Silver-promoted site-selective intramolecular cyclization of 2-methylthiobenzamide through α -C(sp³)–H functionalization

Ke Yang,†* Ben Niu,†† Zhiyan Ma,† Hui Wang,† Brianna Lawrence,†† and Haibo Ge††*

[‡] Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, USA. E-mail: geh@iupui.edu.

Graphical Abstract

$$R^{1} + V = CH \text{ or } N$$

$$R^{1} + V = CH \text{ or } N$$

$$R^{1} + V = CH \text{ or } N$$

$$R^{1} + V = CH \text{ or } N$$

$$R^{1} + V = CH \text{ or } N$$

$$R^{1} + V = CH \text{ or } N$$

Abstract Silver-mediated intramolecular α -C(sp³)–H bond functionalization of the methylthio group has been established in the presence of Selectfluor as an additive. This novel strategy provides an efficient access to various diverse sulfur-based heterocycles with good yields and functional group compatibility. It is noteworthy that the completely novel benzooxathiin-4-imine skeletons were reported for the first time in this study.

[†] Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, Changzhou, Jiangsu 213164, China. E-mail: keyang@cczu.edu.cn.

INTRODUCTION

Transition metal-promoted direct C–H bond functionalization has been regarded as one of the most efficient and straightforward approaches for selective carbon-carbon and carbon-heteroatom bond construction. Within this reaction category, the α -C–H bond functionalization of a sulfide group is highly challenging and has met with only limited success to date, probably due to their facile oxidation to sulfoxides or sulphones and their strong coordination ability to transition metals. Therefore, development of a novel and highly efficient method for the transition metal-promoted α -C–H bond functionalization of a sulfide group would be of great significance.

Figure 1. The selected biologically active compounds containing sulfide heterocyclic skeletons

Sulfur-containing heterocyclic skeletons, including benzooxathiin-4-ones and benzothiazin-4-ones, have received tremendous attention because of their vital use in a large number of bioactive natural products, pharmaceuticals, and food additives (Figure 1).⁵ Extensive efforts have been attempted to develop novel methods for the construction of these compounds.⁶⁻⁹ However, these methods often provided only one type of sulfur-based heterocycle^{6b, 7b, 8, 9} or suffered from the use of odour smelling thiophenol derivatives,⁷ sensitive acyl chlorides,⁸ or multi-step preparation of starting materials,⁹ which

limited the general applicability. Herein, we demonstrated silver and selectfluor promoted site-selective intramolecular α -C(sp³)–H bond functionalization of the unactivated methylthio group to access diverse sulfur-based heterocycles. To the best of our knowledge, this process provides the first example of site-selective intramolecular cyclization of 2-methylthiobenzamides to construct structurally novel benzooxathiin-4-imine skeletons which could have potential biological activities.

RESULTS AND DISCUSSION

Table 1. Optimization of reaction conditions for benzooxathiin-4-imine 2a

	O N Ph	[Ag] Additive, Base,	DCE DCE	N Ph O S
1a			2	?a
Entry	[Ag] (eq.)	Additives (eq.)	Base (eq.)	Yield (%) ^b
1	AgNO ₃ (20)	Selectfluor (1.0)	NaOAc (1.5)	26
2	AgTFA (20)	Selectfluor (1.0)	NaOAc (1.5)	15
3	AgF (20)	Selectfluor (1.0)	NaOAc (1.5)	25
4	AgOTf (20)	Selectfluor (1.0)	NaOAc (1.5)	20
5	AgOAc (20)	Selectfluor (1.0)	NaOAc (1.5)	35
6	$Ag_{2}CO_{3}$ (20)	Selectfluor (1.0)	NaOAc (1.5)	24
7	Ag ₂ O (20)	Selectfluor (1.0)	NaOAc (1.5)	41
8	AgO (20)	Selectfluor (1.0)	NaOAc (1.5)	33
9	Ag ₂ O (20)	Selectfluor (1.0)	KOAc (1.5)	15
10	Ag ₂ O (20)	Selectfluor (1.0)	Na ₂ CO ₃ (1.5)	20
11	Ag ₂ O (20)	Selectfluor (1.0)	K_2CO_3 (1.5)	26
12	Ag ₂ O (20)	Selectfluor (1.0)	Cs ₂ CO ₃ (1.5)	30
13	Ag ₂ O (20)	NFSI (1.0)	NaOAc (1.5)	28
14	Ag ₂ O (20)	NFPT (1.0)	NaOAc (1.5)	23
15	Ag ₂ O (50)	Selectfluor (1.0)	NaOAc (1.5)	73 (71) ^c
16	-	Selectfluor (1.0)	NaOAc (1.5)	0
17	Ag ₂ O (50)	-	NaOAc (1.5)	0
18	Ag ₂ O (50)	Selectfluor (1.0)	- -	10

^aReaction conditions: **1a** (54.28 mg, 0.2 mmol), Ag source, additive, base, DCE (3.0 mL), 140 °C, 4 h.

^bYields are based on **1a**, determined by ¹H-NMR using dibromomethane as the internal standard. ^cIsolated yields. NFSI = *N*-Fluorobenzenesulfonimide. NFPT = 1-Fluoro-2,4,6-trimethylpyridinium triflate.

Our investigation began with the intramolecular C–H bond functionalization of 2-(methylthio)-*N*-(1-phenylethyl)benzamide (1a) in the presence of catalytic AgNO₃ and stoichiometric amounts of Selectfluor with NaOAc in DCE at 140 °C. The desired product 2a was detected in 26% yield (Table 1, entry 1). The subsequent examination of different silver catalysts revealed that this process could be promoted by Ag₂O with an improved yield (entries 1-8). Next, various kinds of bases were examined in this process, and it turned out that NaOAc was the optimal base (entries 9-12). Additionally, the screening of other additives revealed that a low yield was observed with *N*-fluorobenzenesulfonimide (NFSI) or 1-fluoro-2,4,6-trimethylpyridinium triflate (NFPT) (entries 13-14). To our delight, it was found that the yield of desired product 2a was improved to 73% by increasing the amounts of Ag₂O from 20 to 50 mol% (entry 15). The control experiments demonstrated that no desired product 2a was observed in the absence of a silver catalyst or additive (entries 16-17). Finally, in the absence of any base additives, only a low yield of product 2a was obtained (entry 18).

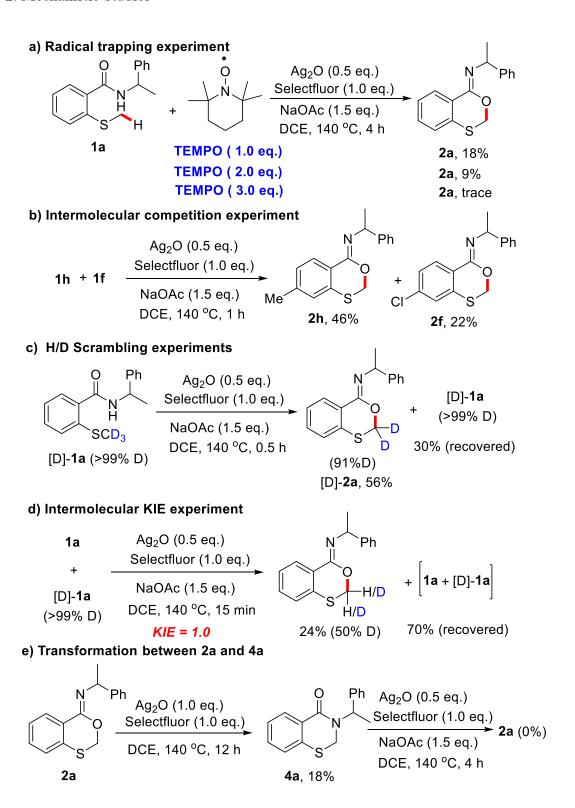
With the optimized reaction conditions in hand, we carried out the intramolecular cyclization reaction of 2-methylthiobenzamides to synthesize benzooxathiin-4-imine derivatives. As shown in Table 2, both electron-donating (Me and MeO) and electron-withdrawing groups (F, Cl, Br and CF₃) on the phenyl ring of 2-methylthiobenzamides were all compatible with the current reaction system, and the desired products (2a-i) were isolated in good yields. Then, the substrate scope study of *N*-substituted 2-methylthiobenzamides was examined. The linear *N*-substituted substrates 1j-l provided the corresponding products 2j-l in good yields. As expected, cyclopentyl substituted substrate 1m generated the corresponding product 2m in 63% yield. Furthermore, isopropyl substituted substrate 1n could also be transformed to the product 2n in 66% yield. It was noteworthy that an ester group was well tolerated,

and products **20** and **2p** were obtained in good yields. Unfortunately, substrates bearing an ethyl or benzyl group on the sulfur atom failed to provide desired products (**2q-r**). The pyridine-containing substrate **1s** also provided the desired product **2s** in 20% isolated yield. Besides, we found that the imine group on the product of **2a** can be easily removed to yield 4*H*-benzo[*d*][1,3]oxathiin-4-one **3a** under the acidic conditions (Scheme 1).

Table 2. The reaction of 2-methylthiobenzamide for the synthesis of benzooxathiin-4-imine ^{a,b}

Reaction conditions: 1 (0.2 mmol), Selectfluor (70.85 mg, 0.2 mmol), Ag₂O (23.17 mg, 0.1 mmol), NaOAc (24.61 mg, 0.3 mmol), DCE (3.0 mL), 140 °C, 4 h, isolated yields.

Scheme 1. The reaction of 2-methylthiobenzamide for the synthesis of benzooxathiin-4-one 3a


Table 3. The reaction of 2-methylthiobenzamide for the synthesis of benzothiazin-4-one ^{a,b}

^a Reaction conditions: **1** (0.2 mmol), Selectfluor (70.85 mg, 0.2 mmol), Ag₂O (46.34 mg, 0.2 mmol), DCE (3.0 mL), 140 °C, 12 h. ^bIsolated yields.

Next, we explored the intramolecular cyclization reaction of 2-methylthiobenzamides for the synthesis of benzothiazin-4-ones, and only 20% yield of the desired product 4a was isolated under the standard conditions by extending reaction time to 12 hours. Further screening of reaction conditions indicated that the reaction of 1a could produce the desired product 4a with 75% isolated yield in the presence of stoichiometric amounts of Ag₂O without NaOAc (see Table S1 in Supporting Information). As expected, various kinds of substituted 2-methylthiobenzamides were well tolerated under the modified conditions, providing the desired products (4b-q) in moderate to good yields. However, no desired products (4r-s) could be obtained when the methyl group on the sulfur atom was replaced with another alkyl group. Furthermore, the pyridine-containing substrate 1s could not afford the corresponding product 4t under the current conditions (Table 3).

To provide some insights into the reaction mechanism, a series of control experiments were carried out (Scheme 2). First, several radical trapping experiments were performed, and the results showed that the addition of TEMPO resulted in the decreased yield of **2a**, suggesting that a single electron transfer (SET) may be involved in this process (Scheme 2a). Next, a competition experiment was carried out between **1h** and **1f**, and it turned out that the reaction is favored with an electron-donating group on the aromatic ring of 2-methylthiobenzamide (Scheme 2b). Furthermore, no obvious H/D exchange was observed when this reaction was performed with an isotopically labeled substrate (Scheme 2c). The KIE experiment of **1a** showed that a 2nd order of kinetic isotope effect was observed, suggesting that the cleavage of the C(sp³)–H bond of the methyl sulfide group might not be involved in the rate-determining step (Scheme 2d). Finally, the transformation experiments between **2a** and **4a** indicated that benzooxathiin-4-imine **2a** can be converted to benzothiazin-4-one **4a** in 18% yield under the reaction conditions for preparing **4a** (Scheme 2e).

Scheme 2. Mechanistic Studies

Based on the above results and previous literatures, ¹⁰⁻¹³ a plausible reaction pathway to construct product **2** is proposed in Scheme 3. First, oxidation of Ag(I) by Selectfluor generates the F-Ag(III) intermediate through oxidative insertion. ^{10a} Then, the F-Ag(III) species undergoes a single electron

oxidation to 2-methylthiobenzamide 1 to give the Ag(II)-F intermediate and radical cations A.^{10b} Deprotonation of A gives the amidyl radical B, which immediately induces a 1,6-H radical shift to afford the carbon-centered radical C.¹¹ Subsequently, radical C can be oxidized to the corresponding carbocation D and its isomer E.¹² Then, intermediate E affords the desired product 4 through a sequential intramolecular cyclization and deprotonation process. Furthermore, in the presence of base, intermediate E can be easily transformed to intermediate F and produce the product 2, which can be further converted to the product 3 via a hydrolytic process.¹³

Scheme 3. A possible catalytic cycle

In order to illustrate the synthetic utility of this novel method, a larger scale reaction for the synthesis of benzooxathiin-4-imine **2a** was carried out (Scheme 4). When 2-(methylthio)-*N*-(1-phenylethyl)benzamide **1a** (0.54 g, 2 mmol) was treated with 0.5 equivalent of Ag₂O, 1.0 equivalent of

Selectfluor and 1.5 equivalents of NaOAc in DCE (30 mL) at 140 °C, the desired product 2a was obtained in 62% isolated yield.

Scheme 4. The larger scale reaction for the synthesis of benzooxathiin-4-imine 2a

In summary, an efficient site-selective intramolecular cyclization of 2-methylthiobenzamides has been developed through a silver and Selectfluor-promoted C–H bond functionalization process. This method affords various important sulfur-containing heterocyclic derivatives, including benzooxathiin-4-imines, benzooxathiin-4-ones, and benzothiazin-4-ones. Further study on the detailed reaction mechanism and application is ongoing in our laboratories.

EXPERIMENTAL SECTION

General. All the solvents and commercially available reagents were purchased from commercial sources and used directly. Thin layer chromatography (TLC) was performed on EMD precoated plates and visualized by fluorescence quenching under UV light. Column chromatography was performed on EMD Silica Gel 60 (200–300 Mesh) using a forced flow of 0.5–1.0 bar. The 1 H and 13 C NMR spectra were obtained on a Bruker AVANCE III–300, 400 or 500 spectrometers. 1 H NMR data were reported as chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. 13 C NMR data were reported in terms of chemical shift (δ ppm), multiplicity, and coupling constant (Hz). Mass (HRMS) analysis was obtained using Agilent 6200 Accurate-Mass TOF LC/MS system with Electrospray

Ionization (ESI).

Materials. 2-Methylthiobenzamides **1** were prepared from corresponding 2-thiobenzoic acid (2.0 mmol) and amines (3.0 mmol) in DCM at room temperature according to the reported procedure. ^{14,15}

General procedures for the synthesis of product 2. A 50 mL Schlenk tube was charged with 2-methylthiobenzamide 1 (0.2 mmol), Ag₂O (23.17 mg, 0.1 mmol), Selectfluor (70.85 mg, 0.2 mmol), NaOAc (24.61 mg, 0.3 mmol), and DCE (3.0 mL). The tube was then sealed in the heating mantle and stirred vigorously at 140 °C for 4 h. After cooling to room temperature, the reaction mixture was diluted with EtOAc (15 mL) and filtered through a pad of Celite. The filtrate was then concentrated in vacuo. The residue was purified by flash chromatography on silica gel to yield the desired product 2 by using mixed petroleum ether and ethyl acetate (v / v = 50:1).

N-(4H-benzo[d][1,3]oxathiin-4-ylidene)-1-phenylethanamine (2a) : Colourless oil, 38.2 mg, yield: 71%. 1 H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 7.8 Hz, 1H), 7.52 (d, J = 7.6 Hz, 2H), 7.38 – 7.33 (m, 3H), 7.30 – 7.23 (m, 3H), 5.27 (d, J = 10.4 Hz, 1H), 5.21 (d, J = 10.4 Hz, 1H), 5.15 (q, J = 6.6 Hz, 1H), 1.50 (d, J = 6.6 Hz, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 150.2, 146.4, 135.1, 130.4, 130.3, 128.3, 127.9, 127.8, 126.6, 126.5, 126.4, 68.4, 54.7, 24.7. HRMS (ESI, m/z): calcd. for C₁₆H₁₆NOS [M+H] $^{+}$: 270.0947, found: 270.0950.

(6-Methyl-4H-benzo[d][1,3]oxathiin-4-ylidene)-1-phenylethanamine (2b): Colourless oil, 39.6 mg, yield: 70%. H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.53 (d, J = 7.6 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.27 (t, J = 7.6 Hz, 1H), 7.22 – 7.17 (m, 2H), 5.27 – 5.15 (m, 3H), 2.41 (s, 3H), 1.52 (d, J = 6.7 Hz, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 149.9, 146.5, 136.5, 131.7, 131.4, 130.6, 128.3, 127.8, 127.5, 126.6, 126.4, 68.5, 54.6, 24.6, 21.2. HRMS (ESI, m/z): calcd. for C₁₇H₁₈NOS [M+H]⁺: 284.1104, found: 284.1106.

(6-Fluoro-4H-benzo[d][1,3]oxathiin-4-ylidene)-1-phenylethanamine (2c): Colourless oil, 38.5 mg,

yield: 67%. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, J = 9.7, 2.8 Hz, 1H), 7.52 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.29 – 7.26 (m, 2H), 7.11 (td, J = 8.3, 2.8 Hz, 1H), 5.28 (d, J = 10.4 Hz, 1H), 5.22 (d, J = 10.4 Hz, 1H), 5.15 (q, J = 6.6 Hz, 1H), 1.51 (d, J = 6.6 Hz, 3H). ¹³C { ¹H } NMR (101 MHz, CDCl₃) δ 161.2 (d, J = 245.5 Hz), 149.2, 146.2, 130.3 (d, J = 3.0 Hz), 129.5 (d, J = 7.7 Hz), 129.4 (d, J = 7.6 Hz), 128.4, 126.67, 118.1 (d, J = 22.9 Hz), 117.0 (d, J = 24.4 Hz), 68.6, 54.9, 24.6. ¹⁹F NMR (282 MHz, CDCl₃) δ -114.5 (s). HRMS (ESI, m/z): calcd. for C₁₆H₁₅FNOS [M+H]⁺: 288.0853, found: 288.0852.

N-(6-Chloro-4H-benzo[d][1,3]oxathiin-4-ylidene)-1-phenylethanamine (2d) : Colourless oil, 39.4 mg, yield: 65%. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 2.3 Hz, 1H), 7.51 (d, J = 7.5 Hz, 2H), 7.40 – 7.32 (m, 3H), 7.30 – 7.23 (m, 2H), 5.27 (d, J = 10.4 Hz, 1H), 5.21 (d, J = 10.5 Hz, 1H), 5.14 (q, J = 6.6 Hz, 1H), 1.51 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.0, 146.2, 133.5, 132.3, 130.4, 130.0, 129.1, 129.0, 128.4, 126.6, 68.4, 54.9, 24.6. HRMS (ESI, m/z): calcd. for C₁₆H₁₅CINOS [M+H]⁺: 304.0557, found: 304.0558.

N-(7-Fluoro-4H-benzo[d][1,3]oxathiin-4-ylidene)-1-phenylethanamine (2e): Colourless oil, 36.2 mg, yield: 63%. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (dd, J = 8.7, 6.0 Hz, 1H), 7.51 (d, J = 7.5 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.30 – 7.25 (m, 1H), 7.06 – 6.95 (m, 2H), 5.29 (d, J = 10.4 Hz, 1H), 5.23 (d, J = 10.4 Hz, 1H), 5.14 (q, J = 6.6 Hz, 1H), 1.50 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.3 (d, J = 253.9 Hz), 149.4, 146.4, 137.4 (d, J = 9.5 Hz), 132.8 (d, J = 9.1 Hz), 128.3, 126.6, 126.5, 123.9 (d, J = 3.2 Hz), 114.4 (d, J = 23.9 Hz), 114.2 (d, J = 21.9 Hz), 68.3, 54.79, 24.7. ¹⁹F NMR (282 MHz, CDCl₃) δ -109.2 (s). HRMS (ESI, m/z): calcd. for C₁₆H₁₅FNOS [M+H]⁺: 288.0853, found: 288.0855.

N-(7-Chloro-4H-benzo[d][1,3]oxathiin-4-ylidene)-1-phenylethanamine (2f): Colourless oil, 39.4 mg, yield: 65%. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 8.6 Hz, 1H), 7.51 (d, J = 7.5 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.32 – 7.24 (m, 3H), 5.28 (d, J = 10.4 Hz, 1H), 5.22 (d, J = 10.4 Hz, 1H), 5.14 (q, J = 6.6 Hz, 1H), 1.50 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.4, 146.3, 136.7, 136.5, 131.7, 128.3, 127.4, 126.9, 126.55, 126.53, 126.05, 68.29, 54.79, 24.64. HRMS (ESI, m/z): calcd. for

 $C_{16}H_{15}CINOS [M+H]^+: 304.0557$, found: 304.0557.

1-Phenyl-N-(7-(trifluoromethyl)-4H-benzo[d][1,3] oxathiin-4-ylidene) ethanamine (2g): Colourless oil, 35.7 mg, yield: 53%. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 8.3 Hz, 1H), 7.58 (s, 1H), 7.51 (d, J = 7.7 Hz, 3H), 7.38 (t, J = 7.6 Hz, 2H), 7.30 – 7.25 (m, 1H), 5.32 (d, J = 10.5 Hz, 1H), 5.25 (d, J = 10.5 Hz, 1H), 5.16 (q, J = 6.6 Hz, 1H), 1.51 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 149.0, 146.1, 136.2, 132.1 (q, J = 32.9 Hz), 131.0, 130.7, 128.4, 126.6, 126.5, 124.9 (q, J = 3.9 Hz), 123.4 (q, J = 272.7 Hz), 122.9 (q, J = 3.6 Hz), 68.3, 55.0, 24.6. ¹⁹F NMR (282 MHz, CDCl₃) δ -63.2 (s). HRMS (ESI, m/z): calcd. for C₁₇H₁₅F₃NOS [M+H]⁺: 338.0821, found: 338.0818.

N-(7-Methyl-4H-benzo[d][1,3]oxathiin-4-ylidene)-1-phenylethanamine (2h): Colourless oil, 42.5 mg, yield: 75%. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 7.4 Hz, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.30 – 7.24 (m, 1H), 7.15 – 7.06 (m, 2H), 5.26 (d, J = 10.4 Hz, 1H), 5.21 (d, J = 10.4 Hz, 1H), 5.15 (q, J = 6.6 Hz, 1H), 2.39 (s, 3H), 1.51 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.3, 146.7, 140.8, 134.9, 130.3, 128.25, 128.1, 127.6, 126.6, 126.4, 125.0, 68.4, 54.6, 24.7, 21.3. HRMS (ESI, m/z): calcd. for C₁₇H₁₈NOS [M+H]⁺: 284.1104, found: 284.1106.

N-(7-methoxy-4H-benzo[d][1,3]oxathiin-4-ylidene)-1-phenylethanamine (2i): Colourless oil, 41.9 mg, yield: 70%. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 8.8 Hz, 1H), 7.51 (d, J = 7.6 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.25 (d, J = 7.3 Hz, 1H), 6.85 – 6.78 (m, 2H), 5.27 (d, J = 10.4 Hz, 1H), 5.22 (d, J = 10.4 Hz, 1H), 5.13 (q, J = 6.6 Hz, 1H), 3.86 (s, 3H), 1.50 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.9, 150.1, 146.8, 136.6, 132.1, 128.2, 126.6, 126.3, 120.3, 113.6, 111.7, 68.3, 55.5, 54.5, 24.7. HRMS (ESI, m/z): calcd. for C₁₇H₁₈NO₂S [M+H]⁺: 300.1053, found: 300.1056.

N-(4H-benzo[d][1,3]oxathiin-4-ylidene)butan-1-amine (2j): Colourless oil, 22.5 mg, yield: 51%. ^{1}H NMR (400 MHz, CDCl₃) δ 8.19 (dd, J = 7.9, 1.1 Hz, 1H), 7.36 – 7.24 (m, 3H), 5.25 (s, 2H), 3.46 (t, J = 7.2 Hz, 2H), 1.67 – 1.62 (m, 2H), 1.49 – 1.43 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H). $^{13}C\{^{1}H\}$ NMR (101

MHz, CDCl₃) δ 150.9, 135.0, 130.1, 130.0, 127.9, 127.8, 126.5, 68.4, 46.4, 33.0, 20.8, 14.0. HRMS (ESI, m/z): calcd. for C₁₂H₁₆NOS [M+H]⁺: 222.0947, found: 222.0951.

N-(4*H-benzo*[*d*][1,3]oxathiin-4-ylidene)-1-phenylmethanamine (2*k*): Colourless oil, 30.6 mg, yield: 60%. 1 H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 7.9 Hz, 1H), 7.46 (d, J = 7.5 Hz, 2H), 7.38 – 7.25 (m, 6H), 5.30 (s, 2H), 4.69 (s, 2H). 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 151.8, 140.8, 135.0, 130.4, 130.3, 128.3, 127.9, 127.7, 127.6, 126.5, 68.5, 50.4. HRMS (ESI, m/z): calcd. for C₁₅H₁₄NOS [M+H]⁺: 256.0791, found: 256.0792.

N-(4*H*-benzo[d][1,3]oxathiin-4-ylidene)-2-phenylethanamine (2*I*): Colourless oil, 41.4 mg, yield: 77%. ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 8.18 (m, 1H), 7.36 – 7.21 (m, 8H), 5.14 (s, 2H), 3.73 – 3.70 (m, 2H), 3.00 - 2.96 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 151.6, 140.9, 135.1, 130.3, 130.0, 129.0, 128.2, 127.9, 127.5, 126.5, 125.9, 68.3, 48.5, 37.3. HRMS (ESI, *m/z*): calcd. for C₁₆H₁₆NOS [M+H]⁺: 270.0947, found: 270.0948.

N-(4*H*-benzo[d][1,3]oxathiin-4-ylidene)cyclopentanamine (2**m**) : Colourless oil, 34.0 mg, yield: 73%. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, J = 7.8, 1.0 Hz, 1H), 7.36 – 7.24 (m, 3H), 5.25 (s, 2H), 4.27 – 4.22 (m, 1H), 2.00 – 1.91 (m, 2H), 1.86 – 1.77 (m, 2H), 1.68 – 1.53 (m, 4H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.3, 135.0, 130.2, 130.0, 127.9, 126.5, 68.4, 56.8, 34.3, 24.5. HRMS (ESI, m/z): calcd. for C₁₃H₁₆NOS [M+H]⁺: 234.0947, found: 234.0950.

N-(4*H*-benzo[d][1,3]oxathiin-4-ylidene)propan-2-amine (2n): Colourless oil, 27.3 mg, yield: 66%. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (dd, J = 7.8, 1.1 Hz, 1H), 7.36 – 7.24 (m, 3H), 5.24 (s, 2H), 4.16 – 4.07 (m, 1H), 1.21 (d, J = 6.3 Hz, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.8, 135.1, 130.2, 130.1, 127.9, 126.5, 68.4, 46.4, 23.8. HRMS (ESI, m/z): calcd. for C₁₁H₁₄NOS [M+H]⁺: 208.0791, found: 208.0792.

Methyl 2-((4H-benzo[d][1,3]oxathiin-4-ylidene)amino)propanoate (20) : Colourless oil, 37.6 mg, yield: 75%. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, J = 8.0, 1.2 Hz, 1H), 7.38 – 7.25 (m, 3H), 5.24 (s, 2H),

4.63 (q, J = 6.9 Hz, 1H), 3.75 (s, 3H), 1.48 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 152.7, 135.2, 130.7, 130.6, 127.8, 127.0, 126.6, 68.5, 54.3, 52.1, 19.1. HRMS (ESI, m/z): calcd. for $C_{12}H_{13}NNaO_3S$ [M+Na]⁺: 274.0508, found: 274.0507.

Methyl 2-((4H-benzo[d][1,3]oxathiin-4-ylidene)amino)pentanoate (2p) : Colourless oil, 44.6 mg, yield: 80%. 1 H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 7.9 Hz, 1H), 7.38 - 7.25 (m, 3H), 5.26 - 5.20 (m, 2H), 4.54 (dd, J = 7.9, 5.6 Hz, 1H), 3.74 (s, 3H), 1.90 - 1.80 (m, 2H), 1.43 - 1.41 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). 13 C (1 H) NMR (101 MHz, CDCl₃) δ 173.7, 152.9, 135.2, 130.7, 130.7, 127.9, 127.1, 126.6, 68.5, 58.8, 51.9, 36.0, 19.4, 13.9. HRMS (ESI, m/z): calcd. for C₁₄H₁₇NNaO₃S [M+Na]⁺: 302.0821, found: 302.0823.

N-(*1*-phenylethyl)-4H-[1,3]oxathiino[4,5-b]pyridin-4-imine (2s) : Colourless oil, 10.8 mg, yield: 20%.
¹H NMR (300 MHz, CDCl₃) δ 8.49 (dd, J = 8.0, 1.9 Hz, 1H), 8.41 (dd, J = 4.7, 1.9 Hz, 1H), 7.40 – 7.37 (m, 2H), 7.28 – 7.24 (m, 2H), 7.18 – 7.09 (m, 2H), 5.23 (q, J = 10.7 Hz, 2H), 5.04 (q, J = 6.6 Hz, 1H), 1.38 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ. 157.10, 151.00, 149.44, 146.19, 137.92, 128.50, 126.78, 126.68, 124.59, 121.48, 68.18, 55.31, 24.72. HRMS (ESI, m/z): calcd. for C₁₅H₁₅N₂OS [M+H]⁺: 271.0900, found: 271.0905.

General procedures for the synthesis of product 3a. A 50 mL Schlenk tube was charged with 2-methylthiobenzamide 1a (54.28 mg, 0.2 mmol), Ag₂O (23.17 mg, 0.1 mmol), Selectfluor (70.85 mg, 0.2 mmol), NaOAc (24.61 mg, 0.3 mmol) and DCE (3.0 mL). The tube was then sealed in the heating mantle and stirred vigorously at 140 °C for 4 h. After cooling to room temperature, the reaction mixture was diluted with EtOAc (15 mL), filtered through a pad of Celite, and the filtrate was then concentrated in vacuo. After that, the residue was dissolved in 50 mL Schlenk tube with THF (4.0 mL). Next, aqueous HCl (5.0 wt%, 0.5 mL) were added into the tube slowly. The reaction was stirred vigorously at room temperature for 15 min. Then the reaction mixture was diluted with DCM (15 mL) and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography on silica gel to yield the

desired product 3a by using mixed petroleum ether and ethyl acetate (v / v = 10:1).

4*H-benzo[d][1,3]oxathiin-4-one* (3a) ¹⁶: Colourless oil, 20.9 mg, yield: 63%. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 7.7 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.41 – 7.36 (m, 2H), 5.46 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.3, 138.8, 133.5, 132.8, 127.7, 126.9, 124.5, 68.8.

General procedures for the synthesis of product 4. A 50 mL Schlenk tube was charged with 2-methylthiobenzamide 1 (0.2 mmol), Ag₂O (46.34 mg, 0.2 mmol), Selectfluor (70.85 mg, 0.2 mmol) and DCE (3.0 mL). The tube was then sealed in the heating mantle and stirred vigorously at 140 °C for 12 h. After cooling to room temperature, the reaction mixture was diluted with EtOAc (15 mL), filtered through a pad of Celite, and the filtrate was then concentrated in vacuo. The residue was purified by flash chromatography on silica gel to yield the desired product 4 by using mixed petroleum ether and ethyl acetate (v / v = 10:1).

3-(1-Phenylethyl)-2H-benzo[e][1,3]thiazin-4(3H)-one (4a): Colourless oil, 40.3 mg, yield: 75%. 1 H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 7.7 Hz, 1H), 7.47 – 7.25 (m, 8H), 6.21 (q, J = 7.0 Hz, 1H), 4.45 (d, J = 12.9 Hz, 1H), 4.19 (d, J = 12.9 Hz, 1H), 1.66 (d, J = 7.1 Hz, 3H). 13 C { 1 H} NMR (101 MHz, CDCl₃) δ 163.7, 139.7, 137.2, 131.7, 131.0, 129.6, 128.7, 127.8, 127.5, 127.1, 126.1, 51.9, 43.7, 16.4. HRMS (ESI, m/z): calcd. for C₁₆H₁₆NOS [M+H] $^{+}$: 270.0947, found: 270.0945.

6-Methyl-3-(1-phenylethyl)-2H-benzo[e][1,3]thiazin-4(3H)-one (4b) : Colourless oil, 39.6 mg, yield: 70%. 1 H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.45 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.2 Hz, 1H), 7.21 – 7.14 (m, 2H), 6.21 (q, J = 7.0 Hz, 1H), 4.42 (d, J = 12.9 Hz, 1H), 4.17 (d, J = 12.9 Hz, 1H), 2.39 (s, 3H), 1.66 (d, J = 7.1 Hz, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 164.0, 139.8, 136.0, 133.7, 132.6, 131.4, 129.3, 128.7, 127.8, 127.4, 127.0, 51.8, 43.8, 21.0, 16.4. HRMS (ESI, m/z): calcd. for C₁₇H₁₈NOS [M+H] $^{+}$: 284.1104, found: 284.1106.

6-Chloro-3-(1-phenylethyl)-2H-benzo[e][1,3]thiazin-4(3H)-one (4c): Colourless oil, 39.4 mg, yield:

65%. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 1.8 Hz, 1H), 7.45 – 7.33 (m, 6H), 7.21 (d, J = 8.3 Hz, 1H), 6.18 (q, J = 7.0 Hz, 1H), 4.44 (d, J = 13.0 Hz, 1H), 4.18 (d, J = 13.0 Hz, 1H), 1.66 (d, J = 7.0 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 162.7, 139.4, 135.6, 132.2, 131.7, 130.9, 128.8, 128.4, 127.9, 127.4, 52.1, 43.7, 16.3. HRMS (ESI, m/z): calcd. for C₁₆H₁₅ClNOS [M+H]⁺: 304.0557, found: 304.0559.

6-Bromo-3-(1-phenylethyl)-2H-benzo[e][1,3]thiazin-4(3H)-one (4d) : Colourless oil, 47.2 mg, yield: 68%. 1 H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 2.2 Hz, 1H), 7.50 – 7.33 (m, 6H), 7.14 (d, J = 8.3 Hz, 1H), 6.18 (q, J = 7.0 Hz, 1H), 4.43 (d, J = 13.0 Hz, 1H), 4.18 (d, J = 13.0 Hz, 1H), 1.66 (d, J = 7.1 Hz, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 162.6, 139.4, 136.2, 134.5, 133.7, 131.0, 128.8, 128.6, 127.9, 127.4, 119.7, 52.1, 43.7, 16.3. HRMS (ESI, m/z): calcd. for C₁₆H₁₅BrNOS [M+H]⁺: 348.0052, found: 348.0055.

7-Fluoro-3-(1-phenylethyl)-2H-benzo[e][1,3]thiazin-4(3H)-one (4e): Colourless oil, 34.4 mg, yield: $60\%.^{1}$ H NMR (400 MHz, CDCl₃) δ 8.24 (dd, J = 8.1, 6.1 Hz, 1H), 7.47 – 7.34 (m, 5H), 7.03 – 6.98 (m, 2H), 6.20 (q, J = 7.0 Hz, 1H), 4.48 (d, J = 13.0 Hz, 1H), 4.22 (d, J = 13.0 Hz, 1H), 1.67 (d, J = 7.1 Hz, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 164.1 (d, J = 255.1 Hz), 163.1, 139.8 (d, J = 9.3 Hz), 139.6, 133.6 (d, J = 9.7 Hz), 128.8, 127.9, 127.4, 125.9 (d, J = 3.1 Hz), 113.8 (d, J = 24.1 Hz), 113.7 (d, J = 21.9 Hz), 51.9, 43.9, 16.4. 19 F NMR (282 MHz, CDCl₃) δ -109.2 (s). HRMS (ESI, m/z): calcd. for $C_{16}H_{15}$ FNOS [M+H] $^{+}$: 288.0853, found: 288.0852.

7-Chloro-3-(1-phenylethyl)-2H-benzo[e][1,3]thiazin-4(3H)-one (4f): Colourless oil, 37.0 mg, yield: 61%. 1 H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 9.0 Hz, 1H), 7.47 – 7.27 (m, 7H), 6.19 (q, J = 7.0 Hz, 1H), 4.47 (d, J = 13.0 Hz, 1H), 4.21 (d, J = 13.0 Hz, 1H), 1.67 (d, J = 7.1 Hz, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 163.1, 139.5, 139.0, 137.9, 134.1, 132.3, 128.7, 127.9, 127.4, 126.7, 126.5, 52.0, 43.7, 16.3. HRMS (ESI, m/z): calcd. for C₁₆H₁₅ClNOS [M+H]⁺: 304.0557, found: 304.0557.

(3-(1-Phenylethyl)-7-(trifluoromethyl)-2H-benzo[e][1,3]thiazin-4(3H)-one (4g): Colourless oil, 43.8

mg, yield: 65%. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 8.5 Hz, 1H), 7.56 – 7.34 (m, 7H), 6.21 (q, J = 7.0 Hz, 1H), 4.50 (d, J = 13.0 Hz, 1H), 4.24 (d, J = 13.0 Hz, 1H), 1.69 (d, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.6, 139.2, 138.4, 133.31 (q, J = 32.9 Hz), 132.32, 131.5, 128.8, 128.0, 127.4, 124.2 (q, J = 3.9 Hz), 123.3 (q, J = 271.4 Hz), 122.7 (q, J = 3.6 Hz), 52.2, 43.7, 16.3. ¹⁹F NMR (282 MHz, CDCl₃) δ -63.3 (s). HRMS (ESI, m/z): calcd. for C₁₇H₁₅F₃NOS [M+H]⁺: 338.0821, found: 338.0825.

7-Methyl-3-(1-phenylethyl)-2H-benzo[e][1,3]thiazin-4(3H)-one (4h): Colourless oil, 37.9 mg, yield: 67%. 1 H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.0 Hz, 1H), 7.46 – 7.28 (m, 5H), 7.11 – 7.03 (m, 2H), 6.20 (q, J = 7.0 Hz, 1H), 4.43 (d, J = 12.9 Hz, 1H), 4.17 (d, J = 12.9 Hz, 1H), 2.36 (s, 3H), 1.65 (d, J = 7.1 Hz, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 163.9, 142.4, 139.9, 137.1, 131.0, 128.7, 127.7, 127.5, 127.1, 127.0, 51.7, 43.7, 21.4, 16.4. HRMS (ESI, m/z): calcd. for C₁₇H₁₈NOS [M+H] $^{+}$: 284.1104, found: 284.1108.

7-Methoxy-3-(1-phenylethyl)-2H-benzo[e][1,3]thiazin-4(3H)-one (4i): Colourless oil, 43.0 mg, yield: 72%. 1 H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.8 Hz, 1H), 7.46 – 7.31 (m, 5H), 6.83 – 6.81 (m, 1H), 6.74 (s, 1H), 6.19 (q, J = 6.9 Hz, 1H), 4.45 (d, J = 12.9 Hz, 1H), 4.19 (d, J = 12.9 Hz, 1H), 3.84 (s, 3H), 1.65 (d, J = 7.0 Hz, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 163.8, 161.9, 139.9, 139.1, 132.9, 128.7, 127.7, 127.4, 122.4, 112.6, 111.4, 55.6, 51.7, 43.8, 16.4. HRMS (ESI, m/z): calcd. for C₁₇H₁₈NO₂S [M+H]⁺: 300.1053, found: 300.1058.

3-Butyl-2H-benzo[e][1,3]thiazin-4(3H)-one (4j)^{6a}: Colourless oil, 23.0 mg, yield: 52%. ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.12 (m, 1H), 7.39 – 7.35 (m, 1H), 7.30 – 7.26 (m, 2H), 4.58 (s, 2H), 3.65 (t, J = 7.3 Hz, 2H), 1.70 – 1.63 (m, 2H), 1.48 – 1.38 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.7, 137.0, 131.5, 130.7, 129.6, 127.1, 126.1, 48.6, 48.1, 30.2, 20.2, 13.9. HRMS (ESI, m/z): calcd. for C₁₂H₁₆NOS [M+H]⁺: 222.0947, found: 222.0949.

3-Benzyl-2H-benzo[e][1,3]thiazin-4(3H)-one (4k)^{6a}: Colourless oil, 30.6 mg, yield: 60%. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 7.9 Hz, 1H), 7.41 – 7.28 (m, 8H), 4.90 (s, 2H), 4.52 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 164.1, 137.1, 136.4, 131.8, 131.0, 129.3, 128.9, 128.1, 127.8, 127.2, 126.2, 51.1, 47.8. HRMS (ESI, m/z): calcd. for C₁₅H₁₄NOS [M+H]⁺: 256.0791, found: 256.0793.

3-Phenethyl-2H-benzo[e][1,3]thiazin-4(3H)-one (4l)^{6a}: Colourless oil, 36.0 mg, yield: 67%. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 7.7 Hz, 1H), 7.39 – 7.23 (m, 8H), 4.36 (s, 2H), 3.89 (t, J = 7.2 Hz, 2H), 3.01 (t, J = 7.2 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.7, 138.9, 137.1, 131.6, 130.6, 129.5, 129.0, 128.7, 127.1, 126.7, 126.1, 51.2, 49.5, 34.8. HRMS (ESI, m/z): calcd. for C₁₆H₁₆NOS [M+H]⁺: 270.0947, found: 270.0950.

3-Cyclopentyl-2H-benzo[e][1,3]thiazin-4(3H)-one (4m)^{6a}: Colourless oil, 26.5 mg, yield: 57%. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.0 Hz, 1H), 7.38 – 7.34 (m, 1H), 7.30 – 7.25 (m, 2H), 5.19 – 5.11 (m, 1H), 4.51 (s, 2H), 2.07 – 1.98 (m, 2H), 1.79 – 1.54 (m, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.8, 137.2, 131.4, 130.9, 129.9, 127.1, 126.1, 54.8, 43.9, 29.3, 24.4. HRMS (ESI, m/z): calcd. for C₁₃H₁₆NOS [M+H]⁺: 234.0947, found: 234.0952.

Methyl 3-(4-oxo-2H-benzo[e][1,3]thiazin-3(4H)-yl)propanoate (*4n*) : Colourless oil, 32.6 mg, yield: 65%. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.1 Hz, 1H), 7.37 – 7.35 (m, 1H), 7.30 – 7.25 (m, 2H), 4.72 (s, 2H), 3.89 (t, J = 6.2 Hz, 2H), 3.72 (s, 3H), 2.79 (t, J = 6.2 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.7, 164.0, 137.4, 131.7, 130.6, 129.3, 127.2, 126.1, 51.95, 50.2, 45.4, 33.4. HRMS (ESI, m/z): calcd. for C₁₂H₁₃NNaO₃S [M+Na]⁺: 274.0508, found: 274.0506.

3-Isopropyl-2H-benzo[e][1,3]thiazin-4(3H)-one (4o): Colourless oil, 24.8 mg, yield: 60%. ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.13 (m, 1H), 7.38 – 7.34 (m, 1H), 7.30 – 7.26 (m, 2H), 5.09 – 5.02 (m, 1H), 4.51 (s, 2H), 1.27 (d, J = 6.8 Hz, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.4, 137.1, 131.4, 130.9, 129.9, 127.1, 126.1, 45.2, 42.5, 20.1. HRMS (ESI, m/z): calcd. for C₁₁H₁₄NOS [M+H]⁺: 208.0791,

found: 208.0797.

Methyl 2-(4-oxo-2H-benzo[e][1,3]thiazin-3(4H)-yl)propanoate (4**p**): Colourless oil, 31.1 mg, yield: 62%. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 7.7 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.31 – 7.27 (m, 2H), 5.48 (q, J = 7.4 Hz, 1H), 4.81 (d, J = 13.0 Hz, 1H), 4.52 (d, J = 13.0 Hz, 1H), 3.77 (s, 3H), 1.59 (d, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.2, 163.9, 137.4, 131.9, 131.1, 128.9, 127.2, 126.1, 52.5, 52.35, 45.1, 15.5. HRMS (ESI, m/z): calcd. for C₁₂H₁₃NNaO₃S [M+Na]⁺: 274.0508, found: 274.0508.

Methyl 2-(4-oxo-2H-benzo[e][1,3]thiazin-3(4H)-yl)pentanoate (4q): Colourless oil, 43.5 mg, yield: 78%. 1 H NMR (400 MHz, CDCl₃) δ 8.15 – 8.13 (m, 1H), 7.41 – 7.37 (m, 1H), 7.31 – 7.27 (m, 2H), 5.44 (dd, J = 10.9, 5.0 Hz, 1H), 4.86 (d, J = 13.2 Hz, 1H), 4.46 (d, J = 13.2 Hz, 1H), 3.76 (s, 3H), 2.05 – 1.99 (m, 1H), 1.88 – 1.83 (m, 1H), 1.57 – 1.43 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). 13 C (1 H) NMR (101 MHz, CDCl₃) δ 172.1, 164.4, 137.5, 131.9, 131.2, 129.0, 127.2, 126.1, 56.4, 52.4, 45.1, 31.2, 19.5, 13.5. HRMS (ESI, m/z): calcd. for C₁₄H₁₇NNaO₃S [M+Na]⁺: 302.0821, found: 302.0828.

The larger scale reaction for the synthesis of benzooxathiin-4-imine 2a. A 350 mL Schlenk tube was charged with 2-methylthiobenzamide 1a (0.543 g, 2.0 mmol), Ag₂O (0.232 g, 1.0 mmol), Selectfluor (0.709 g, 2.0 mmol), NaOAc (0.246 g, 3.0 mmol) and DCE (30 mL). The tube was then sealed in the heating mantle and stirred vigorously at 140 °C for 8 h. After cooling to room temperature, the reaction mixture was diluted with EtOAc (50 mL) and filtered through a pad of Celite. The filtrate was then concentrated in vacuo. The residue was purified by flash chromatography on silica gel to yield the desired product 2a (0.315 g, 62% yield).

ASSOCIATED CONTENT

Supporting Information. ¹H, ¹⁹F and ¹³C NMR spectra of product **2**, **3**, **4**, the optimization of reaction conditions for benzothiazin-4-one **4a** and mechanistic studies. This material is available free of charge

via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

* E-mail: keyang@cczu.edu.cn

*E-mail: geh@iupui.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support from the National Natural Science Foundation of

China (21572026 and 21702019), Advanced Catalysis and Green Manufacturing Collaborative

Innovation Center, Changzhou University, and the Priority Academic Program Development of Jiangsu

Higher Education Institutions. We also gratefully acknowledge NSF (CHE-1350541) and Indiana

University Purdue University Indianapolis for financial support.

REFERENCES

(1) For selected reviews and examples, see: (a) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q.

Palladium-Catalyzed Transformations of Alkyl C-H Bonds. Chem. Rev. 2017, 117, 8754-8786. (b) Lu,

Q.; Glorius, F. Radical Enantioselective C(sp³)-H Functionalization. Angew. Chem., Int. Ed. 2017, 56,

49-51. (c) Yang, Y.; Lan, J.; You, J. Oxidative C-H/C-H Coupling Reactions between Two

(Hetero)arenes. Chem. Rev. 2017, 117, 8787-8863. (d) Gholap, A. V. A.; Maity, S.; Schulzke, C.; Maiti,

D.; Kapdi, A. R. Synthesis of Quinazolinones using Cu-Catalysed Csp³–H Functionalisation/Cyclisation

21

Strategy *Org. Biomol. Chem.* **2017**, *15*, 7140-7146. (e) Zheng, Q.-Z.; Jiao, N. Ag-Catalyzed C-H/C-C Bond Functionalization. *Chem. Soc. Rev.* **2016**, *45*, 4590-4627. (f) Kim, H.; Chang, S. Transition-Metal-Mediated Direct C-H Amination of Hydrocarbons with Amine Reactants: The Most Desirable but Challenging C-N Bond-Formation Approach. *ACS Catal.* **2016**, *6*, 2341-2351. (g) Miao, J.; Ge, H. Recent Advances in First-Row-Transition-Metal-Catalyzed Dehydrogenative Coupling of C(sp³)-H Bonds. *Eur. J. Org. Chem.* **2015**, *2015*, 7859-7868. (h) Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G. Transition Metal-Catalyzed Ketone-Directed or Mediated C-H Functionalization. *Chem. Soc. Rev.* **2015**, *44*, 7764-7786. (i) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Transition Metal-Catalyzed C-H Bond Functionalizations by the Use of Diverse Directing Groups. *Org. Chem. Front.* **2015**, *2*, 1107-1295. (j) Modak, A.; Dutta, U.; Kancherla, R.; Maity, S.; Bhadra, M.; Mobin, S. M.; Maiti, D. Predictably Selective (sp³)C-O Bond Formation through Copper Catalyzed Dehydrogenative Coupling: Facile Synthesis of Dihydro-Oxazinone Derivatives. *Org. Lett.* **2014**, *16*, 2602-2605.

(2) For recent selected examples, see: (a) Luo, Y.; Ma, Y.; Hou, Z. α-C-H Alkylation of Methyl Sulfides with Alkenes by a Scandium Catalyst. *J. Am. Chem. Soc.* **2018**, *140*, 114-117. (b) Peng, Z.; Wang, Y.; Yu, Z.; Zhao, D.; Song, L.; Jiang, C. Direct Arylation of Benzyl Ethers with Organozinc Reagents. *J. Org. Chem.* **2018**, *83*, 7900-7906. (c) Li, Q.; Hu, W.; Hu, R.; Lu, H.; Li, G. Cobalt-Catalyzed Cross-Dehydrogenative Coupling Reaction between Unactivated C(sp²)–H and C(sp³)–H Bonds. *Org. Lett.* **2017**, *19*, 4676-4679. (d) Guo, S.-R.; Kumar, P. S.; Yuan, Y.-Q.; Yang, M.-H. Gold-Catalyzed, Iodine(III)-Mediated Direct Acyloxylation of the Unactivated C(sp³)–H Bonds of Methyl Sulfides. *Eur. J. Org. Chem.* **2016**, *2016*, 4260-4264. (e) Kawade, R. K.; Huple, D. B.; Lin, R.-J.; Liu, R.-S. Cu-Catalyzed Oxidative Povarov Reactions Between *N*-Alkyl-*N*-methylanilines and Saturated oxa- and Thiacycles. *Chem. Commun.* **2015**, *51*, 6625-6628. (f) Cao, H.; Liu, D.; Liu, C.; Hu, X.; Lei, A. Copper-Catalyzed Oxidative Alkenylation of Thioethers via Csp³–H Functionalization. *Org. Biomol.*

- (3) (a) Kirihara, M.; Okada, T.; Sugiyama, Y.; Akiyoshi, M.; Matsunaga, T.; Kimura, Y. Sodium Hypochlorite Pentahydrate Crystals (NaOCl·5H₂O): A Convenient and Environmentally Benign Oxidant for Organic Synthesis. *Org. Process Res. Dev.* 2017, 21, 1925-1937. (b) Rostami, A.; Akradi, J. A Highly Efficient, Green, Rapid, and Chemoselective Oxidation of Sulfides Using Hydrogen Peroxide and Boric Acid as the Catalyst Under Solvent-Free Conditions. *Tetrahedron Lett.* 2010, 51, 3501-3503. (c) Rahimizadeh, M.; Rajabzadeh, G.; Khatami, S. M.; Eshghi, H.; Shiri, A. TiO₂ Nanoparticles and Preyssler-Type Heteropoly Acid Modified Nano-Sized TiO₂: A Facile and Efficient Catalyst for the Selective Oxidation of Sulfides to Sulfones and Sulfoxides. *J. Mol. Catal. A* 2010, 323, 59-64. (d) Reddy, T. I.; Varma, R. S. Ti-Beta-Catalyzed Selective Oxidation of Sulfides to Sulfoxides Using Urea-Hydrogen Peroxide Adduct. *Chem. Commun.* 1997, 471-472. (e) Aldea, R.; Alper, H. Selective Aerobic Oxidation of Sulfides Using a Novel Palladium Complex as the Catalyst Precursor. *J. Org. Chem.* 1995, 60, 8365-8366.
- (4) (a) Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Transition Metal-Catalyzed C–C Bond Formation via C-S Bond Cleavage: An Overview. *Chem. Soc. Rev.* **2013**, *42*, 5042-5055. (b) Wang, L.; He, W.; Yu, Z. Transition-Metal Mediated Carbon-Sulfur Bond Activation and Transformations. *Chem. Soc. Rev.* **2013**, *42*, 599-621.
- (5) (a) Tiwari, R.; Miller, P. A.; Chiarelli, L. R.; Mori, G.; Šarkan, M.; Centárová, I.; Cho, S.; Mikušová, K.; Franzblau, S. G.; Oliver, A. G.; Miller, M. J. Design, Syntheses, and Anti-TB Activity of 1,3-Benzothiazinone Azide and Click Chemistry Products Inspired by BTZ043. *ACS Med. Chem. Lett.* **2016**, 7, 266-270. (b) Wang, S.; Fang, K.; Dong, G.; Chen, S.; Liu, N.; Miao, Z.; Yao, J.; Li, J.; Zhang, W.; Sheng, C. Scaffold Diversity Inspired by the Natural Product Evodiamine: Discovery of Highly Potent and Multitargeting Antitumor Agents. *J. Med. Chem.* **2015**, *58*, 6678-6696. (c) Shimizu, M.; Yamanaka, M.; Ando, W.; Shimada, S.; Konakahara, T.; Sakai, N. Efficient Synthesis of 2-Alkylidene-

- 4H-3,1-benzoxathiin-4-ones and Determination of Their Double Bond Configuration. *Heterocycles* **2014**, 89, 981-993. (d) Zarghi, A.; Zebardast, T.; Daraie, B.; Hedayati, M. Design and Synthesis of New 1,3-Benzthiazinan-4-one Derivatives as Selective Cyclooxygenase (COX-2) Inhibitors. *Bioorg. Med. Chem.* **2009**, 17, 5369-5373. (e) Poirier, D.; Auger, S.; Merand, Y.; Simard, J.; Labrie, F. Synthesis and Antiestrogenic Activity of Diaryl Thioether Derivatives. *J. Med. Chem.* **1994**, 37, 1115-1125. (f) Yamato, M.; Hashigaki, K. Chemical Structure and Sweet Taste of Isocoumarins and Related Compounds. *Chem. Senses & Flavour* **1979**, 4, 35-47.
- (6) (a) Xiong, J.; Zhong, G.; Liu, Y. Domino Reactions Initiated by Copper-Catalyzed Aryl–I Bond Thiolation for the Switchable Synthesis of 2,3-Dihydrobenzothiazinones and Benzoisothiazolones. *Adv. Synth. Catal.* **2019**, *361*, 550-555. (b) Chen, D.; Wu, J.; Yang, J.; Huang, L.; Xiang, Y.; Bao, W. Cascade Syntheses of Aza[2,1-b][1,3]-benzothiazinone Heteropolycyclic Compounds From Cyclic Thiourea Catalyzed by Cu(I). *Tetrahedron Lett.* **2012**, *53*, 7104-7107.
- (7) (a) Wang, H.-H.; Shi, T.; Gao, W.-W.; Zhang, H.-H.; Wang, Y.-Q.; Li, J.-F.; Hou, Y.-S.; Chen, J.-H.; Peng, X.; Wang, Z. Double 1,4-Addition of (Thio)salicylamides/Thiosalicylic Acids with Propiolate Derivatives: A Direct, General Synthesis of Diverse Heterocyclic Scaffolds. *Org. Biomol. Chem.* 2017, 15, 8013-8017. (b) Kitsiou, C.; Unsworth, W. P.; Coulthard, G.; Taylor, R. J. K. Substrate Scope in The Direct Imine Acylation of Ortho-substituted Benzoic Acid Derivatives: The Total Synthesis (±)-Cavidine. *Tetrahedron* 2014, 70, 7172-7180. (c) Unsworth, W. P.; Kitsiou, C.; Taylor, R. J. K. Direct Imine Acylation: Rapid Access to Diverse Heterocyclic Scaffolds. *Org. Lett.* 2013, 15, 258-261. (d) Johannes, K.; Martens, J. Synthesis of Different Types of Valerolactams Starting From 2,5-Dihydrooxazole. *Tetrahedron* 2010, 66, 242-250.
- (8) (a) Dolbier, W. R.; Burkholder, C.; Abbound, K. A.; Loehle, D. Synthesis of New Tetrafluorobenzo Heteroaromatic Compounds. *J. Org. Chem.* **1994**, *59*, 7688-7694. (b) Golec, F. A.; Lee, P.; Lloyd, J. R. An Unexpected Preparation of 4-Oxo-2H-1,3-benzothiazines. *J. Heterocycl. Chem.*

- (9) (a) Nosova, E. V.; Lipunova, G. N.; Laeva, A. A.; Charushin, V. N. Fluorine-containing Heterocycles: XV. Reactions of Polyfluorobenzoyl Isothiocyanates with Amino Azines and Amino Azoles. *Russ. J. Org. Chem.* **2006**, *42*, 1544-1550. (b) Lipunova, G. N.; Nosova, E. V.; Mokrushina, G. A.; Ogloblina, E. G.; Aleksandrov, G. G.; Charushin, V. N. Fluoro-Containing Heterocycles: IX. Derivatives of Imidazo[2,1-b][1,3]benzothiazine. *Russ. J. Org. Chem.* **2003**, *39*, 248-256. (c) Fodor, L.; Bernáth, G.; Sinkkonen, J.; Pihlaja, K. Synthesis and Structural Characterization of 4H-1,3-benzothiazine Derivatives. *J. Heterocycl. Chem.* **2002**, *39*, 927-931.
- (10) (a) Yin, F.; Wang, Z.; Li, Z.; Li, C. Silver-Catalyzed Decarboxylative Fluorination of Aliphatic Carboxylic Acids in Aqueous Solution. *J. Am. Chem. Soc.* **2012**, *134*, 10401-10404. (b) Li, Z.; Song, L.; Li, C. Silver-Catalyzed Radical Aminofluorination of Unactivated Alkenes in Aqueous Media. *J. Am. Chem. Soc.* **2013**, *135*, 4640-4643.
- (11) Chiba, S.; Chen, H. Sp³ C–H Oxidation by Remote H-Radical Shift with Oxygen- and Nitrogen-Radicals: A Recent Update. *Org. Biomol. Chem.* **2014**, *12*, 4051-4060.
 - (12) Li, Z.; Li, H.; Guo, X.; Cao, L.; Yu, R.; Li, H.; Pan, S. C-H Bond Oxidation Initiated Pummerer and Knoevenagel-Type Reactions of Benzyl Sulfide and 1,3-Dicarbonyl Compounds. *Org. Lett.* **2008**, *10*, 803-805.
- (13) Zhao, J.-F.; Duan, X.-H.; Yang, H.; Guo, L.-N. Transition-Metal-Free Oxyfluorination of Olefinic Amides for the Synthesis of Fluorinated Heterocycles. *J. Org. Chem.* **2015**, *80*, 11149-11155.
- (14) Naro, Y.; Thomas, M.; Stephens, M. D.; Connelly C. M.; Deiters, A. Aryl Amide Small-Molecule Inhibitors of MicroRNA MiR-21 Function. *Bioorg. Med. Chem. Lett.* **2015**, *25*, 4793-4796.
- (15) Yang, K.; Zhang, H.; Niu, B.; Tang, T.; Ge, H. Benzisothiazol-3-ones through a Metal-Free Intramolecular N-S Bond Formation. *Eur. J. Org. Chem.* **2018**, 2018, 5520-5523. (b) Yang, K.; Li, Y.;

Ma, Z.; Tang, L.; Yin, Y.; Zhang, H.; Li, Z.; Sun, X. Metal-Free C–S Bond Cleavage to Access *N*-Substituted Acrylamide and β-Aminopropanamide. *Eur. J. Org. Chem.* **2019**, *2019*, 5812-5814.

(16) Shimizu, M.; Shimazaki, T.; Yoshida, T.; Ando, W.; Konakahara, T. Synthesis of 1,2-Benzisothiazolin-3-ones by Ring Transformation of 1,3-Benzoxathiin-4-one 1-Oxides. *Tetrahedron* **2012**, *68*, 3932-3936.