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ABSTRACT  Stochastic simulation can make the molecular processes of cellular control more vivid than the traditional
differential-equation approach by generating typical system histories, instead of just statistical measures such as the mean and
variance of a population. Simple simulations are now easy for students to construct from scratch, that is, without recourse to
black-box packages. In some cases, their results can also be compared directly to single-molecule experimental data. After
introducing the stochastic simulation algorithm, this article gives two case studies, involving gene expression and error correction,
respectively. For gene expression, stochastic simulation results are compared to experimental data, an important research
exercise for biophysics students. For error correction, several proofreading models are compared to find the minimal components
necessary for sufficient accuracy in translation. Animations of the stochastic error correction models provide insight into the
proofreading mechanisms. Code samples and resulting animations showing results are given in the online supplement.

I INTRODUCTION

Physical processes unfold over time. Our minds grasp physical mechanisms largely via narrative. So it is not surprising that
some of the most vivid physics demonstrations also play out over time. Simulations of physics that unfold over time are similarly
powerful; simulations created by the student can be best of all. This view is gaining ground in introductory courses (1), but the
benefits of animated simulation extend farther than this. Here we wish to show that the behavior of strongly nonequilibrium
statistical systems can be illustrated via stochastic simulations that are simple enough to serve as undergraduate projects.
Recently developed, free, open-source programming resources sidestep some of the laborious coding chores that were once
required for such work. In particular, we believe that the error-correction mechanism known as kinetic proofreading can be more
clearly understood when a student views typical stochastic temporal sequences, as opposed to solving a set of deterministic rate
equations (or even more complicated approaches involving first-passage times etc.). Coding this and other simple processes also
opens the door for the student to study systems that are too complex for the rate-equation approach to yield insight.

Il SCIENTIFIC AND PEDAGOGICAL BACKGROUND
LA Double-well hopping

Students are often told that a simple chemical reaction, for example isomerization of a macromolecule, can be regarded as
a barrier-passing process. A micrometer-size bead in a double optical trap serves as a mesoscopic model system with this
character (2), and it is well worthwhile for students to watch it undergo a few dozen sharp transitions in between episodes of
constrained Brownian motion near its two stable positions (see supplementary video 1). A simple model for this behavior states
that the hopping transitions occur at random times drawn from an exponential distribution. That is, many rapid transitions are
interspersed with a few long pauses. Sect. [II.A below will discuss a simple simulation of this process.

Il.B Birth—death process

Sect. I11.B will generalize from situations with essentially only one kind of transition (or two symmetric kinds), to the more
interesting case where several inequivalent choices are possible, and where the relevant transition probabilities depend on the
current state. This general situation can describe a chemical reaction that requires, and depletes, molecules of some substrate.

Most science students know that living cells synthesize each of their messenger RNAs (mRNAs) from a single copy (or a
small fixed number) of the corresponding gene. Some genes are constitutive (unregulated), and we model these with a constant
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rate of mRNA synthesis. Once a mRNA transcript has formed, it has a limited lifetime until it is degraded by other cellular
machinery. We assume that this process, too, relies on chance encounters with degradation enzymes. Each of many species of
mRNA must all share the attentions of a limited number of degradation enzymes, so each mRNA copy has a fixed probability
per unit time to be removed from the system.

The physical hypotheses in the preceding paragraph amount to a model called the “birth—death process,” which has many
other applications in physics and elsewhere. Similarly to a one-dimensional (1D) random walk, we characterize the system’s
state by an integer, in this case the population size of the mRNA of interest. Synthesis is a transition that increases this number,
with a fixed probability per unit time kg (called the “mean rate” of synthesis). Degradation is a transition that decreases it,
with a probability per unit time that is the current population n times another constant k4 (the “rate constant” for degradation).
Sect. IV.B will describe the insights students can get from simulating this model and extend them to describe the stochastic
phenomenon of gene “bursting.”

I.C Proofreading

Ask a student, “What is the big secret of life?” and the answer will probably be “DNA,” or perhaps “evolution by natural
selection.” Indeed, DNA’s high, but not perfect, degree of stability underlies life’s ability to replicate with occasional random
modifications. But it is less well appreciated that the stability of a molecule of DNA does not guarantee the accuracy of its
replication and transcription. There is another big secret here, just as essential to life as the well known ones. In fact, a wide
range of molecular recognition events must have extremely high accuracy for cells and their organisms to function. Think
of our immune cells, which must ignore the vast majority of antigens they encounter (from “self”), yet reliably attack a tiny
subpopulation of foreign antigens differing only slightly from the self.

Translation of mRNA into proteins is an emblematic example of such a puzzle. It is true that artificial machines now exist
that can read the sequence of mRNA. Then another artificial machine can take the resulting sequence of base triplets, decode it,
and synthesize a corresponding polymer of amino acids (a polypeptide), which in some cases will then fold into a functional
protein without further help. But the cells in our bodies, and even bacteria, do these jobs reliably without those huge and
expensive machines, despite the incessant nanoscale thermal motion!

Merely intoning that a wonderful molecular machine called the ribosome accomplishes this feat doesn’t get us over the
fundamental problem: At each step in translation, the triplet codon at the ribosome’s active site fits a few of the 41 distinct
E. coli transfer RNA (tRNA) isoacceptors somewhat better than it fits the others. But the binding energy difference, which
quantifies “somewhat better,” only amounts to two or three hydrogen bonds. This translates into a fraction of time spent bound
to the wrong tRNAs that is about 1/100 times as great as the corresponding quantity for the correct amino acid (3). If the
fraction of incorrect amino acids incorporated into a polypeptide chain were that high, then every protein copy longer than a few
hundred amino acids would be defective!

In fact, the error fraction of amino acid incorporation is more like 10™*. The fact that this figure is so much smaller than the
one seemingly demanded by thermodynamics remained puzzling for decades. After all, the ribosome is rather complicated, but
it is still a nanoscale machine. Which of its features could confer this vast improvement in accuracy?

J. Hopfield and J. Ninio proposed an elegant physical mechanism for the ribosome’s surprising accuracy (3-5). To explore
it, we begin by paraphrasing a metaphor due to U. Alon (6). Imagine that you run an art museum and wish to find a mechanism
that picks out Picasso lovers from among all your museum’s visitors. You could open a door from the main hallway into a room
with a Picasso painting. Visitors would wander in at random, but those who do not love Picasso would not remain as long as
those who do. Thus, the concentration of Picasso lovers in the room would arrive at a steady value (with fluctuations) that is
enriched for the desired subpopulation.

To improve the enrichment factor further, you could hire an employee who occasionally closes the door to the main hallway,
stopping the dilution of your enriched group by random visitors. Then open a new exit doorway onto an empty corridor. Some of
the trapped visitors will gratefully escape, but die-hard Picasso lovers will still remain, leading to a second level of enrichment.
After an appropriate time has elapsed, you can then reward everyone still in the room with, say, tickets to visit the Picasso
museum in Paris.

In the ribosome, the initial, reversible binding of a tRNA is followed by a transformation analogous to closing the door
in the preceding metaphor. This transformation involves hydrolysis of a GTP (guanosine triphosphate) molecule complexed
with the tRNA, and hence it is nearly irreversible, due to the highly nonequilibrium concentration of GTP compared to the
hydrolysis products GDP and P; (inorganic phosphate). Such hydrolysis reactions are well known to supply the free energy
needed to drive otherwise unfavorable reactions in cells, but here their role is more subtle.

Hopfield knew that after hydrolysis, incorporation of the amino acid was delayed and could still be preempted by unbinding
of the tRNA complex. The existence of this pathway was previously known but had seemed wasteful: An energy-rich GTP had
been “spent” without anything “useful” (protein synthesis) being done. On the contrary, however, this second step implements
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the mechanism in the art museum metaphor, giving the ribosome an independent second chance to dismiss a wrong tRNA that
accidentally stayed bound long enough to progress to this stage. Spending some GTPs may be a modest price to pay compared
to creating and then having to detect and recycle an entire defective protein.

Hopfield coined the name “kinetic proofreading” for this mechanism, but we will refer to it as the “classic Hopfield—Ninio”
(HN) mechanism because the original term is somewhat misleading. In chemical reaction contexts, a “kinetic” mechanism
generally implies bias toward a product with lower activation barrier, even if it is less stable than another product with
higher barrier. This preference is most pronounced at high, far-from-equilibrium catalytic rates (7). In contrast, the classic
HN proofreading mechanism involves two sequential thermodynamic (quasiequilibrium) discriminations. Moreover, these
discriminations take place prior to reading even the very next codon, in contrast to editorial proofreading, which generally
happens after an entire manuscript is written. (Our choice of term also distinguishes the classic scheme from later models that
are sometimes also called “kinetic proofreading.”)

In a nutshell, we will we will outline an exploration of Hopfield’s conclusion that

An effectively irreversible step, or at least a step far from equilibrium, can give rise to enhanced accuracy. The free
energy of GTP hydrolysis is the price paid for this accuracy.

il METHODS
lllLA Double-well hopping

With the physical motivation from Sect. [I.A, students can explore how to generate simulated waiting times. Any computer
math system has a pseudorandom number generator that generates floating-point numbers uniformly distributed between 0
and 1. Many students are surprised (and some are intrigued), to learn that applying a nonlinear function to samples from a
random variable yields samples with a different probability density function, and in particular that y = —7 In x is exponentially
distributed, with mean 7, if x is uniform on (0,1] (8).

Starting from that insight, it takes just one line of code to generate a list of simulated waiting times for transitions in a
symmetric double well; finding the cumulative sums of that list gives the actual transition times (see supplementary computer
code 1 and (9)).

The freely accessible VPython programming system (or its Web-based version Glowscript) makes it very easy to create
an animation of an object whose spatial position is supplied as a function of time (10). The only challenging part is to pass
from a list of irregularly-spaced transition times t,, to particle positions x at each of many (regularly-spaced) video frames.
Supplementary computer code 1 accomplishes this transformation in a few lines summarized here:

1. Divide the desired total movie duration into real time steps according to the desired frame rate. Initialize real time to the
end of the first video frame. Initialize transition number to m = 0.

2. Step forward in transition number m until the time #,, of the most recent transition exceeds current real time. Switch
states for each transition encountered (if any) and save the state at the end of the video frame.

3. Update the real time to the end of the next video frame and repeat step 2 until the whole animation has been generated.

The payoff is immediate: Visually, the simulated trajectories have a very similar character to the actual hopping of a bead in a
double trap (supplementary video 2).

lll.LB The stochastic simulation algorithm

D. Gillespie extended, validated, and popularized a simple but powerful method, the “stochastic simulation algorithm,” that
generalizes the preceding idea to describe systems that make transitions between multiple discrete states (11). For any allowed
state i, we have been given the probability per time k;; to transition to every other allowed state j. The algorithm repeatedly
executes the following steps:

1. The system begins in some initial state i. It waits for a certain time, then transitions to a new state. To find the waiting
time and the new state:

» Determine the probability per time ki for any of the allowed transitions to occur by summing all the mean rates,
kj; over j.

* Draw a waiting time from the exponential distribution with mean given by the reciprocal of ki, via the method in
Sect. I1LA: At = —(kior) ™ In x.
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* Determine which of the M allowed processes happens at that transition time by drawing from a nonuniform discrete
distribution on M objects. The probabilities for the choices j are proportional to the corresponding k;.;.

2. Update the current state based on that decision. Update the current time by adding the waiting time At. Return to step #1
and repeat until the required total elapsed time is reached.

The beauty of this algorithm, besides its correctness (12), is that no computation is wasted on time steps at which nothing
happened: By construction, there is a state transition at every chosen time.

Two-state hopping is a particularly simple example of this algorithm: Here the state variable is position, x = +1. The
transition rate depends on the system’s state only in the trivial sense that each state can hop only to the other one; the numerical
value of the rate constant is always the same.

lll.C Birth—death process

Supplementary computer code 2 implements a stochastic simulation of the birth—death process introduced in Sect. [I.B. Here
the state is specified by an integer 7, the population of the molecular species of interest. In each transition, n can either increase
or decrease by one.

The probability per time to make a transition is not a constant; rather, ki = kg + nkq, where ks is the probability per time for
synthesis and k4 is the rate constant for degradation. To decide what reaction occurs, we make a Bernoulli trial with probability
p = ks/ kot to increase population n by one, and 1 — p to decrease it.

LD Proofreading

ll.D.1 Simulation goals

The qualitative word-model given at the start of Sect. [I.C may seem promising. But the corresponding kinetic equations make
for difficult reading and understanding. Better intuition could emerge from a presentation that stays closer to the concrete ideas
of discrete actors randomly arriving, binding, unbinding, and so on, visibly implementing the ideas behind the “museum”
metaphor. The following sections will argue that stochastic simulation can realize that goal.

Besides confirming the predicted accuracy payoff, we will explore the claim that the enhancement of accuracy depends on
GTP, GDP, and P; being held far from chemical equilibrium, so that the hydrolysis step is nearly irreversible (the “door shuts
tightly” in the museum metaphor). In fact, the model predicts no enhancement of accuracy compared to the one-step model
when this chemical driving force is low (4). Far from equilibrium, however, we will confirm Hopfield’s observation that the
predicted error fraction can be as low as the square of the equilibrium value (or even a higher power if multiple rounds of
sequential testing are employed).

In addition to checking Hopfield’s prediction, Sect. I'V.C will explore speed-accuracy tradeoffs in different minimal models of
translation. The classic HN mechanism relies only on off-rate differences between right and wrong tRNA. However, differences
in on-rates have also been observed between right and wrong tRNA (13-16), so we will also explore a model relying solely
on on-rate differences. Finally, we will explore a model in which all kinetic parameters are based on in-vitro translation
experiments, which includes both on-rate and off-rate differences. The speed and error rate of translation obtained in the three
different models will be compared to the speed and error rate measured in vitro, which, respectively, are about 0.25-8 amino
acids/second (17, 18) depending on the in-vitro system used and 1.6 - 1073 for Zaher and Green’s in-vitro system (19). This
exercise will provide insight into the contribution of off-rate and on-rate differences to the speed and accuracy of translation.
All these variations are readily implemented by changing a handful of constants in a simulation code.

ll.D.2 A single ribosome in a bath of precursors

This section’s goal is to formulate the word-model of Sect. [1.C in the context of mRNA translation, then set up a stochastic
simulation (Sect. II1.B; see also (20)). Later sections will show how students can explore the expectations raised at the end of
the preceding section.

We will assume that a single ribosome is complexed with a single mRNA and has arrived at a particular codon. This
complex sits in a bath containing the following free, dissolved species at fixed concentrations (Fig. 1a):

* C denotes correct tRNA (that is, the species that matches the codon currently being read), loaded with its appropriate
amino acid. We will neglect the possibility of a tRNA being incorrectly loaded; accurate loading is the concern of a
separate proofreading mechanism that we are not studying now (22, 23).

* W is similar to C, but refers to the wrong tRNA for the codon under study.
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Figure 1: Two representations of the classic Hopfield-Ninio (HN) mechanism. (a) Traditional cartoon expressing the catalytic cycle of the
ribosome (after (21)). (b) Corresponding kinetic diagram which forms the basis for a stochastic simulation with states labeled 0—4. The large
pale arrows indicate the net circulation in each cycle under cellular conditions, where GTP is maintained out of equilibrium with GDP and P;.
The symbol R denotes a ribosome complexed with mRNA; R* is the corresponding complex activated by GTP hydrolysis. At far right, R
indicates the ribosome with one additional amino acid added to the nascent polypeptide chain. The classic HN mechanism assumes that
unbinding rates k. and ¢ are smaller than their mismatched counterparts kv, and ¢y, but that other constants are all equal for correct (“C”)
and wrong (“W”) tRNA.

 Other reactions supply complexes of tRNA with guanosine phosphates: C-GTP, C-GDP, W-GTP, and W-GDP. (For
simplicity, we suppress any mention of elongation factors, one of which, “EF-Tu,” is also included in these complexes but
is only implicit in the classic HN mechanism.)

Supplementary computer code 3 implements a stochastic simulation on the five states shown in Fig. 1b. The figure represents
the ribosome-mRNA complex by R. In state 0, this complex is not bound to any tRNA. (More precisely, no tRNA is bound
at the “A” site of the ribosome; a previously bound tRNA, together with the nascent polypeptide chain, is bound at another
site (labeled “P” in Fig. 1a), which we do not explicitly note.) Surrounding this state, Fig. |b shows four other states 1—4 in
which the ribosome is bound to the complexes introduced earlier. The upper part of the figure describes wrong tRNA binding
and possible incorporation; the lower part corresponds to the correct tRNA. Horizontal arrows at the top and bottom denote
hydrolysis of GTP, which is coupled to a transformation of the ribosome into an activated state, R*.

Although any chemical reaction is fundamentally reversible, under cellular conditions the concentration ratio [P;][C-GDP]/[C-GTP]
is far below the equilibrium value, so that the reactions in Fig. b are predominantly in the direction shown by the pale purple
arrows. This was one of the conditions in Hopfield’s original proposal and corresponds to the usual biochemical assumption of
“irreversibility.” (Sect. IV.C.5 will explore relaxing it.)

Again, we are assuming that a single ribosome bounces around this state diagram in the presence of fixed concentrations of
feedstocks either imposed in vitro by the experimenter or supplied by a cellular milieu. After hydrolysis, the ribosome can reject
its tRNA-GDP complex with probability per unit time €. In the metaphor of sect. II.C, this option corresponds to “exiting the
museum exhibit by the second door.” Or, with probability per unit time k,qq the ribosome complex can add its amino acid to the
nascent polypeptide and translocate the tRNA to the “P” binding site, ejecting any tRNA already bound there. Either way, the
“A” binding site becomes vacant and, for the purposes of this state diagram, the ribosome returns to state 0.

IV RESULTS AND DISCUSSION
IV.A Multi-well hopping

Sect. III.A described a simulation of double-well hopping. A small modification of the algorithm described there gives an
interesting extension: Instead of hopping between two wells (reversing direction on every step), consider one-dimensional
diffusion on a symmetric many-well potential, for example, one of the form U(x) = sin(x). In such a potential, for each transition
the system must also make a random “decision” whether to increase or decrease a position coordinate x by 2. The resulting
random walk will display the same long-time scaling behavior as any unbiased 1D walk, but with trajectories that hop at random
times, not periodic steps as in the simplest realization (8).
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IV.B Birth—-death model

IV.B.1 Convergence to the continuous, deterministic approximation

Students will probably find it reasonable that, when the mRNA population size n is sufficiently large, we may neglect its
discrete character. Students who have been exposed to probability ideas may also find it reasonable that in this case, the relative
fluctuations of n from one realization to the next will be small, and so n effectively behaves as a continuous, deterministic
variable, subject to the differential equation dn/dt = —kgn + ks. That equation predicts exponential relaxation from an initial
value ng to the steady value n, = ks/kq with e-folding time 1/kq:

n(t) = ny + (ng — ny)e ™~ (D

The simulation bears out this expectation (Fig. 2a,b).

Actually, however, mRNA populations in living cells are often not large. Nevertheless, although individual realizations of n(t)
may differ significantly, the ensemble average of many such trajectories does follow the prediction of the continuous/deterministic
idealization (Fig. 2c). Within individual cells, however, there will be significant deviation around that mean behavior (Fig. 2¢c
again). Specifically, for this case (representing a simple constitutive promoter), the “steady” state will have fluctuations of
mRNA count 7z that follow a Poisson distribution (Fig. 2d). That key result is more memorable for students when they discover
it empirically in a simulation than it would be if they just watched the instructor prove it with abstract mathematics (by solving a
master equation (8)).

State fluctuations of the sort just mentioned may suffice to pop a more complex system out of one “steady” state and
into a very different one. Indeed, even the simplest living cells do make sudden, random state transitions of this sort. Such
unpredictable behavior, not seen in the differential-equation approach, can potentially be useful to bacteria, implementing a
population-level “bet hedging” strategy (24-27).

A real bacterium is not simply a beaker of reagents. Bacteria periodically divide, partitioning a randomly chosen subset
of each mRNA species into each daughter cell. That extra level of realism is hard to introduce into an analytical model, but
straightforward in a simulation. The results are similar to the ones just described, with a larger effective value of the clearance
rate constant (8).
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Figure 3: Evidence for transcriptional bursting. Figure
generated by the second of supplementary computer
codes 2. (a) Time course of the number of mRNA
transcripts in a cell, n(t), averaged over 50 or more cells
in each of three separate, identical experiments, shown
with three different symbols. All of the cells were
induced to begin gene expression at time zero. The
dashed curve shows a fit of the birth—death (BD) process
(Eq. 1) to data, determining the apparent synthesis rate
ks ~ 0.15/min and clearance rate constant

kg ~ 0.014/min. The solid curve shows the
corresponding result from a computer simulation of the
bursting model discussed in Sect. [V.B.2 (see also (8)). 10 + %
(b) Semilog plot of the fraction of observed cells that 8
have zero copies of mRNA versus elapsed time. Symbols

show data from the same experiments as in (a). Dashed 6
line: The birth—death process that fit (a) predicts that 4
initially Py,()(0) falls with time as exp(—ks?), where kg
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IV.B.2 Upgrade to cover bursting processes

Bacteria are supposedly simple organisms. The birth—death process is simple, too, and it fits with the cartoons we see in
textbooks. So it is interesting for students to follow the recent discovery that the model makes quantitative predictions for
mRNA production that in some cases were experimentally disproven (8, 28, 29).

Indeed, most bacterial genes are not constituently expressed; for example, many are regulated by transcription factors,
whose binding/unbinding can introduce additional variation in mRNA copy numbers. Recent advances in single-molecule
imaging permit the direct measurement of n(¢) in individual cells, and disproved the birth—death model’s prediction that the
distribution of n in the “steady” state should be Poisson; typically, the ratio of variance to mean was found to be 5 or more (not
1 as in a Poisson process). Researchers found, however, that a simple modification of the birth—death model could accommodate
this and other discrepant data. The required extension amounts to assuming that mRNA transcripts are generated in bursts, that
the bursts themselves are initiated with a fixed probability per unit time, and that once initiated, a burst is also terminated with
fixed probability per unit time. For example, a burst could begin with unbinding of a repressor and end when it rebinds. Many
other regulatory architectures are probably realized in cells, but the model just outlined is simple and tractable, and hence
serves as a phenomenological representative for what lies beyond constitutive gene expression.

We can readily upgrade the birth—death simulation by supplementing the state variable n with a binary on/off variable; see
the second of supplementary computer codes 2. Although the new model has two additional parameters compared to the original
birth—death model, nevertheless it was overconstrained by the experimental data, so its success was a nontrivial test (Fig. 3 and
(8, 29)). Later work confirmed its predictions for how mRNA statistics should change when the level of a transcription factor
was changed (30, 31). More broadly, it is instructive to point out to students that had the original authors been content with a
reasonable fit to averaged data (Fig. 3a), they might have accepted the birth—death model; only when fluctuation information is
included do we see that that model cannot explain the experiment (panel (b)). Eventually analytic results were also obtained for
this model (32-306), but Golding et al.’s original approach was via numerical simulations, like the one described here (28).

IV.C Proofreading

We now return to the process described in Sect. [11.D, described by models of the sort shown in Fig. 1.

IV.C.1 Visualization of the simulation results

To keep the project (stochastic simulation and visualization of various proofreading models) modular, we constructed a
simulation code that writes its state trajectory to a file. A second code then reads that file and creates a visual output. The
first of these codes operates similarly to Sect. IT11.C, but with a four-way choice of what transition to make after each waiting
interval (Fig. Ib). The second code can be almost as simple as the one described in Sect. III.A. However, students with more
time (perhaps in a capstone project) can make a more informative display with a reasonable additional effort, as follows.
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Figure 4: Conventions used in supplementary videos 3-5. Green objects represent correct transfer-RNA/amino acid complexes; red objects
represent complexes bearing an incorrect amino acid. Spheres resting on the blue plane represent the nascent chain of incorporated amino
acid residues. (a) Four states with a tRNA complex bound to the A binding site, and their corresponding cartoon representations. (b) Still
frames from an animation. An incorrect complex has bound at fop left. It can unbind (fop right), or proceed to hydrolyze its GTP (center left).
Thereafter it can unbind (center right), or be (wrongly) incorporated (bottom).
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Figure 5: Modified waiting times. Solid line:

Exponential distribution of waiting times. Dashed line:

Shifted exponential distribution obtained by adding the 1
constant fm;, to each sample. 0 tmin Waiting time
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The supplementary videos not only show the state that is current at the end of each video frame; they also animate the
pending arrivals of new complexes that are about to bind and the departures of old ones that have unbound without incorporation.
By this means, the videos give a rough sense of the “narrative” in the trajectory being shown (Fig. 4). These improvements are
not difficult to add once the basic code is working. Alternatively, students can construct the basic version, then be shown these
videos.

The exponential distribution of waiting times implies that there will be episodes with several events happening rapidly,
interspersed with long pauses. For this reason, it is useful to view the simulation in two ways: Once with a shorter time step that
resolves most individual events but covers only a limited time interval (supplementary video 3), and then with a coarser time
step to see the entire synthesis trajectory (supplementary video 4).

We also found it useful (solely for visualization purposes) to alter the distribution of waiting times in a simple way that
relieves visual congestion without, we think, too much damage to the realism of the simulation. Our modification, shown in the
supplementary videos, was simply to add a small fixed delay, for example one half of one video frame, to every transition
waiting time (Fig. 5).

IV.C.2 Classic Hopfield-Ninio mechanism

Following Hopfield, we initially assume that the rate constant for incorporation, k,qq, is the same regardless of whether the
tRNA is correct or incorrect. We also suppose that the binding rates k, = k;, and £, = ¢}, have this property; for example, they
may all be diffusion-limited (3). Only the unbinding rates differ in the classic HN mechanism:

kw = ¢_1k. and &y, = @sL..

Here, ¢_; = 94 and ¢3 = 7.9 are the preference factors for unbinding the wrong tRNA relative to the correct one before and
after GTP hydrolysis, respectively. These values were taken from in-vitro measurements (13). Again following Hopfield, in
this section we also take the hydrolysis rate constants to be equal: m;, = m/ (and my, = m). The remaining factor, ¢, for
condensation, was set by kinetic consistency (see Supplementary Information 1.1).
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Figure 6: Error and speed tradeoffs for classic
Hopfield-Ninio, forward-rate discrimination (FRD,
Sect. IV.C.3), and realistic (Sect. [V.C.4) ribosome
models. For each ribosome model, the final

: , , 5 0.200 -
incorporation rate kyqq, was varied from 1077 s to

103 s~ (1000 amino acids simulated for each kadd.c)- 0.175 - * % Classic HN R

Note that k,qq ¢ is not the same as the average translation ’ * % Forward Rate Discrim.

rate, which is plotted on the horizontal axis. The average o * % Realistic

translation rate was determined empirically as the {-"'; 0.150 |

number of amino acids simulated divided by the total g

time for synthesis. Stochastic simulation results are g 0.125r

shown as dots, and theoretical first-passage predictions =

from (37) are shown as solid lines. The stochastic :E 0.100

simulation and analytical results agree nicely. To obtain &

the analytical curves, the error fractions were calculated g 0.075 -

using Eqn. 13 in ST of (37) for each k,qq ¢, and each o

kadd,c was mapped to a translation speed using stochastic ;g 0.050 -

simulation. The resulting curves were smoothed with a é" ’

moving average (interval of 3). The simulation results

and theoretical curve for the HN ribosome does not 0.025

extend past 0.01 amino acids/second because the

translation speed plateaus at that point as kyqq ¢ is 0. 000 [ R N
increased. For reference, the simulation results from the 10~* 1073 1072 107! 10° 10
sets of parameters in the Table are shown as stars. Amino Acids per Second

For the rate constants themselves, each is either a constant probability per unit time (unbinding and hydrolysis) or else a
probability per unit time with the substrate concentration already lumped in (binding and condensation). The values we chose
were appropriate for the concentrations of reactants present in Zaher and Green’s in-vitro stopped flow experiments (see the
Table and Supplementary Information 1.1 for list of parameters and explanation of rate constants chosen).

Using the preference factors and rate constants mentioned above (summarized in the Table), the classic HN ribosome had
a simulated error of 2/1000 = 0.002 wrong incorporations, close to the in-vitro measured error rate of 0.0016. This result
also roughly matches the analytic predicted fraction (¢_;$3)™"/ (1+ (¢_1¢3)’1) = 0.0013, where ¢_;¢3 = (94)(7.9) =~ 740 is
the predicted preference factor based on Hopfield’s analysis. However, the simulated speed was ~ 10™* amino acids/second,
much lower than the in-vitro speeds of ~ 0.25-8 amino acids per second. The slow translation rate is a result of the two
sequential quasi-equilibrium proofreading steps. When the speed of translation is increased, the error fraction also increases as
the quasi-equilibrium is broken (Fig. 6).

For visualizing the HN model in an animation, we raised the probability of incorrect choices so that wrong incorporations
could be seen within a reasonable timeframe. To do this, the preference ratios ¢_; and ¢3 were both lowered to 5. Supplementary
videos 3—4 show the resulting behavior. Perhaps the most important impression we get from viewing these animations is that
the cell is a busy place. The riot of activity, the constant binding events that end with no “progress” (and often not even GTP
hydrolysis), are hallmarks of chemical dynamics that are hard to appreciate in textbook discussions, yet vividly apparent in
the simulation. This is especially clear in supplementary video 4, which shows a typical run of 25 amino acid incorporations.
Because there are many unproductive binding and unbinding events in the simulation, not every event is shown in detail in
video 4. Focusing on just the GDP-tRNA rejections shows that more correct tRNAs than incorrect tRNAs make it past GTP
hydrolysis, and that the few incorrect tRNAs that do make it past are mostly rejected in the second proofreading step. However,
we also see many correct complexes bind and get rejected, before or after GTP hydrolysis. This is the price paid for accuracy in
the classic HN mechanism. In the instance shown, only one incorrect amino acid was incorporated out of 25 incorporations,
much lower than the expected error fraction of ¢! /(1 + ¢™!) = 0.17 from single step equilibrium binding (where ¢ = 5 is the
preference factor), and fortuitously close to Hopfield’s predicted value ¢‘2/ 1+ ¢—2) = 0.038.

Supplementary video 3 provides a more detailed look at this process. The videos also show clearly the jerky, nonuniform
progress of synthesis, with some amino acid incorporations happening after much longer delays than others. That feature is by
now well documented by single-molecule experiments.

IV.C.3 Forward rate discrimination model

Much has been learned about ribosome dynamics after Hopfield’s and Ninio’s original insights (38, 39). We now know that each
step in our model consists of substeps. For example, GTP hydrolysis is subdivided into GTPase activation followed by actual
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Description Symbol value, HN model | Fwd-rate discr. | Realistic | Equil.
binding GTP complex, s! k¢ 40 40 40 40
unbinding GTP complex, s™' | k. 0.50 0.50 0.50 0.50
binding GDP complex, 7! £t 0.001 0.001 0.001 0.26
unbinding GDP complex, s | £ 0.085 0.085 0.085 0.085
hydrolysis and P; release, 57! m 0.01 25 25 0.01
condensation/P; binding, s me 0.001 0.001 0.001 0.26
binding GTP ki, = ¢kl ¢ =1 0.68 0.68 1
unbinding GTP kw = ¢_1ke ¢_1=9%4 1 94 94
binding GDP b, = p_3Lt ¢_3=1 0.0027 0.0027 1
unbinding GDP bw = P38 ¢3 =79 1 7.9 7.9
hydrolysis myy, = ¢oym( ¢ =1 0.048 0.048 1
condensation My = ¢_omg ¢_p =0.084 12.09 1 0.084
incorporation, s kaadc 0.001 4.14 4.14 0.001
incorporation kadd,w = ®addkadd,c || Padd =1 0.017 0.017 1

Table: Illustrative values for the rates. The symbols in the second column are defined in Fig. 1. The third column is classic Hopfield—Ninio
proofreading, that is, the only differences between right and wrong tRNA are the off-rates. For comparison, the fourth column is a model that
discriminates mainly via forward rates (Sect. [V.C.3). The fifth column is a ribosome model that uses in-vitro measured rates (Sect. [V.C.4)
(13, 21, 37). The last column is the same as the HN ribosome, except that GTP hydrolysis is now at equilibrium. See SI for discussion of
numerical values.

hydrolysis, the latter step probably depends on a rearrangement of “monitoring bases” in the ribosomal RNA, and so on (40).

The simulation described in Sect. [V.C.2 was designed to show the HN mechanism in its “classic,” or pure, form, and how it
can enhance fidelity even without help from the effects just described. For example, we assumed that the only dependence on
right versus wrong tRNA was via unbinding rates. Indeed, such dependence was later seen at the single-molecule level (41).
But it now appears that some of the forward rates also depend on the identity of the tRNA (13, 42, 43), an effect we will call
“forward rate discrimination.” This forward-rate discrimination is in part driven by an “induced-fit” mechanism, whereby correct
codon-anticodon pairing causes conformational changes that accelerate EF-Tu GTP hydrolysis and tRNA accommodation in
the A-site (1416, 44). To quantify its contribution to the error fraction of the ribosome, we simulated a ribosome with all
forward rate ratios the same as that determined in-vitro, but with backward rate ratios set to 1 (see the Table, FRD ribosome
and Supplementary Information 1.4). With these rates, the error was 182/1000 = 0.182, much higher than the HN ribosome
error of 0.002, and the speed was 0.32 amino acids/second, which is also higher than the HN ribosome speed of 10™* amino
acids/second and closer to the range of in-vitro translation rates (0.25-8 amino acids/second). Figure 5 shows that, similar to the
classic HN ribosome, the FRD-only ribosome achieves lower error at slower translation rates (Figure 5), but at all speeds, the
FRD ribosome has higher error than the HN ribosome. The FRD-only ribosome also must trade off a significant amount of
accuracy to achieve in-vitro translation speeds, with the proportion of wrong incorporations greater than 0.3 at 1-10 amino
acids/second.

Overall, comparing the FRD-only and HN-only models reveals that off-rate differences account for almost all of the
translation accuracy while on-rate differences increase the efficiency and speed of translation.

IV.C.4 More realistic model

The realistic ribosome with all rates and ratios set by Zaher and Green’s in-vitro measurements combines the off-rate and
forward-rate discrimination described above (Table, fifth column). The realistic model demonstrates that a combination of both
strategies allows the ribosome to achieve both low error and high speed. For a simulation of 10 000 amino acids, the error was
18/10000 = 0.0018, which is similar to the in-vitro ribosome error, but the speed was 2.89 amino acids/second, faster than both
the HN and FRD ribosome and within the range of in-vitro translation rates. Fig. 6 shows that the realistic ribosome does not
have the speed limits of the HN ribosome or the costly tradeoff of accuracy for speed of the FRD ribosome.

Supplemental video 5 shows an animation of a simulation with the realistic ribosome rates. We see both a bias for correct
tRNA binding/hydrolysis and a bias for rejection of wrong tRNAs before GTP hydrolysis. Of the 26 correct tRNA binding events
in this run, 25 resulted in successful incorporation. This is much more efficient compared to the fraction 24/10245 = 0.002 of
productive correct tRNA binding events in the classic HN ribosome simulation in supplemental videos 3/4. In addition, of the
30 incorrect tRNA binding events on the realistic ribosome, all 30 resulted in rejection.

The real ribosome uses both the classic HN mechanism (quasiequilibrium, energetic proofreading) and forward rate
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discrimination; our results show that both are required to optimize speed, efficiency, and accuracy. Despite this, simulating
the classic HN mechanism is still a valuable exercise for students. Most of the discrimination power is accounted for by the
HN-only ribosome (Fig. 6), and by visualizing discrimination via only a difference in unbinding rates, students see the minimal
components necessary to attain high accuracy in a broad class of biological reactions. The classic HN mechanism illustrates an
essential part of biological proofreading that fundamentally relies on non-equilibrium physics. There is also recent evidence
pointing to two kinetic proofreading steps, that is, two sequential, nearly irreversible steps each of which can be followed by
unbinding of tRNA (45, 46). Our simulation could be extended to include such effects, whereas analytic methods would quickly
become intractable.

IV.C.5 Role of thermodynamic driving force

Next, we return to the classic Hopfield-Ninio mechanism, this time operating at nearly equilibrium concentrations of GTP, GDP,
and P; to demonstrate the importance of the “one-way door” (the nonequilibrium GTP hydrolysis step). The Table summarizes
the rates we chose for this undriven model (see Supplementary Information 1.3 for more detailed description). Students can be
given these values and asked what behavior they find, prior to a discussion.

With these rates, the reaction still creates a peptide chain, because we assumed a fixed probability per time to irreversibly
add an amino acid whenever the ribosome visits its activated state. But this time the simulation gave an error of 1683/15 000 =
0.1122 and speed of ~ 4 x 107> amino acids/second. The error fraction of 0.1122 is from GDP-tRNA directly binding the
ribosome, which is consistent with an expected error fraction of ¢™' /(1 + ¢™') = 0.1124, where ¢ = 7.9. This large error
illustrates the significance of the thermodynamic driving force, as the ribosome in equilibrium is both slow and error-prone.

To gain more insight into the role of the irreversible GTP hydrolysis step, some students may wish to rerun the simulation
with different incorporation and hydrolysis rates. For example, a simulation with m/ = 25 and k,qq = 4.14 results in a simulation
with many tRNAs flipping between GDP and GTP states, another way in which the two discrimination steps effectively merge
into one.

V. CONCLUSION

The models described here show fairly elementary physical principles that lie at the heart of cell biology. Specifically, gene
expression and kinetic proofreading are two important, fundamental topics that are within reach of undergraduates.

A module that introduces stochastic simulation need not dominate a semester course: One class week is enough for the first
exposure. Indeed, the entire simulation plus visualization in supplementary computer code | consists of just seven short lines of
code, and yet it creates a valuable educational experience not available in a static textbook. Moreover, the framework is not
specifically biological in character; it can serve as a stepping stone to more complex simulations relevant for a variety of courses.

Finally, the stochastic stimulations used here allowed comparison of different models for error correction, and the comparison
of different minimal models is an important skill for biophysics students.
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SUPPLEMENTARY MATERIAL
An online supplement to this article can be found by visiting INSERT LINK.
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