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Abstract

Many multi-domain neural machine transla-

tion (NMT) models achieve knowledge trans-

fer by enforcing one encoder to learn shared

embedding across domains. However, this de-

sign lacks adaptation to individual domains.

To overcome this limitation, we propose a

novel multi-domain NMT model using individ-

ual modules for each domain, on which we

apply word-level, adaptive and layer-wise do-

main mixing. We first observe that words in

a sentence are often related to multiple do-

mains. Hence, we assume each word has a

domain proportion, which indicates its domain

preference. Then word representations are ob-

tained by mixing their embedding in individ-

ual domains based on their domain propor-

tions. We show this can be achieved by care-

fully designing multi-head dot-product atten-

tion modules for different domains, and even-

tually taking weighted averages of their pa-

rameters by word-level layer-wise domain pro-

portions. Through this, we can achieve ef-

fective domain knowledge sharing, and cap-

ture fine-grained domain-specific knowledge

as well. Our experiments show that our pro-

posed model outperforms existing ones in sev-

eral NMT tasks.

1 Introduction

Neural Machine Translation (NMT) has made sig-

nificant progress in various machine translation

tasks (Kalchbrenner and Blunsom, 2013; Sutskever

et al., 2014; Bahdanau et al., 2014; Luong et al.,

2015; Wu et al., 2016). The success of NMT heav-

ily relies on a huge amount of annotated parallel

sentences as training data, which is often limited

in certain domains, e.g., medical domain. One ap-

proach to address this is to explore unparalleled

corpora, such as unsupervised machine transla-

tion (Lample et al., 2017, 2018). Another approach

is to train a multi-domain NMT model and this is

the focus of this paper. The simplest way is to build

a unified model by directly pooling all training data

from multiple domains together, as the languages

from different domains often share some similar se-

mantic traits, e.g., sentence structure, textual style

and word usages. For domains with less training

data, the unified model usually shows significant

improvement.

Researchers have proposed many methods for

improving multi-domain NMT. Though certain se-

mantic traits are shared across domains, there still

exists significant heterogeneity among languages

from different domains. For example, Haddow and

Koehn (2012) show that for a domain with suffi-

cient training data, a unified model may lead to

weaker performance than the one trained solely

over the domain; Farajian et al. (2017); Luong et al.

(2015); Sennrich et al. (2015a); Servan et al. (2016)

also show that to improve the translation perfor-

mance over certain domains, fine-tuning the unified

model is often needed, but at the expense of sacri-

ficing the performance over other domains. This in-

dicates that a unified model might not well exploit

the domain-specific knowledge for each individual

domain.

To overcome this drawback, two lines of recent

research focus on developing new methods by ex-

ploiting domain-shared and domain-specific knowl-

edge to improve multi-domain NMT (Britz et al.,

2017; Zeng et al., 2018; Tars and Fishel, 2018;

Hashimoto et al., 2016; Wang et al., 2017; Chen

et al., 2017; Wang et al., 2018; Gu et al., 2019;

Chu and Wang, 2018; Dou et al., 2019; Pham et al.,

2019; Chu and Dabre, 2019).

One line of research focuses on instance weight-

ing, which assigns domain related weights to dif-

ferent samples during training. For example, Wang

et al. (2017) consider sentence weighting and do-

main weighting for NMT. The sentence weight is

determined by the bilingual cross-entropy of each



sentence pair based on the language model of each

domain. The domain weight can be modified by

changing the number of sentences from that domain

in a mini-batch. Chen et al. (2017) propose a cost

weighting method, where the weight of each pair of

sentences is evaluated by the output probability of a

domain classifier on the encoder embedding. Wang

et al. (2018) propose a dynamic training method to

adjust the sentence selection and weighting during

training. We remark that many of these methods

are complementary to our proposed model, and can

be applied to improve the training of our model.

Another line of research attempts to design spe-

cific encoder-decoder architectures for NMT mod-

els. For example, Britz et al. (2017) consider

domain-aware embedding given by the encoder,

and then jointly train a domain classifier, taking the

embedding as input to incorporate the domain infor-

mation. Zeng et al. (2018); Su et al. (2019) further

extend their approach by separating the domain-

shared and domain-specific knowledge within the

embedding. In addition, Zeng et al. (2018) and

Shen et al. (2017) propose a maximum weighted

likelihood estimation method, where the weight is

obtained by word-level domain aware masking to

encourage the model to pay more attention to the

domain-specific words. The aforementioned meth-

ods, however, have a notable limitation: They en-

force one single encoder to learn shared embedding

across all domains, which often lacks adaptivity to

each individual domain.

To better capture domain-shared knowledge be-

yond shared embedding from a single encoder, we

propose a novel multi-domain NMT model using

individual modules for each domain, on which we

apply word-level, adaptive and layer-wise domain

mixing. Our proposed model is motivated by the

observation that although every sentence of the

training data has a domain label, the words in the

sentence are not necessarily only related to that

domain. For instance, the word “article” appears

in the domains of laws and business. Therefore,

we expect the knowledge for translating the word

“article” to be shared between these two domains.

Our proposed model assigns a context-dependent

domain proportion1 to every word in the sentence.

The domain proportions of the words can be nat-

urally integrated into the Transformer model for

capturing domain-shared/specific knowledge, as

1A word actually has multiple domain proportions at dif-
ferent layers of our model. See more details in Section 3

the multi-head dot-product attention mechanism is

applied at the word-level. Specifically, we carefully

design multi-head dot-product attention modules

for different domains, and eventually mix these

modules by taking weighted averages of their pa-

rameters by their layer-wise domain proportions.

Compared with existing models, ours has the

following two advantages:

• Our proposed model is more powerful in cap-

turing the domain-specific knowledge, as we de-

sign multiple dot-product attention modules for

different domains. In contrast, existing models rely

on one single shared encoder, and then one single

unified translation model is applied, which often

cannot adapt to each individual domain very well.

• Our proposed model is more adaptive in the pro-

cess of domain knowledge sharing. For common

words across domains, their domain proportions

tend to be uniform, and therefore can significantly

encourage knowledge sharing. For some words spe-

cific to certain domains, their domain proportions

tend to be skewed, and accordingly, the knowledge

sharing is encouraged only within the relevant do-

mains. For example, the word “article” appears less

in the medical domain than the domains of laws

and business. Therefore, the corresponding domain

proportion tends to favor the domains of laws and

business more than the medical domain.

We evaluate our proposed model in several multi-

domain machine translation tasks, and the empir-

ical results show that our proposed model outper-

forms existing ones and improves the translation

performance for all domains.

The rest of the paper is organized as follows:

Section 2 introduces the background; Section 3

describes our proposed model in detail; Section 4

presents numerical experiments on EN-DE, EN-

FR and ZH-EN datasets; Section 5 discusses the

connection to word disambiguation.

2 Background

Neural Machine Translation (NMT) directly

models the conditional distribution of the trans-

lated sentence y = (y1, ..., y`) given a source sen-

tence x = (x1, ..., x`)
2. The conditional proba-

bility density function p(y|x) is parameterized by

an encoder-decoder neural network: The encoder

2Here we assume that we have applied padding to all sen-
tences, and therefore, they are all of the same length.
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