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We present a lattice QCD study of the valence parton distribution inside the pion within the framework of

Large Momentum Effective Theory. We use a mixed action approach with 1-HYP smeared valence Wilson

clover quarks on 2þ 1 flavor HISQ sea with the valence quark mass tuned to 300 MeV pion mass. We use

483 × 64 lattice at a fine lattice spacing a ¼ 0.06 fm for this computation. We renormalize the quasi parton

distribution functionmatrix element in the nonperturbative regularization independent momentum subtraction

(RI-MOM) scheme. As a byproduct, we test the validity of a 1-loop matching procedure by comparing the

RI-MOM renormalized quasi parton distribution function matrix element with off-shell quark external states

as computed in the continuum 1-loop perturbation theory with the lattice results at a ¼ 0.04 and 0.06 fm. By

applying the RI-MOM to MS one-loop matching, implemented through a fit to phenomenologically

motivated parton distribution functions, we obtain the valence parton distribution function of pion.

DOI: 10.1103/PhysRevD.100.034516

I. INTRODUCTION

QCD factorization allows us to calculate the cross

section of hard hadronic processes in terms of the con-

volution of partonic cross section and parton distribution

functions [1]. Parton distribution for a hadron can be

defined using hadronic matrix elements of appropriately

chosen gauge invariant operators separated along the light

cone. For example, the quark parton distribution function

(PDF) of a hadronH can be defined in terms of an operator

bilocal in quark field ψ as [1,2]

fðxÞ¼ 1

4π

Z

dξ−eixP
þξ−hHðPÞjψ̄ðξ−ÞγþWðξ−;0Þψð0ÞjHðPÞi;

ð1Þ

where Wðξ−; 0Þ ¼ Pe
ig
R

ξ−

0
dξ−Aþ

is the path-ordered

straight Wilson line on the light cone, and the light-cone

coordinates ξ� ¼ ðt� zÞ=
ffiffiffi

2
p

. A straightforward first prin-

ciple calculation of PDF is not possible because lattice

QCD is formulated in the Euclidean space-time, and, thus,

it cannot access quantities defined on the light cone. To

circumvent this problem, it has recently been proposed to

calculate the quasi parton distribution function (qPDF),

q̃ðx; PzÞ, defined in terms of matrix elements of equal time,

but spatially separated, quark bilinears [3] evaluated in a

hadron state boosted to a large momentum Pz:

q̃ðx;PzÞ¼
1

4π

Z

dze−ixP
zzhHðPzÞjψ̄ðzÞΓWðz;0Þψð0ÞjHðPzÞi;

ð2Þ

where Γ is either γz or γt for the unpolarized parton

distribution addressed in this paper. Here, Wðz; 0Þ is a

straight spatial Wilson line joining the quark and antiquark.

For sufficiently boosted hadrons, one can use the Large

Momentum Effective Theory (LaMET) [4] to relate the

qPDF to PDF through a convolution with a matching

kernel C as

q̃ðx; μL; PzÞ ¼
Z þ1

−1

dy

jyjC
�

x

y
;
yPz

μ
;
μL

yPz

�

fðy; μÞ: ð3Þ

Here μL and μ are the renormalization scales of the schemes

in which the qPDF and PDF are defined. For the latter, MS

scheme is used and μ is referred to as the factorization scale.

The matching kernel is perturbative and hence universal for

all the hadrons. Therefore, it is calculated using quark

external states in a chosen gauge. Such calculations at

1-loop order have been performed using the cutoff scheme

[5] as well as in the MS scheme [6–8]. There are also
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related approaches to calculate the PDF from the lattice that

use similar logic but differ in details, like the pseudo-PDF

approach proposed in Refs. [9,10] and the use of good

lattice cross sections [11,12]. The latter includes the

current-current correlators [13].

Using LaMET and related approaches, various attempts

have been made to calculate the unpolarized and polarized

isovector quark distribution of the nucleon [7,14–17]. The

first studies of the valence quark distribution for the pion

have also been presented [13,18]. One important issue in

the calculation of the PDF from the lattice is the renorm-

alization and matching. As indicated above, the PDF and

qPDF are usually defined in different renormalization

schemes. The qPDF, which is calculated on the lattice,

needs a nonperturbative renormalization scheme because

of the self-energy divergence of the Wilson line [19], and

this is usually implemented using the regularization inde-

pendent momentum subtraction (RI-MOM) scheme [20]

defined using external off-shell quark states accessible on

the lattice. Then, one has to match the qPDF in this lattice

renormalization scheme to the PDF in the MS scheme

through Eq. (3). This is achieved through the convolution

using the matching kernel between the RI-MOM and MS

schemes that is perturbatively calculated in the continuum

theory using dimensional regularization [8]. One could also

define the qPDF operator in the MS scheme and then

perform the matching between PDF and qPDF [6,21]. The

current status of this field, including the comparison with

the phenomenological PDF and the issue of renormaliza-

tion, is reviewed in Refs. [22–24].

In principle, Eq. (3) offers a way to calculate PDF from

the lattice, but it is unclear as to what extent this is actually

feasible given the various assumptions that go along with

the equation implicitly. For example, at any finite hadron

momentum Pz, the Eq. (3) suffers from OðΛ2
QCD=ðx2P2

zÞÞ
higher twist corrections. This is closely related to the

assumption that the perturbative calculation, currently

truncated at 1-loop order, is able to capture the renormal-

ization as well as the matching of the qPDF matrix element

over a range of quark-antiquark separations, z—to be in the

perturbative regime, one would expect z to be smaller than

or about Oð1Þ fm. It is also important to ensure that aPz <
1 to make sure we are not overcome with lattice artifacts

[25]. Therefore, a closer look at this new methodology is

warranted and is actively being studied [7,26]. The aim of

this paper is to explore these issues further by using finer

lattices than what are being used in the qPDF literature, and

use the pion as a case study. The smaller mass of the pion

makes it easier to achieve a large boost, the numerical

calculations are expected to be less expensive, and it also

helps suppress the target mass correction by ensuring

mπ ≪ Pz. We focus on the valence PDF of the pion since

it can be accessed using the isotriplet u − d PDF, and,

thereby, avoid mixing with the gluon sector. In our study,

we will use the renormalization and matching strategy

outlined in [7,20]. The pion valence PDF has been

determined through leading-order and next-to-leading-

order analyses of the experimental data [27–35], but it is

much less constrained than the nucleon PDF, and, there-

fore, the lattice calculations may have more impact in this

case, especially in constraining the x → 1 limit which is not

yet well established.

The paper is organized as follows. In Sec. II, we discuss

our lattices setup. In Sec. III, we present the calculations

of the two-point function of the boosted pion and check

how reliable the extractions of the ground state and the first

excited state are. In Sec. IV, we present our results for the

pion three-point function that defines the qPDF. Here, we

also discuss the problem of excited state contamination. In

Sec. V, we discuss the nonperturbative renormalization as

well as the validity of 1-loop matching. Our results on the

renormalized pion qPDF and the matching to PDF are

presented in Sec. VI. Some technical aspects of the calcu-

lations are discussed in the Appendices. Preliminary

results on this work have been reported in conference

proceedings [36–38].

II. LATTICE SETUP

We performed the calculations of the pion two-point and

three-point functions needed to obtain the qPDF using the

Wilson-Clover action for valence quarks on 1-HYP smeared

gauge configurations [39] and the highly improved staggered

quark (HISQ) action [40] in the sea.We used the 2þ 1 flavor

gauge configurations corresponding to lattice size 483 × 64

and the lattice spacing of a ¼ 0.06 fm generated by the

HotQCD collaboration [41]. In addition to this ensemble, we

also used 644 highly improved staggered quark lattices [41]

with the lattice spacing a ¼ 0.04 fm for the study of the

nonperturbative renormalization (NPR). In both the ensem-

bles, the sea quark mass was tuned to a pion mass of

160 MeV. A similar setup was used by the PNDME

collaboration, albeit for 2þ 1þ 1 flavor MILC configura-

tions (c.f., Ref. [7]). For thevalence quarkmasses,weused the

values am ¼ −0.0388 (i.e., κ ¼ 0.12623) for the a ¼
0.06 fm ensemble and am ¼ −0.033 (i.e., κ ¼ 0.12604)

for the a ¼ 0.04 fm ensemble, which are tuned such that

the pion mass, mπ , is 300 MeV. We did not see any

exceptional configurations for these valence quark masses

in our calculations.

We used higher statistics at smaller quark-antiquark

separations z than at larger ones; to be exact, we used

216, 100, and 48 gauge configurations for jzj=a ∈ ½0; 8�,
(8, 16], and (16, 24], respectively. We further improved the

statistics by using the All-Mode Averaging (AMA) [42]

technique in the computations of the two- and three-point

functions, with 32 sloppy calculations to one exact solve

for each configuration. For the exact and sloppy inversions,

we used the stopping criterion of 10−10 and 10−4, respec-

tively. In our study, we will consider the valence quark

distribution, which in turn is related to the isovector u − d
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quark distribution in the pion, and thus we do not compute

the quark line disconnected diagrams.

For a reliable extraction of qPDF, a good overlap of the

source operator with the pion state is necessary so as to

project out the ground state at as small source-sink separation

as possible. The quark sources with a Gaussian profile,

typically implemented through a gauge covariant Wuppertal

smearing [43], are used for this purposewhen the hadron is at

rest. However, for the fast moving hadrons that are required

in the qPDF framework, the use of the Gaussian sources is no

longer sufficient, and this necessitates the usage of the

boosted Gaussian sources [44] instead. Since we are inter-

ested in the calculation of the pion two- and three-point

function at several values of the pion momenta and several

source-sink separations, we found it more practical to

implement the Gaussian sources by using the Coulomb

gauge instead of implementing the Wuppertal smearing. We

found the optimal size of the Gaussian profile to be about

0.3 fm, which roughly corresponds to 90 steps of Wuppertal

smearing. We checked that in terms of the signal-to-noise

ratio, the Wuppertal and Coulomb-gauge Gaussian sources

are similar (see Appendix E). In the next section, we discuss

the boosted sources in detail and the energy levels of the

boosted pion. In Appendix A, we have explained the

construction of boosted sources in detail.

Out of 216 gauge configurations used in our calculations,

24 gauge configurations were analyzed using the graphics

processing unit (GPU) cluster in Brookhaven National Lab

to calculate two-point and three-point correlation functions.

These calculations were performed entirely on GPU using

the QUDA suite [45–47], including the inversion of the

fermion operator with a multigrid algorithm, communication

between GPU devices to perform covariant shifts, and the

necessary spin-color matrix multiplications. In QUDA, the

communications between GPUs on the same node are

implemented through message passing interface or as direct

peer-to-peer communications between the GPU devices. We

have found that on rare occasion the QUDA peer-to-peer

communications did not finish by the time the computations

started. These rare glitches happened randomly. We checked,

however, that these glitches did not affect our results

noticeably compared to other errors.

III. TWO-POINT FUNCTION

OF THE BOOSTED PION

We calculated the two-point functions of the positively

charged pion (πþ ¼ d̄u),

Css0
2ptðt; PzÞ ¼ h½πþs ðt; P⃗�½πþs0 ð0; P⃗Þ�

†i; ð4Þ

for a spatial pion momentum P⃗ ¼ ð0; 0; PzÞ which is

nonzero only along the z-direction, using the pion source

and sink πþs ð0; P⃗Þ and πþs0 ðt; P⃗Þ, respectively. The values of
momenta in lattice units are aPz ¼ �2πnz=48 for nz
ranging from 0 to 5, which in physical units correspond

to Pz ¼ 0, 0.43, 0.86, 1.29, 1.72, and 2.15 GeV, respec-

tively. We always used the Coulomb gauge Gaussian

smeared-source (s ¼ S), and either a smeared-sink

(s0 ¼ S) or point-sink (s0 ¼ P). In the rest of the paper,

we will refer to the smeared-source and smeared-sink setup

to be SS, and we will refer to the smeared-source point-sink

set-up as SP.

For the lowest two momenta, we used the usual Gaussian

sources. To improve the signal for the higher momenta, we

followed Ref. [44] and used boosted sources in which the

valence quarks are boosted to a momentum kz ¼ ζPz, with

ζ being a tunable parameter. Naively, one might expect

that the optimal choice would be ζ ¼ 0.5. However, we

found that the optimal choice of ζ for the pion in terms of

the signal-to-noise ratio is between 0.6–0.75. For Pz ¼
0.86 GeV the signal-to-noise ratio is not very sensitive to

the value of ζ. These findings are in agreement with

Ref. [44]. We discuss the optimization of boosted sources

further in Appendix E. Since we need to create a source for

each value of ζ, we used kz ¼ 2ð2π=48Þ for nz ¼ 2, 3 and

kz ¼ 3ð2π=48Þ for nz ¼ 4, 5, corresponding to the choices

of the parameter ζ ¼ 1; 2=3; 3=4, and 3=5 for nz ¼ 2, 3, 4,

and 5, respectively. We have shown the corresponding

effective masses for the SS two-point functions in Fig. 1.

By using the boosted smeared sources, one can see that a

reasonable signal for the two-point correlation function

can be obtained up to source-sink separations t ¼ 12a
for all momenta except for the highest momentum

Pz ¼ 2.15 GeV. Simply from the data points in Fig. 1,

we see that the effective masses approach a plateau

FIG. 1. The effective masses Eeff from the pion two-point

functions with the boosted Coulomb gauge Gaussian source and

sink for different momenta as a function of the source-sink

separation t. The horizontal lines are the energy levels from the

continuum dispersion relation with mπ ¼ 300 MeV.
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corresponding to the continuum dispersion relation

EπðPzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
z þm2

π

p

, shown as the horizontal lines. The

effective mass approaches the plateau region at larger

source-sink separations when the momentum is increased,

as one would expect from the shrinking gap between the

ground and excited states as the pion is boosted.

As we will discuss next, we used source-sink separations

t ¼ 8a, 10a, and 12a for the computation of three-point

functions. Therefore, we needed to analyze the excited state

contribution to the SS and SP correlators to perform the

infinite source-sink extrapolations. For this, we performed

multiexponential fits on the SS and SP pion two-point

functions in the interval t ∈ ½tmin; tmax� in order to extract

the energy levels. For fixed tmin, we varied tmax and checked

the sensitivity of the result to tmax. Then, we repeated the

procedure for different values of tmin. We found that we

were able to reliably extract the ground state EπðPzÞ as well
as the first excited state E1ðPzÞ using the four-parameter

two-state fits to the SP correlator instead of using the SS

correlator. This could be due to the fact that the contribu-

tions from the high-lying energy levels are smaller in the SP

correlator compared to the SS correlator stemming from the

possible cancellations between the positive as well as the

negative amplitudes that are allowed in the SP correlator. In

the top-left and bottom-left panels of Fig. 2, we have shown

the systematics of the two-state fits to the SP correlator.

In the top-left and the bottom-left figures, we have shown

the dependence of the best fit values of Eπ (blue circles) and

E1 (black circles) as a function of tmin used in the fits. For a

given tmin, the data points from two values of tmax have

been clubbed together for Pz ¼ 0 and 1.29 GeV, respec-

tively, and it demonstrates that there is no dependence on

tmax. The ground state is seen to compare well with the

expectation from the dispersion relation shown by the black

solid lines. The red band shows the values of E1 chosen as

the best estimate of the first excited state.

On the top-right and bottom-right panels of Fig. 2, we

show similar plots for the first excited state E1 as estimated

using the SS correlator. The statistical errors of the excited

state energy E1 in the simple two-state fits (magenta

diamond) quickly grow large with increasing tmin, and,

thus, these fits turned out to be of limited use. Therefore, we

performed constrained two- and three-state exponential fits

for the SS correlator with the ground state energy fixed to

Eπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
z þm2

π

p

with mπ ¼ 300 MeV, and imposing a

prior on E1 using its best estimate from the SP correlator—

that is, we added the term ðE1 − E1;priorÞ2=σ2prior to the χ2

with E1;prior and σprior being the mean and error of E1,

respectively, as determined from the SP correlator. The tmin

dependence of the resulting E1 from the constrained two-

state fit (black circles) and constrained three-state fit (blue

triangles) are shown in the top-right and bottom-right

panels. The two-state fits of the SS two-point correlator

largely overestimate the energy of the first excited state for

small tmin whether or not priors are used, and there is a

significant dependence on tmin. One should use tmin ≥ 6a to

obtain reliable results for the first excited state from the SS

correlator. The three-state fits with priors on Eπ and E1 give

energies of excited states that are the same within errors for

the SS two-point correlators and show almost no tmin

dependence. In summary, we determined the lowest three

energy levels using the SP correlator and then determined

the corresponding amplitudes jAnj ¼ jh0jπþS ð0; P⃗ÞjEn; Pzij
of these excited states in the SS correlator through a

constrained fit analysis.

In Fig. 3, we show the three energy levels obtained from

the different fits discussed above, as a function of Pz.

For Pz ¼ 0, we compare our result with the energy levels

that would correspond to the pion resonances πð1300Þ and
πð1800Þ from the particle data group (PDG) [48]. In order

to account for the 300 MeV pion mass, we shifted the

PDG values by 0.161 GeV as an approximation and

these are shown as the two arrows in Fig. 3. Our estimate

of the first excited state energy agrees with this shifted

mass of πð1300Þ. We also show the expected Pz-depend-

ence of E1ðPzÞ assuming a particlelike dispersion, and this

FIG. 2. The systematical dependence of the ground state Eπ and

the first excited state E1 on the fit range ½tmin; tmax� is shown. In
the left panels, we show such a dependence for the pion SP

correlator at two different Pz. For each tmin, data from tmax ¼ 24a
and 32a are shown. The black solid line is the value of Eπ

expected from the continuum dispersion relation. The red

patterned band is our best estimate of E1 using the SP correlator.

In the right panels, the fit systematics of E1 for the SS correlator is

shown. The red band is the prior used for E1 from the SP

correlator (same as the one in the left panels). The different

symbols are the various fit strategies.
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describes the actual data very well. The energy of the

second excited state is much larger than expected, meaning

that the third state effectively parametrizes several higher

lying states. As one can see from the figure the energy gap

between Eπ and E1 shrinks with increasing Pz as expected.

The results on the excited state energies will be important

for the analysis of the pion three-point function discussed in

the next section.

IV. EXTRACTION OF THE BARE QUASI-PDF

MATRIX ELEMENTS FROM THE

THREE-POINT FUNCTIONS

The next step is the calculation of the bare qPDF matrix

element

hB
Γ
ðz; PzÞ ¼ hEπ; PzjOΓðz; τÞjEπ; Pzi; ð5Þ

where the bilocal u − d qPDF operator in a time-slice τ

involving a quark and an antiquark separated along the

z-direction by L ¼ ð0; 0; 0; zÞ is given by

OΓðz;τÞ¼
X

x⃗

ðūxWx;xþLΓuxþL− d̄xWx;xþLΓdxþLÞ; where

Γ¼ γt;γz;1; Wx;xþL ¼
Y

xþL

x0¼x

U3ðx0Þ; ð6Þ

and it is made gauge-invariant by the Wilson line Wx;xþL.

The Dirac γ matrices in the qPDF operator are in the

Minkowskian convention. The state jEπ; Pzi denotes the

on-shell ground state pion with momentum Pz. In addition

to the natural choices of Γ ¼ γt and γz that approach γþ in

the light-cone limit, we also considered Γ ¼ 1. This choice

of Γ is needed because under renormalization,Oγz
ðzÞmixes

with O1ðzÞ [6]. We applied one-level of HYP smearing to

the links enteringWx;xþL in order to reduce the noise. Since

the qPDF calculation involves values of z ∼OðaÞ, we

checked that there is no significant difference between the

renormalized matrix elements using the smeared and

unsmeared Wilson line. To obtain the bare matrix element

hB
Γ
ðP; zÞ, we computed the three-point function at different

source-sink separations t and operator insertion point τ,

CSS
3ptðt; τ; z; PzÞ ¼ h½πþS ðt; P⃗Þ�OΓðz; τÞ½πþS ð0; P⃗Þ�†i; ð7Þ

and constructed the ratio of the three-point function to two-

point function,

Rðt; τ; z; Pz;ΓÞ ¼
CSS
3ptðt; τ; z; PzÞ
CSS
2ptðt; PzÞ

: ð8Þ

The reader can refer to Appendix B for a detailed

description of the construction of three-point functions.

The two-point function is always real when the source and

sink are of the same type. The three-point function for the

u − d qPDF operatorOΓðzÞ in a pion external state is real at
all z for Γ ¼ γz; γt and purely imaginary for Γ ¼ 1 (refer

Appendix C). Inserting a complete set of states in the above

equation,

Rðt;τ;z;Pz;ΓÞ

¼
P

n;n0AnA
�
n0hEn;PjOΓðzÞjEn0 ;PÞie−ðEn0−EnÞτ−Ent

P

mjAmj2e−Emt
; ð9Þ

with Enþ1 ≥ En, and E0 ¼ Eπ . It is easy to see that in the

infinite t limit, Rðt; τ; z; Pz;ΓÞ is equal to hB
Γ
ðz; PÞ. The

above equation holds for the infinite time extent. For a

finite time extent, the effects of the periodic boundary

condition should be taken into account. This turns out to be

important for Pz ¼ 0, while for nonzero Pz the effect is

negligible as discussed in Appendix G. In practice, one

truncates the sums in Eq. (9) at some value n, and then

obtains hB
Γ
ðz; PzÞ by fitting the t and the τ dependence of

Rðt; τ; z; Pz;ΓÞ using hEn; PjOΓðzÞjEn0 ; PÞi as fit parame-

ters. In the fits, the values of An and En were held fixed at

values determined from the two-state fit analysis on the SS

correlators. In what follows, we will refer to this method of

fitting using n-state ansatz to the data between τ=a > τo
and τ=a < t=a − τo as Fit(n; τo). In this method, the

excited states are suppressed by expð−ðEn − EπÞt=2Þ. For
z ¼ 0, it is easy to see that Rðt; τ; z; Pz;ΓÞ is symmetric in τ

around the midpoint τ − t=2. For z ≠ 0 andPz ≠ 0, we only

have the following relation (see Appendix D):

FIG. 3. The energies of the ground state and the first two

excited states as functions of Pz. The red, blue, and black symbols

correspond to Eπ , E1, and E2, respectively. For each color, the

different symbols correspond to different fitting methods (2-state

and 3-state fit with or without prior on the ground state) and the

types of source-sink (SP or SS). The lines show the expected

dispersion relations for the pion and its first excited state. The

arrows are the PDG values of πð1300Þ and πð1800Þ which are

shifted to account for mπ ¼ 300 MeV.
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hEn; PzjOΓðzÞjEn0 ; PzÞi� ¼ ϕΓhEn0 ;−PzjOΓðzÞjEn;−PzÞi;
ð10Þ

where ϕΓ ¼ 1 for Γ ¼ γt; 1 and ΦΓ ¼ −1 for Γ ¼ γz. Thus,

generically the matrix elements hEn; PzjOΓðzÞjEn0 ; PzÞi
and hEn0 ; PzjOΓðzÞjEn; PzÞi are independent and the num-

ber of fit parameters is thereby increased. Based on the

above relation, we constructed appropriate averages using

both the positive and negative values of momenta to

increase the statistics. However, in practice the gain was

marginal.

We demonstrate the extraction of the matrix element

using the fit method in Fig. 4, where the ratios

Rðt; τ; z; Pz;ΓÞ are shown for Γ ¼ γt and γz qPDFs for

the Pz ¼ 1.29 GeV pion. The results on Rðt; τ; z; Pz;ΓÞ
and the extraction of matrix elements for the other values of

Pz are given in Appendix G. In the figure, we show the data

at t=a ¼ 8, 10, and 12 along with the result of Fit(2,2).

Using the fit, the results for the t → ∞ extrapolations are

shown with the horizontal bands. We also performed the

three-state fit of Rðt; τ; z; Pz;ΓÞ and the picture looks

similar. In this case, the data points at all τ − t=2 could

be described by the fit. The t → ∞ extrapolations from the

three-state fit gave results consistent with the two-state

ones, albeit with larger errors. A closer look at Fig. 4 (and

also from Fig. 21) reveals that the excited state contribution

is larger for Γ ¼ γz than for Γ ¼ γt. Furthermore, the

excited state contribution grows with increasing z. The
nonsymmetric nature of Rðt; τ; z; Pz;ΓÞ for z ≠ 0 is also

apparent in the figure. We expect that hΓðz ¼ 0; PÞ ¼ 1 for

Γ ¼ γt because of the charge conservation once a proper

renormalization is implemented and the continuum limit is

taken. Our extrapolation procedure gives a result for the

bare matrix element which is larger than one at all the

values of momenta as can be seen in Fig. 4, as well as from

Fig. 22 in Appendix G, where, in addition, one can also see

that hBγtðz ¼ 0; PzÞ is independent of Pz. Thus, any

deviation of hBγtðz ¼ 0; PzÞ away from unity should be

taken care of by the renormalization. We will see in Sec. V

that this is indeed the case.

Alternatively we can use the summation method [49] to

obtain hB
Γ
. Here one sums over all τ=a minus a certain

number of end points τo

Rsumðt; z;ΓÞ ¼
X

t=a−τo

τ=a¼τo

Rðt; τ; z; Pz;ΓÞ: ð11Þ

We will refer to this method as sum(sumðτoÞ). For large t,
one would find a linear behavior in t of Rsum as

Rsumðt; z;ΓÞ ≃ ðt − 2τoÞhBΓðz; PzÞ þ constþOðe−ðE1−EπÞtÞ:
ð12Þ

FIG. 4. The ratio of the three-point function to the two-point function, Rðt; τ; z; Pz;ΓÞ is shown as function of τ − t=2 for γt (top row)
and γz (bottom row) for z=a ¼ 0, 4 and 8 (from left to right) and Pz ¼ 1.29 GeV. The central values of the two-state fits of the lattice

results for different source-sink separations are shown as the curves. The horizontal band corresponds to the extrapolated result for the

infinite source-sink separation.
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The advantage of this method is that the excited state

contributions are suppressed as exp½−ðEn − EπÞt� instead
of being suppressed as exp½−ðEn − EπÞt=2� in the fitting

method. We show a sample result using sum(1) and sum(2)

in Fig. 5 for Γ ¼ γz and z ¼ 0. We see that Rsumðt; z; γzÞ can
be well fitted by a straight line in t, and the slope gives the

value of the matrix element. As a cross check, we also show

the expected curve for Rsumðt; z;ΓÞ using our best fit from

Fit(2,2) as the dashed curves. It can be seen that the

difference between a simple straight line fit and the curve

from Fit(2,2) is small. One can also note that sum(1) and

sum(2) are almost parallel, meaning that the extracted

matrix element is independent of τo confirming that the

method works well.

To better understand the systematic effects due to excited

state contaminations, one can look at the case z ¼ 0 in

detail, where the statistical errors are the smallest. The bare

matrix element hBγzðz ¼ 0; PzÞ after renormalization is

expected to be proportional to the hadron velocity,

Pz=EπðPzÞ. One can take the ratio of matrix elements

hBγzðz ¼ 0; PzÞ=hBγtðz ¼ 0; PzÞ to avoid the issues of renorm-

alization. The results for this ratio of matrix elements is

shown in Fig. 6 along with the curve for Pz=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
z þm2

π

p

. We

see that our lattice results follow the expectations reasonably

with small 3–4% deviations from the expected result at small

Pz. A reason for this couldbe the large systematic uncertainty

in γz matrix element due to the relatively larger excited state

extrapolations required. We see that within errors, the two-

state fit, three-state fit, and the summation methods are

consistent.

In Fig. 7, we show the results for hB
Γ
ðz; PzÞ as functions

of z for the two highest momenta Pz ¼ 1.29 and 1.72 GeV

determined using the HYP smeared Wilson line. Since the

real part is symmetric, about z ¼ 0, we have only shown the

data for z ≥ 0. At each z=a, we have shown the resulting

t → ∞ extrapolated results using Fit(3,1), Fit(2,2),

sum(2), and sum(2) methods, and these points at a given

z=a are slightly displaced for better visibility. We see that

the results from all these methods agree with each other

within the errors. For γz, some tension between the

summation method, and the two- and three-state fits is

observed at larger jzj. At larger values of z the matrix

elements are suppressed partly because of the larger value

of Pz and in part by the divergent self-energy contribution

in the spatial Wilson line. The latter will be removed upon

renormalization as we will see in the next section. Having

demonstrated a robust determination of the matrix element

using multiple t → ∞ strategies, we will use the matrix

elements obtained using Fit(2,2) in the rest of the paper.

So far we discussed results on the three-point function

obtained using 1-HYP smearing for the spatial link. We

also performed calculations using the unsmeared spatial

Wilson line. In this case, the bare matrix element rapidly

decreased with z due to the larger value of the Wilson line

self-energy divergence. However, we found that the results,

after nonperturbative renormalization (discussed next in

Sec. V), were similar to those obtained with smeared

Wilson lines within errors. The main difference between

the renormalized three-point function obtained with the

smeared and unsmeared Wilson line is that, for the latter,

the statistical errors at large z are significantly larger.

V. RI-MOM NONPERTURBATIVE

RENORMALIZATION AND ITS

COMPARISON WITH 1-LOOP

In the last section, we discussed the extraction of the bare

qPDF matrix element which has to be renormalized. The

renormalizability of qPDF has been recently demonstrated

to all orders of perturbation theory [50,51]. In addition to

the quark wave function renormalization Zq and the

composite operator renormalization required for z ¼ 0,

the qPDF operator at nonzero z requires additional renorm-

alization due to the UV divergence present in the Wilson

line connecting the quark and antiquark [52]. When a

FIG. 6. The ratio of the matrix elements for γz to γt as a function

of Pz. The curve shows the expected result, Pz=EπðPzÞ.

FIG. 5. The t dependence of Rsumðt; z ¼ 0; γzÞ for Pz ¼
1.29 GeV with τo ¼ 1 (red) and τo ¼ 2 (blue). The solid lines

are the straight line fit hBγzðz; PzÞtþ const to the data. The dashed

lines are the expected curve for Rsumðt; z ¼ 0; γzÞ using the fit

(2,2) best fit parameters.
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lattice fermion that breaks chiral symmetry at finite lattice

spacings is used, as is the case in this paper, it has been

shown that only the renormalization of the γt qPDF

operator is purely multiplicative, while the γz qPDF

operator mixes with the scalar qPDF [6,20]. A renormal-

ization scheme that is implementable on the Euclidean

lattice is the RI-MOM scheme, and it is now standard in the

lattice QCD literature. The corresponding RI-MOM

counter-term for the qPDF operator in leading-order

perturbation theory has been worked out using off-shell

quark external states [8], and it is one of the ingredients

used in the perturbative matching of the RI-MOM renor-

malized qPDF to the MS PDF. In this section, we discuss

the renormalization procedure, and then compare the

running of the renormalization constants as determined

on the lattice with the corresponding perturbative expect-

ations. This allows us to quantitate the validity of the

leading-order perturbation theory and matching.

For nonperturbative renormalization, we compute the

expectation value of qPDF operator between off-shell quark

external stateswithmomentump.We refer to themomentum

of quark in the direction of the Wilson line as pz and the

magnitude of the component perpendicular to theWilson line

as p⊥. For these computations, we use Landau gauge fixing.

Let ΛΓðz; pÞ be the quark-line amputated bare qPDF,

ΛΓðz; pÞ ¼ hQðpÞi−1hūðpÞOΓðz; τÞuðpÞihQðpÞi−1; ð13Þ

where QðpÞ is the quark propagator huðpÞūðpÞi and

uðpÞ ¼
P

xuxe
−ip:x. Let us define the bare qPDF after

projection as

qΓðz; pÞ≡ Tr½PΛΓðz; pÞ�; ð14Þ

consistent with the definition used in perturbative calcula-

tions.Here,P is the operator used to project onto one of the γ-

matrices Γ ¼ γα, and Trð…Þ is a trace over both color and

Dirac indices.Based onpreviousworks [8,20],wewill usep-
projection for which P ¼ p=ð12pαÞ. Alternatively, one can
use P ¼ Γ [21] or the minimal projection [8]. In the case of

Γ ¼ γt, since the renormalization is simply multiplicative,

the renormalized quark qPDF is given by

qRγtðz; p; pRÞ ¼ Zγtγt
ðz; pRÞqγtðz; pÞ; ð15Þ

where the z-dependent RI-MOM renormalization constant Z
is determined using the renormalization condition set at

momentum pR as

qRγtðz; p; pRÞjp¼pR ≡ eip
R
z z: ð16Þ

FIG. 7. The bare matrix elements hBγtðz; PzÞ (left) and hBγzðz; PzÞ (right) as a function of quark-antiquark separation z. The panels in the
top row show results for Pz ¼ 1.29 GeV, while the panels in the bottom row show the results for Pz ¼ 1.72 GeV. The different symbols

are from various methods of t → ∞ extrapolation.
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The right-hand side of the above equation is the tree-level

value of qγt . The renormalization constant so obtained is in

general a complex number. For Γ ¼ γz, we have to take care

of mixing with the scalar Γ ¼ 1. Hence, the renormalized

qPDF is defined as

qRγzðz; p; pRÞ ¼ Zγzγz
ðz; pRÞqγzðz; pÞ þ Zγz1

ðz; pRÞq1ðz; pÞ:
ð17Þ

The diagonal part Zγzγz
and the mixing term Zγz1

are

determined using the two RI-MOM conditions [20]:

qRγzðz; p; pRÞjp¼pR ≡ eip
R
z z;

Zγzγz
ðz; pRÞTrΛγz

ðz; pÞ þ Zγz1
ðz; pRÞTrΛ1ðz; pÞjp¼pR ≡ 0:

ð18Þ

Using the renormalization constants Z determined above

using quark external states, the renormalized pion qPDF can

also be determined by

hRγtðz; Pz; p
RÞ ¼ ZqZγtγt

ðz; pRÞhBγtðz; PzÞ;
hRγzðz; Pz; p

RÞ ¼ ZqZγzγz
ðz; pRÞhBγzðz; PzÞ

þ ZqZγz1
hB1 ðz; PzÞ; ð19Þ

where Zq is the quark renormalization, that can be deter-

mined using the condition [53]

ZqðpRÞ−1 1

12
TrðhQðpRÞi−1QtreeðpRÞÞ ¼ 1; ð20Þ

where QðpÞ is the quark propagator determined using the

Landau gauge, and Qtree is the free quark propagator for

which we use the free massless Wilson-Dirac propagator.

In Fig. 8, we show the renormalization factors using the

above RI-MOM renormalization conditions on the 0.06 fm

ensemble. On the top-left panel of Fig. 8, we show the real

and imaginary parts of Zγtγt
determined at pR

z ¼ 1.29 GeV

and pR
⊥
¼ 1.49 GeV. The rapid, almost exponential,

increase in Z with z is due to the self-energy divergence

present in the bare Wilson line that connects the quark and

antiquark in the qPDF operator. This divergent piece, ecjzj,

FIG. 8. The RI-MOM renormalization constants using p-projection at lattice spacing a ¼ 0.06 fm at renormalization scale

pz ¼ 1.29 GeV, p⊥ ¼ 1.49 GeV are shown. In the top-left panel, the real and imaginary parts of the renormalization constant for

γt qPDF operator are shown as a function of quark-antiquark separation z in physical units. On the top-right panel, the self-energy

divergent part e−cjzj of the Wilson line is removed from renormalization constant for γt qPDF. Similarly, in the bottom-left panel, the

diagonal part Zγzγz
and the mixing term Zγz1

are shown, and the corresponding values after the removal of self energy divergence are

shown in the bottom-right panel.
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cannot be captured perturbatively, and it needs to be

determined nonperturbatively in a particular scheme.

However, this might not be an issue for the one-loop

matching if ecjzj cancels exactly between the renormalization

factors and the bare qPDF operator. Therefore, we remove

ecjzj from the renormalization constant that is shown in the

top-left panel, and display the result in the top-right panel.

Thevalue ofc for oura ¼ 0.04 fm ensemblewas determined

in [54], and for 1-HYP Wilson line ca ¼ 0.1586. This

removal of Wilson line self-energy reduces the almost

exponential dependence of ZðzÞ to a weak dependence on

z. In fact, we see that both the real and imaginary parts ofZγtγt

remain Oð1Þ even up to z ¼ 1 fm, thereby providing a

qualitative justification for the usage of leading-order per-

turbation theory to describe the lattice data at short z and at

high quarkmomenta.We show similar data in the bottom-left

and -right panels for the Z-factors for γz qPDF. In this case,

we have the diagonal factor Zγzγz
as well as the off-diagonal

factorZγz1
to take care ofmixingwith scalar on the lattice.We

show Zγzγz
and Zγz1

as the filled and unfilled symbols in the

bottom panels, respectively. We observe that the imaginary

part of Zγzγz
is small compared to the real part. This is not the

case for Zγtγt
, which in turn will affect the asymmetry of the

u − d qPDF q̃u−dðxÞ of pion, about x ¼ 0. We also note that

the mixing of γz with the scalar is a minor 5-10% effect, but

we nevertheless take care of it in our calculation.

As we discussed in the last section, the matrix element at

z ¼ 0, hγt is the local current operator which will be exactly

conserved in the continuum limit. Hence, ZqZγtγt
ðz ¼ 0Þ is

the vector current renormalization factor ZV and the

dependence of ZV on p will give us an idea of the leading

ðpaÞ2 perturbative lattice artifacts for values of p ≫ ΛQCD

as well as the other higher order (or perhaps nonperturba-

tive) contributions to this lattice correction to ZV at smaller

renormalization scales [53]. In Fig. 9, we show Zq

determined using Eq. (20), the value of Zγtγt
at z ¼ 0 as

well as their product ZV as a function of ðpaÞ2. One sees a
reasonable plateau for ZV ≈ 0.97 only for ðpaÞ2 > 2. For

comparison, the value of ZV as obtained from the bare pion

isospin charge hBγtðz ¼ 0; Pz ¼ 0Þ is 0.961(3). The values

of ZV determined from hBγtðz ¼ 0; PzÞ at the other nonzero
Pz also give consistent values. With the uncertainties of

choosing the scaling region in ðpaÞ2 to take the ðpaÞ → 0

limit of ZV , we expect the ZV to be in the range 0.97 to

0.99. For relatively smaller values of renormalization

momenta ðpaÞ ≈ 1–1.5, chosen such that the renormaliza-

tion scales lie in the vicinity of the pion momenta used in

this paper, one sees noticeable, but small, 5% dependence

on pa. We used the value of Zq estimated at the same value

of p as used in Zγtγt
for renormalizing our pion qPDF.

A. Comparison with leading-order

perturbation theory for z < 0.3 fm

We will now investigate in a quantitative way the

agreement/disagreement of the lattice determination of

the RI-MOM renormalized amputated quark qPDF at z <
0.3 fm which one can expect to be in the perturbative

regime. For this, we construct a quantity ζΓðz; p; pRÞ in the
following way:

ζΓðz; p; pRÞ ¼ qR
Γ
ðz; p; pRÞ

qR
Γ
ðz; p; pÞ − 1; ð21Þ

where qR
Γ
ðz; p; pÞ ¼ eipzz by the renormalization condition.

In the case of Γ ¼ γt, the above definition is simply

ζγtðz; p; pRÞ ¼ Zγtγt
ðz; pRÞ − Zγtγt

ðz; pÞ
Zγtγt

ðz; pÞ ; ð22Þ

which is similar to a discrete scale-dependent anomalous

dimension ∂ log ðZγtγt
ðz; pÞÞ=∂p. Through the dependence

of ζ on pR slightly away from p, we can understand how

well the leading-order perturbation theory is able to

describe the exact nonperturbative determination on the

lattice. It is important to stress that apart from under-

standing nonperturbative renormalization of qPDF in this

way, we are also essentially comparing one of the steps in

the LaMET formalism that is calculable on the lattice.

Hence, any agreement/disagreement we observe quantifies

the limitations of the leading-order LaMET. In perturbation

theory, ζ is the ratio of the one-loop perturbative correction

to qðz; pÞ to its tree-level value. This expression for ζ has

been calculated, and it is given by
1

FIG. 9. The ðpaÞ2 dependence of the renormalization factors

Zq (black squares), Zγtγt
ðz ¼ 0Þ (red triangles), and ZV ¼

ZqZγtγt
ð0Þ (blue diamonds) are shown for the a ¼ 0.06 fm

ensemble.

1
The formula differs from the one given in [8] due to the issue

of the order of the ϵ ¼ 0 limit in dimensional regularization and
the z ¼ 0 limit. We thank Yong Zhao for communicating the
corrected result to us.
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ζΓðz; p; pRÞ ¼ αsCF

2π

Z

∞

−∞

dxðeið1−xÞpz − 1Þ
�

Hðx; pÞ

−

�

�

�

�

pz

pR

�

�

�

�

H

�

1þ pz

pR
z

ðx − 1Þ; pR

��

; ð23Þ

where Hðx; pÞ is the 1-loop correction term to the bare

qPDF, and the two terms in the right-hand side come from

the bare and RI-MOM renormalization counter terms,

respectively.
2
The functional forms of Hðx; pÞ for γz and

γt isovector qPDFs are given in [7,8] and therefore we do

not provide them here. The asymptotic 3=ð2jxjÞ behavior of
the bare and the RI-MOM counter term, that contributes to

the UV divergence when integrated over x, gets exactly

canceled and we obtain a UV finite and renormalized result

for ζ. In the discussions below, we will consider the cases

with pz¼pR
z and pz ≠ pR

z separately. In the above leading-

order formula, the scale at which αs has to be evaluated is

arbitrary. Therefore, we vary αs by changing the scale from

0.5pR
z to 2pR

z through the 1-loop running, and quote this

variation as an uncertainty in the perturbative results below.

On the lattice side, we determine ζðz; p; pRÞ using the

nonperturbatively determined Z-factors. In order to esti-

mate the lattice spacing effects, we determined ζ using two

different lattice spacings; a ¼ 0.04 fm is shown as filled

symbols and a ¼ 0.06 fm is shown as open symbols in the

various plots that follow.

In the left and right panels of Fig. 10, we show the typical

dependence of ζγtðzÞ and ζγzðzÞ, respectively, as a function
of z when pR

⊥
differs slightly from the transverse quark

momentum p⊥, while the longitudinal components pz and

pR
z are the same. Using Eq. (23), we calculated the

prediction from leading-order perturbation theory for

ζðzÞ at the same values of momenta. The uncertainty bands

for the perturbative result are shown in Fig. 10 along with

the actual lattice data at the two different lattice spacings

that are shown using symbols. For the data shown in

Fig. 10, the longitudinal components pz for the two lattice

spacings are exactly 1.92 GeV, but the transverse compo-

nents p⊥ are only approximately the same between the

two due to the constraints of allowed momenta on the

two different lattice volumes, i.e., p⊥ ¼ 1.49 GeV for

a ¼ 0.06 fm and p⊥ ¼ 1.67 GeV for a ¼ 0.04 fm. To

take care of this slight offset in p⊥ between the two lattice

spacings, we have distinguished the perturbative results

corresponding to a ¼ 0.04 fm as bands enclosed by solid

lines, and similarly for a ¼ 0.06 fm as bands enclosed by

dashed lines. It can be seen that the two perturbative results

are not very sensitive to this difference in p⊥ assuring us

that whatever change we observe between the data at two

different a is mainly due to the change in a. We observe

from the plots that the leading-order perturbation theory

captures the qualitative z-dependence of both the real and

imaginary parts of ζ when pR
⊥

is changed from p⊥.

Surprisingly, the 1-loop result seems to work better for

ζγz than for ζγt. In the case of γt, one can certainly see a

large lattice spacing effect with the movement of data

towards the 1-loop result as the lattice spacing is reduced,

while in the case of γz, one can already see a consistency

with the one loop result at the lattice spacings that we use.

Thus, it opens up a question on whether the γz qPDF fares

worse compared to the γt qPDF simply due to the presence

of mixing with the scalar or whether γz qPDF might

eventually show better perturbative convergence and

FIG. 10. The behavior of ζðzÞ (symbols) with the quark-antiquark separation z, is compared with the expectation from 1-loop

perturbation theory (bands) when pR
⊥
is slightly away from p⊥. The red symbol and bands are the real part of ζ while the blue ones

correspond to the imaginary part. The bands enclosed by solid curves corresponds to the momenta ðpz; p⊥Þ for the 0.04 fm data, and

similarly the band enclosed by the dashed curves corresponds to ðpz; p⊥Þ of the 0.06 fm data (see text). On the left and right panels, the

comparisons are made for ζγt and ζγz respectively. In each of the panels, the data from two different lattice spacings are also shown

(a ¼ 0.04 fm as filled circles and a ¼ 0.06 fm as open circles). For the data shown, pz ¼ pR
z ¼ 1.92 GeV. The transverse momentum

of the quark p⊥ ¼ 1.58 GeV, and the transverse renormalization momentum is chosen to be 1.5 times p⊥.

2
The function Hðx; pÞ here is referred to as hðx; pÞ in Ref. [8].

We reserve h to refer to qPDF matrix element as is the
convention.
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lesser lattice spacing dependence in spite of its other

disadvantages.

In Fig. 11, we concentrate on the renormalization flow of

ζΓ at the fixed small value of z ¼ 0.12 fm. The two panels

show the dependence of ζγt and ζγz on p
R
⊥
which is changed

around p⊥. As before, we keep pz ¼ pR
z ¼ 1.92 GeV. The

1-loop result is able to capture the qualitative trend of the

flow in both γz and γt. For both the cases, we can see that

the reduction of lattice spacing leads to a better agreement

with the 1-loop result. Having discussed the cases where

pz ¼ pR
z , we now study the dependence of ζ on pR

z ≠ pz,

while keeping p⊥ ¼ pR
⊥
. We show the z-dependence of ζγz

when pR
z ¼ 1.5pz in Fig. 12. We find the perturbative result

to have the same qualitative behavior as the lattice data.

Putting together the various observations in this section, we

found only an overall qualitative agreement between the

lattice results on ζ and the one-loop perturbative results.

When the lattice spacing is reduced, we found the agree-

ment to get better. It remains to be seen what the effect is of

including higher order corrections in the perturbative result

for ζ.

B. A way to classify quark-antiquark separations

as perturbative or nonperturbative

Physically, one would expect that for a well-separated

quark-antiquark with z > 1 fm, one would start seeing

traces of nonperturbative physics in the qPDF. Quantifying

the advent of nonperturbative physics for large enough z at
finite quark/hadron momentum is important with regard to

the extraction of PDF since the real-space qPDF at all z
enter the computation of its Fourier transform. A simple

first approximation to study this effect is the following. In

free theory, the qPDF with external quark states is a pure

wave eipzz. We expect, to a first approximation, that the

effect of nonperturbative physics is to damp this pure wave

via an inverse screening length mscr ∼OðΛQCDÞ. Thus, we
model the bare quark qPDF as

qðz; pÞ ¼ Aeiωze−mscrjzje−cjzj; ð24Þ

where we have removed the UV divergent piece e−cjzj from
the qPDF and defined the left-over exponent mscr as a

physical scale. We have also accounted for ω ≠ pz in the

interacting theory since the quark can lose momentum by

emitting gluons. There could be remnant nontrivial depend-

ence of the amplitude A on z, which we assume to be

FIG. 11. The renormalization flow of ζγt (left panel) and ζγz (right panel) with the transverse renormalization scale, pR
⊥
are shown at

fixed z ¼ 0.12 fm. The data from two different lattice spacings, a ¼ 0.04 fm (filled circles) and a ¼ 0.06 fm (open circles), shown at

fixed z ¼ 0.12 fm and pz ¼ pR
z ¼ 1.92 GeV. The transverse momenta of the quark at a ¼ 0.04 and 0.06 fm are p⊥ ¼ 1.67 and

1.48 GeV, respectively, and they are chosen to be roughly equal for this comparison. The real part of ζ is shown in red while the

imaginary part is shown in blue. The band enclosed by the solid red (blue) curves corresponds to the 1-loop result for real (imaginary)

parts of ζ at ðpz; p⊥Þ for the 0.04 fm data, and similarly the band enclosed by the dashed curves corresponds to ðpz; p⊥Þ of

the 0.06 fm data.

FIG. 12. The dependence of ζ on the longitudinal momentum

pR
z . ζγz is shown as a function of z for a specific choice of pz and

p⊥ ¼ pR
⊥
. The uncertainty bands for the real and imaginary parts

for the leading-order expectation are shown using bands enclosed

by solid lines. The symbols are the lattice data determined at

lattice spacing a ¼ 0.04 fm.
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subleading compared to the leading damped oscillatory

behavior and ignore it in the discussion here. There is an

ambiguity in mscr depending on the scheme used to

determine the divergent piece c. Since the values of c
determined from the static quark potential method ensure

that the renormalization factors after the removal of e−cjzj

are Oð1Þ at smaller z in Fig. 8, the choice of separation of

the exponential suppression factor into divergent and

physical scales as defined in Eq. (24) is well motivated

in this scheme. In Fig. 13, we show the bare quark qPDF

qγtðz; pÞ for p⊥ ¼ 1.49 GeV and pz ¼ 1.29 GeV deter-

mined on the a ¼ 0.06 fm ensemble. The short distance

can simply be described by a pure oscillatory eiωz behavior
which is shown using the dashed curves (with ω ¼ 0.85pz

for the case shown). The solid curves in the figure

correspond to the ansatz in Eq. (24) which describes the

data at larger jzj well. Without dwelling further on finding

the best parametrization of the lattice data that asymptoti-

cally behaves like Eq. (24), we simply define an effective

z-dependent ω and mscr through

mscrðzÞ − iωðzÞ≡ −
1

a
log

�

qðzþ a; pÞ
qðz; pÞ

�

− c: ð25Þ

In Fig. 14, we show the behavior ofmscr and ω as a function

of z as extracted from qγtðz; pÞ. We have chosen a different

set of pz and p⊥ to show the dependence on pz at fixed p⊥

and vice versa. From the top panel, we see that ω=pz is

below 1 for z < 0.4 fm and seems to approach a plateau

closer to 1 for z > 0.4 fm. While the values of ω at short

distances depend on pz and p⊥, the approach to ω ≈ pz is

universal. We observed this behavior when we used

qγzðz; pÞ as well. A physical reasoning for this observation

could be that at shorter z, the quark has the ability to radiate

a gluon, and at distances z > 0.4 fm there is effectively a

dressed quark carrying all the momentum. In the bottom

panel of Fig. 14, we have shown the effective screening

mass mscr. In the plots, we have only shown the data where

1-HYP smeared Wilson line was used. For this case, we

subtracted ca ¼ 0.1586 in Eq. (25) to get mscr. One can

clearly see the emergence of nonzero mscr ≈ 300 MeV for

jzj > 0.5 fm which is in the typical ΛQCD scale. When we

repeated this using quark qPDF with an unsmeared Wilson

line, we found the results to be consistent with the data

shown in Fig. 14 after we subtracted out ca ¼ 0.3687

corresponding to the unsmearedWilson line. This assures us

that the observed mscr ≈ 300 MeV is a real physical scale

independent of the self-energy divergence of theWilson line.

This signals the significant presence of a confinement scale

beyond z ≈ 0.5 fm. Also, the near plateauing of both ω and

mscr for these larger z indicates that a simple physically

motivated ansatz in Eq. (25) offers a surprisingly good

description of the actual nonperturbative data. One could

have expected this simply from observing the large jzj part of
Fig. 13. It remains to be seen if this observation can be used

advantageously in improving the LaMET matching at finite

moderately large pz.

FIG. 13. The real and imaginary parts of the lattice data for

qγtðz; pÞ are compared with the purely oscillatory model (dashed

curves) at short-distances, and the damped oscillatory ansatz

(solid curves) at larger jzj. The data correspond to quark

momentum ðpz; p⊥Þ ¼ ð1.29; 1.49Þ GeV.

FIG. 14. The effective frequency of oscillations ω (top) and

effective screening massmscr (bottom) as extracted from qγtðz; pÞ
are shown. The various values of p ¼ ðpz; p⊥Þ for the data are

tabulated in the plots. The values of ω are normalized with respect

to pz. A 1-HYP smeared Wilson line was used in all the

cases shown in the plots, and the corresponding self-energy

ca ¼ 0.1586 was subtracted to obtain mscr.
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VI. FROM RENORMALIZED QUASI-PDF TO PDF

A. On obtaining the valence PDF

using isovector u− d qPDF of pion

Having determined the renormalized qPDF we can now

discuss the matching between qPDF and PDF as well as the

determination of pion PDF from our lattice results. We

computed the u − d qPDF matrix element of a pion which

in practice we obtained from the real part of the connected

piece of the u quark qPDF matrix element. Now, we discuss

how the u − d qPDF and PDF are related to the valence

PDF of pion.

The u and d quark distributions, fuðxÞ and fdðxÞ, as
determined using Eq. (1) has support from x ¼ −1 to 1.

One can make a connection with the conventional, sepa-

rately defined quark distributionsQu;dðxÞ and the antiquark
distributions Qū;d̄ðxÞ that are nonzero only between x ¼ 0

and 1, through the relation

fu;dðxÞ ¼ Qu;dðxÞθðxÞ −Qū;d̄ð−xÞθð−xÞ: ð26Þ

Therefore, fu;dðxÞ contains information on both the quark as

well as the antiquark distributions in the positive and negative

regions of x respectively. Let us first focus on x ≥ 0. In the

isospin symmetric case we are considering,QuðxÞ ¼ Qd̄ðxÞ
and QūðxÞ ¼ QdðxÞ. Therefore, for the positively charged

pion QuðxÞ −QdðxÞ ¼ QuðxÞ −QūðxÞ ¼ fπ;uv ðxÞ is the

valence u-quark distribution. Again, due to the isospin

symmetry, the u and d̄ valence distributions are the same

as fπ;uv ðxÞ ¼ fπ;d̄v ðxÞ ¼ fπvðxÞ. However, unlike the valence
quark distribution, the isotriplet u − d PDF fu−d ¼ fuðxÞ −
fdðxÞ satisfies fu−dðjxjÞ ¼ fu−dð−jxjÞ and it has support

from −1 to 1. That is,

fu−dðxÞ ¼
�

QuðxÞ −QdðxÞ; x > 0

Quð−xÞ −Qdð−xÞ; x < 0;

fπvðxÞ ¼
�

QuðxÞ −QdðxÞ; x > 0

0; x < 0:
ð27Þ

Therefore, one can obtain the u − d quark distribution, and,

from it, one can obtainfπvðxÞ from x ∈ ½0; 1�, or, equivalently,
from ½−1; 0�.
By applying the matching formula on fuðxÞ and fdðxÞ

separately and taking the difference to obtain the u − d RI-

MOM qPDF, we now try to learn what is expected for this

qPDF. Writing down only the x=y dependence for the sake

of brevity and keeping the dependence on yPz=P
R
z ,

ðPR=PR
z Þ2 and factorization scale μ implicit, the one-loop

contribution to the matching kernel Cðx=yÞ from the

RI-MOM to MS scheme consists of two terms: F 1ðx=yÞ
and F 2ð1þ η0ðx − yÞÞ with η0 ¼ Pz=P

R
z . The expressions

3

for F 1;2 depend on the choice of Γ (γz or γt) [7,8].

Furthermore, F 2 depends on the projection method of

the RI-MOM scheme. Using the matching formula [7,8] on

fuðxÞ and fdðxÞ to obtain the qPDFs q̃uðxÞ and q̃dðxÞ,

q̃u;dðx;Pz;p
RÞ

¼ fu;dðx;μÞþ
αsCF

2π

Z

1

−1

dy

jyjF 1

�

x

y

�

þ
fu;dðyÞ

−
αsCF

2π

Z

1

−1

dyjη0jF 2ð1þη0ðx−yÞÞþfu;dðyÞþ �� � : ð28Þ

The above equation includes both the sea and valence

quarks, and there will be mixing with the gluon PDF which

is included in the “� � �” part. In the above convolution, the

vector current conservation is ensured by the plus function

defined as

F 1;2ðξÞþ ¼ F 1;2ðξÞ − δð1 − ξÞ
Z

reg

dξF 1;2ðξÞ; ð29Þ

such that any extra variable that F 1;2 will depend on are

held fixed in the above integral. Since the matching

between qPDF and PDF is linear, the q̃u−d ¼ q̃uðxÞ −
q̃dðxÞ is simply obtained as

q̃u−dðx;Pz;P
RÞ

¼ fu−dðx;μÞþ
αsCF

2π

Z

1

−1

dy

jyjF 1

�

x

y

�

þ
fu−dðyÞ

−
αsCF

2π

Z

1

−1

dyjη0jF 2ð1þ η0ðx− yÞÞþfu−dðyÞ; ð30Þ

with the terms in “� � �” in Eq. (28) exactly canceled between
the u and d terms. This is the matching relation we use to

obtain the u − d PDF from u − d qPDF. Using the u − d
PDF, we obtained the valence PDF as discussed above.

While fu−dðjxjÞ ¼ fu−dð−jxjÞ, it is also true that

q̃u−dðjxjÞ ≠ q̃u−dð−jxjÞ in the RI-MOM scheme. One

way to understand this is from the fact that the bare

qPDF matrix element is purely real while the RI-MOM

renormalization factor is in general complex, thereby

making the renormalized qPDF matrix element complex.

One can see this by starting from the matching convolution

above, and find that

q̃ðjxj;Pz;P
RÞ− q̃ð−jxj;Pz;P

RÞ¼ αsCFjη0j
2π

×

Z

1

−1

dy½−F 2ð1þη0ðx−yÞÞþF 2ð1−η0ðx−yÞÞ�fðy;μÞ;

ð31Þ

is nonzero due to an RI-MOM specific term F 2, while the

terms containing F 1 cancel due to their dependence only

on jPzj. In other schemes such as the MS, this symmetry

3
In [8], the terms F 1 and F 2 are referred to as f1 and f2,

respectively.
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about x ¼ 0 would be preserved by matching because the

corresponding factorization formulas depend on renormal-

ization/regularization scales through combinations such as

μ2z2 [55]. In the RI-MOM scheme there are two renorm-

alization scales, PR and PR
z , and since the z-direction is

special the above statement does not hold. Thus, it is

important to capture this asymmetry in the qPDF, or

equivalently to describe both the real and imaginary parts

of the RI-MOM renormalized pion qPDF from matching.

We use the matching kernel corresponding to the p-
projection in the results to be discussed next.

B. Numerical results on pion valence

PDF from matching

The one-loop perturbative matching relates the Fourier

transform q̃ðx; Pz; P
RÞ of the renormalized RI-MOM real-

space qPDF matrix element hRðz; Pz; P
RÞ, and the MS PDF

fðx; μÞ at factorization scale μ. The relation is through the

convolution in Eq. (3). There are two approaches to

consider here:

(1) One can parametrize the real space data

hRðz; Pz; P
RÞ over the range z where one has the

lattice data and then model the dependence of

hRðz; Pz; P
RÞ over z extending to infinity where

data does not exist (c.f., [56,57]). Using such a

parametrization, one can obtain its Fourier transform

q̃ðx; Pz; P
RÞ. Since the matching is only up toOðαsÞ,

one can invert the relation Eq. (3) by replacing f ↔

q̃ and αs → −αs. Thereby, one can obtain fðx; μÞ. In
this method, one does not control what values of z
enter the Fourier transform and one could question

the validity of perturbation theory for z > 1 fm.

(2) One can start from a phenomenologically motivated

n-parameter family of PDFs fðx; μ;a1;…anÞ.
Through Eq. (3), one can obtain qPDF q̃ðx; μ;
a1;…anÞ, and, thereby, obtain a family of real

space qPDF matrix elements hRðz;Pz;P
R;a1…anÞ.

Using this, one can fit the parameters ða1;…; anÞ so
as to best describe the real space lattice data over a

range z. This method was used in the case of

the lattice cross-section approach in [13]. Since

the model PDFs are not predictions from QCD, the

model dependence enters the analysis and one has to

rely on the prior that experimentally determined

PDFs are indeed very well described by such a

family of PDFs. However, the advantage of this

method is that one can precisely control the range of

z that enters the analysis, and one also does not have
to invert the matching convolution.

From our observation on how the 1-loop perturbation

theory fails to capture the quark qPDF quantitatively, even

at short distances, and from the observation of significant

nonperturbative screening effects beyond z ¼ 1 fm, we

think it is important to be in control of what values of z
enter the convolution and, hence, in this paper we take the

second approach. Also, due to the loss of signal to noise

ratio for z > 1 fm, we found Fourier transforming the noisy

data to be challenging without introducing unwanted

wiggles in q̃ðxÞ at larger x.
To be on par with the experimental extraction of PDFs,

one should use sophisticated methods such as the usage of

neural networks to choose the set of model PDFs to start

with (c.f., [58]). We defer such an analysis to a future work

and, instead, we use a simple two-parameter phenomeno-

logically motivated functional form for the valence PDF:

fπvðx; a; bÞ ¼ Axað1 − xÞb; ð32Þ

for x ∈ ½0; 1� and zero elsewhere. As we will see below,

such a form is enough to describe our lattice data. One can

fix the coefficient A through a stringent condition
R

1
0
fπvðxÞdx ¼ 1. Instead, we use a more conservative

constraint on A using
R

1
0
fπvðxÞdx ¼ hRðz ¼ 0; Pz; P

RÞ to

allow for sample by sample fluctuations in hRðz ¼
0; Pz; P

RÞ close to 1 and fold this into the error estimate.

It should be noted that the valence PDF of the pion

determined from the experimental data by the JAM

collaboration [59] can be well described by such a two

parameter ansatz, for example with a ¼ −0.407 and

b ¼ 1.12 at μ ¼ 3.2 GeV.

Using the above valence PDF, we construct the u − d
PDF as

fu−dðx; a; bÞ ¼
1

2
ðfπvðx; a; bÞ þ fπvð−x; a; bÞÞ; ð33Þ

with x ∈ ½−1; 1� and zero elsewhere. Through the con-

volution of fu−dðxÞ with the matching kernel, we obtain

q̃u−dðx; a; bÞ, which in turn we use to construct the real

space qPDFs hðz; a; bÞ ¼
R

∞
−∞

q̃ðx; a; bÞeixPzzdx. We will

refer to these functions hðz; a; bÞ as the two-parameter

family of phenomenologically motivated qPDF matrix

elements. With the set of hðz; a; bÞ from a range of a
and b, we can fit the parameters a and b to the data by

minimizing either χ2r or χ2ri below:

χ2r ¼
X

zmax

z¼−zmax

ðReðhRðzÞÞ − Reðhðz;a; bÞÞÞ2
σrðzÞ2 þ σ

pert
r ðzÞ2

;

χ2i ¼
X

zmax

z¼−zmax

ðImðhRðzÞÞ − Imðhðz; a; bÞÞÞ2
σiðzÞ2 þ σ

pert
i ðzÞ2

;

χ2ri ¼ χ2r þ χ2i : ð34Þ

In the above equations, ½−zmax; zmax� specifies the fit range.
The statistical errors on the real and imaginary parts of the

lattice data hRðzÞ is σrðzÞ and σiðzÞ, respectively. To

account for any systematic errors coming from the higher

order corrections in αs in the matching kernel, we deter-

mine hðz; a; bÞ from fπvðx; a; bÞ by varying the value of αs
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in the matching kernel from αsðμ=2Þ to αsð2μÞ though the

1-loop running. The corresponding changes in the real and

imaginary parts of hðz; a; bÞ are denoted as σ
pert
r ðzÞ and

σ
pert
i ðzÞ, respectively, and we include these uncertainties in

the matched result in the χ2. If the matching was exact, then

by fitting only the real part by minimizing χ2r would

automatically guarantee that the imaginary part also agrees

with the data. Therefore at any finite order matching, the

fits obtained by minimizing χ2r and χ2ri will in general be

different. For the results shown below, we used χ2ri in order

to obtain the PDF that best describes both the real and

imaginary parts of the real space qPDF, but we also used χ2r
and found it to lead to consistent results but with larger

uncertainties. We did not include the correlations between

the data at different z for the primary reason that it is

difficult to keep these correlations intact in the process of

excited state extrapolations. It also helps us to easily

incorporate the effect of σpert from nonstatistical origin

in the analysis, and in treating the real and imaginary parts

of the renormalized matrix elements as two distinct pieces

of data as is the case in the context of matching. We

determined the errors on the fit parameters through the

bootstrap analysis.

In Fig. 15, we show the fitting procedure for γt qPDF. In

the top panels, we show the Pz ¼ 0.86, 1.29, and 1.72 GeV

real-space RI-MOM pion qPDF matrix elements from left

to right. The symbols are the actual lattice data. The solid

and patterned red (blue) bands are 1 − σ error-bands of the

real (imaginary) parts of the fitted real space qPDF matrix

element that best fits the data over the range ½−zmax; zmax�

for zmax ¼ 1.44 fm and 0.72 fm, respectively. The agree-

ment with both the real and imaginary parts of the lattice

data is noteworthy. In fact, we find the qPDF matrix

element as inferred from the JAM PDF [59] is able to

explain the lattice data well for the entire range of z at the
two largest momenta. In the bottom panels, we show the

process leading from model PDF to the real space qPDF

matrix elements shown in the top panels. In order to avoid

cluttering the figure, we have shown only the mean value of

fu−dðxÞ (shown as dashed lines) while we have shown the

error bands for the qPDF q̃u−dðxÞ as obtained through the

1-loop matching. The colors red and blue in the bottom

panels correspond to the fits with zmax ¼ 0.72 and 1.44 in

the top panels, respectively. As one can see, we started from

a symmetric u − d PDF by construction and matching

introduces an x → −x asymmetry. After Fourier trans-

formation, this asymmetry leads to the imaginary part in

the real space data in the top panels which captures the

lattice data to a good accuracy. For both the real-space as

well as in x space, we find no significant difference

between using zmax ¼ 1.44 fm and 0.72 fm in the fits.

We could infer that within the precision of our numerical

results, the nonperturbative effects at z ≈ 1 fm that we

found using quark qPDFs is not important. Therefore, we

show results for an intermediate zmax ¼ 0.98 fm in the

results below. When we repeated this analysis by minimiz-

ing χ2r , we found the estimates to be consistent with the

above, but with larger uncertainties.

In Fig. 16, we show our results for fπvðx; μÞ and xfπvðx; μÞ
at the factorization scale μ ¼ 3.2 GeV using the proce-

dure described above at our two largest pion momenta

FIG. 15. Top panels: The RI-MOM renormalized qPDF matrix element in real space hRγtðz; Pz; P
RÞ at pion momenta Pz ¼ 0.82, 1.29,

and 1.72 GeVare shown at fixed RI-MOM renormalization scale ðPR
z ; P

R
⊥
Þ ¼ ð1.29; 2.98Þ GeV. The red and blue points are the real and

imaginary parts of the actual data, respectively. The bands were obtained by fitting the two-parameter phenomenologically motivated

real space qPDF matrix element to the data over a range z ∈ ½−zmax; zmax�—the solid band is for zmax ¼ 1.44 fm and patterned one for

zmax ¼ 0.72 fm. Bottom panels: The two parameter u − d PDF fu−dðxÞ (dashed lines) at μ ¼ 3.2 GeV, and the matched qPDFs q̃u−dðxÞ
(1 − σ error bands) that describe the real space qPDF on the top panels are shown. To avoid clutter, only the central values of fu−dðxÞ are
shown as dashed lines. The results from different zmax are shown in red and blue.
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Pz ¼ 1.29 GeV and 1.72 GeV starting from γt qPDF. For

each case, we overlay the results from two different RI-

MOM scales PR in order to show the scatter as a systematic

error in our estimates. We find the PR dependence to be

minor compared to the error bands (we repeated the

analysis with multiple other values of PR that are not

shown and only minor scatter with respect to PR was seen).

We also show the result from the JAM collaboration [59]

for the pion valence PDF at the same factorization scale as

the black solid line, which lies within the statistical and

systematic uncertainties of our estimates. In the left panels

showing fπvðxÞ, this overall agreement can be seen even up

to smaller x, but one has to be cautious of this agreement for

x ⪅ ΛQCD=Pz ≈ 0.2 for the two highest pion momenta we

use. By construction, in our fitting procedure fπvðxÞ has

support only from 0 to 1 without any necessity to recover

this condition in the infinite Pz limit. However, the values

of exponent b closer to zero are also allowed thereby

leading to a wider error band closer to x ¼ 1. This seems to

be consistent with the observation in Ref. [18] that the PDF

obtained from qPDF through the inverse one-loop match-

ing (approach-1) vanishes at about x ≈ 1.2. We see our

Pz ¼ 1.29 GeV and 1.72 GeV estimates to be consistent,

albeit with a significant increase in error at the largest

momentum.

In Fig. 17, we summarize the information in Fig. 16 by

showing the 1 − σ ellipses (whose x and y projections give

the marginal 68% confidence intervals of the exponents a
and b, respectively). In this figure, the dashed and con-

tinuous ellipses are for Pz ¼ 1.29 and 1.72 GeV, respec-

tively. The ellipses for different PR are distinguished by

the colors, with the color code being the same as in Fig. 16.

The Pz ¼ 1.29 GeV data offer a stronger constraint on the

allowed region of ða; bÞ than the noisier Pz ¼ 1.72 GeV. In

this plot, the JAM estimate is the black point. The JAM data

are well within the Pz ¼ 1.72 GeV ellipses while the Pz ¼
1.29 GeV data seem to favor the slightly smaller exponent

b. However, these differences are well within 2σ. Even

though our lattice data have large errors on the exponents a
and b individually, the data offers a tight constraint on the

combined allowed region. In particular, the principal

component of this correlation between a and b points

directly at the JAM data implying that if one fixes the

exponent a to be from the experiment, then the best value of

b would also be closer to that from the experiment. To

understand this better, we have also shown the line of

constant value of first moment of the valence PDF,

hxi ¼
R

1
0
xqπvðxÞdx, set to 0.215 as inferred from the

JAM data. It is clear that the 1σ ellipses are oriented along

this line, which means that qPDF determines hxi robustly

FIG. 16. The top and bottom panels show our estimated pion valence PDF at μ ¼ 3.2 GeV using γt qPDF at Pz ¼ 1.29 and 1.72 GeV,

respectively. The results using multiple RI-MOM scales ðPR
z ; P

R
⊥
Þ are shown using different colored error bands. On the left panels, the

results for fπvðxÞ are shown, while on the right panels the results for xfπvðxÞ are shown. For all the cases shown, the fit range was held
fixed at zmax ¼ 0.98 fm. The solid line (with a small error band around it) is the JAM result [59] for pion valence PDF at the same μ.
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and this in turn provides a strong constraint in the allowed

PDFs. Not surprisingly, we do find consistent values

of hxi ¼ 0.21ð2Þ and 0.22(3) from the Pz ¼ 1.29 and

1.72 GeV estimates. It should be noted that the moments

of pion PDF have also been directly determined without the

usage of LaMET formalism [60–64] and similar values for

the first moment for the pion were obtained, but at slightly

different values of μ2 than used here.

The exponents a and b were also recently obtained using

the lattice cross-section approach [13] which used current-

current correlators, with the matching implemented at

tree-level. Here, the exponents were estimated as a ¼
−0.34ð31Þ and b ¼ 1.93ð68Þ which are consistent with

the region allowed at the largest momentum in Fig. 17. It is

worth noting that there are indications from next-to-leading-

logarithmic soft gluon resummation calculation [35], the

Dyson-Schwinger equation [65–67] and light-front holo-

graphic QCD [68] that the value of exponent b could be

approximately 2 as expected from perturbative counting rule

(c.f., [69]), whereas a chiral quark model analysis [70,71]

suggests a value of b closer to 1. It will be interesting to see if
a similar implementation of an improved matching kernel

could lead to a softer largex behavior for thepion thanwhat is
observed using the 1-loop qPDF matching here and perhaps

in [18]. In fact, a general consideration of power correc-

tions to qPDF [72] revealed the presence of the form

Λ
2
QCD=ðð1 − xÞx2P2

zÞ implying higher values of Pz might

be required in order to correctly describe physics close to

x ¼ 1, and this might be the effect which we are finding.

Similar conclusions have also been obtained in 2dQCD [73].

Due to the larger errors in the γz qPDF attributed mostly

to the steep excited state extrapolations, we use the γz qPDF

to provide a consistency check of our calculations instead.

For this, we use our above best estimates of the PDF

obtained using the γt qPDF to get the corresponding

prediction for the real space γz qPDF matrix element

through a convolution with the appropriate matching

kernel. In the top and bottom panels of Fig. 18, we show

such a comparison between the actual real space data of γz
qPDF (data points) along with the prediction from our

estimated PDF (bands) for pion momenta Pz ¼ 1.29 and

1.72 GeV. We find good descriptions of the real part of the

RI-MOM γz qPDF at both the pion momenta with a slight

tension between the imaginary parts. From our discussion

on the excited state contamination, it is important to first

gain better control of the larger excited state contamination

in the γz qPDF before one can investigate the effect of one-

loop matching on this rather small discrepancy.

FIG. 18. In the top and bottom panels, the real (red) and

imaginary (blue) parts of the renormalized real space γz qPDF

matrix element are shown for pion momenta Pz ¼ 1.29 GeV and

1.72 GeV, respectively. The data points are the actual lattice data.

The bands are the expected matched γz qPDF matrix element

starting from our best estimate for valence pion PDF obtained

using γt qPDF analysis.

FIG. 17. The 1 − σ confidence region ellipse of the exponents a
and b in the model PDF at μ ¼ 3.2 GeV that best describes the

real space RI-MOM qPDF is shown. The solid lines and dashed

lines correspond to Pz ¼ 1.29 GeV and Pz ¼ 1.72 GeV. For

each of these pion momenta, the different colored lines corre-

spond to different RI-MOM scale PR. The black point is the JAM

value [59] for valence pion PDF. The black straight line is the line

of constant first moment of valence PDF, hxi ¼ 0.215.
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VII. CONCLUSIONS

We studied pion PDF in the framework of LaMET,

which relates the qPDF to PDF through the matching

convolution in Eq. (3). For this, we used a small lattice

spacing a ¼ 0.06 fm. We carefully examined the effects of

excited states using the two- and three-state exponential fits

of the relevant 2-point and 3-point functions as well as the

summation method. For our final analysis we used two

momenta Pz ¼ 1.29 GeV and Pz ¼ 1.72 GeV. We found

the qPDF defined using Γ ¼ γt was better determined

compared to the γz qPDF in the lattice calculation for

the following reasons: smaller statistical error, relatively

smaller excited state extrapolation leading to a more robust

result for the matrix element as well as due to the absence of

mixing. Therefore, we focused on the analysis of the γt
matrix element.

The pion qPDF was nonperturbatively renormalized

using the RI-MOM scheme by calculating the matrix

elements of qPDF operator with off-shell quark states in

the Landau gauge for different separations z. For these

calculations we also used finer lattices with the lattice

spacing a ¼ 0.04 fm. We performed the comparison of this

matrix element in the Landau gauge with 1-loop perturba-

tive calculations in the RI-MOM scheme and found a

qualitative agreement for z < 0.3 fm. For the smaller lattice

spacings, a ¼ 0.04 fm we even found quantitative agree-

ment with the 1-loop result for sufficiently small z. We also

explored the role of nonperturbative effects in the calcu-

lation of the off-shell matrix element. The real part of the

RI-MOM renormalization coefficient is close to one, while

the imaginary part is close to zero once the divergent self

energy part of the Wilson line is removed. We pointed out

that the RI-MOM renormalization procedure leads to an

asymmetry in the isovector pion qPDF q̃ðx; Pz; p
R
z ; μRÞ

around x ¼ 0, while other renormalization procedures lead

to qPDF that is symmetric around x ¼ 0.

From the renormalized qPDF, we determined the valence

quark pion PDF using the 1-loop perturbative matching of

the γt qPDF, which we implemented through a fit to the

phenomenologically motivated xað1 − xÞb functional form

for the valence PDF. We found our results for the pion

valence PDF using the two largest pion momenta were

consistent with each other, though the statistical errors are

rather large. An overall agreement with the results obtained

recently by the JAM collaboration [59] was seen. We found

our result for the PDF to capture the first moment hxi more

robustly than the small-x and large-x exponents, a and b
themselves. We used the γz qPDF matrix elements to

provide an internal consistency check by comparing to

the expectation from our estimates of the PDF and a

satisfactory agreement was seen. From our analysis it is

clear that the dominant source of errors in the PDF

determination is the statistical error of the lattice calcu-

lations. It will be necessary to significantly increase the

statistics in the future lattice calculations. Future high

statistics lattice calculations will be important for an

accurate determination of the pion PDF as well as testing

of the LaMET approach around small x.
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APPENDIX A: COULOMB-GAUGE GAUSSIAN

AND MOMENTUM (BOOSTED) SMEARING

In order to create hadron interpolatingoperators that have a

good overlap with the corresponding ground states, quark

field smearing is typically required. The amount of applied

smearing is tuned to produce spatial quark distributions of

roughly the same spatial size as the hadron. Gauge-covariant

Wuppertal (Gaussian) smearing [74] is commonly used for

this purpose. However, calculation of quasi- and pseudo-

PDFs and high-momentum hadron structure and spectrum in

general requires lattices with small lattice spacing. Keeping

the physical size of smeared quark distributions the same

becomes a numerical challenge on finer lattices because it

requires larger numbers of smearing iterations. For this

reason, we use Gaussian shape smearing in a fixed

(Coulomb) gauge that can be performed efficiently through

a convolution with a Gaussian profile kernel,

SCG
x;y ∝ e

−
ðx⃗−y⃗Þ2
2w2

CG ∝
X

p⃗

eip⃗ðx⃗−y⃗Þe−
1
2
w2
CG

p⃗2

: ðA1Þ
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In the free-field case, this kernel corresponds to the

Wuppertal smearing operator ð1þ w2

4N
ΔspÞN, where Δsp is

the spatial Laplacian andw2 ¼ 2w2
CG. Thevalue for thewidth

wCG is chosen to match the mean-squared radius hr2i ¼
3w2

CG to that of the optimal Wuppertal-smeared quark

sources. First, we fix the Coulomb gauge

ψC
x ¼ Ω

C
xψx; UC

x;μ ¼ UΩ
C

x;μ ¼ Ω
C
xUx;μΩ

C†
xþμ̂; ðA2Þ

whereΩC
x is the gauge transformation to the Coulomb gauge,

which minimizes the functional

Ω
C ¼ Ω∶ min

Ωx

FC½UΩ� ¼ min
Ωx

X

x

X

μ≠t

½−ℜTrUΩ
x;μ� ðA3Þ

(for the Coulomb gauge, μ ≠ t and the functional is mini-

mized independently on each time slice). The numerical

implementation is identical to the algorithm used for fixing

the Landau gauge in NPR calculations. Application of the

smearing kernel requires two 3D Fourier transformations:

½SCGψ �x ¼ Ω
C†
x

X

p⃗

eip⃗ x⃗e−
1
2
w2
CG

p⃗2

�

1

V

X

y⃗

e−ip⃗ y⃗
Ω

C
yψy

�

; ðA4Þ

which is accelerated with off-loadingmatrix-matrix products

to GPU.

Incorporating momentum (boosted) into Coulomb-

gauge Gaussian smearing amounts to translation of the

kernel in the momentum space,

ðSðk⃗ÞψÞx ¼ eik⃗ x⃗½Sð0⃗Þ�x;ye−ik⃗ y⃗ψy ¼ ½eik⃗ x⃗Se−ik⃗ y⃗�x;yψy: ðA5Þ

In a periodic finite volume, care must be taken to avoid

spatial discontinuities in the boosted smearing kernel

[Eq. (A5)]. Such discontinuities may arise because the

optimal boosted smearing momentum k⃗ typically does not

conform to finite-volume momentum quantization k⃗ ¼ 2π n⃗

L⃗

and the phase factors eik⃗ x⃗, eik⃗ y⃗ do not satisfy periodic

boundary conditions. The solution is to define the

smearing kernel in the momentum space as S
ðk⃗Þ
x⃗;y⃗

¼
P

p⃗e
ip⃗ðx⃗−y⃗Þe−

1
2
w2
CG

ðp⃗−k⃗Þ2 , where the momentum difference

ðp⃗ − k⃗Þ is understood as the shortest distance between p⃗

and k⃗ in the Brillouin zone. Such choice leads to a smooth

distribution in the momentum space and, respectively,

smooth and continuous smearing kernel in the coordinate

space.

Finally, it is important to note that the smearing kernel in

Eq. (A5) is Hermitian (as an operator acting in the

[coordinate ⊗ color] space),

S
ðk⃗Þ†
x;y ¼ ½Sðk⃗Þ

y;x�† ¼ S
ðk⃗Þ
x;y; ðA6Þ

which is similar to the (boosted) Wuppertal smearing

operator and important for computing symmetric hadron

correlation functions.

APPENDIX B: MESON CORRELATION

FUNCTIONS WITH BOOSTING

We use the interpolating operator for the πþ ¼ d̄umeson

½πþ;ð2k⃗Þ�x ¼ ¯̃dxΓMũx ¼ d̄x00S
ð−k⃗Þ
x00;x ΓMS

ðk⃗Þ
x;x0ux0 ; ðB1Þ

which is constructed from smeared quark fields

¯̃dx ¼ d̄x00S
ð−k⃗Þ
x00;x ; ũx ¼ S

ðk⃗Þ
x;x0ux0 ; ðB2Þ

where the spinor matrix ΓM ¼ γ5. The Hermitian-

conjugated (creation) meson operator is

½πþ;ð2k⃗Þ�†x ¼ ũ†xΓ
†
Mγ4d̃x ¼ ūx0S

ðk⃗Þ
x0;xΓ̄MS

ð−k⃗Þ
x;x00 dx00 ; ðB3Þ

where Γ̄M ¼ γ4ΓMγ4 ¼ ð−γ5Þ. The meson two-point cor-

relation function with boost-smeared source and sink and

momentum projection at the sink is
4

C2ptðy4; p⃗; xÞ

¼
X

y⃗

e−ip⃗ðy⃗−x⃗Þh½πþ;ð2k⃗Þ�y½πþ;ð2k⃗Þ�†xi

¼
X

y⃗

e−ip⃗ðy⃗−x⃗Þð−Tr½Sð−k⃗Þ
x;x00 Q

d
x00;y00S

ð−k⃗Þ
y00;y ΓMS

ðk⃗Þ
y;y0Q

u
y0;x0S

ðk⃗Þ
x0;xΓ̄M�Þ

¼
X

y⃗

e−ip⃗ðy⃗−x⃗ÞTr½Q̃d;ð−k⃗Þ
x;y ΓMQ̃

u;ðk⃗Þ
y;x ð−Γ̄MÞ�; ðB4Þ

where Q
q
x;y ¼ hqxq̄yi and Q̃q;ð�k⃗Þ ¼ Sð�k⃗ÞQqSð�k⃗Þ are

unsmeared and smeared quark propagators, respectively.

Note that the meson two-point function is constructed from

the u-quark propagator y ← x and the d-quark propagator

x ← y smeared with momenta ðk⃗Þ and ð−k⃗Þ, respectively.
Therefore, separate propagators for u and d quarks are

required to construct meson correlation functions

“boosted” with the total momentum ð2k⃗Þ,

Q̃
u;ðk⃗Þ
y;x ¼ S

ðk⃗Þ
y;y0Q

u
y0;x0S

ðk⃗Þ
x0;x ∝ eik⃗ðy⃗−x⃗Þ;

Q̃
d;ð−k⃗Þ
x;y ¼ S

ð−k⃗Þ
x;x0 Q

d
x0;y0S

ð−k⃗Þ
y0;y ∝ eik⃗ðy⃗−x⃗Þ; ðB5Þ

where “∝” sign stands for additional coordinate depend-

ence due to the boosting. The d-quark x ← y propagator, as
usual, is computed using γ5-Hermiticity of the Dirac

operator,

4
Unless explicit summation is performed, implicit summation

over repeated coordinate indices x0, x00; y0; y00 is assumed, as well
as all over omitted spin and color indices.
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Q̃
d;ð−k⃗Þ
x;y ¼ γ5½Q̃d;ð−k⃗Þ

y;x �†γ5 ¼ γ5½Sð−k⃗Þ
y;y0 Q

d
y0;x0S

ð−k⃗Þ
x0;x �†γ5; ðB6Þ

where the sign of the boosting momentum is preserved due

to the Hermiticity of the (boosted) smearing operator S

in Eq. (A6).

Repeating similar steps for the meson three-point func-

tion with the insertion of the operator ½ūWΓu�z with

arbitrary Γ-matrix and Wilson line Wz;zþL̂
¼ ð

Q

LUÞz;zþL̂

along path L, we get

CWΓ

3pt ðy4; p⃗0; z4; q⃗; xÞ

¼
X

y⃗;z⃗

e−ip⃗
0ðy⃗−x⃗Þþiq⃗ z⃗h½πþ;ð2k⃗Þ�y½ūzWz;zþL̂

ΓuzþL̂
�½πþ;ð2k⃗Þ�†xi

¼
X

z⃗

eiq⃗ z⃗Tr½Bd̄ΓMuðy4;p⃗0Þ
x;z Wz;zþL̂

ΓFu

zþL̂;x
�; ðB7Þ

where the forward propagator Fu ¼ QuSðk⃗Þ and the meson

sink-sequential (backward) propagator Bd̄ΓMuðy4;p⃗0Þ is

defined as

B
d̄ΓMuðy4;p⃗0Þ
x;z ¼

X

⃗y

e−ip⃗
0 ð⃗y−⃗xÞð−Γ̄MÞQ̃d;ð−⃗kÞ

x;y ΓMS
ð−⃗kÞ
y;y0 Q

d
y0;z;

ðB8Þ

which is also computed using the γ5-conjugation.

APPENDIX C: EXPLICIT CALCULATION TO

SHOW THAT BARE PION u− d THREE-POINT

FUNCTION IS PURELY REAL OR IMAGINARY

In the previous appendix, we constructed the connected

piece of the three-point function of ūWΓu operator in πþ. If
one repeats the computation using the d̄WΓd operator, one

will find the disconnected piece to be the same as the one in

the full ūWΓu three-point function and hence such quark

line disconnected terms will cancel in the ūWΓu − d̄WΓd
isospin nonsinglet operator that we are interested in.

Below, we further explain why only the real part of the

connected ūWΓu three-point function for Γ ¼ γt; γz and

the imaginary part for Γ ¼ 1 contributes to the total

isospin nonsinglet three-point function. For the sake of

simplicity let us take the case of point-source and point-

sink, and take Γ ¼ γt. The full expression for the u − d
qPDF three-point function is

Cu−d
3pt ðt; τ;LÞ
¼

X

y⃗;z⃗

e−ip⃗:y⃗Tr½ð−γ5ÞQx;yγ5Qy;zWz;zþLγtQzþL;x�

þ
X

y⃗;z⃗

e−ip⃗:y⃗Tr½ð−γ5ÞQx;yγ5Qy;zþLW
†

z;zþL
γtQz;x��;

≡

X

y⃗;z⃗

ðe−ip⃗:y⃗T1 þ e−ip⃗:y⃗T�
2Þ; ðC1Þ

where we do not make distinctions between the u and d
quark propagators due to isospin symmetry. Let us call the

trace in first term on the right-hand side asT1 and the second

trace before being conjugated as T2. One can go from T2 to

T1 by parity transformation x ¼ ðx⃗; x4Þ → xp ¼ ð−x⃗; x4Þ,
followed by a spatial translation x → xþ L by making use

of the transformation of the Dirac propagator to be Qx;y →

γtQxp;yp
γt andWx;xþL → W†

xp−L;xp
under parity. In this case,

the γt from parity transformation for Q commutes with

Γ ¼ γt. In other cases, one should take care of the� factor.

Thus, C3pt becomes

Cu−d
3pt ðt; τ;LÞ ¼

X

y⃗;z⃗

ðT1e
−ip⃗:y⃗ þ T�

1e
ip⃗:y⃗Þ; ðC2Þ

and therefore proportional to the connected piece of ūΓWu,
which is the first term in the above equation. We normalize

the three-point function such that the u − d isospin charge
of the pion is 1. By going through the similar calculation,

one can show that the three-point function is real also for

Γ ¼ γz while it is purely imaginary for Γ ¼ 1 u − d
pion qPDF.

APPENDIX D: RELATION BETWEEN

Pz AND-Pz MATRIX ELEMENTS

In this appendix, we derive the relation between con-

jugates of the matrix elements hEn0 ; PzjOΓðz; τÞjEn; Pzi
that enter the excited state contributions to the qPDF three-

point function. For this, let us consider the conjugate of the

simplest component of the qPDF matrix element:

X

z

hEn0 ; PzjūzΓWz;zþLuzþLjEn; Pzi�

¼
X

z

hEn; PzjūzþLΓW
†

z;zþL
uzjEn0 ; Pzi; ðD1Þ

for Γ ¼ γt; γz; 1. Using the parity operator Π, the right-hand
side of the above equation becomes

X

z

hEn;PzjūzþLΓW
†

z;zþL
uzjEn0 ;Pzi

¼
X

z

hEn;−PzjðΠūzþLΠÞðΠW†

z;zþL
ΠÞðΠuzΠÞjEn0 ;−Pzi

¼
X

z

hEn;−Pzjūz−LγtΓWz−L;zγtuzjEn0 ;−Pzi

¼
X

z

hEn;−PzjūzγtΓγtWz;zþLuzþLjEn0 ;−Pzi: ðD2Þ

Defining, γtΓγt ¼ ΦΓΓwithΦΓ ¼ �1, we have the relation

X

z

hEn0 ; PzjūzΓWz;zþLuzþLjEn; Pzi�

¼ ΦΓ

X

z

hEn;−PzjūzΓWz;zþLuzþLjEn0 ;−Pzi; ðD3Þ
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with ΦΓ ¼ 1 for Γ ¼ γt; 1 and ΦΓ ¼ −1 for Γ ¼ γz with all

Γ being in the Minkowskian convention. Thus, we can

average over Pz and −Pz data after taking care of

appropriate factor of ΦΓ.

APPENDIX E: PION TWO-POINT FUNCTIONS

AND ENERGY LEVELS

In this appendix we discuss some details of the calcu-

lations of the pion two-point function. We tested several

different sources for the pion. In these tests we used 50

gauge configurations. We used Gaussian sources with

several steps of Wuppertal smearings as well as in the

Coulomb gauge (see main text). In Fig. 19 we show the

effective mass for 40 and 90 steps of Wuppertal smearings

as well as the Coulomb gauge Gaussian sources of size

0.3 fm. We see that 90 steps of Wuppertal smearings and

Coulomb gauge Gaussian sources give similar effective

masses, while the excited state contamination is larger

for 40 steps of Wuppertal smearings. We also studied the

two-point functions for different boosted Gaussian sources,

with momentum boost kz. The corresponding effective

masses are shown in Fig. 20 for Pz ¼ 0.86, 1.29, and

1.72 GeV for different values of ζ ¼ kz=Pz. We clearly see

that the nonzero value of ζ improves the signal for all Pz.

We also see that ζ ¼ 0.5 is too small, while ζ ¼ 1.0 is too

large for Pz ¼ 1.29, but works well for Pz ¼ 0.86 GeV.

APPENDIX F: IMPLEMENTATION

OF MATCHING CONVOLUTION

Here, we describe the implementation of the plus

function in the matching formula such as to ensure current

conservation. The matching kernel is of the form

C

�

x

y
; yPz

�

¼ δ

�

x

y
− 1

�

þ αsCF

2π
C
ð1Þ
þ

�

x

y
; yPz

�

; ðF1Þ

where the dependence on PR and μ are implicit. The first

perturbative correction is a plus function that ensures

the vector current conservation. The property we know

of the plus function is that
R

∞
−∞

dxC
ð1Þ
þ ðx

y
; yPzÞ ¼ 0, since

the second dependence of the function is independent of x.
In order to implement the plus function correctly, we can

use the following procedure:

C
ð1Þ
þ ðξ; yPzÞ ¼ Cð1Þðξ; yPzÞ − NðyPzÞδðξ − 1Þ: ðF2Þ

The x-independent but momentum dependent coefficient

NðyPzÞ is

NðyPzÞ≡
Z

reg

Cð1Þðξ; yPzÞdξ; ðF3Þ

where
R

reg dξ involves an integration over the intervals

½−Λ;−ϵ� ∪ ½ϵ; 1 − ϵ� ∪ ½1þ ϵ;Λ� for some upper cutoff Λ

and a small exclusion parameter ϵ. The above definition

gives the usual result that

Z

∞

−∞

dξC
ð1Þ
þ ðξ; yPzÞfðξÞ ¼

Z

∞

−∞

Cð1Þðξ; yPzÞðfðξÞ − fð1ÞÞ;

ðF4Þ

with y held fixed as Λ → ∞ and ϵ → 0. The following is

then true for any function f:
Z Z

dxdyC
ð1Þ
þ ðx=y; yPzÞfðyÞ

¼
Z

dy

�
Z

dxC
ð1Þ
þ ðx=y; yPzÞ

�

fðyÞ

¼ 0; ðF5Þ

leading to the vector current conservation or equivalently to

the total area preservation between the qPDF and PDF.

With this prescription, the matching formula becomes

FIG. 19. Effective masses for Pz ¼ 0 using Gaussian sources

with 40 steps of Wuppertal smearings, 90 steps of Wuppertal

smearings, and Coulomb gauge.

FIG. 20. Effective masses for different values of ζ with 50

configurations; green, blue, and black points correspond to

momentum 0.86, 1.29, and 1.72 GeV, respectively.
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Z

∞

−∞

dy

jyjC
ð1Þ
þ ðx=y; yPzÞqðyÞ

¼
Z

reg

dy

jyjC
ð1Þðx=y; yPzÞqðyÞ − NðxPzÞqðxÞ: ðF6Þ

It is convenient to write the above formula in an

explicitly vector current conservation preserving form as

Z

∞

−∞

dy

jyjC
ð1Þ
þ ðx=y;yPzÞqðyÞ

¼
Z

reg

dy

jyjC
ð1Þ
�

x

y
;yPz

�

qðyÞ−
Z

reg

dy0

jxjC
ð1Þ
�

y0

x
;xPz

�

qðxÞ:

ðF7Þ

However, care has to be taken in the numerical regulari-

zation of the above equation to be consistent with the one in

Eq. (F3). That is, in the above equation,
R

reg dy in the first

integral in the right-hand side involves the range y ∈

½−x=ϵ;−x=Λ� ∪ ½x=Λ; x=ð1þ ϵÞ� ∪ ½x=ð1 − ϵÞ; x=ϵ� when

x > 0, and the range reversed when x < 0. A consistent

prescription for
R

reg dy
0 in the second integral in the

right-hand side involves y0 ∈ ½−Λx;−ϵx� ∪ ½ϵx; xð1 − ϵ� ∪
½xð1þ ϵÞ; xΛ�.

APPENDIX G: RESULTS ON TWO-STATE

EXTRAPOLATIONS TO OBTAIN THE MATRIX

ELEMENTS AT ALL Pz

In Fig. 4 in the main text, we showed some sample

results for the t − τ=2 behavior and the t → ∞

FIG. 21. The ratio of the three-point function to the two-point function, Rðt; τ; z; Pz; γzÞ for Γ ¼ γz is shown as function of τ − t=2 for
z=a ¼ 0, 4, and 8 (from left to right), and Pz ¼ 0, 0.483, 0.86, and 1.72 GeV (top to bottom). The corresponding plots for Pz ¼
1.29 GeV are shown in Fig. 4 in the main text. The central values of the two-state fits to the lattice results for different source-sink

separations are shown as the curves. The horizontal band corresponds to the extrapolated result for infinite source-sink separation.
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FIG. 22. The ratio of the three-point function to the two-point function, Rðt; τ; z; Pz; γtÞ for Γ ¼ γt is shown as function of τ − t=2 for
z=a ¼ 0, 4, and 8 (from left to right), and Pz ¼ 0, 0.483, 0.86, and 1.72 GeV (top to bottom). The corresponding plots for Pz ¼
1.29 GeV are shown in Fig. 4 in the main text. The central values of the two-state fits to the lattice results for different source-sink

separations are shown as the curves. The horizontal band corresponds to the extrapolated result for infinite source-sink separation. The

case of Pz ¼ 0, in the top-most panels, is special due to the presence of the effect of lattice periodicity, and, hence, the various symbols

and curves for the top-most panels are explained in detail in the text of Appendix G.
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extrapolations of the three-point function to two-point

function ratio Rðt; τ; z; Pz;ΓÞ for Γ ¼ γt and γz at a specific

intermediate value of Pz ¼ 1.29 GeV. In Fig. 21 and

Fig. 22 of this appendix, we show similar results at all

Pz for Γ ¼ γz and γt, respectively, using Fit(2,2).

For the case of Pz ¼ 0, special care needs to be taken.

For a finite temporal extent Lt of the lattice, ignoring the

effect of periodicity due to the presence of the terms

e−EπðLt−tÞ in the denominator of Eq. (9) is justified when

e−Eπ t ≪ e−EπðLt−tÞ. But one should include the effect of

boundary condition if the two terms become comparable.

For the largest source-sink separation t=a ¼ 12 we use, the

contribution from the wrapping-around term, e−EπðLt−tÞ,
relative to e−Eπ t for Pz ¼ 0 is 2.7%, whereas for higher Pz it

is negligible; e.g., for the smallest nonzero momentum

Pz ¼ 0.43 GeV, this effect is 0.2%. Hence, we included

the term e−EπðLt−tÞ in the denominator of Eq. (9) for the

extrapolation of Rðt; τ; z;PzÞ for Pz ¼ 0, and we also

checked that the effect of the periodicity of lattice was

indeed negligible for any of the nonzero Pz we used.

For the case of Pz ¼ 0 displayed in the top-most panels

of Fig. 22, we have shown the data in two ways to make the

fits and the extrapolated value easier to understand. The

unfilled symbols are the data for Rðt; τ; z; Pz; γtÞ defined as
the ratio of C3ptðt; τ; z; PzÞ to C2ptðt;PzÞ, and the solid

curves are the fits including the e−EπðLt−tÞ term in the

denominator of Eq. (9). While the fits describe the data well,

the trend in the data with increasing t can be seen to be away
from the extrapolated value. To make the reason clearer,

we have shown the modified ratio of C3ptðt; τ; z; PzÞ to

the two-point function without the wrap-around term,

C2ptðt;PzÞ − A0e
−EπðLt−tÞ, as the filled symbols. The dashed

curves are now the fits using just Eq. (9). The values of the

amplitude A0 and the energy Eπ were obtained by the two-

state fit as described in the main text. Now, the trend with

increasing t is clearer.
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