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Abstract 19 

Membrane nanodomains have been implicated in Ras signaling, but what these domains are and how they 20 

interact with Ras remain obscure. Here, using single particle tracking with photoactivated localization 21 

microscopy (spt-PALM) and detailed trajectory analysis, we show that distinct membrane domains dictate 22 

KRasG12D (an active KRas mutant) diffusion and trafficking in U2OS cells. KRasG12D exhibits an 23 

immobile state in ~70 nm domains, each embedded in a larger domain (~200 nm) that confers 24 

intermediate mobility, while the rest of the membrane supports fast diffusion. Moreover, KRasG12D is 25 

continuously removed from the membrane via the immobile state and replenished to the fast state, 26 

reminiscent of Ras internalization and recycling. Importantly, both the diffusion and trafficking properties 27 

of KRasG12D remain invariant over a broad range of protein expression levels. Our results reveal how 28 

membrane organization dictates membrane diffusion and trafficking of Ras and offer new insight into the 29 

spatial regulation of Ras signaling.  30 



Introduction 31 

The plasma membrane has a complex and dynamic landscape that helps shape how diverse 32 

membrane-localized signaling molecules behave1–6. Among others, the Ras small GTPases are 33 

prototypical examples of signaling molecules whose biological activities are directly regulated by the 34 

membrane7,8. While biochemical aspects of how Ras interacts with downstream effectors such as Raf 35 

have been well studied9,10, the mechanisms through which the biological membrane defines the signaling 36 

activity and specificity of Ras are still poorly understood. Recent studies by us and others suggest that 37 

Ras signaling may involve the formation of multimers (dimers and/or clusters) in a membrane-dependent 38 

manner11–17, and that partitioning of Ras into nanoscopic membrane domains and interactions with 39 

scaffold proteins or structures likely constitute critical steps to Ras multimer formation and signaling18–22. 40 

While previous high-resolution imaging experiments using immuno-EM15,17 or quantitative 41 

superresolution microscopy12,23 were instrumental to revealing the existence of Ras multimers, the 42 

resulting images were mostly static and provided limited information about the spatiotemporal dynamics 43 

of Ras – membrane domain interactions. 44 

Live-cell single-particle tracking (SPT)24–26 complements static imaging by providing information 45 

about molecular motions, and it has been used to study Ras dynamics on the membrane27–29. The 46 

underlying rationale is that interactions of Ras with different membrane domains and signaling partners 47 

would manifest as varied diffusion behavior. Indeed, using SPT, Murakoshi et al. observed transient 48 

events of Ras immobilization on the membrane, which became more frequent upon epidermal growth 49 

factor stimulation, potentially reflecting the formation of signaling complexes or interactions with raft 50 

domains28. Lommerse and colleagues also used SPT to probe Ras diffusion and similarly observed 51 

transient and context-dependent confinement of Ras in membrane regions not more than 200 nm in 52 

diameter27.  53 

These prior studies offered important initial insight into the potential connections between Ras 54 

diffusion, function, and membrane organization, but the technical constraints of traditional SPT limited 55 



the imaging throughput and depth of analysis in these studies. Typically, only a few tens of trajectories 56 

could be obtained from each experiment, which precluded detailed and quantitative characterization of the 57 

heterogeneous and stochastic nature of molecular diffusion. In consequence, while the studies consistently 58 

reported two diffusion states – a ‘free’ diffusion state and another ‘immobile’ state, it remains to be seen 59 

whether a two-state model adequately recapitulates Ras membrane dynamics27–29. Thus, the nature of the 60 

membrane domains occupied by each of these states and how Ras molecules transition between the states 61 

in connection with multimer formation and signaling remain unclear. 62 

Recent years have seen significant advances in both experimental30–35 and data analysis 63 

strategies36–44 of SPT, some of which have dramatically improved the information throughput. Among 64 

others, spt-PALM combines SPT with photoactivated localization microscopy (PALM) to enable single 65 

molecule tracking under dense labeling conditions through stochastic photoswitching30. With spt-PALM, 66 

it is routine to acquire thousands of diffusion trajectories from a single cell. A growing list of software 67 

tools has also been developed to facilitate spt-PALM data analysis36,37,39,43,45. For example, variational 68 

Bayes SPT (vbSPT) allows construction of a detailed diffusion model from spt-PALM data with 69 

parameters such as the number of states, the diffusion coefficient and the occupancy of each state, as well 70 

as the state transition rates even when the individual trajectories are short36. Additional methods have also 71 

been introduced to quantitate various aspects of diffusion dynamics from SPT trajectories40,43,46. These 72 

advances help overcome the limitations of conventional SPT and make it possible to analyze Ras 73 

membrane dynamics in much greater depth.  74 

Here, we report our efforts on combining spt-PALM with detailed trajectory analysis to reveal 75 

previously unknown aspects of Ras diffusion on the cell membrane. With carefully controlled expression 76 

levels and photoactivation rate, spt-PALM trajectories of PAmCherry1-tagged KRasG12D (KRas with an 77 

activating mutation and thus primarily GTP-bound) consistently reported three diffusion states, including 78 

a fast diffusion state, an immobile state, and a previously unidentified diffusion state with intermediate 79 

mobility. Leveraging the large number of trajectories, we were able to spatially map the diffusion states to 80 



distinctive membrane domains, estimate the size and lifetime of each domain, and define the spatial 81 

relationship between the domains. Moreover, in analyzing how KRasG12D transitions from one diffusion 82 

state to another, we discovered that KRasG12D diffusion follows a non-equilibrium steady state (NESS) 83 

model with net mass flow from the fast state to the immobile state, potentially coupled to the endocytic 84 

trafficking and membrane recycling of KRasG12D. Based on these results, we propose a new model to 85 

describe the membrane dynamics of KRasG12D, where nested membrane nanodomains dictate the diffusion 86 

and trafficking, with implications in Ras multimer formation and signaling.  87 

 88 

Results 89 

KRasG12D diffuses on the membrane in three distinct states 90 

To investigate the lateral diffusion properties of KRasG12D under controlled expression levels, we 91 

established isogenic U2OS cells stably expressing PAmCherry1-KRasG12D under doxycycline (Dox) 92 

regulation12. The expression level of PAmCherry1-KRasG12D could be tuned from a level below that of the 93 

endogenous KRas at <1 ng/mL Dox to highly over-expressed at 5-10 ng/mL Dox (Fig. 1A). Initially data 94 

were collected from cells expressing KRasG12D at a moderate level by inducing at 2 ng/mL Dox. The 95 

photoactivatable fluorescent protein PAmCherry1 has been widely used for quantitative PALM and spt-96 

PALM47. Owing to the good single-molecule brightness of activated PAmCherry1, we were able to track 97 

individual PAmCherry1-KRasG12D molecules at frame rates up to ~83 Hz (i.e., ~12 ms/frame) with a low 98 

excitation dose (~400 W/cm2 at 561 nm). The low spontaneous photoactivation rate of PAmCherry1 also 99 

permits clean single-molecule imaging even at high expression levels, yielding as many as hundreds of 100 

thousands of trajectories per cell via spt-PALM (Fig. 1B and Video 1). Under these conditions, the 101 

average trajectory lengths were ~4 and ~5 frames for data acquired at 12 ms/frame and 35 ms/frame rates, 102 

respectively (Figure 1 – figure supplement 1). Despite the faster frame rate, data acquired at 12 ms/frame 103 

had a lower signal-to-noise ratio, causing a more frequent loss of molecules during tracking to yield 104 



significantly shorter trajectories (~50 ms average duration) than imaging at 35 ms/frame (~175 ms 105 

average duration). We therefore used both frame rates in this work for the benefit of better temporal 106 

resolution or spatial precision. 107 

A close inspection of the individual trajectories clearly shows larger diffusive steps intermittent 108 

with moments of transient entrapment, indicating the presence of multiple diffusion states and frequent 109 

state transitions (Fig. 1C and inset). Similar observations were reported for both HRas and KRas in 110 

previous low throughput SPT experiments, where two diffusion states – a ‘fast’ state and an ‘immobile’ 111 

diffusion state – were detected27,28.  112 

Since spt-PALM offers a much larger number of trajectories, we first asked whether KRasG12D 113 

diffusion on the cell membrane could indeed be described by a simple two-state model. To this end, we 114 

used two methods to analyze the Ras diffusion trajectories. The first approach fits cumulative distribution 115 

function (CDF) for Brownian motion to the squared displacements of Ras trajectories to extract diffusion 116 

coefficients and the respective occupancies of the diffusion states48. The second method, vbSPT, treats 117 

particle diffusion and the associated state transitions with a Hidden Markov Model and performs model 118 

selection through variational inference36. Of note, vbSPT is well suited for analyzing large numbers of 119 

short trajectories such as those obtained via spt-PALM. 120 

We found that particle densities higher than 0.03 µm-2 per frame under our experimental 121 

conditions (12 ms/frame with the fastest diffusion rate at ~1 µm2/s) led to occasional misconnected 122 

trajectories, and that even a small fraction of such misconnected trajectories could lead to skewed model 123 

outputs with vbSPT (Figure 1 – figure supplement 2). In addition, the threshold for maximum particle 124 

displacement between adjacent frames also had an impact on trajectory misconnection, although to a 125 

lesser extent as tested with simulated trajectories (Figure 1 – figure supplements 2 & 3). Thus, for 126 

diffusion model construction, we chose to use a high frame rate (12 ms/frame) and a low particle density 127 

(< 0.03 µm-2) to eliminate misconnected trajectories while maintaining a sufficient number of trajectories. 128 



Using trajectories acquired and analyzed with the above precautions, both CDF fitting and vbSPT 129 

yielded similar three-state models for KRasG12D diffusion on the membrane of live U2OS cells. 130 

Specifically, CDF fitting to a three-state model had significantly lower residual error compared to a 131 

single- or a two-state model and further increasing the model size did not decrease the error (Fig. 1D), 132 

indicating that a three-state model is sufficient to describe the data. For vbSPT, a score equal to zero 133 

indicates the best model, a condition that was met with a three-state model but not with larger or smaller 134 

size models (Fig. 1E). To rule out the possibility of imprecise single-molecule localizations causing 135 

vbSPT to misinterpret two-state spt-PALM data as three states, we performed vbSPT analysis on 136 

simulated trajectories based on a two-state model with varying localizations errors (0, 20, 40, 80, 100 nm) 137 

added. Even at the highest localization errors (100 nm), vbSPT correctly retrieved a two-state model 138 

(Figure 1 – figure supplement 4) from the simulated data, suggesting that the three-state model derived 139 

from experimental spt-PALM data is unlikely a result of localization errors in SPT.  140 

The diffusion coefficient and the occupancy for each of the diffusion states were in good 141 

agreement between the two analysis methods and within each method when applied to different cells 142 

under the same conditions, as evidenced by the small errors (Fig. 1F). Datasets with high particle 143 

densities can return models with different sizes, sometimes also with aberrant model parameters (Figure 1 144 

– figure supplement 2B-D and Figure 1 – figure supplement 5A-B); even so, the histogram of all vbSPT-145 

derived diffusion coefficients still showed three distinct clusters (Figure 1 – figure supplement 3C) 146 

corresponding to the three states listed in Fig. 1F. Thus, we concluded that the membrane diffusion of 147 

KRasG12D under our experimental conditions is best described by a three-state model, demonstrating the 148 

existence of an intermediate state not detected in previous studies. Between the two methods, vbSPT was 149 

used for most subsequent analyses in the remainder of this work because it supplies the transition 150 

probabilities and state identities for every time step whereas CDF does not. 151 

The diffusion coefficient of the slowest state in Fig. 1F is comparable to that expected from 152 

single-molecule localization error (~40 nm, Figure 1 – figure supplement 6), which implied that the actual 153 



diffusion of KRasG12D in this state may be even slower than it appeared. To test this hypothesis, we 154 

acquired spt-PALM data at a slower frame rate (35 ms/frame) to improve the localization accuracy of 155 

slowly moving molecules since more photons could now be collected for each PAmCherry1 molecule in a 156 

single frame (Figure 1 – figure supplement 6). Indeed, these datasets reported a significantly smaller 157 

diffusion coefficient (0.02 µm2/s) for the slowest state than that obtained earlier (0.08 µm2/s) using data 158 

taken at 12 ms/frame. This result suggests that the slowest diffusion state of KRasG12D is essentially an 159 

immobile state, consistent with previous reports27,28. 160 

KRasG12D diffusion states correspond to distinct membrane domains 161 

The diffusion model presented in Fig. 2A summarizes the results from the spt-PALM trajectory 162 

analyses using vbSPT. Each circle represents one of the diffusion states with arrows indicating the 163 

transition probabilities between pairs of states. A notable feature of this model is that there appears to be a 164 

defined state transition path: KRasG12D molecules always transition between the fast (F) and the immobile 165 

(I) states by going through the intermediate (N) state, and direct transitions between the fast and the 166 

immobile states almost never occur. In order to confirm this transition path, we compared the distribution 167 

of step sizes relative to the immobile state steps, since different step sizes would reflect different diffusion 168 

coefficients. Consistent with the state transition path observed in Fig. 2A, the histogram of step sizes 169 

immediately adjacent to the immobile steps corresponded to the intermediate diffusion state (Fig. 2B, blue) 170 

while the distribution of the remaining steps had a broader peak implying a mixture of both fast and 171 

intermediate diffusion steps (Fig. 2B, where the black color indicates a mixture of states). As expected, 172 

the step sizes assigned to the immobile states (Fig. 2B, red) are even smaller compared to that of the other 173 

two states. The clear separation of these three step size distributions confirms the above-mentioned 174 

transition path through the intermediate state. The distinctions in step sizes among the three states were 175 

even more obvious on data taken at 35 ms/frame, which had better single-molecule localization precision 176 

(Figure 2 – figure supplement 1). Thus, the intermediate state is not merely a state with intermediate 177 

mobility but effectively an obligatory link between the immobile and the fast states of KRasG12D. 178 



The observed state transition path may arise from at least two potential scenarios. In the first 179 

scenario, fast diffusing KRasG12D may transition into the intermediate then the immobile state through 180 

spontaneous conformational changes unrelated to slow or static membrane structures. Alternatively, the 181 

immobile states could be caused by KRasG12D transiently binding to stationary molecules or structures 182 

(termed ‘immobilization sites’ or ‘immobilization domains’) residing in membrane regions (referred to as 183 

‘intermediate domains’) that confer intermediate mobility to KRasG12D. Consequently, these intermediate 184 

domains would act as transition zones between membrane regions where KRasG12D exhibits fast diffusion 185 

and the sites of KRasG12D immobilization, yielding the observed state transition path. In either case, the 186 

intermediate and the immobile states of KRasG12D would be temporally and spatially correlated. It is only 187 

in the latter case, however, that we would observe multiple visits to the same intermediate or 188 

immobilization domains by different KRasG12D molecules, provided that both domains have lifetimes 189 

longer than our temporal resolution. Of note, the second scenario may encompass the first, as KRasG12D 190 

targeting to the intermediate or the immobilization domains may be accompanied by changes in 191 

conformation.  192 

To distinguish between the two scenarios, we performed auto- and cross-correlation analysis on 193 

the locations of KRasG12D exhibiting a certain diffusion state (referred to hereafter as state coordinates). 194 

We first visually examined the spatial distributions of the states by slicing each raw image stack into one-195 

minute time substacks and plotting the state coordinates on the same map, with each color representing 196 

one of the states (Fig. 2C, Fig. 2 – figure supplement 2, and Video 2). Each diffusion trajectory typically 197 

contributes only a few points to the plots as limited by its short duration, and the points from multiple 198 

trajectories accumulate over time (up to 1 min in this case) to ‘paint’ a map of the membrane regions 199 

associated with each diffusion state. Despite yielding relatively short trajectories, the rapid turn-over of 200 

PAmCherry1 allowed more efficient sampling (‘painting’) of the membrane domains by KRasG12D in the 201 

field of view. As shown in Fig. 2C, the intermediate state locations and the immobile state locations not 202 

only co-clustered, but also each appeared to self-cluster. Specifically, regions corresponding to the 203 



intermediate states (blue) often connect to give rise to nanoscopic domains a few hundred nm in size, and 204 

the vast majority of the immobilization sites (red) are surrounded by the intermediate domains. By 205 

contrast, regions corresponding to the fast state occupy the majority of the membrane area. While both the 206 

intermediate and the immobilization domains appeared to be dynamic, a time-lapse domain map (Video 2) 207 

showed that at least some of these domains could last a few minutes (to be further addressed below in 208 

Figure 3). Thus, spatial mapping of the KRasG12D state coordinates provided visual evidence for the 209 

physical presence of nested, nanoscopic domains conferring the distinct KRasG12D diffusion states.  210 

We next used pair correlation function (g(r)) to quantitate the spatial relationship between the 211 

KRasG12D diffusion states (Fig. 2D-E). The function g(r) measures the ratio of the number of particles 212 

located a distance (r) from a given particle to that expected from a complete spatial randomness (see 213 

Methods). Here, the g(r) could be calculated for particles in the same diffusion state (auto-correlation) or 214 

between two different diffusion states (cross-correlation); in either case, amplitudes of g(r) significantly 215 

greater than that expected for a random distribution indicate spatial clustering. When multiple KRasG12D 216 

molecules visit the same domain, each at a different time point but exhibiting the same diffusion state, g(r) 217 

would detect spatial auto-correlation for the given state. To avoid false clustering due to the same 218 

molecule staying in the same state across multiple frames, we used the averaged state coordinate for each 219 

continuous trajectory segment that stayed in the same state for more than two consecutive time points (see 220 

Methods). Results from both datasets taken at 35 ms/frame (main panels) and those at 12 ms/frame (inset) 221 

are shown for comparison (Fig. 2D-E).  222 

Consistent with the visual observation earlier (Fig. 2C), coordinates of the immobile and the 223 

intermediate states each showed significant clustering in the g(r) plots averaged across each 1-minute raw 224 

image stacks, whereas g(r) of the fast state was barely above random across the full range of r analyzed 225 

(Fig. 2D). All g(r) negative controls were generated with a 2D Markovian simulation of diffusing 226 

particles with no associated domains (see Methods), and the simulated trajectories were processed through 227 

the same analysis pipeline as the experimental data. As expected, the averaged state coordinates of the 228 



simulated negative control had values close to one and showed no peak in the g(r) plots. Furthermore, g(r) 229 

based on spatial cross-correlation analysis clearly indicated co-clustering between the immobile and the 230 

intermediate state positions but not with the fast diffusion state (Fig. 2E).  231 

Transient nanodomains mediate the intermediate and the immobile states of KRasG12D 232 

We also estimated the lower-bound size of the domains associated with the immobile and the 233 

intermediate states of KRasG12D by calculating the maximum distance a molecule traveled while in a 234 

domain (i.e., longest distance between two points within consecutive steps taken while in the same state). 235 

Shown in the main panel of Fig. 2F are the histograms of the estimated domain sizes determined from 236 

data taken at 35 ms/frame, based on which we determined that the mean diameters of the intermediate and 237 

the immobile membrane domains were at least ~200 nm and ~70 nm, respectively. This is consistent with 238 

the notion that most immobilization domains are likely surrounded by intermediate domains. The 239 

distinction between the two domains became much less significant with data taken at 12 ms/frame (Fig. 240 

2F, inset), which we attributed to the shorter trajectory durations (~50 ms at 12 ms/frame compared to 241 

~175 ms at 35 ms/frame; see Figure 1 – figure supplement 1), which in turn was due to the lower photon 242 

yield per frame from single PAmCherry1 molecules at this fast frame rate. In essence, the molecules 243 

failed to sample a large enough area within the short duration of the trajectories to report the domain size 244 

authentically. In addition, the distribution of the minimum intermediate domain size appeared to have at 245 

least two peaks at ~120 nm and ~230 nm, implying that there may potentially be multiple types of 246 

intermediate domains (Fig. 2F).  247 

To understand the temporal behavior of the immobilization and the intermediate domains 248 

associated with KRasG12D, we extended g(r) calculations as in Figure 2 from one minute to longer time 249 

intervals. The rationale was that, as the time interval for calculating g(r) increases beyond the lifetime of a 250 

domain, the chance of observing KRasG12D molecules visiting the same domain (i.e., exhibiting the same 251 

diffusion state in close proximity) should decrease, resulting in lower g(r) amplitudes. Indeed, as shown 252 



in Figure 3A-C, for dataset acquired at 12 ms frame interval, the peak amplitudes of g(r) for both the 253 

immobile (Fig. 3A) and the intermediate (Fig. 3B) states decreased significantly after ~5 min with further 254 

decay at increasing time intervals, indicative of finite lifetimes for both nanodomains, likely on the order 255 

of minutes on average (see also Figure 2 – figure supplement 1 for results with data taken at 35 ms/frame). 256 

For the limited temporal resolution of this analysis, we likely only detected relatively stable domains with 257 

lifetimes longer than 1 min, and the presence of more transient intermediate or immobilization domains 258 

should not be ruled out.  259 

To gain insight into how KRasG12D interacts with the different membrane domains, we also 260 

analyzed the frame-to-frame deflection angle for the molecules within each domain. The deflection angle 261 

measures the relationship between the current and the preceding step: a complete random walk would 262 

yield a flat distribution of deflection angles, whereas a preference for acute angles indicates more 263 

‘returning’ steps. The measurement will likely be affected by localization error: for individual angles, 264 

larger localization error (relative to the step sizes) would add significant noise to the measured angles; for 265 

ensemble measurement of a large number of angles, however, the localization error would affect all 266 

angles in an unbiased manner. Thus, despite the finite localization precision at our frame rates, we expect 267 

that the measured step angles to reflect the interactions between KRasG12D and the membrane domains. 268 

Indeed, as shown in Fig. 3D, KRasG12D molecules trapped in either the immobilization or the intermediate 269 

domains (the red and the blue lines) were more likely to exhibit acute deflection angles, potentially due to 270 

backward movements at the domain boundaries. Between the two domains, the enrichment of acute 271 

angles was more significant for the immobile state because the associated domains were smaller, such that 272 

KRasG12D molecules had a higher chance of hitting the domain boundaries. In comparison, KRasG12D 273 

molecules in the fast state exhibit (Fig. 3D, the green line) equal probabilities of moving in all directions, 274 

consistent with Brownian motion. 275 



KRasG12D is constitutively depleted from the immobile state and replenished to the fast state 276 

The small variance in the estimated model parameters from data taken on different cells, be it 277 

from the same or different samples (Fig. 2A), led us to hypothesize that KRasG12D membrane diffusion is 278 

in a steady state. To verify this, we divided each spt-PALM dataset with a minimum of 40,000 trajectories 279 

into four quarters (each with ~10,000 trajectories and typically ~5 min long) and computed the diffusion 280 

model for each quarter using vbSPT. As Fig. 4A shows, the model parameters for all four quarters were 281 

essentially identical, which is the case for all qualifying datasets, confirming that KRasG12D diffusion is 282 

indeed in a steady state, at least in U2OS cells and at the investigated time scales (up to ~20 minutes).  283 

In contradiction to KRasG12D diffusion being in a steady state, however, we found that the 284 

diffusion model as presented in Figure 2A cannot self-sustain. When using experimentally derived model 285 

parameters to simulate how the three-state system evolves over time (see Methods), we observed that the 286 

system quickly deviated from its initial configuration and instead stabilized at an entirely different set of 287 

state occupancies (Fig. 4B). In the new, ‘equilibrated’ system configuration, KRasG12D spends as much as 288 

~50% of its time in the immobile state, significantly more than the observed steady state occupancy of 289 

~11%. The fast state is the opposite: the population residing in this state is significantly reduced from ~58% 290 

to ~25%. By contrast, the intermediate state changes only slightly (~31% vs ~24% for the experimental 291 

and the theoretical observations, respectively). We confirmed that the simulated equilibrium probabilities 292 

were consistent with the principle of detailed balance49 (Fig. 4C); we also verified that the experimentally 293 

determined state occupancies in Fig. 2A were not an artifact of vbSPT, since vbSPT correctly retrieved 294 

the steady state model parameters when applied to simulated trajectories from steady state models with 295 

varying input parameters (Figure 4 – figure supplement 1). Therefore, we concluded that the model in Fig. 296 

2A represents a non-equilibrium steady state (NESS). 297 

To further characterize the NESS, we calculated the mass flow for each of the three KRasG12D 298 

diffusion states as the change in state occupancy per time interval. A positive net flow rate or a ratio of in- 299 

vs out-flux greater than one indicates an accumulation of mass for the state, while a negative flow rate or 300 



a ratio of flux less than one indicates the opposite. As shown in Figures 5A & 5B, within the NESS there 301 

is a net influx of KRasG12D molecules to the immobile state and a net outflux of molecules from the fast 302 

state, whereas the in- and out-fluxes for the intermediate state are comparable. We also calculated the 303 

mass flow for each of the three arms in the diffusion model in Figure 2A – in the clockwise direction, it 304 

would be the flow from the fast state to the intermediate state (F to N), intermediate to immobile (N to I), 305 

and immobile to fast (I to F). The results of this calculation are shown in Figure 5C, where a positive 306 

value in the y axis (net mass flow between a pair of states) indicates mass flow in the designated direction, 307 

and a negative value indicates flow in the opposite direction. Consistent with results in Figures 5A & 5B, 308 

the dominant net mass flow through the NESS is unidirectional – from the fast state to the intermediate to 309 

the immobile state (Fig. 5C) – with minimal ‘leakage’ from the fast to the immobile state.  310 

These results are consistent with the simulated system relaxation to equilibrium shown in Fig. 4B, 311 

where the immobile and the fast diffusion states changed occupancies the most. For the KRasG12D NESS 312 

system to be sustained over time as we observed experimentally, KRasG12D would need to be replenished 313 

into the fast diffusion state and removed from the immobile state. Indeed, KRasG12D has previously been 314 

shown to undergo a constant exchange between the plasma membrane and the cytosol, and internalized 315 

KRasG12D is collected at recycling endosomes and transported back to the plasma membrane50,51. Our 316 

analyses suggest that the loss of KRasG12D from the membrane could be through the immobile state, and 317 

the replenishment through the fast state. At present, it is unclear whether the intermediate state has no 318 

exchange with the cytosol or has active exchange with equal gain and loss. Accordingly, the membrane 319 

trafficking of KRasG12D should follow the model presented in Fig. 5D, where the arrows indicate the net 320 

mass flow between the connected states as well as between the states (F or I) and the environment 321 

(cytosol). 322 



KRasG12D diffusion model is invariant over a range of expression levels 323 

Next, we sought to investigate whether experimental conditions such as expression level would 324 

alter the diffusion properties of KRasG12D. An important observation on Ras nanocluster (multimer) 325 

formation is that the fraction of clustered molecules remains constant over a broad range of expression 326 

levels17. This unusual property has led to two hypothetical mechanisms of membrane nanocluster 327 

formation: one based on protein self-nucleation17 and another involving actomyosin activity52. These 328 

active mechanisms are in contrast to passive localization of Ras to existing membrane nanodomains (e.g. 329 

via diffusion), which was thought to result in concentration-dependent multimer formation and therefore 330 

be inconsistent with the constant fraction of clustered Ras. To date, it remains controversial as to which 331 

mechanism mediates Ras multimer formation, including the basic question of whether membrane 332 

nanodomains are involved. We reasoned that, if KRasG12D multimer form in membrane nanodomains – for 333 

example the intermediate and/or the immobilization domains in this case – then the observed fraction(s) 334 

of KRasG12D in either or both the intermediate and the immobile states should also be independent of 335 

expression level, as for the fraction of Ras molecules in multimers (clusters). 336 

To address this question, we induced PAmCherry1-KRasG12D at a range of expression levels using 337 

different Dox concentrations (Fig. 1A). Similar to our previous report12, the expression level of 338 

PAmCherry1-KRasG12D responded well to varying Dox concentrations in the isogenic cells used in this 339 

study, with the protein expression at 0 ng/mL being extremely low (only due to occasional leakage in tetR 340 

suppression) and that at 10 ng/mL about 5-10 fold higher than endogenous KRasG12D. When measured in 341 

terms of protein density at the membrane, the tuning range corresponds to <10 molecules per µm2 at 0 342 

ng/mL Dox to >300 molecules per µm2 at 10 ng/mL Dox.  343 

By comparing estimated model parameters using spt-PALM data of PAmCherry1-KRasG12D at 344 

different Dox concentrations, we found that KRasG12D diffusion properties remained essentially the same 345 

across the range of expression levels investigated (Fig. 6A-B and Fig. 6 – figure supplement 1). This 346 

model invariance is reflected across all conditions: not only was a three-state model optimal for 347 



describing the diffusion of KRasG12D as judged with vbSPT (not shown) and with CDF (Fig. 6 – figure 348 

supplement 2), but the diffusion coefficients of each state, the state occupancies, as well as the transition 349 

probabilities between each pair of states, are indistinguishable within the error bars.  350 

As expected, the net mass flow rates (expressed as the change in state occupancy per time interval) 351 

of KRasG12D within the system also remained the same across all the Dox concentrations (Fig. 6C-D). A 352 

similar observation was made when we acquired the trajectories at 35 ms/frame (Fig.6 – figure 353 

supplement 3). Thus, we concluded that KRasG12D diffusion and trafficking on the membrane remains 354 

constant over the range of tested KRasG12D expression levels. Equivalently, the partitioning of KRasG12D in 355 

each of the three diffusive states – and the corresponding membrane domains – is stable and independent 356 

of KRasG12D protein density on the membrane. This result coincides with the prior observation that the 357 

fraction of Ras in multimers remains constant at widely varying membrane densities17, implying that Ras 358 

multimer formation and nanodomain localization may be correlated processes. 359 

 360 

Discussion 361 

Membrane nanodomains have been implicated in the regulation of many membrane-resident 362 

cellular processes such as Ras signaling1–6, but studying the complex and heterogeneous membrane 363 

compartments in a living cell has remained a challenge. Using spt-PALM and detailed trajectory analysis, 364 

we were able to uncover rich details of how KRasG12D localizes and interacts with the membrane. Our 365 

results suggest that KRasG12D diffusion on the membrane is best recapitulated with a model that comprises 366 

three states – a fast state, an immobile state, and a previously unknown intermediate state. Leveraging the 367 

large number of diffusion trajectories, we were able to map the locations where KRasG12D exhibits specific 368 

diffusion states. These maps revealed membrane nanodomains corresponding to the intermediate and the 369 

immobile states of KRasG12D. The intermediate nanodomains encompass the immobilization sites in a 370 

nested configuration, such that KRasG12D almost always transitions between the fast and the immobile 371 

states through the intermediate state. We also found that KRasG12D membrane diffusion is in a non-372 



equilibrium steady state, with KRasG12D constitutively removed from the membrane through the immobile 373 

sites and replenished as fast diffusing molecules, potentially coupled to KRasG12D trafficking via 374 

endocytosis and recycling. Importantly, partitioning of KRasG12D into the three states remains invariant 375 

over a wide range of KRasG12D expression levels, demonstrating that KRasG12D diffusion and trafficking 376 

through the three mobility states and associated nanodomains is in a maintained, homeostatic condition. 377 

Together, these data start to paint a clear picture of the spatiotemporal dynamics of KRasG12D on the 378 

membrane, providing the basis for understanding the mechanisms of Ras multimer formation and 379 

signaling. 380 

 Based on these findings, we propose a new model for Ras membrane diffusion and trafficking as 381 

shown in Fig. 7. In this model, Ras experiences at least three types of membrane environments: a ‘regular’ 382 

membrane region in which Ras freely diffuses with large step sizes, a ‘transition zone’ or intermediate 383 

domain with increased viscous drag and reduced step size, and within the latter an ‘immobilization’ site 384 

where Ras interacts with relatively static structures or molecules. Both the transition zones and the 385 

immobilization sites have finite lifetimes, some up to minutes, during which freely diffusing KRasG12D 386 

molecules could enter the transition zone, slow down, then either return to the fast state or become 387 

trapped at the immobilization sites. During entrapment, a fraction of the trapped KRasG12D molecules 388 

leaves the plasma membrane to enter the cycle of KRasG12D trafficking. This is in agreement with the 389 

current understanding that the rate of KRasG12D removal from the membrane through endocytosis is a 390 

concentration dependent process, and the localization of KRasG12D at the plasma membrane is an energy 391 

driven, PDEand Arl2 mediated enrichment of KRasG12D in recycling endosomes which collect and 392 

transport KRasG12D back to the plasma membrane50,51. Our work adds important details to this trafficking 393 

model in that the removal of KRasG12D from the plasma membrane likely occurs during the entrapment 394 

phase and its recycling primarily takes place in membrane regions conferring fast mobility. Additionally, 395 

the transient entrapment of KRasG12D could also provide an effective mechanism to locally concentrate 396 

Ras molecules to facilitate multimer formation, which arguably is a critical step for signaling22,53,54. Thus, 397 



the various membrane nanodomains directly influence the mobility, trafficking, and potentially multimer 398 

formation and signaling of KRasG12D, although details of the trafficking and multimer formation processes 399 

are yet to be defined.  400 

The three-state diffusion model proposed in this study refines existing models of KRasG12D 401 

membrane diffusion by introducing a previously unresolved intermediate state and capturing the role of 402 

membrane nanodomains in KRasG12D diffusion. While heterogeneous diffusion properties of KRasG12D 403 

and other Ras isoforms have been reported, the prior studies lacked the throughput or spatiotemporal 404 

resolutions to determine whether two states, namely a fast diffusion state and an immobile state, are 405 

adequate to recapitulate KRasG12D diffusion on the membrane. With the diffusion model defined, we were 406 

able to subsequently demonstrate that the intermediate and immobile states of KRasG12D are each 407 

associated with a distinct membrane domain. The measured sizes of the immobilization and the 408 

intermediate domains of KRasG12D were ~70 nm and ~200 nm, respectively, consistent with previous 409 

notion that nanoscopic membrane domains regulate Ras organization on the membrane. We note that, 410 

although a three-state model best fits our data, the model could still be an over-simplification. Among 411 

other possibilities, both endocytic and non-endocytic mechanisms may contribute to the immobilization 412 

of Ras but cannot be distinguished based on diffusion properties since Ras is immobile in both cases. In 413 

fact, there are also indications of more than one type of intermediate domains judging from the estimated 414 

domain size (Fig. 2F and Fig. 2 – figures supplement 1).   415 

An important feature of the model in Fig. 7 is that the membrane nanodomains associated with 416 

the immobile state of KRasG12D are surrounded by those associated with the intermediate state, creating a 417 

nested configuration between the two nanodomains. A plausible scenario is that the structures that trap 418 

KRasG12D preferentially form in the membrane regions enriched in certain proteins or lipids and/or more 419 

densely packed. In this scenario, KRasG12D would have to travel through the intermediate zone to access 420 

the immobilization structures, explaining the state transition pathway in Figure 2A. This scenario is also 421 

consistent with the observation that the intermediate domains are on average larger in size than the 422 



immobilization domains, and that the two nanodomains have similar lifetimes (to the extent of our 423 

temporal resolution). In support of this hypothetic scenario, a growing body of literature demonstrates the 424 

importance of phosphatidylserine in KRasG12D clustering and activation18,55–57. In addition to the KRasG12D 425 

tail encoding for phosphatidylserine specificity, a significant fraction of phosphatidylserine display slow 426 

motion on the membrane as well56,58.  427 

Aside from the steady state partitioning of KRasG12D in the different membrane domains, our data 428 

also offered important insight into the membrane dynamics of KRasG12D. We measured a constant flow of 429 

KRasG12D from the fast state to the immobile state. Without exchanging KRasG12D with the cytosol, this 430 

directional flow would have caused net loss of KRasG12D from the fast state and accumulation in the 431 

immobile state as described in Figure 4B-C, yet the experimentally observed state configuration (Fig. 2A) 432 

remained stable over time (Fig. 4A). We therefore reasoned that KRasG12D needs to be constantly removed 433 

from the immobile state (‘sink’) and replenished via the fast state (‘source’), potentially coupled to 434 

membrane trafficking such as endocytosis and recycling50,51,59–61, since previous studies have shown that 435 

endocytosis is a primary mechanism for KRasG12D removal from the plasma membrane50. In support of 436 

this, the lifetime of the immobilization domains was estimated to be on the order of 2-5 minutes on 437 

average (Fig. 3A-B), which is typical of many endocytic systems62,63. The exact mechanism of KRasG12D 438 

internalization, however, remains incompletely understood at present.  439 

It is noteworthy that the spatial partitioning of KRasG12D and more generally the diffusion model 440 

were invariant over a broad range of KRasG12D expression levels, which coincides with previous 441 

observations where the clustered fraction of KRas or HRas was independent of the protein expression 442 

level17,53. This corroborates the idea that membrane partitioning of Ras and perhaps many other 443 

membrane resident molecules are in an actively maintained, homeostatic condition. This intriguing 444 

property of certain membrane proteins17,64 has drawn much attention and led to at least two mechanistic 445 

models of multimer formation, one based on self-nucleation17 and the other driven by actomyosin52. Both 446 

mechanisms assumed the different states of the protein on the plasma membrane to be in equilibrium. Our 447 



results argue that the mass exchange between the plasma membrane and the cytosol breaks the 448 

equilibrium and has to be taken into account in order to accurately model the partitioning behavior of 449 

membrane proteins. A clear, mechanistic understanding of this property is important to understand how 450 

Ras functions on the membrane, since the Ras multimers have been strongly implicated in signaling. 451 

Further experimental and computational work along this line is currently underway.  452 

A fundamental albeit implicit result from the present study is the importance of experimental 453 

parameters in accurately determining the diffusion model, a critical step for in-depth analysis of protein 454 

dynamics on the membrane. While there are many different software packages for analyzing spt-PALM 455 

trajectories, the importance of controlling the particle density during image acquisition has not previously 456 

been recognized to our knowledge. Imaging at a per frame particle density of 0.05-0.1 per µm2, which is 457 

typical for single-molecule localization microscopy, yielded varying estimated model parameters in our 458 

early attempts to track KRasG12D with spt-PALM (Fig. 1 – figure supplements 1-5). Using simulations, we 459 

found the source of variability to be a small fraction of misconnected trajectories mostly caused by fast 460 

moving molecules. In order to minimize the trajectory misconnection, we kept the density of activated 461 

PAmCherry1 in each frame to below 0.03 per µm2 at an acquisition rate of 12 ms/frame (Fig. 1 – figure 462 

supplements 2&3). With this precaution, we were able to yield a highly consistent diffusion model from 463 

trajectories acquired in different cells and under different conditions. This was critical to defining a 464 

previously unresolved state with intermediate mobility (D ~ 0.3 µm2/s) and to all subsequent analyses. 465 

We recommend the same precautions to be taken for studies of other membrane molecules. 466 

 In summary, our work sheds new light on how complex nanodomains organize on the membrane 467 

to dictate Ras diffusion and trafficking. The insights gained here offer useful guidance to future 468 

experiments that aim at determining the molecular and structural identities of the Ras-associated 469 

membrane nanodomains and defining the mechanisms of Ras multimer formation and signaling. The 470 

results demonstrate the utility of high-throughput SPT and trajectory analysis in uncovering rich details of 471 



the spatiotemporal dynamics of Ras on the membrane, which should be readily applicable to studies of 472 

other membrane molecules or processes in cellular compartments. 473 

 474 

  475 



Materials and methods 476 

Key Resources Table 

Reagent type 
(species) or 
resource 

Designation Source or 
reference 

Identifiers Additional 
information 

cell line 
(Homo-
sapiens) 

U2OS ATCC RRID: 
CVCL_0042 
 
ATCC Cat#: 
HTB_96 

Parent cell line 
for generating 
U2OS-tetR 

cell line 
(Homo-
sapiens) 

U2OS-tetR This paper. RRID: 
CVCL_XZ88 

Single U2OS 
clone stably 
expressing the 
tet repressor 
(tetR).  

cell line 
(Homo-
sapiens) 

U2OS-tetR 
PA-
mCherry1-
KRas G12D 

This paper. RRID: 
CVCL_XZ89 

Single U2OS 
cell clone stably 
expressing 
PAmCherry1-
KRasG12D under 
Doxycycline 
regulation 

antibody anti-RAS 
(mouse 
monoclonal) 

Abcam RRID: 
AB_941040 
Abcam Cat#: 
ab55391 

Mouse 
monoclonal 
antibody  

antibody anti-beta-
Tubulin 
(mouse 
monoclonal) 

Thermo 
Fisher 

RRID: 
AB_86547 
ThermoFisher 
Cat#: 32-2600 

Mouse 
monoclonal 
antibody  

software, 
algorithm 

vbSPT Persson  
et al. 
(reference 
36) 

RRID 
Pending 

Algorithm for 
extracting 
diffusion 
parameters 
from SPT data 

software, 
algorithm 

Manager Invitrogen RRID: 
SCR_000415 

Micro-manager 
open source 
microscopy 
platform 



Cell culture. KRasG12D was genetically fused to PAmCherry1, a red fluorescent protein, to ensure 477 

high labeling specificity and efficiency. The PAmCherry1-KRasG12D coding sequence is placed under a 478 

CMV promoter regulated by the TetOn operon. The construct was transduced via lentivirus into an 479 

isogenic U2OS-tetR cell line (RRID CVCL_XZ88) that constitutively expresses the tet repressor (tetR); 480 

the cell line was derived from the parent U2OS (human osteosarcoma, ATCC; RRID CVCL_0042; 481 

verified via third party STR analysis). Single cell clones were subsequently isolated and screened to yield 482 

isogenic cell lines (RRID CVCL_XZ89) that express the PAmCherry1-KRasG12D fusion protein under 483 

doxycycline (Dox) regulation. Cell lines were tested for mycoplasma regularly using standard in-house 484 

PCR test. 485 

Western blotting. Cells were cultured in 6-well plates for 24-48 hours before lysing with a RIPA 486 

buffer (Thermo Scientific, 89901) supplemented with an inhibitor cocktail (ThermoFisher, 88668). Cell 487 

lysates were then harvested, sonicated, and centrifuged. The supernatant is assayed using BCA and 488 

analyzed using a Bris-Tris gel (4-12%, ThermoFisher NP0323). Protein transfer was performed on a low 489 

fluorescence PVDF membrane (EMD Millipore, IPFL10100). The membrane was then immunostained 490 

for fluorescence detection using a Li-COR Odyssey. The antibodies used for this study were: KRas 491 

(mouse monoclonal, Abcam ab55391, RRID AB_941040, used at 1:200 dilution), Tubulin (mouse 492 

monoclonal, ThermoFisher 32-2600, RRID AB_86547, used at 1:500 dilution).  493 

Cell treatment for single particle tracking. Cells were grown in fluorobrite DMEM (Thermo 494 

Fisher Scientific A1896701) with 10% FBS in 8-well Lab-Tek chambers and Dox-induced for 1.5 days 495 

before imaging. Cells were serum starved for at least 12 hours prior to data acquisition.  496 

Single-particle tracking was performed on a custom single-molecule localization microscopy 497 

setup, as previously described65. Briefly, the setup was constructed around a Nikon Ti-U microscope, 498 

equipped with a high numerical aperture (NA) objective lens (Nikon 60x, NA=1.49 oil immersion) for 499 

total internal reflection fluorescence (TIRF) imaging, lasers emitting at 405 nm (Coherent, OBIS) and 561 500 

nm (Opto-Engine) for photoactivation and excitation, respectively, and an electron-multiplied charge-501 



coupled display (EM-CCD, Andor iXon+) for single molecule detection. All image acquisition was done 502 

using micro-mananger66 (RRID SCR_000415) and processed using in-house Matlab scripts65.   503 

Particle density optimization. We found that particle densities higher than 0.03 µm-2 per frame 504 

under our experimental conditions (12 ms/frame with the fastest diffusion rate at ~1 µm2/s) led to 505 

occasionally misconnected trajectories, and that even a small fraction of such misconnected trajectories 506 

could lead to incorrect model outputs with vbSPT (Fig. 1 – figure supplements 2,3, &5). In addition, the 507 

threshold for maximum displacement between adjacent frames also had an impact on trajectory 508 

misconnection, although to a lesser extent for the values tested using simulated trajectories (Fig. 1 – 509 

figure supplements 2&3). Thus, for diffusion model construction, we chose to use a high frame rate (12 510 

ms/frame) and a low particle density (< 0.03 µm-2) to eliminate misconnected trajectory segments while 511 

maintaining a sufficient number of trajectories. However, it is beneficial to obtain more trajectories to 512 

accurately infer the model parameters with vbSPT, especially for the transition probabilities36. As 513 

demonstrated in Figure 6 – figure supplement 1, the diffusion coefficients and the occupancies typically 514 

converged with only a few thousand trajectories, but the transition probabilities required significantly 515 

more trajectories to converge. Thus, we usually acquired spt-PALM data at higher particle densities once 516 

the model size has been defined; for these datasets, we could safely enforce a three-state model during 517 

vbSPT data analysis, since the diffusion model should not depend on the rates of frame acquisition rate 518 

and photoactivation. This strategy allowed more flexibility in spt-PALM data acquisition and robustness 519 

in the subsequent analyses. 520 

Trajectory connection for single particle tracking. We constructed single-molecule diffusion 521 

trajectories of PAmCherry1-KRasG12D by connecting the centroid positions of the same particles in 522 

successive frames. Particles in adjacent frames were deemed to be the same particle if their centroids 523 

were within a certain threshold distance. To define the threshold distance, we first constructed the 524 

trajectories using a large (~2,000 nm) distance, from which a step size histogram could be obtained (see 525 

Fig. 1 – figure supplement 3). The step size histogram from PAmCherry1-KRasG12D typically consists of 526 



two segments; signal and noise. The first segment comprises the signal with the first peak around ~70 nm 527 

and extending to ~500 nm, and all step sizes beyond ~500 nm was attributed to noise originating from 528 

misconnected trajectories generated by the unrealistically large threshold distance. Based on this 529 

histogram, we reconstructed the diffusion trajectories using 500 nm as the threshold distance for 12 ms 530 

frame acquisition, and 800 nm for 35 ms frame rate movies (using the same method). A new step size 531 

histogram was then obtained, which was essentially identical to the first segment of the original step size 532 

histogram, confirming that the new threshold distance eliminated most of the misconnected trajectories. 533 

The step size histograms of trajectories obtained under the same conditions were also highly consistent, 534 

allowing us to set the same threshold value for each condition. Trajectories were terminated if multiple 535 

particles were found within the threshold distance in the next frame. Further, all movies acquired at 12 ms 536 

frame rate had the additional constraint of having fewer than 0.03 particles/µm2 for every frame to lower 537 

the chance of misconnecting two different particles in adjacent frames. Thus, all resulting trajectories 538 

were constructed without ambiguity.  539 

2D Markov simulation. We relied on 2D simulations that mimic experimental observations for 540 

both experiment optimization and as controls for some of the analysis. Simulations were used to 541 

determine the thresholds used for trajectory synthesis (particle density threshold as shown in Fig. 1 – 542 

figure supplement 2, and connection distance threshold as shown in Fig. 1 – figure supplement 3), as well 543 

as a negative control to test the null hypothesis for spatial clustering (Figs. 2 & 3) and equilibrium state 544 

analysis (Fig. 4). 545 

The inputs to the simulations were experimentally derived diffusion parameters: number of 546 

trajectories, diffusion coefficients, occupancies, transition matrix, frame rate, and the trajectory density. 547 

The trajectory density and the number of trajectories are used to determine the width of the simulation 548 

space. At the start of the simulation, every particle is randomly assigned a coordinate and a state based on 549 

the occupancies. Once a state is assigned, particles are assigned new coordinates by drawing 550 

displacements for each dimension from the corresponding X ~ N(0, 2𝐷𝑡), where each state has a different 551 



diffusion coefficient. At the next time step, a new state is randomly assigned to every particle based on its 552 

current state and the transition probability matrix. This process is repeated for the total simulation time. 553 

When the simulation was used as the negative control (Figs. 2, 3 & 4), the simulation was run for every 554 

single movie acquired and the results were compared to the experiment. 555 

State assignment and averaging. States for each trajectory segment were assigned using vbSPT 556 

(contained in field est2.sMaxP, refer to the vbSPT manual). The state assignment is based on trajectory 557 

displacements, not the coordinates (e.g. if a trajectory has 3 coordinates, then 2 states are returned for the 558 

2 steps). In order to prevent over counting for the pair correlation analysis (Figs. 2 & 3), in the case of a 559 

single molecule staying in the same domain for multiple frames, we averaged all of the coordinates 560 

(including both ends) that were assigned the same state for consecutive time points in a single trajectory. 561 

Pair correlation function. Pair correlation function, or g(r), in general, measures the deviation of 562 

the particle density from the expected value from a reference particle as a function of distance. More 563 

specifically, g(r) was calculated for each particle by counting the number of other particles within a 564 

circular shell at distance of r and r + 10 nm and dividing by the expected number of particles assuming 565 

uniform distribution. Therefore, when the observed number of particles for a given distance is equal to the 566 

expected number of particles given complete spatial randomness, g(r) = 1 and signifies random 567 

distribution of particles. Accordingly, g(r) > 1 indicates clustering behavior since there are more observed 568 

particles around each particle than expected, and g(r) < 1 represents cases where there are fewer particles 569 

than expected. Every movie was sliced into non-overlapping time segments (1, 5, 10, 20 min) and the 570 

average position for each state segment was extracted (as described in State Classification and Averaging) 571 

such that every coordinate represented a continuous track for an individual particle in a domain. Therefore, 572 

the coordinates used to calculate the pair correlation function represented either different particles that 573 

visited the same domain or the same particle that left the domain and returned at a later time. The 574 

resulting coordinates were separated into each of the three states, and the g(r) was calculated for the 575 



coordinates of a given state within the given time slice. In cross pair correlation function analysis, g(r) 576 

was calculated for a given pair of different states.  577 

Statistical analysis. Sample size is shown for each figure in the figure captions as ‘n’ and was 578 

not predetermined. All results on model parameters and subsequent quantifications such as mass-flow 579 

rates are shown as arithmetic mean ± 95% confidence interval. Spt-PALM datasets with insufficient 580 

number of trajectories to fully fit up to a 10-state model (e.g. Fig. 1E) using vbSPT were discarded. The 581 

full raw dataset, including an outlier with abnormally long average trajectory length and all the discarded 582 

datasets are presented in Figure 6 – figure supplement 1. 583 

 584 
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Figure Captions 599 

Figure 1. Defining the membrane diffusion model of KRasG12D using spt-PALM and vbSPT. 600 

A)  Western blot showing the increasing expression level of PAmCherry1-KRasG12D with increasing 601 

doxycycline (Dox) concentration; 602 

B)  Example trajectory map of membrane KRasG12D acquired at 12 ms frame rate using TIRF 603 

illumination. Each line represents an individual Ras molecule coordinate over time acquired for the 604 

duration of the movie (20 minutes). Only a subset of all trajectories is plotted. Scale bar: 10 m; 605 

C)  Expanded view of the boxed region in B). Only a subset of all of the trajectories in the boxed region 606 

is shown to allow unhindered view of individual Ras trajectories. Inset shows a KRasG12D trajectory 607 

displaying multiple diffusion states. Scale bars: main figure: 1 m; inset: 200 nm; 608 

D)  Determining the optimal model size for KRasG12D membrane diffusion using CDF fitting, with 609 

smaller root mean squared error indicating a better model (n=8); 610 

E)  Determining the optimal model size for KRasG12D membrane diffusion using vbSPT, with smaller 611 

absolute model score (i.e., score of zero being the best global model) indicating a better model (n=5); 612 

F)  Comparing the model parameters obtained from CDF fit and vbSPT, both using a three-state model 613 

for KRasG12D membrane diffusion. State transition probabilities were not inferred from CDF fit and 614 

therefore not included in the comparison.  615 

 Error bars are 95% confidence intervals (CIs); 616 

 617 

Figure 1 – figure supplement 1. Trajectory length histograms. 618 

 619 

Figure 1 – figure supplement 2. Impact of particle density on diffusion model reconstruction.  620 

Test data were generated by simulating diffusion trajectories of two separate populations of particles 621 

with no transitions exhibiting diffusion coefficients of 0.1 and 1 µm2s-1, and occupancies of 0.3 and 622 

0.7, respectively (see Methods). About 6-10k trajectories were synthesized (depending on the particle 623 



density) with connection distance threshold of 600 nm and analyzed using vbSPT (B-D) or CDF (E-624 

G). A) Histograms of step sizes at 0.03, 0.04, and 0.05 particles/µm2 per frame; B-D) show the vbSPT 625 

outputs on simulated trajectories at 0.03, 0.04, and 0. 05 particles/µm2, returning 2, 3, and 3 state 626 

models respectively, with the model parameters displayed next to each state; E) Goodness of CDF 627 

fitting at different model sizes, as well as the diffusion coefficients (F) and state occupancies (G) 628 

obtained from fitting to a 2-state model. 629 

 630 

Figure 1 – figure supplement 3. Impact of trajectory connection distance setting on vbSPT model 631 

output.  632 

The connection distance threshold specifies the search radius around each particle in the current 633 

frame for its possible locations in the next frame. This is a critical parameter for linking particle 634 

coordinates into trajectories but is initially unknown. To address this challenge, we used simulated 635 

trajectories at 0.03 particles/µm2 per frame as in Figure 1 – figure supplement 1, which comprises a 636 

two-state system with diffusion coefficients at 0.1 and 1 µm2/s. We first synthesized trajectories using 637 

an unrealistically large connection distance threshold of 2000 nm, and examined the step size 638 

distribution of the resulting trajectories (A, main panel), where it became clear that the vast majority 639 

of the molecules moved less than 500 nm between frames. Based on this, we chose 400 nm, 500 nm, 640 

and 600 nm as the connection distance thresholds and resynthesized the trajectories (A, inset); the 641 

histograms essentially overlap except at the large step sizes (blue: 600 nm threshold; red: 500 nm 642 

threshold; and yellow: 400 nm threshold). B-C) Comparison of the vbSPT model outputs on 643 

trajectories synthesized using the three connection distance threshold values shows that vbSPT was 644 

able to pick the correct model size (of 2) at all three settings. However, setting the threshold value at 645 

400 or even 500 nm caused a noticeable truncation in the step size histogram (as shown in A) and 646 

resulted in lower diffusion coefficients for the fast state while the 600 nm threshold returned the 647 

correct diffusion coefficient; the slow state was not affected. Interestingly, the threshold setting had 648 



minimal impact on the resulting outputs for state occupancies (C). These settings were used to guide 649 

the trajectory synthesis based on the experimental spt-PALM data. 650 

 651 

Figure 1 – figure supplement 4. Impact of localization error on vbSPT model output. 652 

To ensure that the three-state model was not a result of insufficient spatial precision, we have 653 

performed analysis on simulated trajectories based on a two state model comprising an immobile state 654 

(diffusion coefficient or D = 0.02 m2/s) and a fast state (D = m2/s). Different levels of localization 655 

error (0 nm, 20 nm, 40 nm, 80 nm, and 100 nm) were added to the simulated trajectories and analyzed 656 

with vbSPT. The resulting model scores are shown in (A), where the right panel is the zoom-in of the 657 

boxed area in the left panel; (B) and (C) show the impact of localization errors on the resulting 658 

diffusion coefficients and transition probability measurements, respectively. 659 

 660 

Figure 1 – figure supplement 5. vbSPT model output on experimental spt-PALM datasets acquired 661 

at high particle densities.  662 

When spt-PALM datasets of PAmCherry1-KRasG12D in U2OS cells were acquired at particle densities 663 

higher than 0.03 per m2 per frame (typically around 0.05 – 0.1 per m2 per frame), vbSPT outputs 664 

diffusion models of varying sizes, many reaching 6 or more states (A, B). However, a histogram of 665 

the diffusion coefficients of all detected states shows 3 clusters, indicating that a three-state model is 666 

still likely the best to recapitulate KRasG12D diffusion (C). Note that the three clusters are centered at 667 

diffusion coefficient values similar to those obtained with vbSPT or CDF analysis of spt-PALM 668 

datasets acquired at low particle densities (<0.03 particles per m2 per frame) as in Figure 1F. All 669 

data were taken at a frame rate of 35 ms/frame. 670 

 671 



Figure 1 – figure supplement 6. Photon yield and localization accuracy at the different frame rates 672 

used in this work.  673 

Photon yields were calculated based on the integrated intensity above background across a 9×9 pixel 674 

area for each single-molecule image; the pixel intensity units were converted to the number of 675 

photons using hardware specific gain conversion factors. On average, the photon yield for single 676 

PAmCherry1 molecules at 12 ms and 35 ms frame acquisition time was ~56 photons and ~301 677 

photons, corresponding to ~26 nm and ~10 nm localization precisions, respectively. 678 

 679 

Figure 2. KRasG12D diffusion states are associated with distinct membrane domains.  680 

A)  The three-state model for KRasG12D diffusion with F, N, and I, representing the fast, the intermediate, 681 

and the immobile states, respectively. Model parameters were inferred using vbSPT on spt-PALM 682 

datasets with at least 30,000 trajectories obtained on cells induced with 2 ng/mL Dox. The arrows 683 

indicate state transitions (i.e. the probability of switching to a different state in the next frame) and the 684 

area of the circle and the thickness of the arrows are both roughly scaled to reflect their relative 685 

values.  All parameters were derived from data acquired at 12 ms frame interval except for the 686 

diffusion coefficient of the immobile state, which was inferred from data taken at 35 ms frame 687 

interval. Error bars are 95% CIs (n=8); 688 

B)  Step size histograms for immobilization events (red), one step before or after the immobilization 689 

event (blue), and all other steps (black). A diffusion step was part of an immobilization event if 690 

immobile state was assigned to that trajectory segment by vbSPT (n=14, see Methods); 691 

C)  Map of the membrane locations where KRasG12D molecules exhibit specific diffusion states (referred 692 

to as state coordinates) within a one-minute duration (taken from a spt-PALM dataset of ~20 min 693 

total duration). Red, blue, and green dots represent locations of the immobile, the intermediate, and 694 

the fast states, respectively, with each rendered circles scaled proportionally to the mean diffusion 695 

coefficient for the state;  696 



D)  Pair correlation analysis on the averaged state coordinates across multiple, one-minute segments of 697 

longer spt-PALM datasets. The same color coding as in B) was used to distinguish the three states. 698 

For this analysis, molecules in the same diffusion state in successive frames only contributed a single, 699 

averaged state coordinate. The average state coordinates of all molecules captured within a one-700 

minute segment were used for correlation analysis, and the results from multiple one-minute 701 

segments were averaged to yield the plot. The negative control was generated through a 2D 702 

Markovian simulation, and the resulting trajectories were analyzed the same as the experiment (see 703 

Methods); 704 

E)  Cross correlation analysis between pairs of diffusion states. The state coordinates were processed the 705 

same way as in D) prior to the correlation analysis, except that the correlation was performed between 706 

two different diffusion states. The negative control was generated through a 2D Markovian 707 

simulation, and the resulting trajectories were analyzed the same as the experiment (see Methods);  708 

F)  Estimating the lower bound size for the immobile and the intermediate domains. The estimation was 709 

based on the maximum distance traveled by the molecule while in the same diffusion state. 710 

*D-F) The main panel shows results  inferred from data taken at 35 ms frame intervals for improved 711 

localization precision. The inset shows the data taken at 12 ms/frame (n=14 for 12 ms and n=7 for 35 712 

ms datasets). 713 

 714 

Figure 1 – source data 1. Excel sheet for data used for generating panels D, E, and F.  Data for 715 

individual panels are included as separate tabs in the excel file.  716 

 717 

Figure 2 – figure supplement 1. Spatial analysis of KRasG12D membrane domain properties using 718 

data acquired at 35 ms per frame.  719 

As spt-PALM data acquired at 35 ms/frame showed better single-molecule localization accuracy 720 

than those at 12 ms/frame, we aimed to perform similar analysis of the domain properties to that 721 

shown in Figures 2 & 3 using data taken at 35 ms/frame (n=7).  722 



A)  Step size histograms for the immobilization events (red), the steps directly before and after the 723 

immobilization events (blue), and all other steps (black);  724 

B)  Pair correlation analysis on the averaged positions of the three states for one-minute temporal slices 725 

of the raw spt-PALM image stack (see Methods), shows the same trend as observed with data taken 726 

at 12 ms/frame acquisition rate. Note the somewhat reduced spatial correlation for the intermediate 727 

domain (state) compared with that obtained with data taken at 12 ms/frame (Figure 2D);  728 

C)  Cross-correlation analysis between the three membrane domains, performed on the same one-minute 729 

slices of the raw spt-PALM image stack; D-F) Peak amplitudes of autocorrelation g(r) at different 730 

time intervals. The steadily decreasing g(r) with increasing time intervals indicates the lifetimes of 731 

the immobile and the intermediate domains to be on the order of minutes. 732 

 733 

Figure 2 – figure supplement 2. Temporal evolution of the membrane domains associated with each 734 

KRasG12D diffusive state.   735 

The three membrane domains associated with the immobile, intermediate, and fast states of 736 

KRasG12D are labeled with red, blue, and green, respectively. The domain maps were generated using 737 

the same approach as described for Figure 2C (12 ms frame interval), with each panel representing 738 

the domain map within a 1 min duration with 0.5 min overlap. Thus, A-C represent total of 3.5 min 739 

time period. Of note, the maps were generated without position averaging, and therefore each 740 

trajectory contributes 2 or more points (including the beginning and the end) in the corresponding 741 

plot. Scale bars, 2 µm. See also Video 2. 742 

 743 

Figure 2 – source data 1. Excel sheet for data used for generating panels B, D, E, and F.  Data for 744 

individual panels are included as separate tabs in the excel file.  745 

 746 

 747 



Figure 3. Temporal properties of the KRasG12D-associated immobile and intermediate domains 748 

A-C)  Pair correlation analysis of the state coordinates at different time intervals (1, 5, 10, and 20 min). 749 

The amplitude (maximal g(r) value) of the pair correlation function at each time interval was 750 

plotted in the main panel with the raw pair correlation plots shown in the inset. A-C show pair 751 

correlation functions of averaged coordinates for the immobile, the intermediate, and the fast states, 752 

respectively (see Methods). The negative control in each case was generated through a 2D 753 

Markovian simulation, and the resulting trajectories were analyzed the same as the experiment (see 754 

Methods); 755 

D)  Deflection angle analysis on KRasG12D diffusion trajectories separated by diffusion states (red: 756 

immobile; blue: intermediate; green: fast). The deflection angle was calculated as the angle between 757 

two successive segments of the trajectory while the molecule was in the same diffusion state. 758 

*Results shown for data acquired at 12 ms/frame (n=14). 759 

 760 

Figure 3 – source data 1. Excel sheet for data used for generating all the panels.  Data for individual 761 

panels are included as separate tabs in the excel file.  762 

 763 

Figure 4. KRasG12D diffusion on the cell membrane is in a non-equilibrium steady state 764 

A)  Time invariance of the KRasG12D diffusion model. A single ~20 min spt-PALM dataset was 765 

segmented into four quarters with each quarter containing ~10,000 trajectories (in ~5 mins), each 766 

analyzed separately using vbSPT to obtain the model parameters such as the diffusion coefficients 767 

(upper panel) and the state occupancies (lower panel). Results from multiple spt-PALM datasets 768 

were grouped and plotted (n=4);  769 

B)  Temporal evolution of the KRasG12D diffusion model in simulated runs. The system was setup 770 

according to the experimental model parameters (number of states, state occupancies, diffusion 771 

coefficients, and state transition rates) as shown in Figure 2A. The system was then allowed to 772 

evolve based on the input, with the new state occupancies recorded every time step (12 ms) and 773 



plotted (see Methods). Similar to Figure 2A, only movies with minimum of 30,000 trajectories were 774 

simulated (n=8); 775 

C)  Table summarizing the calculated, simulated, and experimentally observed occupancies for each of 776 

the states.  777 

*All error represents 95% CIs. 778 

 779 

Figure 4 – figure supplement 1. Validating vbSPT output accuracy on simulated trajectories using 780 

different model parameter inputs.   781 

We simulated steady state systems using three states, with diffusion coefficients of 0.08, 0.26, 0.84 782 

µm2/s and the same occupancy for each state (0.33). The state transition probabilities used for (A) 783 

were pii = 0.8 and pij = 0.1, which give rise to equal mass flow between each pairs of states; those 784 

used for (B) were p12 = p23 = p31= 0.1 (counter-clockwise) and p13 = p32 = p21 =0.8 (clockwise). Each 785 

simulation generated 5000 trajectories, which were then analyzed using vbSPT; each model was 786 

simulated 5 times, and the exemplary models with averaged model parameters are shown on the 787 

right. The resulting diffusion parameter outputs confirm that vbSPT was able to accurately determine 788 

parameters for both balanced (A, right) and non-balanced (B, right) state transitions. Error bars show 789 

95% confidence interval. 790 

 791 

Figure 4 – source data 1. Excel sheet for data used for generating all the panels.  Data for individual 792 

panels are included as separate tabs in the excel file.  793 

 794 

Figure 5. Directional mass flow between KRasG12D diffusion states. 795 

A)  Net mass flow per state, defined as the difference between the influx (positive) and the outflux 796 

(negative) for each state and expressed as the fraction (of total KRasG12D population) entering 797 

(positive, flow in) or leaving (flow out, negative) the state per time interval; 798 



B)  Ratio of in- and outflux for each state. A ratio of one (dashed line) represents equal in- and outflux 799 

for the state, greater than one represents more influx than outflux, and less than one represents net 800 

outflux of mass from the state;  801 

C)  Net mass flow per arm (pair of states) in the KRasG12D diffusion model (Figure 2A). F to N and N to 802 

I are not significantly different. The states were ordered in a clock-wise direction, and the net mass 803 

flow in the direction was calculated as the difference between forward and backward mass flows, 804 

with a positive value indicating net flow in the indicated direction and a negative value the opposite 805 

direction;  806 

D)  Model for KRasG12D trafficking between the diffusion states and between the membrane system and 807 

the environment (cytosol). Arrows indicate the directional mass flow, and the dashed line represents 808 

unknown mechanisms connecting the fast and the immobile states.   809 

*All error bars are 95% CIs (n=22). 810 

 811 

Figure 5 – source data 1. Excel sheet for data used for generating panels A, B, and C.  Data for 812 

individual panels are included as separate tabs in the excel file.  813 

 814 

Figure 6. KRasG12D diffusion properties remain constant over a broad range of expression levels 815 

Spt-PALM trajectories of KRasG12D were acquired at 12 ms/frame after inducing the cells at 0, 2, 5, 816 

and 10 ng/mL Dox for 36-48 hours, and the diffusion models were inferred as described previously 817 

using vbSPT. All aspects of the diffusion model discussed earlier, including diffusion coefficients 818 

(A), state occupancies (B), net mass flow per state (C), and net mass flow per arm (pair of states, D) 819 

at the different Dox concentrations were analyzed and compared. Error bars represent 95% CIs 820 

(n=12 for 0 ng/mL Dox, n=22 for 2 ng/mL Dox, n=30 for 5 ng/mL Dox, and n=18 for 10 ng/mL 821 

Dox). 822 

 823 



Figure 6 – figure supplement 1. vbSPT model outputs from KRasG12D diffusion trajectories 824 

acquired at different conditions (frame rate, total number of trajectories, and Dox concentration).  825 

All experimental spt-PALM data on PAmCherry1-KRasG12D (in U2OS cells) acquired with 12 or 35 826 

ms frame acquisition times and under 0, 2, 5, or 10 ng/mL Dox concentrations were pooled (symbols 827 

as indicated), and vbSPT outputs of the diffusion coefficients (A), state occupancies (B), and state 828 

transition probabilities (C) were plotted against the total number of trajectories. As shown in (A) and 829 

(B), the diffusion coefficients and the occupancies typically converge relatively quickly at a few 830 

thousand trajectories. Additionally, the diffusion coefficients derived from datasets obtained at 35 831 

ms/frame are consistently lower than those obtained with 12 ms/frame datasets, a result of both 832 

localization precision (particularly for the immobile state) and trajectory smearing (predominantly 833 

for the faster diffusive states). Transition probabilities (C) required more trajectories to converge. 834 

However, all model parameters converged at similar values regardless of Dox concentration (i.e., 835 

KRasG12D expression level). There are a total of 82 data points for the 12 ms dataset (n=12 for 0 836 

ng/mL Dox, n=22 for 2 ng/mL Dox, n=30 for 5 ng/mL Dox, and n=18 for 10 ng/mL Dox), and 18 837 

data points for the 35 ms frame rate (n=7 for 2 ng/mL Dox and n=11 for 5 ng/mL Dox). 838 

 839 

Figure 6 – figure supplement 2. A three-state model remains optimal for describing KRasG12D 840 

diffusion over a broad range of expression levels.  841 

The root mean squared error shown here is for CDF fitting of spt-PALM trajectories obtained at 0-10 842 

ng/mL Dox (n=12 for 0 ng/mL Dox, n=22 for 2 ng/mL Dox, n=30 for 5 ng/mL Dox, and n=18 for 843 

10 ng/mL Dox), with all trajectories acquired at optimal conditions (<0.03 particles/µm2 per frame 844 

and frame acquisition time 12 ms/frame). CDF fitting was used to fit data to one, two, three, and four 845 

state models, and the residual errors were calculated (as in Fig. 1D). 846 

 847 



Figure 6 – figure supplement 3. Net mass flow between KRasG12D diffusion states is independent of 848 

expression level.  849 

Net flow analysis on datasets acquired at 35 ms/frame from cells induced to express PAmCherry1-850 

KRasG12D at 2 or 5 ng/mL Dox. 851 

 852 

Figure 6 – source data 1. Excel sheet for data used for generating all the panels.  Data for individual 853 

panels are included as separate tabs in the excel file.  854 

 855 

Figure 7. Proposed model for membrane nanodomains regulating KRasG12D mobility and 856 

trafficking. 857 

For KRasG12D, the cell membrane comprises of at least three different compartments conferring each 858 

of the three diffusion states of KRasG12D, namely the fast (and free), the intermediate, and the 859 

immobile diffusion states, depicted as green, blue, and red regions, respectively. The membrane 860 

compartments associated with the immobile and the intermediate states of KRasG12D are nanoscopic 861 

membrane structures. KRasG12D is continuously removed from the immobile state, some of which 862 

may be mediated via endocytosis. Internalized KRasG12D molecules are eventually transported back 863 

to the membrane as fast diffusing species through incompletely understood recycling processes. 864 

KRasG12D immobilization domains could locally enrich KRasG12D molecules to facilitate KRasG12D 865 

multimer formation and potentially signaling. The arrows in the legend reflect net flow between each 866 

state. 867 

Video 1. Clip of a raw spt-PALM video showing PAmCherry1-KRasG12D diffusion on U2OS cell 868 

membrane. Data acquired at 35 ms/frame. Cells were induced with 5 ng/mL doxycycline before imaging. 869 

 870 

Video 2. Time-lapse (1 min/frame) video of the domain map calculated from individual trajectories 871 

within each substack. Red: immobilization domains (sites); blue: intermediate domains; green: fast 872 

(free) domains. The image area is around 10×10 m2.  873 
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Occupancy (fraction) 
vbSPT CDF fit 

State 1 0.13 ± 0.02 0.21 ± 0.14 
State 2 0.33 ± 0.07 0.39 ± 0.04 
State 3 0.53 ± 0.08 0.40 ± 0.11 

Diffusion Coefficients (μm2/s) 
vbSPT CDF fit 

State 1 0.08 ± 0.01 0.08 ± 0.02 
State 2 0.27 ± 0.02 0.28 ± 0.06 
State 3 0.81 ± 0.05 0.87 ± 0.08 
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0.53 ± 0.09 0.24 ± 0.04 0.23 ± 0.07 

 Simulated 
Equilibrium Occupancy 

 
0.50 ± 0.09 0.24 ± 0.04 0.25 ± 0.07 

 Observed Steady State 
Occupancy 

 
0.11 ± 0.02 0.31 ± 0.03 0.58 ± 0.05 
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Figure  1 - Figure Supplement 4 (Lee et al.)
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a 
three-state model is still likely the best to recapitulate KRas diffusion (C). Note that the three clusters are 
centered at diffusion coefficient values similar to those obtained with vbSPT or CDF analysis of spt-
PALM datasets acquired at low particle densities (<0.03 particles per m2 per frame) as in Figure 1F, and 
are especially close to the diffusion coefficients acquired at 35 ms frame rate shown in Supplementary 
Figure 4A. All data were taken at 35 ms/frame. 
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D = 0.08 ± 0.00 μm2 s-1

Occu. = 0.33 ± 0.01

state 2 
D = 0.25 ± 0.02 μm2 s-1 

Occu. = 0.33 ± 0.02 

state 3 
D = 0.83 ± 0.04 μm2 s-1

Occu. = 0.34 ± 0.02

B state 1 
D = 0.08 ± 0.01 μm2 s-1

Occu. = 0.32 ± 0.04

state 2 
D = 0.25 ± 0.02 μm2 s-1

Occu. = 0.33 ± 0.02 
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Figure  4 - Figure Supplement 1 (Lee et al.)
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