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Between the land and ocean, diverse coastal ecosystems transform, store, and transport

material. Across these interfaces, the dynamic exchange of energy and matter is driven by

hydrological and hydrodynamic processes such as river and groundwater discharge, tides,

waves, and storms. These dynamics regulate ecosystem functions and Earth’s climate, yet

global models lack representation of coastal processes and related feedbacks, impeding their

predictions of coastal and global responses to change. Here, we assess existing coastal

monitoring networks and regional models, existing challenges in these efforts, and recom-

mend a path towards development of global models that more robustly reflect the coastal

interface.

The coastal interface, where the land and ocean realms meet (e.g., estuaries, tidal wetlands,
tidal rivers, continental shelves, and shorelines), is home to some of the most biologically
and geochemically active and diverse systems on Earth1. Although this interface only

represents a small fraction of the Earth’s surface, it supports a large suite of ecosystem services,
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including sediment and carbon storage, contaminant removal,
storm and flooding buffering, and fisheries production2, with a
global economic value of more than 25 trillion USD annually3.
Roughly 40% of the world’s population resides within 100 km of
the coast4; much of the world’s energy, national defense, and
industrial infrastructure is located along coasts; and shipping of
goods and resources, which depends on coastal ports, is respon-
sible for ~90% of international trade5. By 2100, up to 630 million
people will live on land below annual flood levels under high CO2

emission scenarios, 2.5 times more than in the present day due to
sea-level rise (which expands floodplains), immigration, and
urban growth6. These close connections between the coastal
interface and human societies represent a grand challenge for
sustainably managing the resources that coastal ecosystems pro-
vide as urban development and human populations along the
coasts continue to rise.

In addition to its importance for human livelihood, the coastal
interface is an active component in the global cycling of carbon
and nutrients. However, its global role remains poorly quantified
in part due to the diversity of geomorphic settings, ecosystem
types, their interconnectivity, and their dynamic behavior across a
range of spatiotemporal scales7–10. Processes occurring in the
water column and within sediments of tidal rivers, tidal wetlands,
estuaries, and continental shelves significantly alter the quantity
and quality of material that is both land- and marine-derived, and
support the transfer of internally-produced materials across the
coastal interface11. Further, a wide variety of coastal ecosystem
types are demonstrated biogeochemical hotspots, in which pro-
cess rates are not equivalent to the sum of terrestrial and aquatic
contributions12,13. These highly dynamic biogeochemical pro-
cesses are driven by two-way interactions between aquatic and
terrestrial environments along the coast that remain poorly
constrained empirically, resulting in limited representation in
predictive models.

Global Earth system models (ESMs) used to predict how
ecosystems interact to affect Earth’s climate currently route
riverine exports from land directly to the ocean with no pro-
cessing within the coastal interface (Fig. 1). Inputs from land into
the ocean are represented as fluxes that do not interact in the
boundary/interface space. The lack of any form of processing
that might alter either the quality or quantity of material
transport between adjacent systems14 may severely limit our
ability to correctly depict the amount and form of water, energy,
and matter entering the oceanic and atmospheric systems, as well
as the effects of a wide range of disturbances and stressors with
compounding effects such as sea-level rise, storm surge, and
eutrophication on coastal ecosystems and infrastructure15,16.
Local-to-regional scale models do exist for sub-elements of the
coastal interface such as marsh and estuarine hydrodynamics,
sediment budgets17,18 and, more recently, photochemical and
microbial processing of organic carbon19. Thus, there is potential
for coupling specific components of these process-rich fine-scale
models with global scale ESMs to more accurately depict the
coastal interface.

We review what is known about the ecological and biogeo-
chemical functions of coastal ecosystems in the context of the
attributes and processes that should be represented in ESMs. We
then provide recommended approaches for advancing the
representation of the coastal interface in ESMs in order to
improve climate predictions and impacts on the world’s eco-
nomically valuable and densely populated coastal zone. We
advocate for an improved mechanistic understanding of coastal
interfaces from ecological and functional perspectives, the impact
of coastal interfaces on global biogeochemical cycling and climate,
and the effect of disturbances on coastal interfaces across a range
of spatiotemporal scales.

Overview of coastal interfaces
Ecosystem-scale interactions. This section describes the funda-
mental ecosystem-scale attributes and interactions that define the
coastal interface and should be represented in coupled
land–ocean models. Coastal interfaces are transition zones
between land and ocean where the magnitude, timing, and spatial
pattern of freshwater–seawater mixing determine the nature of
biogeochemical gradients (Fig. 2). The primary defining feature of
a coastal interface is a sea-to-land gradient in tidal influence on
surface water elevation20. Hydraulic head gradients may drive the
majority of groundwater fluxes and exchange21, but groundwater
also responds to tidal variation, with tidal fluctuations driving a
two-way exchange of water and geochemical constituents such as
CO2 and salt between the land, groundwater, and surface
waters22. As such, we broadly define the coastal interface as any
region where land, freshwater, and tides interact, or in other
words all land surfaces (e.g., wetlands, marshes, floodplains) and
water bodies (e.g., tidal rivers, estuaries, lagoons, deltas, and
continental shelves) lying between purely inland and marine
settings. These settings are complex and diverse by definition
(Fig. 2) and encompass watersheds that lie below the head of
tides.

Interactions between fresh groundwater discharge, river dis-
charge, estuarine circulation, and tidal elevation determine the
position and length of another defining feature of the majority of
coastal interfaces — salinity gradients23. In the case of the tidally-
influenced reaches of rivers with high discharge such as the
Amazon River, the landward salinity intrusion is limited and water
can remain fresh some distance offshore onto the continental
shelf10. In contrast, smaller rivers experience significant salinity
intrusion into river channels, groundwater, and soils24. The extent
of the salinity gradient directly influences terrestrial vegetation

Coastal interface ESM

Upland

River

Wetland

Estuary

Coastal ocean

Open ocean

Current ESM

Land

River

Ocean

Fig. 1 Earth system model representation of the coastal interface. Current
Earth system models (ESMs) represent the land and ocean as disconnected
systems, with freshwater discharge being the only meaningful connection.
Next-generation models should represent land–sea connections by
incorporating coastal features such as the tidal rivers, wetlands, estuaries,
the continental shelf, and tidal exchange across the coastal
terrestrial–aquatic interface. This likely necessitates coupling different
models to produce details at the sub-grid scale.

REVIEW ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16236-2

2 NATURE COMMUNICATIONS | (2020)11:2458 | https://doi.org/10.1038/s41467-020-16236-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


distribution along the land-to-sea hydrologic gradient, as well as
soil and sediment biogeochemistry and geomorphology in a bi-
directional manner. For example, tidal exchange can both deposit
marine-derived material onto terrestrial landscapes25 and export
terrigenous material to the sea26,27. Tidal influences on coastal
ecosystems go beyond effects on salinity distributions to include
effects on water velocity, flow direction, and flood frequency with
consequences for carbon and nutrient exchanges in tidally affected
freshwater wetlands27,28.

The critical functions of shoreline stabilization and nutrient,
carbon, and water cycling rely on vegetation within the coastal
interface15. The distribution and productivity of coastal interface
vegetation (e.g., algae, succulents, grasses, sedges, rushes, forbs,
woody shrubs, and trees) is driven by gradients in flooding, salt

and sulfide exposure, nutrient availability, topography, herbivore
activity, and soil characteristics such as O2 availability and redox
potential29. Plant species diversity generally decreases with
increasing salinity and flooding intensity, shifting from ecosys-
tems that have many similarities with upland settings where tidal
influence is minimal, to low-diversity communities dominated by
halotolerant species such as cordgrass, mangroves, or succulents,
and finally ending with perennially submerged aquatic plants
such as seagrass30.

Submerged vascular plants and emergent marshes are at the
front line of the coastal interface because changes in their extent
can have broad impacts across the whole coastal domain, and
perhaps beyond31. Functional redundancy in the form of different
species that contribute similarly to an ecosystem function is
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intrusion of salinity decreases. Rivers (and groundwater tables) on an active continental margin (e.g., US West Coast) are generally steeper in elevation,
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freshwater and tidal velocity scales due to their great depth whereas salt wedges have high contributions from rivers and a wide range of tidal contributions
(adapted from Geyer and MacCready23). d Classifications of shallow water depositional environments along the coast can be categorized based on the
ratio of wave power to tidal power and whether they are regressive (i.e., net land gain; top half of the diagram) or transgressive (i.e., net land loss; bottom
half of the diagram) environments. The top half of the diagram shows regressive environments such as deltas and strand plains. The bottom of the diagram
shows transgressive environments such as estuaries and barrier lagoons. Open coast tidal flats and shelf environments can be linked to either type of coast
with shelf width decreasing during regression (adapted from Steel and Milliken107).
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typically thought to be relatively low in such diversity-poor
systems where few species can tolerate the harsh and fluctuating
conditions, similar to terrestrial diversity-poor grasslands32.
However, not all functional diversity occurs across species; the
monospecific stands that dominate vast coastal wetlands often
exhibit great genotypic diversity, which may yield high functional
diversity despite low species richness33. As wetlands adapt to
climate trends, the potential changes in relative representation of
plant functional types — how models simplify plant diversity into
manageable categories — must be incorporated into predictions
of future coastal ecosystem function and adaptation. Under-
standing and characterizing such responses are critical to accurate
representation of plant functionality in coastal interface models.

Biogeochemical interactions and cycles. This section describes
the fundamental biogeochemical functions of coastal ecosystems
that are likely the most critical to represent in regional and global
scale models. Interactions among hydrology, vegetation, geo-
morphology, soils, and sediments influence the quantity and
composition of carbon, nutrients, and redox-active compounds
(e.g., O2, SO4

2−) within and exchanged by coastal interface eco-
systems. Furthermore, many of these processes may be interactive
across spatial scales34. For this reason, one of the largest chal-
lenges in constraining the role of coastal interfaces in global
biogeochemical cycles is scaling our quantitative understanding of
biotic and abiotic controls on molecular transformations and
fluxes gained at the pore (e.g., nm3 to µm3), core (cm3), or plot
(m2 or m3) scale to estuarine sub-basins (km2), entire estuaries
(10–1000 km2), and ultimately to the scale and process resolution
of ESMs (100-10,000 km2).

The role of coastal ecosystems in the carbon cycle is important
both for constraining global carbon budgets and also representing
these significant fluxes in ESMs. Inland waterways concentrate
material inputs from an entire watershed, which then pass
through the coastal interface. In the case of organic carbon (OC),
the small amount of OC that is mobilized from upland soils to
rivers on an area basis (~1–5 g OCm−2 yr−1 globally) translates
to 2 orders of magnitude greater loading (~300 g OCm−2 yr−1)
into coastal interface ecosystems, which are a relatively small focal
area (i.e., bottleneck) for inputs coming from the entire
watershed7. It is currently estimated (via mass balance) that
~5.7 Pg of inorganic and organic C yr−1 is mobilized from upland
terrestrial systems through inland waters and wetlands, of which
74% is returned to the atmosphere as CO2 prior to delivery to the
coastal ocean; this total flux is of similar magnitude as
anthropogenic CO2 emissions from fossil fuel burning (7.9 ±
0.5 Pg C yr−1), uptake by the ocean (2.4 ± 0.6 Pg C yr−1) and
terrestrial biosphere (2.7 ± 1.2 Pg C yr−1)10. CO2 emissions from
tidal rivers have not yet been adequately included in global
carbon budgets, but may make a substantial contribution
considering the increasing surface area associated with the lower
reaches of rivers35.

Despite their relatively small global surface area (0.07–0.22%),
vegetated coastal systems (seagrass, mangroves, and intertidal
marshes) sequester 65–215 Tg C yr−1, globally, which is equiva-
lent to ~10% of the net residual land sink and 50% of carbon
burial in marine sediments36. These ecosystems are being lost at a
rate of 1–7% yr−1 due to human activities such as dredging,
filling, eutrophication, and timber harvest37. Such habitat losses
may also stimulate OC export and decomposition to CO2 in
coastal interface ecosystems38. Continental shelves play a
similarly active role in global carbon cycling due largely to an
abundance of nutrients from upwelling. Although continental
shelves represent 7–10% of global ocean area, they contribute to
10–30% of global marine primary productivity; 30–50% and 80%

of global inorganic and organic carbon burial in marine
sediments, respectively; and up to 50% of the deep ocean OC
pool7.

The extent of OC transformation or loss as it passes through
the coastal interface depends on its transport time, path, and
exposure to the variety of surfaces (e.g., suspended particles, soil
pores, and sediments) within the interface10. While allochthonous
inputs can influence coastal ecosystem function, local sources of
production also export or filter allochthonous transport. For
example, processes such as low-tide rainfall can result in elevated
mobilization of particulate OC (POC) from intertidal landscapes
that can represent a significant fraction of annual POC export in
many of these environments39. In addition, direct leaching from
marsh plants and litter, exudation from roots, and biological
production by algae are major local sources of chemically and
optically distinctive dissolved organic matter to estuaries and
coastal oceans9,27.

Gradients in microbial community composition from rivers to
continental shelves are generally controlled by salinity and redox
(spatially) and river discharge (temporally) with distinct assem-
blages present in tropical, temperate, and high-latitude
settings40,41. The hydrologic and geochemical gradients that
characterize soils of coastal landscapes, particularly salinity and
dynamic redox conditions, exert a strong influence over soil
microbial community composition and metabolic functioning25.
It remains a challenge to differentiate the effects of inundation
and water chemistry on microbially driven biogeochemical
functions in soils. At the pore-scale microbial activity, hydrologic
connectivity, and drought legacy interact to regulate ecosystem
functions42. At the core and plot scale, salinity dominates the
controls on soil organic carbon (SOC), and salinity is negatively
correlated with SOC content43. Along natural gradients, increas-
ing salinity is correlated with an increase in denitrification44 and a
decrease in methane emissions45, while increases in salinity tend
to decrease both methanotrophy and methanogenesis in pre-
viously freshwater environments46. Variability in the duration of
salinity exposure can influence the production of greenhouse
gases. For example, long-term soil exposure to seawater decreases
microbial CO2 production47 while short pulses of seawater
exposure increase CO2 emissions48. However, rapid changes in
salinity gradients could result in unexpected patterns of green-
house gas emissions at sub-daily scales46. Other coupled
microbial cycles may be less sensitive to salinity. For example, a
diverse community of sulfate-reducing bacteria associated with
tidal freshwater systems has been shown to be relatively resistant
to seawater intrusion49. However, the full range of time frames
(from seconds to years) over which these sensitivities could
emerge have not been examined.

Challenges for constraining coastal dynamics
Hot spots and hot moments. Because of their position at the
interface of land and water, and thus constant exposure to ter-
restrial and aquatic fluxes, coastal ecosystems represent hot spots
for processing and transformation of energy and matter (Fig. 3).
Hot spots are defined as areas that show disproportionately high
metabolic rates or carbon stocks relative to the surrounding
areas13, and to their spatial representation. We suggest that hot
spots can range from fine scales (e.g., cm3, m2) to the scale of
entire estuaries (10–1000 km2) and influence local to global scale
material budgets depending on the process.

It is both feasible and desirable to represent hot spot dynamics
in ESMs that play a significant role on global scale biogeochem-
ical cycles and are empirically understood. For example,
mangroves cover 0.1% of the Earth’s surface50 but are among
the most productive carbon-sequestering ecosystems on Earth
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(1023Mg C ha−1) and thus are hot spots for carbon storage and
uptake from regional51 to global scales52. More broadly, estuaries
could be considered hot spots for productivity, carbon storage53,
and/or decomposition54 depending on hydrologic factors such as
water residence time, estuarine exchange flow patterns, and
position of the estuarine turbidity maximum zone11. For example,
~18 Tg C yr−1 is buried in fjord sediments, globally, which is
equivalent to 11% of marine carbon burial rates; much of this OC
is terrestrially-derived owing to the steep topography and a short
residence time between terrestrial soils and estuarine sediments in
these environments53. This is a feature of landscapes on active
margins, whereas lower relief landscapes on passive margins have
longer residence times and a greater extent of OC transformation
prior to burial55 (Fig. 2). These examples of depocenters (areas of
maximum deposition) for rapid carbon burial are not only
relevant to modern-day carbon cycling, but also act as significant
carbon sinks over geologic timescales. For example, sustained
burial of woody debris in Bengal Fan sediments has occurred over
the last 19 million years; this debris is largely of lowland origin56,
suggesting that alterations to the land use and hydrology of
coastal interface ecosystems could influence geologically-relevant
processes over modern timescales.

Coastal ecosystems are sensitive to rapid and disproportionate
hydrological and biogeochemical fluctuations with terrestrial,
atmospheric, and oceanic origins including extreme precipitation
events57, snow/ice melt10, accumulation and enhanced dry
deposition of atmospheric pollutants58, extreme high tides, and
storm surges46,59. Thus, hot moments — short time periods with
disproportionately high metabolic rates—may play a prominent,
but typically ignored role in coastal ecosystem biogeochemical
cycling. These hot moments may be controlled by processes
occurring around the roots of plants (i.e., the rhizosphere) driven
by interactions between plants and microorganisms, plant-driven
water flow and solute transport, plant uptake of nutrients, soil
chemical reactions such as rapid changes in redox potential60 or
sorption and cation exchange61, or mixing of terrestrial and
aquatic-derived substrates38. Hot moments play a larger role in
certain biogeochemical cycles than others. For example, although

soil methane emissions generally decrease, and even become
negative (i.e., uptake from the atmosphere) along coastal salinity
gradients, rapid events such as ebullition induced by storm surge
can result in momentarily high CH4 fluxes59. Similarly, periods of
intense rainfall during low-tide conditions can result in elevated
rates of erosion and transport of sediment and organic matter
from intertidal platforms (e.g., vegetated marshes and unvege-
tated mudflats) to adjacent creeks and surrounding coastal
ocean62.

A key challenge of measuring and modeling coastal interfaces
is determining the spatiotemporal scale(s) needed to represent
processes and systems such that the outcomes of interest are not
biased by misrepresentation of available measurements in time
and space, relative to the hot spots and hot moments that
characterize the system. For example, inter-comparisons of
methane models show large inconsistencies that are primarily
due to uncertainties in temperature sensitivity, substrate limita-
tion of CH4 production, and wetland area dynamics63. While the
last issue can be addressed by using consistent surface water
inundation remote sensing products64, the first two issues
represent knowledge and modeling gaps that exist, in part,
because of the highly dynamic nature of methane production and
emission. High temporal resolution measurements of different
processes are thus needed to couple ecosystem responses (e.g.,
greenhouse emissions) with the underlying controls to properly
represent hot moments in regional models and ESMs. While new
technologies are emerging that allow highly resolved organic
carbon or gas flux measurements46,59, there is a lack of consensus
on how to appropriately scale lateral land-water carbon fluxes,
or carbon emissions from either the bottom-up or top-down
origin8,65.

The concept of hot spots and hot moments has been criticized
for lacking a quantitative definition. For example, it has been
suggested that unusually high spatiotemporal variability with
ecosystem-scale importance should be defined as ecosystem
control points with four distinct categories: permanent control
points that experience sustained high rates of biogeochemical
activity relative to surrounding areas such as riparian and

(A) Seaward &
landward gradients

(D) Hot spots &
hot moments

(B) Reaction rates (C) Residence time

Fig. 3 Biogeochemical characteristics of coastal interfaces. a Two-way exchange of water and materials between terrestrial and marine environments
drive gradients in geochemical constituents (e.g., ions, carbon, nutrients), plant distribution, and ecosystem functions (e.g., carbon storage, greenhouse gas
emissions, sediment accumulation). b Biogeochemical reaction rates generally occur at more rapid timescales (e.g., hours to days) in aquatic systems such
as rivers compared to soils and sediments (years to millennia). c Likewise, the residence time of biogeochemical components is short in aquatic
environments such as estuaries and the surface ocean compared to the deep ocean and its sediments. d Coastal interface biogeochemistry is complicated
by an abundance of hot spots and moments for diverse reactions across scales that can significantly alter expected reaction rates and residence times.
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hyporheic zones, activated control points that only support high
rates when a limiting resource such as nutrients or oxygen is
delivered, export control points that accumulate reactants until
some threshold is reached that allows export such as OC
accumulation in soils that is mobilized only during storms, and
transport control points that have a high capacity for transporting
solutes/reactants such as macropore flow paths in soils or
stormwater drainage pipes66. Capturing the spatial and temporal
variability of ecological processes across coastal interfaces in this
context remains unclear; and consequently represents a challenge
to be included in ESMs.

Disturbances and stress at the coastal interface. Coastal eco-
systems are broadly sensitive to disturbances and stress from
surrounding watersheds and the ocean that result in anomalous
(i.e., non-steady state) responses. Disturbance typically refers to
events that temporarily alter ecosystem attributes (e.g., plant
productivity, GHG fluxes, etc.) but occur infrequently enough to
allow for recovery time during which attributes re-establish a
normal dynamic equilibrium; in contrast, higher frequency or
continuous stress events permanently shift the trajectory of an
ecosystem attribute67. Long-term stress to an ecosystem is also
referred to as a press as opposed to a pulse disturbance event,
and these can interact producing compounding effects68. The
dominant chronic stressors on coastal ecosystems are sea-level
rise15,16, temperature increases69, ocean acidification70 (Fig. 4),
land use conversion (e.g., urbanization), and long-term altera-
tions to water flow (e.g., river impoundment and water extrac-
tion) and coastal-estuarine circulation71 (Fig. 4). The dominant

episodic disturbances are flooding (either from storm surges or
upland sources); drought; and temporary vegetation removal via
sedimentation, erosion, wildfire, harvest, and other human
manipulations.

Changes in the global distribution of ecosystems along the
coastal interface must be considered in light of centuries of direct
human alterations. Climate change will likely increase the
frequency of extreme weather events (droughts to tropical
cyclones), dramatically altering the delivery of water, nutrients,
and carbon to coastal zones. Chemical constituents associated
with extreme weather result in extended periods of degraded
water quality as well as switching modes of coastal ecosystems
between autotrophy to heterotrophy72. The timing and longevity
of these perturbations add to the uncertainty of the role of these
systems as greenhouse gas sources or sinks and as exporters of
carbon to the oceans7. Further, the ecological structure of coastal
ecosystems is already experiencing the effects of sea-level rise with
coastal forest boundaries retreating inland15 and salinization of
tidal freshwater systems shifting their function and related rates
of carbon burial and greenhouse gas (i.e., CO2 and CH4)
emissions48. Tidal marshes have been reclaimed for agricultural
purposes throughout Western Europe and North America, and
large-scale reclamation and land conversion continues in regions
including coastal China, impacting hydrologic connectivity and
ecosystem-scale fluxes with the construction of various engi-
neered seawalls73. Eutrophication of estuarine waters occurs as a
result of both natural episodic nutrient inputs and long-term
changes in land use practices (e.g., agriculture, septic systems,
nitrogen-fixing vegetation, etc.), and in some cases results in
hypoxic conditions that can harm fish and wildlife; hypoxia
occurs due to both natural and anthropogenic causes74.
Deforestation can alter the function and resilience of coastal
ecosystems, ultimately causing an irreversible loss of coastal
wetlands. Mangrove forests in tropical regions are losing between
0.16 and 0.39% of land area annually to development,
aquaculture, and agriculture75. Such coastal land alteration has
already released large quantities of soil organic carbon to the
atmosphere as CO2, and an estimated 0.15–1.02 Pg C yr−1

continues to be emitted globally76.
Shifts in the interaction between freshwater hydrology and

tidal influences due to sea-level rise, delta subsidence, or
anthropogenic changes (e.g., impoundments) will impact coastal
interface geomorphology, such as delta evolution, riverine and
coastal sedimentation, and wetland ecological/physical struc-
ture20. Changes in sediment supply may be considered a stress
that alters the evolution of wetland structure and function,
although episodic events such as landslides and volcanoes are
disturbances under the return-interval-based terminology
adopted here67. Though meta-analyses have shown that salt
marshes can keep pace vertically with sea-level rise77, the lateral
position of marshes is not as stable as they narrow or expand
depending on the net sediment budget78 and external stressors
and disturbances such as waves, storm surge, and sea-level rise.
The contraction of marsh area likely produces an increased
export of organic and inorganic material across the coastal
interface26,79 although some portion of the material is re-
deposited on the marsh plain during the landward transgression
process80.

Although wave-induced erosion may be considered an episodic
disturbance, moderate storms and diurnal winds are mainly
responsible for the majority of salt marsh edge erosion81. Internal
deterioration of salt marshes, through salinity intrusion, herbiv-
ory, eutrophication, or other chronic factors has also been linked
with sediment export82. Both lateral erosion and internal
deterioration can be considered as net neutral processes from a
budgetary perspective if landward migration corridors are

Extreme events

Impact threshold

New ecosystem state

a Individual coastal disturbances and stressors

b Ecosystem vulnerability to compounding disturbances/stressors

Eutrophication

Hypoxia

Temperature

Acidification

Sea level rise

Fig. 4 Coastal ecosystem disturbances, stressors, and vulnerability.
a Increasing air and water temperatures, water acidification, rates of sea
level rise, eutrophication, hypoxia, and frequency/magnitude of extreme
storm surge events are among the primary threats to the ecology and
hydro-biogeochemistry of coastal interfaces. b Although the resilience of
coastal ecosystems is relatively unknown, it is likely that compounding
disturbances and chronic stress will eventually exceed their impact
threshold, resulting in widespread collapse of ecological function.
Additional drivers of change not shown include land use change, river
impoundment, natural resource extraction, invasive species, droughts,
floods, and fires (concept inspired by McDowell et al.89).
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available26,83. However, given the rapid nature of salt marsh loss
and extensive coastal development, it is likely that salt marsh loss
is a net contributor of material across the coastal interface.

Another visibly prominent shift in coastal ecology is the
poleward migration of mangroves due to declining freeze
frequencies and landward migration due to seawater intrusion84.
Conversion from herbaceous-dominated to woody plant-
dominated wetlands greatly increases aboveground carbon uptake
on the landscape scale52,85 and can accelerate soil elevation gain86

and long-term wood retention in channels and floodplain
microtopography85, influencing long-term persistence of these
ecosystems. Conversely, seawater intrusion into freshwater wet-
lands at the upstream edge of the coastal interface can cause
vegetation death and accelerated soil carbon loss resulting in the
collapse of the ground surface and a conversion of the plant-
dominated wetland to open brackish water87. Such landscape-
level shifts are dependent on a complex interplay between land
use (e.g., extent of coastal development), geomorphic conditions,
and relative sea level rise. For example, direct salt marsh
conversion to open water or tidal flats may have a greater
importance than mangrove expansion into salt marsh habitats in
low relief areas with high relative sea level rise, while tidal
freshwater marshes may either increase or decrease in areal extent
under mean or max sea-level rise scenarios88.

Among the largest uncertainties in projecting the future
distribution, structure and function of coastal interfaces is
quantifying tipping points for the collapse of ecosystem structure
and function89 across the coastal domain that incorporates the
combined effects of a myriad of disturbances and stressors with
compounding impacts (Fig. 4). Extreme events can push
ecosystems already under stress beyond their tipping point,
altering long-term ecosystem structure and also act as a hot
moment for biogeochemical activity in the shorter term72. A
fundamental goal of ESMs is the ability to accurately predict the
influence of ecosystem distributions, structure, and function on
global climate. Achieving this goal necessitates representation of
feedbacks between the complex processes, stressors, and dis-
turbances described above.

Modeling the coastal interface. Current generation ESMs such as
the Energy Exascale Earth System Model90 are coupled climate
models that aim to simulate the Earth’s climate system, which
depends on terrestrial and ocean biogeochemistry, and the inter-
actions between atmosphere, ocean, and land (as well as ice, in
high latitude regions). Coastal interfaces fall in between these
traditional ESM domains, and are not typically represented in
such models1. The dynamic nature and non-linear, unpredictable,
and heterogeneous biogeochemistry of coastal ecosystems present
huge challenges for model representation. Further, the omission of
coastal interfaces emphasizes a critical question: what coastal
processes need to be considered, at what spatial and temporal
scales should they be modeled, and what empirical data are needed
to parameterize and assess model performance? The primary
currencies exchanged across land–ocean–atmosphere–cryosphere
boundaries include water, energy, carbon, nutrients (e.g., nitrogen,
phosphorous, iron, etc.), and oxygen91.

From the watershed side, we argue that the model domain in
most need of improvement is the low elevation shoreline zone, as
modeled hydrological runoff and associated nutrient and carbon
loads must pass reactively through marsh and deltaic regions
before fluxes can be accurately transmitted to the receiving
waterbody; reactive transport through the marsh system is closely
linked to variations in water level92. A study utilizing such
reactive transport models in the southeastern US concluded that
small increases in water level due to sea-level rise may increase

nutrient export in marshes that have elevations near mean high
water, but the opposite effect will occur in marshes with lower
elevations92. Incorporating these processes in the land compo-
nents of ESMs will allow improved but one-way computation of
reactive transport through the marshes to the receiving water
models. This would be a significant improvement over their
current functionality, in which estuarine and coastal processes
including fluxes of nutrients and particulate and dissolved OC2,27,
and gradient-driven baroclinic exchange between the estuaries
and the ocean93 are incorrectly represented, without sufficient
resolution to resolve these processes or the net sinks of carbon
and nutrients in estuaries.

When the challenge is evaluated from the ESM ocean
components, improving coastal interface representation takes
on a larger geographical and biogeochemical meaning. Con-
tinental coastlines in ESMs are typically represented by large grid
cells; a single cell may encompass an entire estuary. As a result,
sediment, carbon, and water delivered to the cells are fully mixed
and diluted by the cell size and cannot accommodate complex
biogeochemical interactions that occur in tidal rivers, estuaries,
and the continental shelf. The central problem, in this as in a
number of other ESM modeling domains, is how to model grid‐
averaged fluxes that may critically depend on subgrid‐scale
heterogeneities94. Some global climate models have approached
this issue by using estuarine box model approaches, while
regionally-refined or Voronoi meshes (shrinking the size and
increasing the number of grid cells in the terrestrial–aquatic
interface and other critical regions) are other options95. These
efforts successfully reconstructed observational data, and should
be further used for hind- and fore-casting under specific scenarios
defined as pressing needs by the scientific community.

Present state-of-the-art regional scale estuarine models (e.g.,
FVCOM-ICM, SCHISM, and ROMS) simulate estuarine hydro-
dynamics and biogeochemical processes in a robust manner96.
This is particularly true for the hydrodynamic components of
these 3D baroclinic tools that use turbulence closure schemes for
parameterizing eddy viscosity and mixing processes. As a result,
the models accurately reproduce tidal circulation, stratification,
and exchange flows in the estuaries extending from the upstream
river inflow boundary to the ocean boundary typically set at the
continental shelf54. When applied in high resolution over the
nearshore intertidal regions, the models employ wetting and
drying techniques to represent flooding97 and are able to represent
tidal processes over tidal distributaries, tidal flats and marsh
regions. In addition, researchers have developed modules for
submerged aquatic vegetation and tidal marshes, and sediment
diagenesis, allowing explicit implementation of known marshes
within the estuaries98. For example, one study utilizing FVCOM
concluded that restored floodplain wetlands contribute large
amounts of organic matter to estuaries, aiding in the restoration of
historic trophic structure across the coastal interface96. An
application of the ROMS model to several Northeastern US
estuaries demonstrated that the length scale ratio between tidal
excursion and salinity intrusion is one characteristic that can be
used to broadly distinguish estuarine hydrodynamic regimes93.
However, the implementation of the biogeochemistry of tidal
marshes and submerged aquatic vegetation in fine-scale 3D coastal
and estuarine models is an area of emerging technology and
requires dedicated research efforts. One aspect missing from these
estuarine models is groundwater–surface water interactions and
intrusion of seawater into aquifers; this predictive capability has
been developed as a distinct class of groundwater models such as
SEAWAT99 and SUTRA100 though field measurements are still
needed to further understanding. Applications of SEAWAT,
which does not simulate unsaturated flow (i.e., the water table only
rises due to flow through the saturated zone), have shown that the
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model performs well when the ocean–aquifer interface is steep but
performs poorly when the slope decreases99.

Representing disturbance and hot spots/moments in the above
model framework adds additional complexity. While current
ESMs are designed to capture and model forcings such as regional
weather and sea-level rise90, resulting disturbances e.g., coastal
flooding, are not represented, although finer-scale models are
capable of accurately predicting storm surge and flooding over
complex landscapes101. Future ESM refinements of disturbance-
representation should thus focus on shifting/compound drivers of
coastal ecosystem function (e.g., surface vegetation response to
flooding) and hydrology (e.g., groundwater inundation versus
riverine or tidal flooding), interactivity of biogeochemical cycling
and elemental stores with all ESM components (e.g., redistribu-
tion of SOC due to coastal erosion), and inclusion of other types
of disturbances (e.g., low-tide rainfall, permafrost thaw). Such
disturbance regimes have been identified as important compo-
nents of local to regional scale response of coastal systems to
change15,81.

Recommendations
Bridging the gap between model scales. We recommend three
potential approaches for improving coastal interface representa-
tion in ESMs with varying levels of process-level detail. The first
approach is a simplified representation that involves finding
generalizable features of coastal ecosystems that can be binned as
different coastal interface functional types (Fig. 5a). These func-
tional types could include distinct tidal river classifications based
on topographic regimes (i.e., passive and active margins) and
stream order (Fig. 2b), estuarine regimes (e.g., salt wedge, fjord,
well-mixed; Fig. 2c), intertidal ecosystems (e.g., tidal flats, deltas,
saltmarshes; Fig. 2d), and shoreline ecosystems (e.g., rocky, sandy,
coastal forest). On the ocean side of the interface, this could
involve analytical solutions based on bulk properties such as
mean estuarine water column depth, flow/depth-averaged salinity
gradients, and mixing characteristics (eddy viscosity) to para-
meterize exchange flows, flushing, and loading. This approach
provides a practical simplification that would allow an improve-
ment over the present coastal interface representation in ESMs.
Instead of only classifying a pixel as some fraction land and some
fraction ocean, a portion of the pixel would also be classified as a
certain type of tidal river, estuary, intertidal, and shoreline eco-
system, which is a significant improvement over the current state
of the art. However, this would not allow dynamic two-way
coupling of land, atmosphere, and ocean models. It is also diffi-
cult to incorporate how the hot spot and hot moment dynamics
described previously would be treated in such a framework,
except perhaps as long-term averages.

On the land side, column-based models that represent changes
in vegetation and marsh biogeochemistry would build off existing
ESM components. The models could be used to assess carbon
stores and losses, and simulate complex biogeochemical cycles in
response to simplified hydrological forcings related to sea-level
rise and salinity changes. These model structures may have
limitations in capturing lateral fluxes between columns,
groundwater–surface water interactions, and geomorphic change.
As a result, again, realistic representation of hot spots/moments
would be limited or nonexistent.

The second approach is a detailed, brute force 3D representa-
tion of coastal systems around the world (Fig. 5b). All major
coastal seas, estuaries, and deltas worldwide would be explicitly
simulated through nesting or similar two-way coupling proce-
dures. The estuarine models with tidal marshes would provide a
complete representation of coastal interface processes that allows
feedback between each component and provide the most robust

representation of hot spots/moments and disturbance effects.
This approach requires the development of estuarine circulation
and biogeochemistry models of all major estuaries worldwide. In
many developed areas, such models have already been
developed102,103 and can serve as the starting point. In remote
regions, model development may be performed using climatolo-
gical information, but in these cases in situ data for model
calibration/validation may be limited or unavailable.

Major challenges to such a process-rich modeling approach
include the coupling of model domains (atmosphere, land, ocean,
surface, and subsurface) at appropriate scales, the computational
resources to simulate these systems at resolutions needed to
capture the process dynamics and feedbacks that distinguish
individual regions from others, and the large (and perhaps
impractical) efforts required for model development and,
crucially, maintenance and accessibility to a range of users. On
the plus side, however, the resolution demand includes both
temporal and spatial scales needed to accurately represent both
hot spots and hot moments. Fundamental research is still needed
to understand these scales and whether the integrated, both in
time and space, impact of hot spots and hot moments justifies the
computational costs of explicitly representing them.

The third approach is a combination of simplified and detailed
representation of the world’s coastline, whereby existing high-
resolution estuarine, land and ecogeomorphic, and integrated
hydrological models are used to leverage community efforts as
virtual field sites for developing reduced-order modeling
approaches for existing ESM components. For example, physical
Earth system modeling parameterization in the land, river and
ocean components of the ESM could be employed at spatially-
variable resolutions near the coasts to allow process-rich fidelity
to span the scale between the largest ESM scales (100 km) and
smallest estuarine and marsh scales (1 m).

We suggest that the brute force approach on its own is
unrealistic and undesirable; it is also inconsistent with the central
goals of ESMs, which center on abstracting and thus under-
standing the complete Earth system climate. Thus, melding both
approaches is needed to leverage existing ESM capabilities present
in land, river, and ocean modeling to enable them to predict
under-resolved physics with enhanced fidelity, leveraging the
information already available in existing site implementations of
estuarine models. Under this framework, the land and atmosphere
components of the ESM should provide worldwide watershed
loading (flow and nutrients) and weather forcing (long and
shortwave solar radiation and wind forcing). While processes such
as worldwide watershed loading, weather forcing, and coastal
flooding are actively being developed into ESM frameworks104,
their full incorporation into coupled ESMs is necessary before
coastal interface representation is possible to address. Improving
existing coarse resolution shoreline pixels with explicit 3D model
representations using coupled high-resolution components
requires, at a minimum, a synthesis of existing observational data
at coastal interfaces that could leverage such incorporation. Such
efforts could also be combined with spatially-distributed and/or
grouping-based sensitivity analyses to further identify a reduced
number of the most robust parameters to incorporate into
ESMs105. Box 1 outlines the recommended criteria for process/
element representation within the framework of system classifica-
tions to embark on such approaches for coastal interfaces. While
representing the coast will consume additional computing
resources, we suggest that this will have a low overall burden
considering the small global extent of the coastline and the
relatively low computational cost of existing land models (relative
to the ocean and atmosphere). We posit that the outsized role of
coastal systems on global biogeochemical cycles merit any
additional computing resource needs. For example, the ocean
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Brute force

Simplified representationa

b

c Mixed approach

Fig. 5 Representing coastal interfaces in Earth system models. a Perhaps the simplest approach would be to classify coastal interfaces based on a series
of functional types for their main features (i.e., different types of tidal rivers, estuaries, intertidal ecosystems, and shoreline ecosystems; Fig. 2). Process
parameterizations derived from synthesized data would be applied to the fraction of a pixel occupied by each feature rather than the current state of the
art, which assigns some fraction of coastal pixels as land and some fraction as ocean. b The most sophisticated approach would be to couple high-
resolution regional coastal interface models with coarser resolution Earth system models using a variable pixel size (i.e., Voronoi mesh). c Perhaps the
most feasible and robust approach would be a combination of the two, whereby existing or strategically developed high-resolution models are coupled, and
classifications of functional types are applied to systems where data required for high-resolution models are not available.
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and atmosphere modules of the Energy Exascale Earth System
Model consume ~90% of the model’s computing resources90; only
a fraction of the 10% used by the land module would be needed
for coastal representation.

Observational and experimental needs. Achieving the goals
described above require mechanistic and quantitative knowledge
detailed enough to capture the richness of coastal interface pro-
cesses, but classified at a broad enough scale to tractably incor-
porate into modeling frameworks. Therefore, it is crucial to
synthesize observations of geographical, geological, geomorpho-
logical, biogeochemical, and hydrodynamic conditions and pro-
cesses across coastal systems from current and future efforts
(Box 1). Local geological formations, climate conditions, plant
functional type distribution, and hydrology/hydrodynamics, that
all interact to form terrestrial soils and sediments, determine the
physical topography/bathymetry of coastal interfaces. The
synthesis of commonalities and differences among coastal system
types will allow for the assessment of continental-scale gradients
and trends106. For example, shallow water depositional settings
can be generalized based on the relative influence of river dis-
charge and tidal versus wave-induced erosion107 along with water
mixing and upwelling regimes23 (Fig. 2). Investigations of the
spatial and temporal extent of the intertidal zone in relationship
with rainfall intensity and frequency and the context of changing
climate and local/regional sea-level rise is also an area that should
be explored to evaluate the role of processes such as low-tide
rainfall62. These types of categorizations and parameterizations of
coastal interface features may prove a useful means for managing
their complexity in ESMs.

As another example, continental-scale gradients in coastal
ecosystem types can be elucidated through the classification of
coastline type, dominant flow regimes and tidal forcings, and

climatological regions23 (Fig. 2). Large scale environmental
network programs exist that inherently encompass such hetero-
geneity of observations in coastal ecosystems (e.g., in the USA, the
Long Term Ecological Research Network (LTER), the National
Ecological Observatory Network (NEON), the National Oceanic
and Atmospheric Administration’s Sentinel Site Program, and the
Coastal Carbon Research Coordination Network), and such
efforts should be further leveraged and expanded to address data
needs for model incorporations as many areas of the world
remain unmonitored106,108. Efforts are needed to increase
synergy among existing observational data streams to cohesively
span larger spatiotemporal scales, allowing for predictive under-
standing108. Synthesis of observational data is one way to address
continental-scale patterns and differences among ecoregions109,
and can further identify controlling factors to include into
ESM process representation110. If appropriately synthesized,
continental-scale networks can address both the need for broad
classifications of coastal interface features (Fig. 2) and the
intensive finer-scale observations and experimentation needed
to inform fundamental understanding of hot spots/moments.

Remote sensing is another way to couple and scale from
individual measurements to regional and global predictions, and
can be particularly powerful when coupled to large-scale
experimental and/or observational efforts111. While applications
of multispectral and hyperspectral remote sensing in coastal
settings are challenging due to high optical complexity112, they
can provide extended observations of biogeochemical processes in
coastal interfaces over seasons to years113, characterizing
turbidity114 and a variety of water quality parameters such as
suspended sediments115,116, supporting estimates of sediment
export to oceans117. These measurements can also be used to
estimate dissolved organic carbon concentrations, and linked
parameters such as CO2 partial pressure118 in open water
surfaces. In addition, remotely sensed data can be used to map

Box 1. | Key attributes and processes in the coastal interface that should be represented in ESMs either empirically (i.e.,
parameterized) or mechanistically (i.e., process)

Processes and attributes Global impact Relevant stress and
disturbance

References

Greenhouse gas fluxes
from tidal rivers, nearshore
estuarine systems, and
marshes

Poorly quantified for coastal systems. Tidal river
fluxes not included in global budgets, but may
contribute significantly

SLR, salinization, extreme
events, temperature, land
use change

8–10,22,35,46,59,118

Carbon sequestration in
coastal ecosystems

Equal to 10% net residual land and 50% net
marine sediment sinks

SLR, salinization, land use
change, temperature

9,26,36,37,48,50,51,53,55,56,75,83,85

Nutrient and organic
carbon cycling

Coastal interface acts as a source and/or sink of
biogeochemically important elements (e.g.,
nutrients) that influence productivity of coastal
and marine systems

SLR, water level fluctuations,
hypoxia, anthropogenic
structures/activities

2,7,19,25,27,39,43,54,58,74,87,92,98

Hydrodynamics Controls timing and magnitude of material
storage, processing and export

SLR, water level and river
discharge fluctuations,
storms, anthropogenic
structures/activities

20,21,23,28,92,95,100

Gradients in vegetation
communities

Influences biogeochemical functions described
above and interacts with geomorphological
processes

SLR, salinization, extreme
events, temperature, land
use change

15,30,31,33,52,84,86,126,127

Geomorphology Controls topography and bathymetry, ultimately
influencing vegetation and biogeochemical
gradients

SLR, storms, water level and
river discharge fluctuations,
anthropogenic structures/
activities

6,15,18,26,27,38,77–82,107

Erosion Increases export of organic and inorganic
materials across interface; redeposition also
occurs. Net result is dependent on interplay
between erosion and landward migration in
marshes

SLR, storms, water level and
river discharge fluctuations,
anthropogenic structures/
activities

26,27,38,77–82
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the spatial distribution of plant functional types and aboveground
biomass119,120. On the other hand, active remote sensing from
lidar or radar interferometric instruments, combined with field
measurements, provide large scale characterization of vertical
structure in marine habitats, for example enabling global
estimates of height and biomass of mangrove forests120. Active
remote sensing also provides an efficient tool to study hydro-
dynamics in coastal settings. Repeat-pass interferometry has been
used to measure relative water level changes in wetlands121, and
spaceborne altimetry can measure global variations in sea-level
along the coasts122. The NASA-ISRO Synthetic Aperture Radar
(NISAR) and Surface Water and Ocean Topography (SWOT)
missions are planned for launch in early 2022 and the Fall 2021,
respectively, and promise valuable measurements of coastal
hydrodynamic processes. NISAR will measure relative water level
change in coastal wetlands while SWOT will measure global water
surface elevation and slope along the coasts, within rivers,
estuaries, and deltas, which may resolve relevant coastal
hydrodynamic processes123. However, to resolve tidal and
episodic hydrodynamics processes (e.g., storm surge) along the
coasts will require extensive in situ measurement networks106 and
airborne measurements124.

In addition to and coupled with observations, field and lab-
scale experimentation is also essential to developing and
validating models111,125, particularly in coastal interfaces where
multiple drivers interact to control ecosystem processes. For
example, a 30-year experiment has shown that atmospheric CO2-
enrichment enhanced primary productivity for the brackish
marsh plant, Schoenoplectus americanus, but the allocation of
biomass changed to favor smaller/denser stems and expanded
roots and rhizomes to alleviate nitrogen limitation126. A similar
2-year experiment with the seagrass, Zostera marina, showed that
enhanced marine CO2 levels (i.e., acidification) yielded signifi-
cantly higher primary productivity and also greater tolerance to
high summer temperatures, suggesting that seagrass could act as a
negative feedback for increasing atmospheric CO2 levels, in
contrast to calcareous aquatic organisms that will suffer from
acidification127.

The tradeoffs between precision and realism inform experi-
mental design such that the optimal scale and treatments will vary
with the particular question; smaller-scale experiments offer
higher precision in treatment application and assessment of
response variables128, while larger-scale experiments offer greater
realism on ecosystem-scale impacts of treatments such as
warming, elevated CO2, salinization, and flooding16,129. While it
is a great advantage to be able to attribute responses to one global
change driver, some experimental treatments, such as warming or
flooding, confound proximal drivers, such as soil moisture,
salinity, pH, and redox status, that are known to control
ecosystem processes and mediate the influence of global change
drivers. For instance, a coastal ecosystem warming study will alter
temperature but also soil moisture and potentially salinity, such
that the influence of each proximal driver is difficult but not
impossible to determine130. Similarly, a flooding manipulation16

will simultaneously alter redox status, soil moisture, and salinity.
Biogeochemical models handle these variables individually.
Especially in coastal interfaces, we need field experiments capable
of isolating the effects of proximal drivers to allow for the
development and validation of models.

Concluding remarks
Ecological and biogeochemical processes occurring along coastal
interfaces are poorly understood on a mechanistic level and cri-
tically underrepresented in current ESMs, impeding our ability to
make informed resource management decisions. Because coastal

ecosystems are characterized by transport-dependent processes
and biogeochemistry operating at fine spatial scales, they are
extremely challenging to model with any accuracy or precision.
Perhaps the most critical questions to address in future research
are: what factors and mechanisms lead to resistance and resi-
lience, or lack thereof, in coastal ecosystems in response to
external drivers, including both press and pulse disturbances and
what are the reciprocal effects of terrestrial on aquatic ecosystems
near the coast and vice versa? Answering them requires suitably
identifying the dynamic seaward and landward extent of coastal
interfaces; measurements that directly improve on modeling of
the coastal interface domain and changes due to external drivers,
including two-way exchanges/transformations of carbon, water,
energy, nutrients, and sediments; and identifying and quantifying
the interactions between hydrodynamics, geomorphology, plants,
and microbes in forming coastal ecosystem structure and reg-
ulating fluxes/transformations of mass and energy within and
across three-dimensional boundaries.

We argue that a predictive understanding of the role of coastal
interfaces on a global scale is not a task that can be achieved by
any one agency, institution, or researcher, but requires colla-
boration across scales, disciplines, cultures, and funding agencies.
The central mission of improving the representation of coastal
interfaces in ESMs can be achieved by combining efforts at
existing networks with new networks that address critical gaps
described in this review. For example, many research networks
focus on addressing site-specific objectives and models rather
than an overarching mission across scales. As such, we advocate
for widespread collaboration, stronger interoperability, and
synergistic investments to address this grand challenge. Tangible
first steps include workshops that bring together scientists across
disciplines to reach a consensus on areas of need such as those
described in this review, followed by more focused efforts to
identify synergies between existing observational networks, long-
term experiments, and regional models. Finally, the scientific
community must identify the strengths of specific funding
agencies with respect to the coastal domain and propose joint
efforts to effectively leverage these strengths to facilitate repre-
sentation of coastal interfaces in next-generation Earth system
models.
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