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Abstract

The biological cell exhibits a fantastic range of behaviors, but ultimately these are governed by

a handful of physical and chemical principles. Here we explore simple theory, known for decades

and based on the simple thermodynamics of mixtures of ideal gases, which illuminates several

key functions performed within the cell. Our focus is the free-energy-driven import and export of

molecules, such as nutrients and other vital compounds, via transporter proteins. Complementary

to a thermodynamic picture is a description of transporters via “mass-action” chemical kinetics,

which lends further insights into biological machinery and free energy use. Both thermodynamic

and kinetic descriptions can shed light on the fundamental non-equilibrium aspects of transport.

On the whole, our biochemical-physics discussion will remain agnostic to chemical details, but we

will see how such details ultimately enter a physical description through the example of the cellular

fuel ATP.

1



I. INTRODUCTION

How many of us in the physics community have felt grateful we did not need to master

the uncountable lists of special cases which seem to be the sum-total content of biology

textbooks? We physicists prefer a “beautiful science” based on just a few principles, from

which everything else can be derived with a bit of mathematics. But is it possible there

are just a few basic principles of biology that physicists can learn and use as a springboard

to gain non-trivial insight into the field?1 Here, I’m not referring to the ultimate principle

of evolution, but rather to well-understood physical principles, embodied in equations, that

underpin so much of the function of biological cells. The idea is not original but builds on

prior work, especially that of physicist Terrell Hill2 and numerous others.1,3–12.

This article will study protein “machines” and how they facilitate free energy-driven

transport of molecules in and out of a cell. In essence, every protein performs a job ranging

from catalysis (enzymes) to responding to environmental signals (receptors) to locomotion

(motors).10,13 We will focus on transporters, which are membrane proteins that transport

numerous molecular substrates in or out of the cell, typically in conditions requiring free

energy – i.e., in the direction opposite to which the substrate would flow spontaneously if a

channel were available. We will address a number of questions: What are suitable elementary

thermodynamic and kinetic descriptions of transport? What are the assumptions for these

descriptions, and how are they justified? How can we understand transport in the context

of both equilibrium and non-equilibrium physics? How do coarser descriptions of a system

arise in principle from more fundamental microscopic theory? And finally, in a cell biology

context, how far beyond transporters can we expect the simple approaches to be fruitful?

In exploring transporters, we will largely leave aside details of the chemistry and struc-

tural biology, but not the physical essentials. After all, proteins don’t “know” biology. The

individual transporter is inanimate, merely a large molecule that obeys the laws of physics

and chemistry.14 Consistent with its physico-chemical nature, a protein is only capable of

four actions: (i) binding to another molecule; (ii) catalysis of chemical reactions; (iii) confor-

mational change of its shape; and (iv) diffusion or thermally driven passive motion. Each of

these, especially (i) - (iii), have evolved to operate in chemically precise ways – e.g., binding

to only a small set of molecules or catalyzing a specific set of chemical reactions. Note that

conformational changes typically alter the function of a protein – e.g., opening or closing a
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binding cavity or permeation channel.

The real “magic” and power of protein machine-like behavior comes from the evolved

coupling between two or more of the basic actions.2 In the class of transporter proteins

to be analyzed here, conformational changes are triggered by binding events. As sketched

in Fig. 1, if a protein has more than one conformational state, then binding to another

molecule – generically called a ligand – can shift the free energy landscape to favor a different

conformation. Many different chemical mechanisms can cause such a shift, but a simple

example would be if the ligand effectively glues together two previously floppy regions of the

proteins, perhaps via favorable electrostatics.

The coupling of binding and conformation changes enables transporters to function as

molecular machines which use an external source of (free) energy to do work. The source of

free energy often is a gradient of an ion – more precisely, a difference in chemical potential of

the ion across a membrane – or from an “activated” molecule like ATP13. (As we will see in

the Discussion below, even the activation of ATP can only be understood in a thermodynamic

context.) The work done by a transporter typically is to pump a substrate molecule to a

cellular compartment which represents “uphill” motion against its own chemical-potential

gradient.

Although an exact theoretical description of transporter function would be highly com-

plex, we can understand the essential ideas using very basic thermodynamics or kinet-

ics. This is where the ideal gas comes in — following a long history in the field of

biochemistry.2,13,15 We can describe the thermodynamics of transporter systems using the

simple equations for a mixture of ideal gases in which there is no potential-energy cost to

switch among the components. The transporter not only couples, say, the ion “gases” across

the membrane but also can enforce stoichiometric exchange with the gas of the substrate

molecule being transported. That is, if we let A (subscripted as a) represent the ion and

B (subscript b) the substrate, the transporter can be viewed as catalyzing the following

exchange across a membrane separating two arbitrary regions which we’ll name “in” and

“out” for concreteness:

Aout + Bout 
 Ain + Bin . (1)

A process like this where both molecules move in the same direction, as sketched in Fig.

1, is called “co-transport” or “symport” and is exemplified by Na+ ions (A), which have

much higher extra-cellular concentration, being used to drive the import of glucose (B) or
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another sugar into the cell15. Well-studied transporters using this mechanism include Mhp1

which “salvages” metabolic precursors from the environment for a microbacterium16 and

vSGLT which imports sugars in a flagellum-powered seawater bacterium17. Numerous other

transporter processes occur, as discussed below, but we’ll focus solely on (1) for clarity.

Our theoretical approach may seem cumbersome at first but will turn out to be fully

tractable using undergraduate-level tools. To start, we consider the Helmholtz free energy

F of an ideal mixture of all four components noted in (1):

F tot(N in
a , N

out
a , N in

b , N
out
b ;Vin, Vout, T ) (2)

where N represents the number of particles of the indicated species and V gives the volume

of the subscripted compartment. Note that the volumes and temperatures are held constant

throughout; only the N values can vary. However, because of constraints implicit in our

model, in fact there is only one degree of freedom, not four, in Eq. (2)! First, we will assume

there are a fixed total number of each chemical species A and B. Second, the process (1)

implies that number of inside and outside molecules change in a coupled way. In the end,

as we will see below, the math is greatly simplified.

In addition to the thermodynamic description, it is very valuable to consider the com-

plementary time-dependent viewpoint of chemical kinetics implied by the “reaction” (1).

After all, in nature, it is dynamical, microscopic processes which lead to macroscopic ther-

modynamics and not the other way around.14 The most common description in chemistry

and biochemistry, known as “mass action” kinetics and originated in the 1800s18, provides

a precise dynamical analogue to the ideal gas because molecular reactants are considered to

be non-interacting except for their possibility to transform into the likewise non-interacting

products. This ideality is, of course, an approximation but such a useful one that it is es-

sentially unquestioned throughout biochemistry15. The explicitly non-equilibrium nature of

a simple kinetic description will echo insights gained from a free-energy picture.

In the context of the physics education literature, the present contribution rests on several

points. First, the author is unaware of a pedagogical, physics-based treatment of biochemi-

cal transport in the literature. Second, the dual thermodynamic/kinetic perspectives offer a

model for analyzing other (bio)physical processes. Third, the material is presented in a man-

ner consistent with mainstream biochemistry, including notation as appropriate, providing

the reader a toe-hold into the primary literature of that field.
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The remainder of this paper will start by describing biological transporters in sufficient

detail to motivate the statistical physics description that follows. The complementary kinetic

description will be given and shown to be consistent with the thermodynamics. Finally, the

discussion section will provide important connections to other biological processes. Appen-

dices delve into more advanced aspects of the formulation and suggest further undergraduate-

level calculations of interest. The principles described here in the context of transport are

quite general and lend insight into numerous biological processes19.

II. TRANSPORTERS IN CELL BIOLOGY

To set transporters somewhat more broadly in the context of cell biology, not only are

there transporters to import every kind of nutrient into the cell but there are numerous

ion-only transporters geared toward maintaining the transmembrane electrostatic potential

and the well-regulated balance among different ion species in the cell.13 Transporters are also

critical in inter-nerve cell communication, not only mediating electrostatic “action poten-

tials” but also vital to absorbing neurotransmitters from synapses.13 In short, transporters

are not a detail of cell biology, but fundamental. They are the object of extensive current

research.

We focus here on “secondary active transporters,” which means the free energy driving

the transport is derived from the “gradient” of an ion across a membrane. As noted above,

these transporters can use the difference in chemical potentials of the ion inside and outside

the cell (or cellular compartment) to power the transport of a specific substrate molecule

against its gradient — from low to high chemical potential. The full chemical potential

includes all chemical and physical factors, including electrostatics, but it will not prove

necessary to delve into these details here. Chemical specificity for a given ion and substrate

are provided by the particular amino acids in the transporter proteins which tend to provide

a fully complementary shape and electrostatic environment.15. Roughly speaking, there is a

different transporter protein or protein complex for each substrate molecule, although there

are notable exceptions.13. In a thermal environment, unsurprisingly, neither the ligand

specificity nor the coupling efficiency of a transporter is perfect,20 but we shall put off

considering those aspects until the Discussion section.
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III. BASIC THERMODYNAMICS OF TRANSPORT

To elucidate the principles of transporter function, we will pursue nearly exact treat-

ments of simple models - a mixture of ideal gases and subsequently mass-action kinetics.

The essence of the ideal-gas theory is long-established in the physics community and broadly

accepted (if only implicitly) in the field of biochemistry. Mass-action kinetics are the cor-

nerstone of quantitative biochemistry15,18 and represent an intuitive physical approach, as

will be seen. The author hopes the typical physicist or biochemist will encounter something

new, and hopefully informative, in the combination of approaches to be employed here.

Why are we justified in using ideal-gas theory? As is often the case when digging into

a real-world problem, we start with the simplest sufficient model. You will see that the

ideal gas provides just that. But less obviously, there are good theoretical reasons to expect

some insensitivity to details of molecular interactions. These points are elaborated upon in

Appendix A and are of great importance to readers who want to go a bit deeper into the

biophysics.

To tackle transporters, we need to treat two types of molecules A and B, each of which

can be inside or outside the cell. As suggested by the free energy (2), in the ideal-gas

picture, we must account for four independent “gases.” But of course, these components are

not truly independent because transit of an A particle from outside to inside simultaneously

changes the A counts in both compartments, not to mention the coupling to B transit via

(1). This coupling can be fully accounted for in a simple additive formulation — which we

shall derive from the full-system partition function later on, for completeness.

A. Refresher: Defining equilibrium, configurations, and states

Equilibrium is a key reference point in understanding any aspect of statistical physics or

biochemistry, even if our main goal is to understand non-equilibrium phenomena. As we’ll

see below, equilibrium theory will enable us to understand almost all of the free-energetics

of our system.

To discuss equilibrium, we first need some nomenclature. A configuration is defined to

be a single point in phase space – i.e., the set of all particle positions and momenta for a

classical system14. On the other hand, a state is taken to be a collection of configurations,
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which can be defined in almost any way that is convenient although not all definitions are

equally useful.21 Somewhat confusingly, a “steady state” does not refer to a chosen set of

configurations but rather to a constant-in-time distribution of all configurations.

Equilibrium is a special steady state, defined by more than time-invariant properties.2,14

Not only must the population of each species (e.g., B outside the cell) and its spatial distri-

bution be constant in time, but further there must be no flows in the system, on average.

That is, if we observe the system over a long period of time, although a given species may

get transported numerous times, there should be an equal number of transits in each di-

rection. Likewise, although molecules may diffuse spatially, there should be no “rivers” of

uni-directional motion. All this can be encapsulated in the notion of detailed balance, which

means an equal and opposite average flow of particles/probability per unit time between

any pair of configurations. If you think about it, detailed balance implies unchanging prob-

abilities because each configuration gains as much as it loses. Note that if detailed balance

holds among “microscopic” configurations, then it also must hold among coarser states.14

In equilibrium, the probability of a system configuration is governed by its Boltzmann

factor (see below) a property which is critical to defining the partition function and the free

energy.

B. Refresher: A single ideal gas

To introduce some notation and remind ourselves of ideal-gas statistical mechanics, let’s

start from the partition function for an equilibrium system of N classical, non-interacting

particles of mass m at temperature T confined to a fixed volume V . A partition function is

just a sum and/or integral over the equilibrium Boltzmann factors for every possible system

configuration defined by positions and velocities: consult your favorite statistical mechanics

book for reference (e.g., Refs. 14, 22, and 23).

Fortunately, the ideal gas partition function can be written down and evaluated easily.

Because ideal particles experience no forces from one another or the container walls, the

potential energy is a constant (taken to be zero) independent of the positions of the particles.

Hence the total energy needed for the partition function is solely kinetic. Letting ri =

(xi, yi, zi) denote the position of particle i and analogously defining vi as the velocity vector

with magnitude vi, we can write the classical ideal gas partition function and evaluate the
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integrals exactly yielding14,22,23

Z idl(N, V, T ) =
1

N !

(m
h

)3N∫
dv1 · · · dvN

∫
dr1 · · · drN exp

[
−

N∑
i=1

(1/2)m v2i
/
kBT

]

=
1

N !

(
V

λ3

)N
, (3)

where h is Planck’s constant, kB is Boltzmann’s constant, and λ(T ) = h/
√

2πmkBT .

The Helmholtz free energy is then obtained as

F idl(N, V, T ) = −kBT lnZ idl ' kBT
[
N lnN −N −N ln(V/λ3)

]
' NkBT ln

(
N

V/λ3

)
, (4)

where we have employed Stirling’s approximation as usual.14,22,23 Importantly for biochem-

ical applications, note that the fundamental dependence here is F idl/N ∼ ln(N/V ) — i.e.,

the log of the number density N/V , also called concentration. We shall be assuming constant

temperature throughout, appropriately for biochemistry, so the temperature dependence is

not directly pertinent.

C. The simplest mixture: Two ideal gases exchanging across a membrane

As a second step toward modeling a biological transporter, we’ll increase the complexity of

our system incrementally by considering two separated ideal gases of the same molecule type

(A) which can exchange particles across a membrane, as in Fig. 2. To suggest a connection

with cell behavior, we’ll call the two compartments “inside” and “outside” with volumes

Vin and Vout as well as corresponding particle numbers N in
a and Nout

a constrained to sum to

N tot
a . We can explicitly write out the total free energy as the sum of the two ideal-gas free

energies from (4); the additivity is justified in Appendix B. We obtain

F tot
a = N in

a kBT ln

(
N in
a

Vin/λ3

)
+Nout

a kBT ln

(
Nout
a

Vout/λ3

)
= N in

a kBT ln

(
N in
a

Vin/λ3

)
+ (N tot

a −N in
a ) kBT ln

(
N tot
a −N in

a

Vout/λ3

)
(5)

= F tot
a (N in

a ;N tot
a , Vin, Vout, T ) ,

where we used Nout
a = N tot

a − N in
a . Because N tot

a , Vin, Vout, T are considered constants, this

free energy has only a single adjustable “parameter” N in
a as shown in Fig. 2.
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Our system will self-adjust, via in-out exchange of A particles, until a free energy min-

imum is reached.22 It is straightforward to calculate this equilibrium point by setting the

derivative of F tot
a to zero. We first find that

dF tot
a

dN in
a

= kBT

[
ln

(
N in
a

Vin/λ3

)
+ 1

]
− kBT

[
ln

(
N tot
a −N in

a

Vout/λ3

)
+ 1

]
, (6)

where we have used the total, not partial, derivative notation here because we have explicitly

included all dependence on N in
a . Setting the derivative to zero then yields

N in
a

Vin
=
N tot
a −N in

a

Vout
=
Nout
a

Vout
(at equilibrium), (7)

which is a condition of equal inside and outside concentrations. This result should not be

surprising, since there is no driving force or interaction favoring inside vs. outside. Nev-

ertheless, our calculation illustrates a generally useful procedure: we can usefully combine

ideal-gas free energies, write them in terms of a single parameter, and then minimize the

result to find the equilibrium point. We can repeat these steps in more complicated scenarios.

There is still one very important bit of physics we should take away from this calculation.

In particular, the principle that the free energy is minimized with respect to an adjustable

parameter (N in
a , in our case) immediately tells us that the free energy is higher at (non-

equilibrium) N in
a values which do not satisfy (7). That is, there is usable energy available

when the system is away from the minimum but none is available at the minimum—i.e., at

equilibrium—itself, so long as N tot
a , Vin, Vout, T are held constant. See Fig. 2. After all, the

free energy literally means the energy available to do work14,22, but more precisely it is the

available energy referenced to the minimum accessible value.

As we will see below, if different components of a system are suitably coupled, the free

energy of one component can drive work done on the other. Active transport across a

membrane is the perfect case in point! Biological cells have developed myriad ways of

“transducing” free energy to perform the tasks necessary for life2,19, and the Discussion will

sketch a few examples beyond transport.

D. Transport thermodynamics: A four-part mixture of particle-exchanging ideal

gases

We are now ready to construct the ideal thermodynamics for the 1:1 biological transporter

executing the process (1). Although there are four components in the free energy (2) to

9



account for both species inside and outside the cell, our calculations turn out to be quite

simple. For mathematical convenience, we will make several simplifications which do not

affect the key physics we wish to understand. We assume that both species, A and B, have

the same total number of particles,

N tot
a = N in

a +Nout
a = N tot

b = N in
b +Nout

b , (8)

and that each species has the same mass, so that λa = λb = λ. We will enforce the

stoichiometric coupling (1) of our transporter—that one and only one of each type of particle

is transferred at one time, in either direction—by constraining the particle counts inside and

outside to change in lockstep

N in
b = N in

a +N0 , (9)

where N0 is an offset, akin to an initial condition, that ultimately will prove critical to

understanding the biological transporter. The preceding assumptions are very convenient

and will not change the fundamental conclusions in any way.

Once again, we write the full free energy (2) as the sum of individual ideal-gas expressions

(4). Because of the constraints just noted, F tot will depend only on a single adjustable

parameter, which we choose to be N in
b because it will most directly help us understand

transport. (We could have chosen any of the other three particle numbers: there is no effect

on the final result.) Summing the free energies based on Appendix B and substituting based

on constraints, we have

F tot = N in
a kBT ln

(
N in
a

Vin/λ3

)
Nout
a kBT ln

(
Nout
a

Vout/λ3

)
+N in

b kBT ln

(
N in
b

Vin/λ3

)
+Nout

b kBT ln

(
Nout
b

Vout/λ3

)
= (N in

b −N0) kBT ln

(
N in
b −N0

Vin/λ3

)
+ (N tot

b −N in
b +N0) kBT ln

(
N tot
b −N in

b +N0

Vout/λ3

)
+N in

b kBT ln

(
N in
b

Vin/λ3

)
+ (N tot

b −N in
b ) kBT ln

(
N tot
b −N in

b

Vout/λ3

)
= F tot({Ni}, Vin, Vout, T ;N in

b ) , (10)

where {Ni} is shorthand for the full set of particle variables. The adjustable parameter N in
b

is set off from others to remind us of its importance.
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Following the procedure of the preceding section, we minimize F tot with respect to the

adjustable parameter. Differentiation yields

dF tot

dN in
b

= kBT

[
ln

(
N in
b −N0

Vin/λ3

)
+ 1− ln

(
N tot
b −N in

b +N0

Vout/λ3

)
− 1

+ ln

(
N in
b

Vin/λ3

)
+ 1− ln

(
N tot
b −N in

b

Vout/λ3

)
− 1

]
. (11)

We obtain a deceptively simple but key result by setting the derivative to zero, and substi-

tuting for more interpretable {Ni} variables:

N in
a /Vin

Nout
a /Vout

=
Nout
b /Vout
N in
b /Vin

. (12)

Quite simply, this relation implies that if we increase the outside concentration of A (our

“driving” molecule) then the system tends to an equilibrium with higher inside concentration

of B (the “substrate” we hope to see transported). This is the thermodynamic signature

of a pump — a.k.a. a biochemical transporter! We have obtained a simple physics result,

arguably one that is obvious in retrospect since the coupling (1) means that A and B will

move together, but it is of profound importance in biochemistry. Further, as will be described

in the Discussion, the analysis presented here is paradigmatic for biochemical processes that

are much more challenging to intuit.

We can re-frame the preceding comments on driving in terms of stored free energy, build-

ing on our initial discussion in Sec. III C. The minimum free energy condition (12) represents

equilibrium, and if we displace the system away from this minimum the system will tend

to move back toward it. Such driving can be seen as a consequence of the system having a

higher free energy, above the minimum. That excess energy can be used to do work, namely,

pumping B molecules from outside to inside — a process which will occur even if the inside

concentration of B already exceeds the outside concentration of B! Pumping will occur, for

example, if the left-hand ratio of A concentrations in (12) starts at a value of 1/10 while the

right-hand B ratio starts at 1/2. Based on the transporter’s 1:1 coupling (1), both A and B

molecules will move from outside to inside until the ratios of (12) match.

In the bigger picture, given the simple physics involved, we should avoid the mistaken

notion that the biochemistry of transporters is trivial. In fact, we have taken the non-trivial

for granted in our whole development. The “magic” of the biochemistry lies firstly in the

function of a protein (or protein complex) which actually enforces the reaction/condition (1).

Second, the cell continually uses its energy resources to maintain a highly non-equilibrium
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gradient of sodium ions across the plasma membrane, effectively a battery13. Once these

highly non-trivial features are arranged, it is fair to say the rest is simple.

On a more technical level, note that the equilibrium result (12) is not generally the same

as the prior equilibrium finding (7) applied to both A and B species separately. Because the

transporter enforces stoichiometric movement of particles, (12) is a constrained equilibrium

point, rather than a global equilibrium, as explained further in Appendix C.

IV. KINETIC DESCRIPTION OF TRANSPORT

We can gain a deeper understanding of transport, which fundamentally is a non-

equilibrium phenomenon, using a chemical-kinetics description. This will not involve

any chemical details or structures of biomolecules, but rather the simplest possible time-

dependent description of transport via basic differential equations. The approach we take is

completely standard2,18,24 and is sometimes called a “mass-action” description which refers

to the simple concentration dependencies assumed for transition probabilities.

Mass-action kinetics, as we will see, are a fairly precise analog of ideal-gas thermody-

namics in the sense that both assume particles are non-interacting and both lead to the

same equilibrium point. However, the kinetic picture assumes a “reaction” (transport, in

our case) probability per unit time that depends on the product of concentrations of any

“reactants”. In other words, the particles don’t interact ... until they do. Further confirma-

tion for the ideal-gas/mass-action relationship comes from analyzing our kinetic description

at its stationary point, which yields the same relationship for the equilibrium concentration

as was derived from the free energy picture.

The starting point for a kinetic description will be the “reaction” (1) performed by our

transporter, which we repeat here for convenience:

Aout + Bout 
 Ain + Bin . (1)

The mass-action formulation quantifies the time dependence of concentrations (number den-

sities) of the chemical species, which will be characterized via biochemical notation,

[X] = NX/V , (13)

in molar (M) units. We also require the forward and reverse reaction rate constants for (1),
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kio and koi, which are reaction probabilities per mole per unit time14,18 — and have units of

(M s)−1. Rate constants are independent of both time and concentration, by assumption.

We are almost ready to write down the key equation. First note that in the mass-action

picture, the overall rates for the two directions of the “reaction” (1) are

[Aout][Bout] koi (out→in) [Ain][Bin] kio (in→out) , (14)

where you should note the distinction between overall rate and rate constant. These ex-

pressions can be understood intuitively.6,14. Consider first a single A molecule in a fixed

volume V , along with Nb fully independent B molecules. The probability of an A-B en-

counter is proportional to to Nb/V = [B]. If we now include a total of Na A molecules,

that encounter probability will increase by a factor of Na/V = [A], at least in the limit of

small Na. The mass-action assumption is that the overall reaction probabilities (per mole)

are of the simple product form (14) regardless of the A and B concentrations. Thus, the

reaction probability can always increase regardless of whether, for instance, B molecules are

already fully surrounded/caged by A molecules in a spatially realistic picture — an assump-

tion which essentially mirrors the non-interacting nature of ideal particles which can occupy

the same location without energetic cost. Also implicit in the mass-action expressions (14)

is an isotropic assumption that the concentrations remain uniform in space – i.e., that any

spatial fluctuations rapidly dissipate via diffusion.

The governing mass-action kinetic equation for a given species then reflects the difference

between the overall forward and reverse rates (14). We will focus on the “substrate” Bin

because biochemical pumping should increase this concentration under cellular conditions:

d[Bin]

dt
= [Aout][Bout] koi − [Ain][Bin] kio . (15)

The first term on the left is the rate of “formation” of Bin in the mass-action formulation,

while the second term is the rate of removal/destruction. Eq. (15) is the only differential

equation needed for our system because the analogous equations for the other three species

can readily be derived from (15) based on the relationships (8) and (9) between the species

counts. For example, d[Ain]/dt = d[Bin]/dt and d[Bout]/dt = −d[Bin]/dt.

Note that a chemical-kinetics equation such as (15) is a deterministic and averaged de-

scription, which is sufficient for many purposes such as ours. However, the actual behavior

will be stochastic, and a given system is not expected to precisely follow the average. Such
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fluctuating outcomes will instead be governed by a chemical master equation, as discussed

in Appendix D.

We turn to the stationary (steady-state) behavior of (15), which will turn out to constrain

the rate constants. Setting the time derivative to zero and re-arranging terms leads to a

relation among the steady-state concentrations:

[Ain]

[Aout]
=

[Bout]

[Bin]

koi
kio

(at steady state = equilibrium) . (16)

Although a steady-state does not necessarily correspond to equilibrium, in our case it does

because there are no inputs or outputs of energy or matter to our system2,19.

It turns out we implicitly have more information about the ratio of rate constants occur-

ring in (16). We have assumed our A and B particles are non-interacting and further do not

experience any external field (e.g., electrostatic) which might discriminate inside vs. outside.

(Had there been such a field, there would have been an energy term for it in our free energy

formulation.) Therefore the equilibrium point cannot favor inside or outside and we must

kio = koi. In a kinetic picture, this means the transporter does not favor one direction over

the other, consistent with out ideal gas perspective.

Once we recognize that koi/kio = 1 by our prior assumptions, we see that (16) is equiv-

alent to our previous result (12) derived thermodynamically. This helps to confirm the

hypothesized relationship between mass-action kinetics and ideal-gas thermodynamics.

Although our differential equation (15) naturally allows examination of transient behav-

ior, that will not be our focus here. We’ll simply point out that if the system is initiated

away from its steady state, it will relax toward that steady state over time. See Fig. 4. The

relaxation will be exponential in a simple system like ours.

In the context of biochemical transport, which may reasonably be considered to occur

at steady state,19 it is very instructive to consider non-equilibrium steady states driven by

processes external to our system. In particular, for transporters, the driving A molecule (of-

ten an ion) is generally maintained far from the equilibrium point it would attain uncoupled

to B because it is continually pumped out of the cell using free energy, described below,

from ATP hydrolysis13,19. Most precisely, we can say that in a cellular context, the chemi-

cal potential of A is much higher outside than inside, so there is a thermodynamic driving

“force”2 on A in the out→in direction. In general, the chemical potential depends on every-

thing in a molecule’s environment, including electrostatics and van der Waals interactions.23
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In our ideal system with no interactions, however, only the species concentrations affect the

chemical potential, so we model a driving force by assuming the outside concentration of A

greatly exceeds the inside value: [Aout]� [Ain].

What happens to B when there is a driving force on A? The answer is intuitive: because

B transport is coupled to A via (1), then B will also be driven from outside to inside the

cell. The key point is that this can occur even when B is driven against its own gradient —

from lower to higher chemical potential. This driving is readily quantified by returning to

the fundamental differential equation, armed with the knowledge that kio = koi. Based on

(15), [Bin] will increase whenever right-hand side is positive:

[Aout]

[Ain]
>

[Bin]

[Bout]
. (17)

Thus, if molecule A is sufficiently far from its own equilibrium of equal concentrations (7), it

can drive B from low to high concentrations. This is the essence of gradient-driven transport,

and is easily appreciated simply based on the sign of the time-derivative for the species of

interest.

V. DISCUSSION

A. Yes, physics matters

The primary goal of this article, broadly speaking, is to introduce a physics-trained audi-

ence to essential cell biology concepts framed strictly using undergraduate-level physics. The

take-home message should be that physics is essential to understanding cell biology, a point

that has long been appreciated at least implicitly by subsets of the biological community —

e.g., the fields of biochemistry15, bioenergetics25, and some cell biology authors13. Advanced

physics is not required to understand some of the most important phenomena,1 and further

examples are given below. The humble ideal gas has great power in the right context.

At the same time, some topics which are under-emphasized in typical undergraduate,

and even graduate, physics curricula have been featured. These include: (i) the value of

reciprocal kinetic and thermodynamic descriptions; (ii) the fundamental importance of non-

equilibrium (NE) phenomena and the ease with which NE basics can be presented; and (iii)

insight into the meaning and approximation of that taken-for-granted phrase, “free energy
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minimization.” In other words, the application of familiar ideas to a new problem can deepen

our understanding of old material.

By no means is this article intended to be a survey or overview of the importance of

physics in understanding biology, nor a presentation of the most interesting biology one can

understand with physics. Far from it. The hope was to go deep enough into a single problem

for readers to appreciate that there is a deep and substantial role for physics in biological

study. However, it’s worth considering which additional problems can be addressed with the

simple ideas discussed here.

B. Beyond simple co-transport

We have focused our attention on a 1:1 symporter, or co-transporter, which carries out

the process (1), but the cell uses many variations on this theme. Other transporters fall into

the class of “antiporter” or exchanger, which generate a contrasting process:

Aout + Bin 
 Ain + Bout . (18)

The treatment of 1:1 antiport is analogous to our analysis above.19

In both symporters and antiporters, different stoichiometries occur, so that two ions (A)

might be required to transport one sugar molecule (B), for instance.13 All such transporters,

which employ free energy stored in the inside-outside chemical potential difference, are

called “secondary active transporters” to distinguish them from “primary” transporters that

hydrolyze ATP to perform transport. Primary active transporters may also involve multiple

substrates in different stoichiometries13,15.

Beyond stoichiometric variation, there is a growing awareness that transporters may not

always function in simple stoichiometric fashion or by simple mechanisms.20,26,27 That is, the

ratio of substrate to ion (B to A) molecules moved per transport cycle may not need to be an

integer. Mechanistically, this likely results from the “slippage” phenomenon quantified by

physicist Terrell Hill in his seminal book.2 In other words, in a detailed map of the network

of possible processes occurring within a transporter, some may result in apparently futile

leakage of either substrate or ion down its electro-chemical gradient. Slippage, as well as the

question of mechanistic heterogeneity,27 are active research topics.

It is fair to say there are processes far more remarkable than transport occurring in the cell
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which can be modeled using a straightforward physical approach. Perhaps the most exciting

is a phenomenon called “kinetic proofreading” (KP) which was independently discovered by

a physicist and a biochemist4,28. It is fair to say that KP is one of the fundamental “secrets

of life”29, but unfortunately remains too much of a secret: it is not a textbook subject, and

is little known in either the biological or physical communities.

Quite simply, KP can be described as a generic strategy of using free energy to preserve

information, or more precisely, to achieve higher biochemical discrimination than would be

possible without the extra energy use. For example, KP is what permits our cells to translate

proteins from mRNA with an error rate of about 10−4 instead of 10−2. Without it, you

would not be reading this article; our species could not exist. KP can be understood using

undergraduate-level physics akin to what is described above19,29, and it also has received

more general physics treatments.30 This is a great topic for anyone seeking to delve deeper

into physical biology.

C. Last word: Chemical details and the example of ATP free energy

Adenosine tri-phosphate (ATP, Fig. 5) is surely one of the most important and most

misunderstood molecules. It plays a key role in transport, as the driver of a wide class of

“primary” active transporters (which are not driven by ion gradients).13 We learn in high

school that ATP is the “fuel” of the cell, which is roughly true but somewhat misleading.

Our earlier discussion was somewhat more precise in referring to ATP as “activated”13,19,

but we should understand the physics of this.

Like every other molecule and process in the cell, ATP must obey the laws of thermal

physics. We can use our ideal-gas picture to illustrate the activation of ATP quantitatively.

ATP provides free energy by its hydrolysis reaction, which simply means water is necessary

for its decomposition:

ATP + H2O 
 ADP + Pi (19)

where ADP is adenosine di-phosphate and Pi is the separated inorganic phosphate. Although

this reaction is sometimes shown as uni-directional, proceeding from ATP to ADP only,

every chemical reaction is reversible. For simplicity, we’ll omit water and phosphate from

our analysis, which won’t affect our conclusions; it is straightforward to include them if

desired.
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The reaction (19) is extremely slow in the absence of a suitable catalyst,15 which biologi-

cally is very important. If ATP hydrolysis happened rapidly in solution, the reaction would

quickly reach its equilibrium point and ATP would no longer store free energy — see below.

In a biological context, both directions of (19) only occur in the presence of a biological

catalyst, typically an enzyme, thus facilitating the coupling of hydrolysis to useful work,

such as transport, biochemical synthesis, or locomotion.13

The chemical details are buried in the rate constants, which we will call ktd and kdt,

respectively, for the forward and reverse directions of (19). To gain some insight, we write

down the mass-action equation for ATP, omitting water and phosphate for simplicity:

d [ATP]

dt
= kdt[ADP]− ktd[ATP] , (20)

which has an equilibrium point

[ADP]

[ATP]
=
ktd
kdt

. (21)

Because of the proximity of the charged phosphate groups in ATP, as shown in Fig. 5, it is

intuitively expected that this equilibrium will greatly favor ADP, which is indeed the case.

In our simplified description (20), this means that ktd � kdt. This great imbalance is due

to the chemical details.

The “activation” of ATP is not due to the tendency for hydrolysis per se but rather

because the reaction (19) is kept so far from equilibrium in the cell.6,10,14 That is, ATP does

not intrinsically store free energy. After all, without external input of energy, the reaction

(19) will go to equilibrium — and no free energy will be stored, as in our discussion of ideal

gases and transporters. Instead, the cell continually uses energy from the metabolism of

glucose to synthesize ATP,13 in turn making the cellular concentration ratio much smaller

than the equilibrium point (21). It is in this sense that ATP is activated; it is significantly

displaced from equilibrium. In equilibrium, by contrast, no free energy is stored regardless

of chemical details.

In sum, ATP cannot be understood without physics, but that physics is very basic and

accessible.
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Appendix A: Justifying the ideal gas model

Why are we justified in using a “gas” formulation in the first place when our particles

(molecules or ions) are embedded in aqueous solution? This is an approximation, of course,

but what has been assumed? First, it is legitimate to focus on only a subset of molecules

(omitting water, for example) so long as we correctly account for excluded degrees of freedom

via effective interactions, governed formally by the potential of mean force (PMF)14,31. So

our approximation is that the PMF among particles of interest is constant, with zero inter-

particle force. But if some of our particles are (charged) ions, is this reasonable? One

argument is that we are only attempting to learn qualitative features of these transporter

systems. Thus we follow the usual “spherical cow” physics strategy.

From a more fundamental physics point of view, the fact is that “integrating out” in-

termediary solution molecules significantly decreases effective/PMF interactions in typical

cases. No doubt you are already familiar with the high dielectric constant of water, ε ≈ 80,

but consider carefully what it means. If charges q1 and q2 separated by a distance r are

21



placed in water, the effective Coulomb energy of interaction changes from q1q2/r to q1q2/εr,

decreasing by almost two orders of magnitude. In fact, the direct Coulomb interaction be-

tween the charges does not change at all, but rather the additional interactions between

the charges and water reduces the average force. If water electrostatics and conformational

motions were included explicitly, using ε = 1 would lead to the same observed behavior —

namely, forces weakened by a factor of ε — among the non-water charges.14

The phenomenon of electrostatic screening resulting from a mixture of positive and nega-

tive mobile ions is even more dramatic. Excess ions exponentially damp Coulombic interac-

tions, fundamentally breaking the “long-ranged” inverse-distance dependence.14,31 The ap-

proximate Debye-Hückel potential behaves as q1q2e
−κr/r with a “screening length” 1/κ ∼ 1

nm in physiological conditions. This length, in turn, is much less than the typical distance

between charged molecules in a cell, suggesting that electrostatics play a significantly smaller

role than might be expected, at least in terms of the solution behavior which governs the

free energy of interest here.

Qualitatively, the key point is that multi-molecular systems typically self-adjust in a way

that reduces mutual interactions among any subset of the system. So the ideal approximation

is much less extreme than it seems at first glance, and indeed it underpins essentially all of

the long-established, quantitative field of biochemistry.15,18

Appendix B: Partition-function derivation of the mixture free energy

In our analysis, we assumed the free energies for individual components were simply ad-

ditive terms in the total free energy. This is not exactly true. Here we examine the approxi-

mation which was implicitly made and the consequences, which turn out to be insignificant.

Ultimately, the conclusions we have drawn are completely accurate in a qualitative sense

and even quantitatively reasonable. Certainly the additivity assumption for the component

free energies is no worse than assuming non-interacting molecules in the first place!

We will consider a two-component system because that is sufficient to understand the

issues at play. Specifically, we’ll restrict ourselves to a system with N tot
a A molecules which

can freely exchange among inside and outside compartments — the same setup and notation

as was considered in Sec. III C.

To write the partition function, first recall that the partition function generally is a
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sum/integral over the Boltzmann factor of all possible configurations of the system.14,23,31

In our case, with two ideal gases in separate compartments, we not only have to sum over

the coordinate and momentum degrees of freedom as usual, but also over the discrete states

represented by different occupancy numbers N in
a and Nout

a of inside vs. outside compart-

ments. That is, we really have a sum over the full-system partition functions Z2(N
in
a , N

out
a )

for every pair of values N in
a and Nout

a = N tot
a −N in

a . We therefore write

Ztot
a (N tot

a , T, Vin, Vout) =

Ntot
a∑

N in
a =0

Z2(N
in
a , N

out
a , Vin, Vout, T )

=

Ntot
a∑

N in
a =0

Z idl(N in
a , Vin, T )Z idl(N tot

a −N in
a , Vout, T ) (B1)

where we used the fact that the partition function of two independent systems is simply the

product of the individual partition functions, which follows from the factorizability of the

Boltzmann factor for independent coordinates.14 Substituting from (3) for Z idl, we can write

the total partition function exactly with an expression that seems unwieldy at first:

Ztot
a (N tot

a , T, Vin, Vout) =

Ntot
a∑

N in
a =0

1

N in
a !

(
Vin
λ3

)N in
a 1

(N tot
a −N in

a )!

(
Vout
λ3

)(Ntot
a −N in

a )

. (B2)

Before evaluating this expression, let’s pause to understand the underlying physics. We

should think of the partition function (B2) as a sum over the (un-normalized) probabilities

w for each possible N in
a value: Ztot =

∑
N in

a
w(N in

a ). In other words, the w values give the

relative probabilities of the N in
a values and hence define a distribution over N in

a . The key

point is that statistical mechanics predicts a distribution of N in
a values, each occurring with

the appropriate equilibrium probability. Necessarily, there will be a single largest probability,

but fundamentally the distribution governs the observed behavior.

Returning to the equation, we can dramatically simplify (B2) if we multiply and divide

by N tot
a ! and observe that the sum is exactly of binomial form, leading to

Ztot
a (N tot

a , T, Vin, Vout) =
1

N tot
a !

(
Vin + Vout

λ3

)Ntot
a

. (B3)

By comparison to (3), we see that this is simply the partition function for a single ideal gas

of N tot
a particles confined to a volume Vin + Vout. Indeed, each ideal, independent particle in

our combined system ultimately can access both Vin and Vout, so the result makes sense.
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Two observations are important before we address the original question about free energy

additivity. First, note that the final free energy doesn’t depend on N in
a at all. This is

something you should expect because we have effectively “integrated out” — really, summed

over — N in
a . More interesting, the final partition function (and hence, free energy) fully

accounts for all possible N in
a values, which are weighted in by their relative probabilities.

That is, in a full statistical mechanics description, the system isn’t limited to a single optimal

value, as is the case implicitly based on free-energy minimization.

Returning to (B1), we can now understand the precise approximation which has been

made. First, what does summing free energies imply about the underlying partition func-

tions? Well, note that if a partition function is exactly equal to a product of two other parti-

tion functions, e.g., Zab = ZaZb, then the free energy is exactly a sum: Fab = −kBT lnZab =

−kBT lnZa + (−kBT lnZb). On the other hand, the exact expression (B1) for the system

we’re considering is a sum over partition-function products. When we write the free energy

as a simple sum, we are estimating the partition sum in (B1) by the maximum term, which

is a standard approximation in statistical thermodynamics.23,31. Specifically, our approxi-

mation amounts to

Ztot
a (N tot

a , T, Vin, Vout) ≈ Z idl(N in∗
a , Vin, T )Z idl(N tot

a −N in∗
a , Vout, T ) , (B4)

where N in∗
a is the value which maximizes the right-hand side of this expression. Although

approximating (B2) by a single term seems unreasonable at first, note that since there are

N tot
a + 1 terms total and each must be less than the maximum, the error in the logarithm

of the sum required for the free energy should be of lower order than the dominant term in

the thermodynamic limit, N tot
a →∞.

Most important of all is to realize that our key results about transporters — which have

to do with the type of equilibrium points that exist and the thermodynamic driving which

is present away from equilibrium — are not affected at all by the details of the maximum-

term approximation. After all, even if we did not make the approximation, there would

still be a minimum free-energy point specifying an optimum N in∗
a value; and further, this

optimum would exactly correspond to equal inside and outside concentrations in the special

case Vin = Vout based on symmetry arguments. It’s clear the essence of our findings would

still hold.
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Appendix C: Constrained vs. Global Equilibrium

It is useful to compare the condition obtained when A is coupled to B by the transporter,

namely (12), to the previous result (7) when A is the only species and hence uncoupled from

B. The coupling of A to B in the presence of the transporter based on (1) shifts the resulting

equilibrium for A, and vice versa, of course.

The A-B coupling means that we have not necessarily obtained the global free energy

minimum, but what can be termed a constrained minimization. That is, if we consider

N tot
a , N tot

b , V, T as constants, there are two degrees of freedom (N in
a and N in

b ) but we did

not allow all possible pairs of these variables. Because of our transporter, the pair was

constrained to lie on a line specified by (8) rather than being able to explore the entire

(N in
a , N

in
b ) plane. The free energy was minimized among the available values on this line,

leading to (12).

What would we have obtained if both degrees of freedom could vary independently? In

that case, each molecular species would separately equilibrate to the equal-concentration

point (7). This is the global free energy minimum among all (N in
a , N

in
b ) points, which gen-

erally won’t be accessible for the transporter-coupled case unless N0 = 0.

Appendix D: More advanced perspective on chemical kinetics via trajectories and

the Master Equation

Our discussion in the main text examined chemical kinetics solely in terms of ordinary

differential equations (ODEs) like (15) in the mass-action picture. ODEs, as you may know,

are deterministic and lead to a unique solution for given initial conditions. In our case, that

would mean the time-evolution of the concentrations [Ain], [Aout], etc. are defined functions

of time, as in Fig. 4 (even if we couldn’t solve the equations analytically). The deterministic

ODE behavior represents the average behavior and we do indeed expect this to be unique

based on specified initial conditions.

A more microscopic picture of chemical kinetics accounts for different possible outcomes

based on the inherent stochasticity of the system, which is nicely illustrated by returning to

the system of Sec. III C. If particles of an ideal gas of A particles are free to move between

“in” and “out” compartments, as in Fig. 2, then if we imagine making a “movie” of the
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system at time points separated by a fixed time interval ∆t, we would generate a sequence

of of pairs of particle numbers (N in
a , N

out
a ). For example, starting from an equal distribution

of particles we might obtain the sequence(
N in
a (t), Nout

a (t)
)

= (50, 50), (50, 50), (49, 51), (48, 52), (48, 52), (49, 51), . . . . (D1)

If we watched our system a second time, a different sequence likely would occur. That is,

there is a distribution of possible trajectories just as for any stochastic system14, although

formalizing the trajectory picture is well beyond the scope of this article.

The (chemical) “master equation” (CME) description is intermediate between the ODE

and trajectory pictures, though closer to the latter. The CME assumes an ensemble picture

where multiple independent systems are studied simultaneously, characterized by a time-

varying distribution of discrete states p(N in
a , N

out
a ; t). The p for each state is simply the

fraction of systems in that state, implying the normalization
∑Ntot

a

N in
a =0

p(N in
a , N

out
a ) = 1 at all

t. The CME picture can be understood from trajectories such as (D1). Imagine generating

many one-step trajectories started from the state (50, 50). We could estimate the distribu-

tion of outcomes by counting the resulting states, noting that for a very small time step,

only states reachable by translocating a single A particle (or none) occur as in trajectory

(D1). Mathematically, we can encode this in a differential equation which, for the state (50,

50), is given by

d p(50, 50)

dt
= k̂io p(51, 49) + k̂oi p(49, 50)−

(
k̂io + k̂oi

)
p(50, 50) , (D2)

where the circumflex is used to distinguish these single-particle rate constants from the co-

transport counterparts kio and koi of (15). The different terms in (D2) account for systems

from the ensemble which both arrive at (positive sign) or leave (negative) the state (50, 50).

Systems which remain in the same state do not alter the probability.

To obtain a general CME, we let m and n denote state indices – that is, each state like

(50, 50) has a single index – with kmn and knm the associated transition rates (kmn = km→n),

obtaining
dpm(t)

dt
=
∑
n 6=m

knm pn(t)−
∑
n 6=m

kmn pm(t) . (D3)

This equation says that the probability of state m increases from incoming transitions and

decreases from outgoing transitions, just as in (D2). Note that some rate constants may
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be strictly zero, for processes which cannot occur in a single step. The CME governs the

time evolution of the distribution over states and allows for outcomes besides the average

behavior of a simple kinetics description.32 Note that the the set of rate constants of the

CME can be used to generate trajectories consistent with (D3) via the stochastic simulation

(Gillespie) algorithm.29,33

The CME description unpacks the average behavior of simple chemical kinetics, similar

to the way that statistical mechanics is the microscopic theory for thermodynamics. Note,

however, that the discrete states in the CME picture are themselves averages over configu-

rational coordinates treated in statistical mechanics. Part of the challenge, and beauty, of

theory is appreciating the relationship between different levels of averaging.

Appendix E: Questions and exercises for enrichment

We have seen the very basics of biochemical physics for understanding cellular processes.

Readers may be interested in further issues.

1. Apply the analysis above to an antiporter governed by (18). Write down the free energy

and solve for the equilibrium point. Also write down the governing kinetic equations

and show these have the same equilibrium point as the thermodynamic calculation.

2. Derive the equilibrium effects of varying stoichiometry. For example, assume two A

molecules (ions) are needed to transport a single B molecule. What relation now holds

in place of (12)?

3. How would the formulation given have to be modified to account for electrostatics?

Assume that A and B are charged molecules and there is a potential difference ∆φ

between inside and outside. Further assume charges are sufficiently well screened (see

Appendix A) so there are no direct molecule-molecule, or ion-ion, interactions. What

equilibrium relation now holds in place of (7)?

4. A thermodyanmic explanation was provided for the driving force available from ATP

in the cell. Look up an ATP-driven process in a cell biology book and make a kinetic

argument for the driving – i.e., suggest the sequence of events likely to happen given

different ATP, ADP concentrations and knowledge of the equilibrium point.
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5. Look up the cellular processes that are thought to employ kinetic proofreading and

discuss what properties they share and why the proofreading might be important.

6. Numerous numerical experiments can arise from the material. A comparison could be

made of the CME stochastic formulation (Appendix D) to the deterministic chemical

kinetics prescription; see Ref. 29. More microscopically, a particle-based simulation34

could be performed to test the validity of mass-action assumptions with varying pa-

rameters such as density, diffusion and reaction rates.
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Appendix F: Figure Captions
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FIG. 1. Highly schematic representation of the co-transport/symport process. (a) Binding of A

and B molecules to the outward-facing conformation of a transporter (light blue) embedded in a

membrane (gray) triggers a conformational change that leads to an outward facing conformation

where A and B unbind. The system then resets. All steps are reversible, with directionality

depending on relative concentrations inside and out. (b) Binding events alter the free energy

landscape of the transporter, favoring different conformations during the cycle.
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FIG. 2. Free energy minimization for a single ideal gas in a container with a permeable divider. (a)

The ideal gas particles are divided between two compartments, separated by a permeable divider

which enables the system to sample all possible particle allotments between the compartments. (b)

The free energy (5) is plotted as a function of N in
a with N tot

a = 100, Vin = Vout and Vin/λ
3 = 1 for

convenience.
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FIG. 3. Two ideal gases constrained by a transporter. (a) A mixture of A (red filled circles) and

B (blue open circles) particles occupy two compartments separated by an impermeable membrane

(gray) with a single embedded transporter (light blue). The transporter allows free passage of

A and B particles, but only in a 1:1 ratio. (b) The free energy for the system is plotted as a

function of the single “free parameter” N in
b which self-adjusts to minimized the free energy. The

free energy is shown for different N0 = N in
b −N in

a values, each of which leads to a different minimum

— i.e., constrained equilibrium. We have set N tot
a = N tot

b = 100, Vin = Vout and Vin/λ
3 = 1 for

convenience.
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FIG. 4. Relaxation to equilibrium in the symporter system (schematic). Initially, all A molecules

are outside, while B molecules are split evenly between inside and outside. The driving force from

the A molecules, which are further from their own equilibrium, pumps B molecules from outside to

inside until the constrained equilibrium condition (12) is satisfied. Here, we assume N tot
a = N tot

b

and Vin = Vout.

− − −

FIG. 5. The universal fuel of the cell, ATP. The bonds connecting the charged phosphate groups

are said to be high-energy. However, the true source of free energy obtained from ATP is due to

the concentrations of ATP and its hydrolysis products being maintained far from equilibrium.
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