenta (pa) ~ 1-1.5, chosen such that the renormaliza-
tion scales lie in the vicinity of the pion momenta used in
this paper, one sees noticeable, but small, 5% dependence
on pa. We used the value of Z, estimated at the same value
of p as used in Z,, for renormalizing our pion qPDF.

A. Comparison with leading-order
perturbation theory for z < 0.3 fm

We will now investigate in a quantitative way the
agreement/disagreement of the lattice determination of
the RI-MOM renormalized amputated quark qPDF at z <
0.3 fm which one can expect to be in the perturbative
regime. For this, we construct a quantity {r(z, p, p®) in the
following way:

R R

qt(z, p, p*)
Cr(z p, pR) = 22— 1, 21
T( ) q#(z,p,P) ( )

where gR(z, p, p) = e'P+* by the renormalization condition.
In the case of I' = y,, the above definition is simply

Z,,(zp") = 2,,(zp)
Z: [(Z, p’pR) — Tt 24 , (22)
! ZVf}’z(Z’ p)

which is similar to a discrete scale-dependent anomalous
dimension dlog (Z,, (z. p))/0p. Through the dependence

of ¢ on pX slightly away from p, we can understand how
well the leading-order perturbation theory is able to
describe the exact nonperturbative determination on the
lattice. It is important to stress that apart from under-
standing nonperturbative renormalization of qPDF in this
way, we are also essentially comparing one of the steps in
the LaMET formalism that is calculable on the lattice.
Hence, any agreement/disagreement we observe quantifies
the limitations of the leading-order LaMET. In perturbation
theory, ¢ is the ratio of the one-loop perturbative correction
to ¢(z, p) to its tree-level value. This expression for ¢ has
been calculated, and it is given by1

'The formula differs from the one given in [8] due to the issue
of the order of the ¢ = 0 limit in dimensional regularization and
the z = 0 limit. We thank Yong Zhao for communicating the
corrected result to us.
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(a = 0.04 fm as filled circles and a = 0.06 fm as open circles). For the data shown, p, = p® = 1.92 GeV. The transverse momentum
of the quark p, = 1.58 GeV, and the transverse renormalization momentum is chosen to be 1.5 times p .

Cp [ A
Goleop. ) = A5 [ st 1) (e p)

{2l (1 250

PR z (23)

where H(x, p) is the 1-loop correction term to the bare
gPDF, and the two terms in the right-hand side come from
the bare and RI-MOM renormalization counter terms,
respectively.” The functional forms of H(x, p) for y, and
v, isovector qPDFs are given in [7,8] and therefore we do
not provide them here. The asymptotic 3/(2|x|) behavior of
the bare and the RI-MOM counter term, that contributes to
the UV divergence when integrated over x, gets exactly
canceled and we obtain a UV finite and renormalized result
for £. In the discussions below, we will consider the cases
with p,=p® and p, # p® separately. In the above leading-
order formula, the scale at which «, has to be evaluated is
arbitrary. Therefore, we vary a, by changing the scale from
0.5p% to 2p¥ through the 1-loop running, and quote this
variation as an uncertainty in the perturbative results below.
On the lattice side, we determine {(z, p, p¥) using the
nonperturbatively determined Z-factors. In order to esti-
mate the lattice spacing effects, we determined ¢ using two
different lattice spacings; a = 0.04 fm is shown as filled
symbols and a = 0.06 fm is shown as open symbols in the
various plots that follow.

In the left and right panels of Fig. 10, we show the typical
dependence of ¢, (z) and {,_(z), respectively, as a function
of z when pf differs slightly from the transverse quark

*The function H (x, p) here is referred to as h(x, p) in Ref. [8].
We reserve h to refer to qPDF matrix element as is the
convention.

momentum p, , while the longitudinal components p, and
pR are the same. Using Eq. (23), we calculated the
prediction from leading-order perturbation theory for
¢(z) at the same values of momenta. The uncertainty bands
for the perturbative result are shown in Fig. 10 along with
the actual lattice data at the two different lattice spacings
that are shown using symbols. For the data shown in
Fig. 10, the longitudinal components p, for the two lattice
spacings are exactly 1.92 GeV, but the transverse compo-
nents p, are only approximately the same between the
two due to the constraints of allowed momenta on the
two different lattice volumes, i.e., p, = 1.49 GeV for
a=0.06fm and p, = 1.67 GeV for a =0.04 fm. To
take care of this slight offset in p | between the two lattice
spacings, we have distinguished the perturbative results
corresponding to a = 0.04 fm as bands enclosed by solid
lines, and similarly for ¢ = 0.06 fm as bands enclosed by
dashed lines. It can be seen that the two perturbative results
are not very sensitive to this difference in p | assuring us
that whatever change we observe between the data at two
different @ is mainly due to the change in a. We observe
from the plots that the leading-order perturbation theory
captures the qualitative z-dependence of both the real and
imaginary parts of ¢ when p¥ is changed from p,.
Surprisingly, the 1-loop result seems to work better for
¢,. than for ¢, . In the case of y,, one can certainly see a
large lattice spacing effect with the movement of data
towards the 1-loop result as the lattice spacing is reduced,
while in the case of y_, one can already see a consistency
with the one loop result at the lattice spacings that we use.
Thus, it opens up a question on whether the y, qPDF fares
worse compared to the y, qPDF simply due to the presence
of mixing with the scalar or whether y, qPDF might
eventually show better perturbative convergence and
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parts of ¢ at (p., p,) for the 0.04 fm data, and similarly the band enclosed by the dashed curves corresponds to (p,, p,) of

the 0.06 fm data.

lesser lattice spacing dependence in spite of its other
disadvantages.

In Fig. 11, we concentrate on the renormalization flow of
{r at the fixed small value of z = 0.12 fm. The two panels
show the dependence of ¢, and , on pX which is changed

around p | . As before, we keep p, = p® = 1.92 GeV. The
1-loop result is able to capture the qualitative trend of the
flow in both y, and y,. For both the cases, we can see that
the reduction of lattice spacing leads to a better agreement
with the 1-loop result. Having discussed the cases where
p. = pR, we now study the dependence of { on pX # p_,
while keeping p; = p®X. We show the z-dependence of -
when p® = 1.5p, in Fig. 12. We find the perturbative result
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FIG. 12. The dependence of { on the longitudinal momentum
pR.¢ y. is shown as a function of z for a specific choice of p_ and
p1 = p¥. The uncertainty bands for the real and imaginary parts
for the leading-order expectation are shown using bands enclosed
by solid lines. The symbols are the lattice data determined at
lattice spacing a = 0.04 fm.

to have the same qualitative behavior as the lattice data.
Putting together the various observations in this section, we
found only an overall qualitative agreement between the
lattice results on ¢ and the one-loop perturbative results.
When the lattice spacing is reduced, we found the agree-
ment to get better. It remains to be seen what the effect is of
including higher order corrections in the perturbative result
for ¢.

B. A way to classify quark-antiquark separations
as perturbative or nonperturbative

Physically, one would expect that for a well-separated
quark-antiquark with z > 1 fm, one would start seeing
traces of nonperturbative physics in the gPDF. Quantifying
the advent of nonperturbative physics for large enough z at
finite quark/hadron momentum is important with regard to
the extraction of PDF since the real-space qPDF at all z
enter the computation of its Fourier transform. A simple
first approximation to study this effect is the following. In
free theory, the qPDF with external quark states is a pure
wave e'P:*. We expect, to a first approximation, that the
effect of nonperturbative physics is to damp this pure wave
via an inverse screening length my, ~ O(Aqcp). Thus, we
model the bare quark gPDF as

C](Z,p) _ Aem’ze_m“f‘zle_c‘zl, (24)

where we have removed the UV divergent piece el from
the gPDF and defined the left-over exponent m., as a
physical scale. We have also accounted for @ # p, in the
interacting theory since the quark can lose momentum by
emitting gluons. There could be remnant nontrivial depend-
ence of the amplitude A on z, which we assume to be
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FIG. 13. The real and imaginary parts of the lattice data for

q,,(z, p) are compared with the purely oscillatory model (dashed
curves) at short-distances, and the damped oscillatory ansatz
(solid curves) at larger |z|. The data correspond to quark
momentum (p_, p,) = (1.29, 1.49) GeV.

subleading compared to the leading damped oscillatory
behavior and ignore it in the discussion here. There is an
ambiguity in mg, depending on the scheme used to
determine the divergent piece c. Since the values of ¢
determined from the static quark potential method ensure
that the renormalization factors after the removal of el
are O(1) at smaller z in Fig. 8, the choice of separation of
the exponential suppression factor into divergent and
physical scales as defined in Eq. (24) is well motivated
in this scheme. In Fig. 13, we show the bare quark qPDF
q,,(z.p) for p; =149 GeV and p, = 1.29 GeV deter-
mined on the a = 0.06 fm ensemble. The short distance
can simply be described by a pure oscillatory e/®? behavior
which is shown using the dashed curves (with @ = 0.85p,
for the case shown). The solid curves in the figure
correspond to the ansatz in Eq. (24) which describes the
data at larger |z| well. Without dwelling further on finding
the best parametrization of the lattice data that asymptoti-
cally behaves like Eq. (24), we simply define an effective
z-dependent @ and m, through

—iw(z) = —llog (M) —c. (25

mSCr(Z) q(Z, p)

In Fig. 14, we show the behavior of m,., and w as a function
of z as extracted from g, (z, p). We have chosen a different
set of p_ and p, to show the dependence on p, at fixed p |
and vice versa. From the top panel, we see that @/p, is
below 1 for z < 0.4 fm and seems to approach a plateau
closer to 1 for z > 0.4 fm. While the values of w at short
distances depend on p, and p, the approach to w = p, is
universal. We observed this behavior when we used
q,.(z, p) as well. A physical reasoning for this observation

could be that at shorter z, the quark has the ability to radiate

(pz,p1) GeV
14t 1.20,1.49) —o—
sl 1.29,2.23) —5—
: 1.29,2.98) —a—
12} 1.61,2.23) —o—

1.93.2.23) —o—

w/p:
—
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FIG. 14. The effective frequency of oscillations @ (top) and
effective screening mass m, (bottom) as extracted from g, (z,p)
are shown. The various values of p = (p_, p, ) for the data are
tabulated in the plots. The values of @ are normalized with respect
to p,. A 1-HYP smeared Wilson line was used in all the
cases shown in the plots, and the corresponding self-energy
ca = 0.1586 was subtracted to obtain m,.

a gluon, and at distances z > 0.4 fm there is effectively a
dressed quark carrying all the momentum. In the bottom
panel of Fig. 14, we have shown the effective screening
mass m,. In the plots, we have only shown the data where
1-HYP smeared Wilson line was used. For this case, we
subtracted ca = 0.1586 in Eq. (25) to get mg,. One can
clearly see the emergence of nonzero my, =~ 300 MeV for
|z| > 0.5 fm which is in the typical Agcp scale. When we
repeated this using quark gPDF with an unsmeared Wilson
line, we found the results to be consistent with the data
shown in Fig. 14 after we subtracted out ca = 0.3687
corresponding to the unsmeared Wilson line. This assures us
that the observed mg., ~ 300 MeV is a real physical scale
independent of the self-energy divergence of the Wilson line.
This signals the significant presence of a confinement scale
beyond z =~ 0.5 fm. Also, the near plateauing of both @ and
myg., for these larger z indicates that a simple physically
motivated ansatz in Eq. (25) offers a surprisingly good
description of the actual nonperturbative data. One could
have expected this simply from observing the large |z| part of
Fig. 13. It remains to be seen if this observation can be used
advantageously in improving the LaMET matching at finite
moderately large p,.
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VI. FROM RENORMALIZED QUASI-PDF TO PDF

A. On obtaining the valence PDF
using isovector u —d qPDF of pion

Having determined the renormalized gPDF we can now
discuss the matching between gPDF and PDF as well as the
determination of pion PDF from our lattice results. We
computed the u — d qPDF matrix element of a pion which
in practice we obtained from the real part of the connected
piece of the u quark qPDF matrix element. Now, we discuss
how the u — d qPDF and PDF are related to the valence
PDF of pion.

The u and d quark distributions, f,(x) and f,(x), as
determined using Eq. (1) has support from x = —1 to 1.
One can make a connection with the conventional, sepa-
rately defined quark distributions Q,, 4(x) and the antiquark
distributions Q; ;(x) that are nonzero only between x = 0
and 1, through the relation

Qu,d(x)e(x) -

Therefore, f,, 4(x) contains information on both the quark as
well as the antiquark distributions in the positive and negative
regions of x respectively. Let us first focus on x > 0. In the
isospin symmetric case we are considering, Q,,(x) = Qz(x)
and Qy(x) = Qu(x). Therefore, for the positively charged
pion Q,,(x) = Qq(x) = Qu(x) — Qa(x) = f"(x) is the
valence u-quark distribution. Again, due to the isospin
symmetry, the u and d valence distributions are the same
as f5"(x) = f7(x) = £7(x). However, unlike the valence
quark distribution, the isotriplet u — d PDF f,_, = f,(x) —
fa(x) satisfies f,_4(|x|) = fu_a(—|x|) and it has support
from —1 to 1. That is,

fualx) = Q5.4(=x)0(=x).  (26)

0,(x) = 04(x), x>0
ot ={ g1 oy e <

o [ Qu(x) = Qu(x),x >0
filx) = { 0.x<0. (27)

Therefore, one can obtain the u — d quark distribution, and,
from it, one can obtain f7%(x) fromx € [0, 1], or, equivalently,
from [-1,0].

By applying the matching formula on f,(x) and f,(x)
separately and taking the difference to obtain the u — d RI-
MOM ¢PDF, we now try to learn what is expected for this
gPDE. Writing down only the x/y dependence for the sake
of brevity and keeping the dependence on yP./PX,
(PR/PR)? and factorization scale y implicit, the one-loop
contribution to the matching kernel C(x/y) from the
RI-MOM to MS scheme consists of two terms: F(x/y)
and F,(1 +#/(x — y)) with 5/ = P_/PR. The expressions’

*In [8], the terms Fy and F, are referred to as f; and f,,
respectively.

for F,, depend on the choice of I" (y, or y,) [7.8].
Furthermore, F, depends on the projection method of
the RI-MOM scheme. Using the matching formula [7,8] on
fu(x) and f,(x) to obtain the gPDFs g,(x) and g,(x),

QM,d(x’PZ’pR)

~fusten) + 5 [BF(2) Fuat)
asziF/_ Ayl |Fo (147 (x =) fua(y) +--. (28)

The above equation includes both the sea and valence
quarks, and there will be mixing with the gluon PDF which
is included in the - --” part. In the above convolution, the
vector current conservation is ensured by the plus function
defined as

Fral®), = Fra(8) - 6(1 &) / dEF (), (29)

such that any extra variable that 7, will depend on are
held fixed in the above integral. Since the matching
between qPDF and PDF is linear, the §,_, = g,(x) —
Gq(x) is simply obtained as

Gu-a(x.P. PT)

:fu_d(x,,u)+aCF/ |dyy| () fu-a(y)

ag CF
2

/_ Ayl Fo (17 =9))s Fua(y). (30)

with the terms in - - - in Eq. (28) exactly canceled between
the u and d terms. This is the matching relation we use to
obtain the u — d PDF from u — d qPDF. Using the u — d
PDF, we obtained the valence PDF as discussed above.
While f,_,(|x]) = fu—a(—|x]), it is also true that
Gu—a(|X]) # Gu_q(—|x|) in the RI-MOM scheme. One
way to understand this is from the fact that the bare
gPDF matrix element is purely real while the RI-MOM
renormalization factor is in general complex, thereby
making the renormalized qPDF matrix element complex.
One can see this by starting from the matching convolution
above, and find that

ZI(|X|’P3’PR) _6(_|x|’P11PR) :%Zln/'
X/_]l“y[‘f 2147 (x =) + Fo(1 =1 (x= 1)) (v ),

(31)

is nonzero due to an RI-MOM specific term F,, while the
terms containing F; cancel due to their dependence only

on |P.|. In other schemes such as the MS, this symmetry
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about x = 0 would be preserved by matching because the
corresponding factorization formulas depend on renormal-
ization/regularization scales through combinations such as

72 [55]. In the RI-MOM scheme there are two renorm-
ahzatlon scales, PR and PR, and since the z-direction is
special the above statement does not hold. Thus, it is
important to capture this asymmetry in the qPDF, or
equivalently to describe both the real and imaginary parts
of the RI-MOM renormalized pion qPDF from matching.
We use the matching kernel corresponding to the p-
projection in the results to be discussed next.

B. Numerical results on pion valence
PDF from matching

The one-loop perturbative matching relates the Fourier
transform §(x, P, PR) of the renormalized RI-MOM real-
space qPDF matrix element h%(z, P, PR), and the MS PDF
f(x,u) at factorization scale u. The relation is through the
convolution in Eq. (3). There are two approaches to
consider here:

(1) One can parametrize the real space data
h®(z, P,, PR) over the range z where one has the
lattice data and then model the dependence of
hR (z, P, PR ) over z extending to infinity where
data does not exist (c.f., [56,57]). Using such a
parametrization, one can obtain its Fourier transform
g(x, P., PR). Since the matching is only up to O(a),
one can invert the relation Eq. (3) by replacing f <
g and a; — —a;. Thereby, one can obtain f(x, #). In
this method, one does not control what values of z
enter the Fourier transform and one could question
the validity of perturbation theory for z > 1 fm.

(2) One can start from a phenomenologically motivated
n-parameter family of PDFs f(x,u;ay,...a,).
Through Eq. (3), one can obtain qPDF g(x, u;
a,...a,), and, thereby, obtain a family of real
space qPDF matrix elements h®(z,P,,PR;a,...a,).
Using this, one can fit the parameters (aj, ..., a,) SO
as to best describe the real space lattice data over a
range z. This method was used in the case of
the lattice cross-section approach in [13]. Since
the model PDFs are not predictions from QCD, the
model dependence enters the analysis and one has to
rely on the prior that experimentally determined
PDFs are indeed very well described by such a
family of PDFs. However, the advantage of this
method is that one can precisely control the range of
z that enters the analysis, and one also does not have
to invert the matching convolution.

From our observation on how the 1-loop perturbation
theory fails to capture the quark qPDF quantitatively, even
at short distances, and from the observation of significant
nonperturbative screening effects beyond z =1 fm, we
think it is important to be in control of what values of z
enter the convolution and, hence, in this paper we take the

second approach. Also, due to the loss of signal to noise
ratio for z > 1 fm, we found Fourier transforming the noisy
data to be challenging without introducing unwanted
wiggles in g(x) at larger x.

To be on par with the experimental extraction of PDFs,
one should use sophisticated methods such as the usage of
neural networks to choose the set of model PDFs to start
with (c.f., [58]). We defer such an analysis to a future work
and, instead, we use a simple two-parameter phenomeno-
logically motivated functional form for the valence PDF:

fr(x;a, b) = Ax?(1 — x)?, (32)
for x € [0, 1] and zero elsewhere. As we will see below,
such a form is enough to describe our lattice data. One can
fix the coefficient A through a stringent condition
fo fT(x)dx = 1. Instead, we use a more conservative
constraint on A using [j f7(x)dx = h®(z =0,P_, PR) to
allow for sample by sample fluctuations in hR(z =
0,P,, PR) close to 1 and fold this into the error estimate.
It should be noted that the valence PDF of the pion
determined from the experimental data by the JAM
collaboration [59] can be well described by such a two
parameter ansatz, for example with a = —0.407 and
b=1.12 at u =3.2 GeV.

Using the above valence PDF, we construct the u — d
PDF as

fuaa.b) =3 (Filv:a.b) + fi(-xa.b)). (33
with x € [-1,1] and zero elsewhere. Through the con-
volution of f,_,(x) with the matching kernel, we obtain
Gu-qa(x;a,b), which in turn we use to construct the real
space qPDFs h(z;a,b) = [ g(x;a,b)e™ < dx. We will
refer to these functions h(z;a,b) as the two-parameter
family of phenomenologically motivated qPDF matrix
elements. With the set of h(z;a,b) from a range of a
and b, we can fit the parameters a and b to the data by
minimizing either y? or y2; below:

£ = < (Re(h®(z)) = Re(h(z;a,b)))?
i 0,(2)? + o7 (2)? ’
2 8 (Im(h®(2)) — Im(h(z:a.b)))?
Xi Zz;m Gl(Z) pert( )2 s
1=x+ i (34)

In the above equations, [—Zmax» Zmax) SPecifies the fit range.
The statistical errors on the real and imaginary parts of the
lattice data h®(z) is o,(z) and 6;(z), respectively. To
account for any systematic errors coming from the higher
order corrections in «, in the matching kernel, we deter-
mine h(z; a, b) from f7(x; a, b) by varying the value of a;
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in the matching kernel from a,(u/2) to a,(2u) though the
1-loop running. The corresponding changes in the real and

imaginary parts of /(z;a,b) are denoted as o) (z) and
o (z), respectively, and we include these uncertainties in
the matched result in the 2. If the matching was exact, then
by fitting only the real part by minimizing y? would
automatically guarantee that the imaginary part also agrees
with the data. Therefore at any finite order matching, the
fits obtained by minimizing y? and y% will in general be
different. For the results shown below, we used y2; in order
to obtain the PDF that best describes both the real and
imaginary parts of the real space gPDF, but we also used y?
and found it to lead to consistent results but with larger
uncertainties. We did not include the correlations between
the data at different z for the primary reason that it is
difficult to keep these correlations intact in the process of
excited state extrapolations. It also helps us to easily
incorporate the effect of o™ from nonstatistical origin
in the analysis, and in treating the real and imaginary parts
of the renormalized matrix elements as two distinct pieces
of data as is the case in the context of matching. We
determined the errors on the fit parameters through the
bootstrap analysis.

In Fig. 15, we show the fitting procedure for y, qPDF. In
the top panels, we show the P, = 0.86, 1.29, and 1.72 GeV
real-space RI-MOM pion qPDF matrix elements from left
to right. The symbols are the actual lattice data. The solid
and patterned red (blue) bands are 1 — ¢ error-bands of the
real (imaginary) parts of the fitted real space qPDF matrix
element that best fits the data over the range [—Zmax, Zmax)

for zpax = 1.44 fm and 0.72 fm, respectively. The agree-
ment with both the real and imaginary parts of the lattice
data is noteworthy. In fact, we find the qPDF matrix
element as inferred from the JAM PDF [59] is able to
explain the lattice data well for the entire range of z at the
two largest momenta. In the bottom panels, we show the
process leading from model PDF to the real space qPDF
matrix elements shown in the top panels. In order to avoid
cluttering the figure, we have shown only the mean value of
Sfu—a(x) (shown as dashed lines) while we have shown the
error bands for the gPDF §,_,(x) as obtained through the
1-loop matching. The colors red and blue in the bottom
panels correspond to the fits with z,,,, = 0.72 and 1.44 in
the top panels, respectively. As one can see, we started from
a symmetric u —d PDF by construction and matching
introduces an x — —x asymmetry. After Fourier trans-
formation, this asymmetry leads to the imaginary part in
the real space data in the top panels which captures the
lattice data to a good accuracy. For both the real-space as
well as in x space, we find no significant difference
between using z,.. = 1.44 fm and 0.72 fm in the fits.
We could infer that within the precision of our numerical
results, the nonperturbative effects at z~ 1 fm that we
found using quark qPDFs is not important. Therefore, we
show results for an intermediate z,,, = 0.98 fm in the
results below. When we repeated this analysis by minimiz-
ing y2, we found the estimates to be consistent with the
above, but with larger uncertainties.

In Fig. 16, we show our results for f7(x, u) and xf7(x, u)
at the factorization scale u = 3.2 GeV using the proce-
dure described above at our two largest pion momenta

P.=1.72 GeV

P. =1.29 GeV|

t; Py = 0.86 GeV
Zmax = 1.44 fm = | 5t
zmax = 0.72 fm = 9

2.5} band: gPDF
dashed line: PDF

vei; P, = 1.29 GeV i P =1.72 GeV
zmax = 1.44 fm = 2.5} zmax = 1.44 fm =
zmax = 0.72 fm = 9 zmax = 0.72 fm =

FIG. 15.

Top panels: The RI-MOM renormalized qPDF matrix element in real space hﬁ (z, P,, PR) at pion momenta P, = 0.82, 1.29,

and 1.72 GeV are shown at fixed RI-MOM renormalization scale (P, PR) = (1.29,2.98) GeV. The red and blue points are the real and
imaginary parts of the actual data, respectively. The bands were obtained by fitting the two-parameter phenomenologically motivated
real space qPDF matrix element to the data over a range z € [—Zyax» ZmaxJ—the solid band is for z,,,, = 1.44 fm and patterned one for
Zmax = 0.72 fm. Bottom panels: The two parameter u — d PDF f,_,(x) (dashed lines) at 4 = 3.2 GeV, and the matched qPDFs g,_,(x)
(1 — o error bands) that describe the real space qPDF on the top panels are shown. To avoid clutter, only the central values of f,_,(x) are
shown as dashed lines. The results from different z,,,, are shown in red and blue.
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FIG. 16. The top and bottom panels show our estimated pion valence PDF at y = 3.2 GeV using y, gPDF at P, = 1.29 and 1.72 GeV,
respectively. The results using multiple RI-MOM scales (PR, PX) are shown using different colored error bands. On the left panels, the
results for f7(x) are shown, while on the right panels the results for xf7(x) are shown. For all the cases shown, the fit range was held
fixed at z;,x = 0.98 fm. The solid line (with a small error band around it) is the JAM result [59] for pion valence PDF at the same .

P, =129 GeV and 1.72 GeV starting from y, qPDF. For
each case, we overlay the results from two different RI-
MOM scales PR in order to show the scatter as a systematic
error in our estimates. We find the PX dependence to be
minor compared to the error bands (we repeated the
analysis with multiple other values of PR that are not
shown and only minor scatter with respect to PR was seen).
We also show the result from the JAM collaboration [59]
for the pion valence PDF at the same factorization scale as
the black solid line, which lies within the statistical and
systematic uncertainties of our estimates. In the left panels
showing f7(x), this overall agreement can be seen even up
to smaller x, but one has to be cautious of this agreement for
x 5 Agcp/ P, = 0.2 for the two highest pion momenta we
use. By construction, in our fitting procedure f7(x) has
support only from 0 to 1 without any necessity to recover
this condition in the infinite P, limit. However, the values
of exponent b closer to zero are also allowed thereby
leading to a wider error band closer to x = 1. This seems to
be consistent with the observation in Ref. [18] that the PDF
obtained from qPDF through the inverse one-loop match-
ing (approach-1) vanishes at about x = 1.2. We see our
P, =1.29 GeV and 1.72 GeV estimates to be consistent,
albeit with a significant increase in error at the largest
momentum.

In Fig. 17, we summarize the information in Fig. 16 by
showing the 1 — o ellipses (whose x and y projections give
the marginal 68% confidence intervals of the exponents a
and b, respectively). In this figure, the dashed and con-
tinuous ellipses are for P, = 1.29 and 1.72 GeV, respec-
tively. The ellipses for different P¥ are distinguished by
the colors, with the color code being the same as in Fig. 16.
The P, = 1.29 GeV data offer a stronger constraint on the
allowed region of (a, b) than the noisier P, = 1.72 GeV. In
this plot, the JAM estimate is the black point. The JAM data
are well within the P, = 1.72 GeV ellipses while the P, =
1.29 GeV data seem to favor the slightly smaller exponent
b. However, these differences are well within 26. Even
though our lattice data have large errors on the exponents a
and b individually, the data offers a tight constraint on the
combined allowed region. In particular, the principal
component of this correlation between a and b points
directly at the JAM data implying that if one fixes the
exponent a to be from the experiment, then the best value of
b would also be closer to that from the experiment. To
understand this better, we have also shown the line of
constant value of first moment of the valence PDEF,
(x) = [d xq7(x)dx, set to 0.215 as inferred from the
JAM data. It is clear that the 1o ellipses are oriented along
this line, which means that qPDF determines (x) robustly
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FIG. 17. The 1 — o confidence region ellipse of the exponents a
and b in the model PDF at y = 3.2 GeV that best describes the
real space RI-MOM ¢PDF is shown. The solid lines and dashed
lines correspond to P, = 1.29 GeV and P, = 1.72 GeV. For
each of these pion momenta, the different colored lines corre-
spond to different RI-MOM scale PR. The black point is the JAM
value [59] for valence pion PDF. The black straight line is the line
of constant first moment of valence PDF, (x) = 0.215.

and this in turn provides a strong constraint in the allowed
PDFs. Not surprisingly, we do find consistent values
of (x) =0.21(2) and 0.22(3) from the P, =1.29 and
1.72 GeV estimates. It should be noted that the moments
of pion PDF have also been directly determined without the
usage of LaMET formalism [60-64] and similar values for
the first moment for the pion were obtained, but at slightly
different values of y? than used here.

The exponents a and b were also recently obtained using
the lattice cross-section approach [13] which used current-
current correlators, with the matching implemented at
tree-level. Here, the exponents were estimated as a =
—0.34(31) and b = 1.93(68) which are consistent with
the region allowed at the largest momentum in Fig. 17. It is
worth noting that there are indications from next-to-leading-
logarithmic soft gluon resummation calculation [35], the
Dyson-Schwinger equation [65-67] and light-front holo-
graphic QCD [68] that the value of exponent b could be
approximately 2 as expected from perturbative counting rule
(c.f., [69]), whereas a chiral quark model analysis [70,71]
suggests a value of b closer to 1. It will be interesting to see if
a similar implementation of an improved matching kernel
could lead to a softer large x behavior for the pion than what is
observed using the 1-loop qPDF matching here and perhaps
in [18]. In fact, a general consideration of power correc-
tions to qPDF [72] revealed the presence of the form
Adep/ (1 = x)x*PZ) implying higher values of P, might
be required in order to correctly describe physics close to
x =1, and this might be the effect which we are finding.
Similar conclusions have also been obtained in 2d QCD [73].
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FIG. 18. In the top and bottom panels, the real (red) and

imaginary (blue) parts of the renormalized real space y, qPDF
matrix element are shown for pion momenta P, = 1.29 GeV and
1.72 GeV, respectively. The data points are the actual lattice data.
The bands are the expected matched y, qPDF matrix element
starting from our best estimate for valence pion PDF obtained
using y, qPDF analysis.

Due to the larger errors in the y, qPDF attributed mostly
to the steep excited state extrapolations, we use the y, qPDF
to provide a consistency check of our calculations instead.
For this, we use our above best estimates of the PDF
obtained using the y, qPDF to get the corresponding
prediction for the real space y, qPDF matrix element
through a convolution with the appropriate matching
kernel. In the top and bottom panels of Fig. 18, we show
such a comparison between the actual real space data of y,
gPDF (data points) along with the prediction from our
estimated PDF (bands) for pion momenta P, = 1.29 and
1.72 GeV. We find good descriptions of the real part of the
RI-MOM y, qPDF at both the pion momenta with a slight
tension between the imaginary parts. From our discussion
on the excited state contamination, it is important to first
gain better control of the larger excited state contamination
in the y, qPDF before one can investigate the effect of one-
loop matching on this rather small discrepancy.
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VII. CONCLUSIONS

We studied pion PDF in the framework of LaMET,
which relates the qPDF to PDF through the matching
convolution in Eq. (3). For this, we used a small lattice
spacing a = 0.06 fm. We carefully examined the effects of
excited states using the two- and three-state exponential fits
of the relevant 2-point and 3-point functions as well as the
summation method. For our final analysis we used two
momenta P, = 1.29 GeV and P, = 1.72 GeV. We found
the qPDF defined using I' =y, was better determined
compared to the y, qPDF in the lattice calculation for
the following reasons: smaller statistical error, relatively
smaller excited state extrapolation leading to a more robust
result for the matrix element as well as due to the absence of
mixing. Therefore, we focused on the analysis of the y,
matrix element.

The pion gPDF was nonperturbatively renormalized
using the RI-MOM scheme by calculating the matrix
elements of qPDF operator with off-shell quark states in
the Landau gauge for different separations z. For these
calculations we also used finer lattices with the lattice
spacing a = 0.04 fm. We performed the comparison of this
matrix element in the Landau gauge with 1-loop perturba-
tive calculations in the RI-MOM scheme and found a
qualitative agreement for z < 0.3 fm. For the smaller lattice
spacings, a = 0.04 fm we even found quantitative agree-
ment with the 1-loop result for sufficiently small z. We also
explored the role of nonperturbative effects in the calcu-
lation of the off-shell matrix element. The real part of the
RI-MOM renormalization coefficient is close to one, while
the imaginary part is close to zero once the divergent self
energy part of the Wilson line is removed. We pointed out
that the RI-MOM renormalization procedure leads to an
asymmetry in the isovector pion qPDF §(x, P,, pX, ug)
around x = 0, while other renormalization procedures lead
to gPDF that is symmetric around x = 0.

From the renormalized qPDF, we determined the valence
quark pion PDF using the 1-loop perturbative matching of
the y, qPDF, which we implemented through a fit to the
phenomenologically motivated x*(1 — x)” functional form
for the valence PDF. We found our results for the pion
valence PDF using the two largest pion momenta were
consistent with each other, though the statistical errors are
rather large. An overall agreement with the results obtained
recently by the JAM collaboration [59] was seen. We found
our result for the PDF to capture the first moment (x) more
robustly than the small-x and large-x exponents, a and b
themselves. We used the y, qPDF matrix elements to
provide an internal consistency check by comparing to
the expectation from our estimates of the PDF and a
satisfactory agreement was seen. From our analysis it is
clear that the dominant source of errors in the PDF
determination is the statistical error of the lattice calcu-
lations. It will be necessary to significantly increase the
statistics in the future lattice calculations. Future high

statistics lattice calculations will be important for an
accurate determination of the pion PDF as well as testing
of the LaMET approach around small x.
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APPENDIX A: COULOMB-GAUGE GAUSSIAN
AND MOMENTUM (BOOSTED) SMEARING

In order to create hadron interpolating operators that have a
good overlap with the corresponding ground states, quark
field smearing is typically required. The amount of applied
smearing is tuned to produce spatial quark distributions of
roughly the same spatial size as the hadron. Gauge-covariant
Wuppertal (Gaussian) smearing [74] is commonly used for
this purpose. However, calculation of quasi- and pseudo-
PDFs and high-momentum hadron structure and spectrum in
general requires lattices with small lattice spacing. Keeping
the physical size of smeared quark distributions the same
becomes a numerical challenge on finer lattices because it
requires larger numbers of smearing iterations. For this
reason, we use Gaussian shape smearing in a fixed
(Coulomb) gauge that can be performed efficiently through
a convolution with a Gaussian profile kernel,

(F-5)?
_ 12 e s 1 2 a2
SO e "o o Y ePENe i (Al
p
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In the free-field case, this kernel corresponds to the
Wuppertal smearing operator (1 + %ASP)N , where A, is
the spatial Laplacian and w? = 2w . The value for the width
weg is chosen to match the mean-squared radius (r?) =
3w to that of the optimal Wuppertal-smeared quark
sources. First, we fix the Coulomb gauge

= QS Wgw@_mm@%,

(A2)

where Q¢ is the gauge transformation to the Coulomb gauge,
which minimizes the functional

m1n Z Z [-NTrU2,]

X u#Ft

QC =Q: rmnFC UY] = (A3)

(for the Coulomb gauge, u # ¢ and the functional is mini-
mized independently on each time slice). The numerical
implementation is identical to the algorithm used for fixing
the Landau gauge in NPR calculations. Application of the
smearing kernel requires two 3D Fourier transformations:

AN 55tz 52| 1
[SCCy], = Qgizemxe—iwéd’ [V Ze"”yQC%}, (A4)
7 ¥

which is accelerated with off-loading matrix-matrix products
to GPU.

Incorporating momentum (boosted) into Coulomb-
gauge Gaussian smearing amounts to translation of the
kernel in the momentum space,

(8Fy), = TS0, e Fy, = [¢FSeHT), . (AS)
In a periodic finite volume, care must be taken to avoid
spatial discontinuities in the boosted smearing kernel
[Eq. (AS)]. Such discontinuities may arise because the

optimal boosted smearing momentum k typically does not
conform to finite-volume momentum quantization k= 2zl 7

and the phase factors e”‘x, 5 do not satisfy penodlc
boundary conditions. The solution is to define the

smearing kernel in the momentum space as 8(4

X.
Zﬁel;(}_y) e_%wf';(; (ﬁ_k)z

)
y
, where the momentum difference

(P — k) is understood as the shortest distance between J

and % in the Brillouin zone. Such choice leads to a smooth
distribution in the momentum space and, respectively,
smooth and continuous smearing kernel in the coordinate
space.

Finally, it is important to note that the smearing kernel in
Eq. (AS) is Hermitian (as an operator acting in the
[coordinate ® color] space),

(A6)

which is similar to the (boosted) Wuppertal smearing
operator and important for computing symmetric hadron
correlation functions.

APPENDIX B: MESON CORRELATION
FUNCTIONS WITH BOOSTING

We use the interpolating operator for the 7+ = du meson

[7+C0), = d,Tyit, = dpSTTySW s, (B1)
which is constructed from smeared quark fields
do=dpSSH. =8Ny, (B2)

where the spinor matrix I'y; =ys. The Hermitian-

conjugated (creation) meson operator is

7O = @i y,d, = @ /S FMS K& dx//, (B3)

where T'y; = y4Ty74 = (=7s). The meson two-point cor-
relation function with boost-smeared source and sink and
momentum projection at the sink is*

Copi(ya- ﬁ'x)
_ Ze—zp y— 2k)] [ﬂ+(22>];>

sy,

— Ze_lp y X TI‘ )<CX”) X, V”S " )FMS( ) y XX x ])

= Ze_iﬁG:_;‘)Tr[Q y_
¥

where Q%, = (¢,g,) and Q%N = SEHQISEN  are
unsmeared and smeared quark propagators, respectively.
Note that the meson two-point function is constructed from
the u-quark propagator y < x and the d-quark propagator

O, 080 (=), (B4)

x < y smeared with momenta (k) and (—k), respectively.
Therefore, separate propagators for u# and d quarks are
required to construct meson correlation functions

“boosted” with the total momentum (2K),

onh — S() o §®) o QKGR

yx x'x

Qx:y‘ _ shpd  g=h o eHG-7)

/ ;O
XX XLy YLy

(BS)
where “x” sign stands for additional coordinate depend-
ence due to the boosting. The d-quark x « y propagator, as
usual, is computed using ys-Hermiticity of the Dirac
operator,

Unless explicit summation is performed, implicit summation
over repeated coordinate indices x’, x”,y', y” is assumed, as well
as all over omitted spin and color indices.
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O = ps[05 Ty = rs[S ) 02 LSS T ys. (B6)
where the sign of the boosting momentum is preserved due
to the Hermiticity of the (boosted) smearing operator S
in Eq. (A6).

Repeating similar steps for the meson three-point func-
tion with the insertion of the operator [@WI'u]., with
arbitrary T'-matrix and Wilson line W__ » = ([[.U)._.

along path £, we get
ng(y‘pﬁ’;z‘p Ziﬂ)

= S e PG (7 O0] (W sTu, ]l OO
.z

TF ]

HLx (B7)

07 dar u(V ,ﬁ/)
— iqz MU(Y4
= E e"1<Tr[By.{ W...»
Z

where the forward propagator F* = Q"S (®) and the meson

sink-sequential (backward) propagator Buubsp) g
defined as

drM”Y4P

Ze"" =3 (=F,) 0% FMS

(B8)

which is also computed using the ys-conjugation.

APPENDIX C: EXPLICIT CALCULATION TO
SHOW THAT BARE PION u —d THREE-POINT
FUNCTION IS PURELY REAL OR IMAGINARY

In the previous appendix, we constructed the connected
piece of the three-point function of @WT u operator in 7. If
one repeats the computation using the dWI'd operator, one
will find the disconnected piece to be the same as the one in
the full #WT u three-point function and hence such quark
line disconnected terms will cancel in the @WT'u — dWI'd
isospin nonsinglet operator that we are interested in.
Below, we further explain why only the real part of the
connected #WTI'u three-point function for I' = y,,y, and
the imaginary part for I' =1 contributes to the total
isospin nonsinglet three-point function. For the sake of
simplicity let us take the case of point-source and point-
sink, and take I' = y,. The full expression for the u — d
gPDF three-point function is

Cti(n,7, L)
= Ze—ip.f’rr[(_yj ) Qx,yVS Qy,z Wz,z+Lthz+ll,x]
.z

+ D e PITH(5)Quy syt Wiy 07102

y.Z
= (7T, + e7PITY), (C1)
2

where we do not make distinctions between the u# and d
quark propagators due to isospin symmetry. Let us call the
trace in first term on the right-hand side as 7'y and the second
trace before being conjugated as 7',. One can go from 7', to
T, by parity transformation x = (X, x4) = x, = (=X, x4),
followed by a spatial translation x — x + £ by making use
of the transformation of the Dirac propagator to be Q, ,

y,Qx e and W, ., r — W L, under parity. In this case,

the y, from parity transformatlon for Q commutes with
I' = y,. In other cases, one should take care of the + factor.
Thus, Cs;, becomes

Cg‘;td(t, 7, L) =

and therefore proportional to the connected piece of ul W,
which is the first term in the above equation. We normalize
the three-point function such that the u — d isospin charge
of the pion is 1. By going through the similar calculation,
one can show that the three-point function is real also for
I'=y, while it is purely imaginary for I'=1 u—d
pion qPDF.

APPENDIX D: RELATION BETWEEN
P, AND-P, MATRIX ELEMENTS

In this appendix, we derive the relation between con-
jugates of the matrix elements (E,,P.|Or(z;7)|E,, P.)
that enter the excited state contributions to the qPDF three-
point function. For this, let us consider the conjugate of the
simplest component of the qPDF matrix element:

Z<En” Pz|azFWz.z+£uz+L|Env Pz>*

Z

= Z<Em Pz|ﬁz+£FW:,z+£uz|En’7 Pz>7 (Dl)
z

forI" = y,, 7., 1. Using the parity operator I1, the right-hand
side of the above equation becomes

> (En.
:Z<En

= Z<Em =P it,py W g yiu|Ey,—P;)
z

zz+£uZ|En ’P >

z+£n) (HW )(HMZH) |En’ ’ _PZ>

2,2+L

= Z<En’ _Pz|ﬁz7tF7tWZ,z+£”z+E |En’9 _Pz>' (DZ)
z

Defining, y,I'y, = ®rI" with @ = +£1, we have the relation

Z<En” Pz’uzrwz,z+lluz+£|Env Pz>*

Z

- (DFZ En’ -P |u FWZ z+£uz+£|En T z>’ (D3)
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with®r = 1forI'=y,,1 and @ = —1 forI" = y, with all
I' being in the Minkowskian convention. Thus, we can
average over P, and —P, data after taking care of
appropriate factor of ®r.

APPENDIX E: PION TWO-POINT FUNCTIONS
AND ENERGY LEVELS

In this appendix we discuss some details of the calcu-
lations of the pion two-point function. We tested several
different sources for the pion. In these tests we used 50
gauge configurations. We used Gaussian sources with
several steps of Wuppertal smearings as well as in the
Coulomb gauge (see main text). In Fig. 19 we show the
effective mass for 40 and 90 steps of Wuppertal smearings
as well as the Coulomb gauge Gaussian sources of size
0.3 fm. We see that 90 steps of Wuppertal smearings and
Coulomb gauge Gaussian sources give similar effective
masses, while the excited state contamination is larger
for 40 steps of Wuppertal smearings. We also studied the

0.55* $® Wupi4o
% Wup90
0.50 1% ¥ G
iy
0.45
>
(O]
© 0.40 3=
= E
s 0.351 =
i‘i
0.30~%@w§({1—{§—
)
0.25 1
0.20 . . , . . ,
5 10 15 20 25 30

t/a

FIG. 19. Effective masses for P, = 0 using Gaussian sources
with 40 steps of Wuppertal smearings, 90 steps of Wuppertal
smearings, and Coulomb gauge.
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FIG. 20. Effective masses for different values of { with 50
configurations; green, blue, and black points correspond to
momentum 0.86, 1.29, and 1.72 GeV, respectively.

two-point functions for different boosted Gaussian sources,
with momentum boost k,. The corresponding effective
masses are shown in Fig. 20 for P, = 0.86, 1.29, and
1.72 GeV for different values of { = k_/P.. We clearly see
that the nonzero value of { improves the signal for all P,.
We also see that £ = 0.5 is too small, while { = 1.0 is too
large for P, = 1.29, but works well for P, = 0.86 GeV.

APPENDIX F: IMPLEMENTATION
OF MATCHING CONVOLUTION

Here, we describe the implementation of the plus
function in the matching formula such as to ensure current
conservation. The matching kernel is of the form

X X a,Cp ) (%
Cl—,yP, | =6[—--1 —C,’'(-,yP.]), (F1
(yyz> (y >+2ff +<yyz> D)

where the dependence on P¥ and u are implicit. The first
perturbative correction is a plus function that ensures
the vector current conservation. The property we know

of the plus function is that [ dxCS:)(;—f, yP.) = 0, since
the second dependence of the function is independent of x.

In order to implement the plus function correctly, we can
use the following procedure:

cV(eyP.) = C(EyP,) = N(YP)S(E-1).  (F2)

The x-independent but momentum dependent coefficient
N(yP,) is

o) = [ ehesride

reg
where freg d¢ involves an integration over the intervals
[-A,—€] U [e,1 —€] U [1 + ¢, A] for some upper cutoff A

and a small exclusion parameter €. The above definition
gives the usual result that

/_ ® 45C\) (e, yP.)(E) = / " (P (F(2) - £(1)).

(o)

(F4)

with y held fixed as A — oo and ¢ — 0. The following is
then true for any function f:

/ / dxdyC') (x/y.yP,)f(y)

- /dy</ dxC(j)(x/y,sz))f(y)

=0, (F5)

leading to the vector current conservation or equivalently to
the total area preservation between the qPDF and PDFE
With this prescription, the matching formula becomes
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oo
j( /P a0)

= [ ety P a) = NxPal).  (F6)

ce |V

It is convenient to write the above formula in an
explicitly vector current conservation preserving form as

/_WQCQ)(X/y,yPZ)Q(y)

However, care has to be taken in the numerical regulari-
zation of the above equation to be consistent with the one in
Eq. (F3). That is, in the above equation, freg dy in the first
integral in the right-hand side involves the range y €
[—x/e,—x/A] U [x/A,x/(1+¢€)] U [x/(1 —¢€),x/e] when
x > 0, and the range reversed when x < 0. A consistent
prescription for freg dy' in the second integral in the
right-hand side involves y’ € [-Ax, —ex] U [ex, x(1 — €] U
[x(1+¢€), xAl

APPENDIX G: RESULTS ON TWO-STATE
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The ratio of the three-point function to the two-point function, R(7,7; z, P.y.) for I' = y_ is shown as function of 7 — /2 for

z/a =0, 4, and 8 (from left to right), and P, = 0, 0.483, 0.86, and 1.72 GeV (top to bottom). The corresponding plots for P, =
1.29 GeV are shown in Fig. 4 in the main text. The central values of the two-state fits to the lattice results for different source-sink
separations are shown as the curves. The horizontal band corresponds to the extrapolated result for infinite source-sink separation.
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FIG. 22. The ratio of the three-point function to the two-point function, R(t,7; z, P,,y,) for I' = y, is shown as function of = — ¢/2 for
z/a =0, 4, and 8 (from left to right), and P, = 0, 0.483, 0.86, and 1.72 GeV (top to bottom). The corresponding plots for P, =
1.29 GeV are shown in Fig. 4 in the main text. The central values of the two-state fits to the lattice results for different source-sink
separations are shown as the curves. The horizontal band corresponds to the extrapolated result for infinite source-sink separation. The
case of P, = 0, in the top-most panels, is special due to the presence of the effect of lattice periodicity, and, hence, the various symbols
and curves for the top-most panels are explained in detail in the text of Appendix G.
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extrapolations of the three-point function to two-point
function ratio R(t,7;z, P,,I') for I = y, and y. at a specific
intermediate value of P, =1.29 GeV. In Fig. 21 and
Fig. 22 of this appendix, we show similar results at all
P, for I' =y, and y,, respectively, using Fit(2,2).

For the case of P, = 0, special care needs to be taken.
For a finite temporal extent L, of the lattice, ignoring the
effect of periodicity due to the presence of the terms
e Es(Li=1) in the denominator of Eq. (9) is justified when
e Fst <« ¢~Ex(L=0)  But one should include the effect of
boundary condition if the two terms become comparable.
For the largest source-sink separation #/a = 12 we use, the
contribution from the wrapping-around term, e £s(Li=),
relative to e £+’ for P, = 0 is 2.7%, whereas for higher P, it
is negligible; e.g., for the smallest nonzero momentum

. = 0.43 GeV, this effect is 0.2%. Hence, we included
the term e £+(L=") in the denominator of Eq. (9) for the
extrapolation of R(t¢,7,z;P,) for P, =0, and we also

checked that the effect of the periodicity of lattice was
indeed negligible for any of the nonzero P, we used.

For the case of P, = 0 displayed in the top-most panels
of Fig. 22, we have shown the data in two ways to make the
fits and the extrapolated value easier to understand. The
unfilled symbols are the data for R(¢, 7; z, P, y,) defined as
the ratio of Cjy(t,7:2,P;) to Cou(t; P.), and the solid
curves are the fits including the e %+(!=) term in the
denominator of Eq. (9). While the fits describe the data well,
the trend in the data with increasing ¢ can be seen to be away
from the extrapolated value. To make the reason clearer,
we have shown the modified ratio of Csy(t,7;z,P,) to
the two-point function without the wrap-around term,
Cop(1; P,) — Age~E+(Li=1) as the filled symbols. The dashed
curves are now the fits using just Eq. (9). The values of the
amplitude A, and the energy E, were obtained by the two-
state fit as described in the main text. Now, the trend with
increasing t is clearer.
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