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ABSTRACT

Human players in professional team sports achieve high level coor-

dination by dynamically choosing complementary skills and exe-

cuting primitive actions to perform these skills. As a step toward

creating intelligent agents with this capability for fully cooperative

multi-agent settings, we propose a two-level hierarchical multi-

agent reinforcement learning (MARL) algorithm with unsupervised

skill discovery. Agents learn useful and distinct skills at the low

level via independent Q-learning, while they learn to select comple-

mentary latent skill variables at the high level via centralized multi-

agent training with an extrinsic team reward. The set of low-level

skills emerges from an intrinsic reward that solely promotes the de-

codability of latent skill variables from the trajectory of a low-level

skill, without the need for hand-crafted rewards for each skill. For

scalable decentralized execution, each agent independently chooses

latent skill variables and primitive actions based on local observa-

tions. Our overall method enables the use of general cooperative

MARL algorithms for training high level policies and single-agent

RL for training low level skills. Experiments on a stochastic high

dimensional team game show the emergence of useful skills and

cooperative team play. The interpretability of the learned skills

show the promise of the proposed method for achieving human-AI

cooperation in team sports games.
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1 INTRODUCTION

Fully cooperative multi-agent reinforcement learning (MARL) is

an active area of research [14, 25] with a diverse set of real-world

application, which include autonomous navigation [6], game AI

micromanagement [10, 27], and traffic network optimization [44].

A unique challenge is the need for centralized training for agents

to find global optimal cooperative policies, while ensuring scalable
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decentralized execution whereby agents choose actions indepen-

dently. In this paradigm of centralized training with decentralized

execution [5], a common approach [10, 27, 31, 35, 43] is to conduct

centralized training at the level of primitive actions, which are the

actions used in the transition function of the Markov game [20].

However, the design of hierarchical agents who can cooperate at a

higher level of abstraction using temporally-extended skills in high-

dimensional multi-agent environments is still an open question. A

skill is a policy that is conditioned on a latent variable, executed

for an extended duration, and generates behavior from which the

latent variable can be decoded [1, 9]. It is also not clear howmultiple

agents can discover skills without hand-crafted reward functions for

each skill, and how to construct such hierarchical policies to allow

human interpretation of skills for potential human-AI cooperation.

In this paper, we take a hierarchical approach to fully cooperative

MARL and address these questions by drawing inspiration from

team sports games. At the team level, coaches train human players

to execute complementary skills in parallel, such as moving to dif-

ferent field positions in a formation, as well as effective sequences

of skills over time, such as switching between offensive and defen-

sive maneuvers when ball possession changes. At the individual

level, each player learns a sequence of primitive actions to execute

a chosen skill. Hierarchical approaches inspired from such real-

world practices have several benefits for fully cooperative MARL.

From an algorithmic viewpoint, a hierarchical decomposition in

two key dimensionsÐover agents, and across timeÐsimultaneously

addresses both the difficulty of learning cooperation at the level

of noisy low-level actions in stochastic environments and the diffi-

culty of long-term credit assignment due to highly-delayed rewards

(e.g., scoring a goal in football) [12, 40]. Hierarchical approaches

may also reduce computational complexity [37] to address the ex-

ponential increase in sample complexity with number of agents in

MARL. From the viewpoint of human-AI cooperation, which has

near-term application to video game AI to improve human players’

experiences [45], hierarchical policies trained with explicit skills is

a key step toward interpretable and modular policies. In this work,

we take interpretability to mean the decodability of a latent skill

from an agent’s observed behaviorÐi.e., a policy is interpretable if

it produces events and actions in a consistent or distinguishable

manner. While a flat policy is a black-box, since the action output is

purely determined by the agent’s observation input, the modularity

of hierarchical models also provides an entry point for external

control over the skills executed by AI teammates (e.g., execute the

offense skill when it observes a human teammate doing so).

However, decomposing a global team objective such as “scoring

a goalž into many sub-objectives for training a collection of skills is

extremely difficult without expert knowledge, which may be hard
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to access for complex settings such as competitive team sports. Man-

ually crafting reward functions for each skill in high-dimensional

state spaces involving numerous agents is also prone to misspecifi-

cation and cause unintended behavior [3]. Instead, we investigate

a method for hierarchical agents in MARL to discover and learn

a set of high-level latent skills. Agents should learn to cooperate

by choosing effective combinations of skills with their teammates,

and also dynamically choose skills in response to the state of the

game. In contrast to prior work in single-agent settings, where

motion skills were discovered purely via an intrinsic reward [1, 9],

MARL poses significant new challenges for skill discovery. Merely

discovering distinguishable individual motion in an open-ended

multi-agent environment may be useless for a team objective. While

increasing the number of skills increases the chance that some are

useful for a task [9], doing so in the hierarchical multi-agent setting

means exponentially increasing the size of a joint high-level action

space and will exacerbate the difficulty of learning.

We present a method for training hierarchical policies with un-

supervised skill discovery in cooperative MARL, with the following

key technical and experimental contributions. 1) We construct a

two-level hierarchical agent for MARL by defining a high-level

action space as a set of latent variables. Each agent consists of a

high-level policy that chooses and sustains a latent variable for

many time steps, and a low-level policy that uses both its obser-

vation and the selected latent variable to take primitive actions. 2)

We use an extrinsic team reward to conduct centralized training

of high-level policies for cooperation, while we use a combination

of an intrinsic reward and the team reward to conduct decentral-

ized training of low-level policies with independent reinforcement

learning (RL). This allows the use of powerful and general algo-

rithms for cooperative MARL and single-agent RL to train high- and

low-level policies, respectively. 3) We define the intrinsic reward as

the performance of a decoder that predicts the ground truth latent

variable from trajectories generated by low-level policies that were

conditioned on the latent variables. By dynamically weighting the

intrinsic versus extrinsic reward, each low-level policy is trained to

reach a balance between decodability and usefulnessÐit executes a

skill, without the need for hand-designed skill-specific reward func-

tions. 4) We applied this algorithm to a highly stochastic continuous

state simulation of team sports and performed a detailed quantita-

tive investigation of the learned behaviors. Agents discover useful

skills, that affect game events and determine low-level actions in

distinct and interpretable ways, such as grouping together to steal

possession from an opponent. They learn to choose complementary

skills among the team, such as when one agent camps near the

opponent goal to get a rebound when its teammate makes a long-

range shot attempt. 5) Our hierarchical agents perform higher than

flat methods in ad-hoc cooperation when matched with teammates

who follow policies that were not encountered in training. This is

an encouraging result for the possibility of human-AI cooperation.

2 RELATEDWORKS

Building on the framework of options, temporally-extended actions,

and hierarchical single-agent RL [8, 26, 32, 37], early work on hier-

archical MARL in discrete state spaces with hand-crafted subtasks

[12, 22] showed that learning cooperation at the level of subtasks

significantly speeds up learning over flat methods [20, 34, 38]. Re-

cent work built on deep reinforcement learning [24, 30] to demon-

strate hierarchical single-agent RL in high-dimensional continuous

state spaces, using predefined subgoals [16], end-to-end learning

of options [4], and latent directional subgoals [40] in a two-level

hierarchy. In hierarchical MARL, different subtasks are chosen con-

currently by all agents, whereas only a single subtask is chosen for

each segment in single-agent hierarchical RL [4, 40].

Progress in hierarchical learning benefits from a complementary

line of work on automatic subgoal discovery [23]. Our work draws

inspiration from variational option discovery [1, 9, 13], whichÐ

in formal analogy with variational auto-encoders [15]Ðtrains a

maximum-entropy policy encoder to map latent context vectors

into trajectories from which the context can be recovered by a

supervised decoder. In contrast to prior work on single-agent skill

discovery that focus on finding distinguishable behavior in simu-

lated robotics environments, option discovery in cooperative MARL

poses significant new demands: 1) individually distinguishable be-

haviors must be useful for the team objective; 2) hoping to discover

useful skills by increasing the number of latent skills is impractical

for the exponentially larger action space of MARL; and 3) skills

must be discovered in the actual multi-agent environment rather

than in an isolated single-agent setting.

The key differences from recent work in hierarchical MARL

[2, 39] are that we discover skills with an intrinsic reward instead

of hand-crafting subtask-specific rewards [39], and our agents are

on equal footing without a dedicated “Managerž [2]. A concurrent

work on MARL with latent skills [19] require fully-centralized

execution using global state information, while our method enables

decentralized execution with local observations. A complementary

line of work learns role-specific parameters and assignment of roles

to agents with unique features, where each role is sustained for an

entire episode [42], while our agents can dynamically choose skills

multiple times in an episode. We design our hierarchical agents

usingQMIX [27] and independent DQN [24, 38]; other decentralized

cooperative MARL [14] and single-agent RL [36] algorithms are

equally applicable.

3 METHODS

We present a method for fully-cooperative hierarchical MARL,

whereby independently-acting agents learn to cooperate using la-

tent skills that emerge from a combination of intrinsic and extrinsic

rewards. Inspired by training practices of real world professional

sports teams, we create our method within the paradigm of central-

ized trainingwith decentralized execution [5]. For ease of exposition

and intuition, we assume all agents have the same observation space

and action space; nevertheless they take individual actions based

on individual observations. In the rest of this section, we define the

objective of hierarchical MARL with skill discovery, describe our

method to solve the optimization problem, and discuss practical

implementation techniques for effective learning.

3.1 Combining centralized and decentralized
training in hierarchical MARL

We describe a two-level hierarchical MARL setup for training N

agents, labeled by n ∈ [N ], as follows. LetZ denote a set of latent
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Figure 1: Hierarchical MARL with unsupervised skill discovery. At the high level (left), the extrinsic team reward is used to

train a centralized action-value functionQtot(s, z) that decomposes into individual utility functionsQn (on , zn ) for decentralized

selection of latent skill variables z. At the low level (right), skill-conditioned action-value functions Qn (on , zn ,an ) take primi-

tive actions independently. Trajectories τ generated under each z are collected into a datasetD = {(z,τ )}, which is used to train

a skill decoder p(z |τ ) to predict z from τ . The probability of selected skills under p(z |τ ) is the intrinsic reward for low-levelQn .

variables z, each of which corresponds to a skill. In this work, we use

a finite set of latent variables with one-hot encoding; it is possible

to generalize Z to be a learned continuous embedding space [1].

We treat Z as the action space for high-level policies1 µn : O 7→

Z,∀n ∈ [N ], each of which maps from an agent’s observation

on ∈ O to a choice of skill zn ∈ Z. Each choice of zn is sustained

for tseg time steps: lettingT = Ktseg denote the length of an episode,

there are K time points at which a high-level skill selection is made

(see Section 3.4). Conditioned on a chosen latent skill and given an

agent’s observation, a low-level policy πn : O ×Z 7→ A outputs

a primitive action an in a low-level action space A. Each z ∈ Z

and the latent-conditioned policy πn (·; zn ) is a skill, in accord with

terminology in the literature [1, 9, 13]. Let boldface µ,π , and a

denote the joint high-level policy, joint low-level policy, and joint

action, respectively. Let (·)−n denote a joint quantity for all agents

except agent n. At the high level, µ learns to select skills to optimize

an extrinsic team reward function R : S × {A}N
n=1 7→ R that maps

global state and joint action to a scalar reward. At the low level,

{πn }N
n=1 learn to choose primitive actions to produce useful and

decodable behavior by optimizing a low-level reward function RL .

Combining the learning at both levels, we view hierarchical MARL

as a bilevel optimization problem [7]:

max
µ,π
Ez∼µ,P

[

Est ,at∼π ,P

[

T
∑

t=1

γ tR(st , at )

] ]

(1)

πn ∈ argmax
π
Ez∼µ,P

[

K
∑

k=1

Eτ n
k
∼π ,P

[

RL(z
n
k
,τn
k
)
]

]

,∀n ∈ [N ] (2)

where τn
k
is the k-th trajectory segment that consists of a sequence

of observations by agent n, P denotes the environment transition

probability P(st+1 |st , a), andRL(z
n ,τn ) :=

∑

(st ,at )∈τ n RL(z
n , st ,at )

denotes the sum of agent n’s low-level rewards along trajectory

τn . This may also be viewed as a general-sum meta-game between

a µ-player and another π -player. When RL is the extrinsic team

reward, we have a fully-cooperative meta-game, while the other

1Without loss of generality, and for consistency with our algorithm implementation
below, we use the notation for deterministic policies in this paper.

extreme is where RL solely promotes decodability. Our approach,

explained in Section 3.2, lies in between these extremes to strike a

balance between usefulness and decodability.

It is difficult to solve (1)-(2) exactly in high-dimensional con-

tinuous state spaces. Furthermore, we adjust RL dynamically to

promote skill predictability (see Section 3.2). Instead, we approach it

using powerful algorithms for MARL and RL. First, we use central-

ized MARL algorithms to train high-level policies µ for cooperative

high-level skill selection. While cooperative behavior may emerge

from flat policies trained by a team reward [21], explicitly training

high-level skill-selection policies allows external control over the

choice of skills performed (by fixing a latent variable), and sub-

sequent analysis of the behavior for each skill. Second, we apply

independent RL to train low-level policies {πn }N
n=1, each condi-

tioned on a skill selected by the agent’s corresponding high-level

policy, to take primitive actions to optimize RL(z
n ,τn ) (defined

below in Section 3.2). This reflects the fact that human players in

team sports can master skills individually outside of team practice.

3.2 Skill discovery via dynamically weighted
decoder-based intrinsic rewards

We define the low-level reward by first introducing a skill decoder

pψ (z
n |τn ) that predicts the ground truth latent skill zn that was

used in the low-level policy π (·; zn ) that generated the trajectory

τn . The decoder is trained using a dataset D = {(z,τ )} of skill-

trajectory pairs, where each consists of the z chosen by a high level

policy and the corresponding trajectory τ generated by the low

level policy given z, over all agents. D is accumulated in an online

manner during training. Hence, training pψ alone can be viewed as

a supervised learning problem where we have access to the ground

truth “labelž z associated with each “datapointž τ .

We define the intrinsic reward RI (z
n
k
,τn
k
) for agent n’s k-th tra-

jectory segment τn
k

via the prediction performance of the skill

decoder on the tuple (zn
k
,τn
k
). Agent n receives this scalar reward

upon generating the segment τn
k
. The key intuition is that a skill in

many complex fully-cooperative team games can be inferred from
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the trajectory of primitive actions that implement the skill [14, 18].

For example, any agent who executes a defensive subtask in soccer

will move toward opponents in a consistent way that mainly de-

pends on its own observations, with only weak dependence on the

behavior of other physically distant agents2. This intrinsic reward

encourages the generation of distinguishable behavior for different

skills, since only by doing so can the low-level policy produce suffi-

ciently distinct “classesž in the datasetD for the decoder to achieve

high prediction performance. Hence we define the low-level reward

RL as a combination of team reward R and intrinsic reward RI :

RL(z
n ,τn ) := α

∑

st ,at ∈τ n
γ tR(st , at ) + (1 − α)RI (z

n ,τn ) (3)

where RI := pψ (z
n |τn ) (4)

α ∈ R is a dynamic weight (specified below) that determines the

amount of intrinsic versus environment reward. In contrast to prior

work on single-agent option discovery that do not use an extrinsic

reward [1, 9, 13], we take advantage of the team reward in MARL

to guarantee that skills are useful for team performance, and rely

on the intrinsic reward only to promote the association of latent

variables with predictable behavior. This ensures that low-level

policies, when conditioned on different latent variables, produce

trajectories that are 1) sufficiently different to allow decoding of the

latent variable, and 2) useful for attaining the true game rewardÐ

e.g. “attack opponent netž and “defend own netž. We decrease α

from 1.0 to αend via an automatic curriculum in which α decreases

by αstep only when the performance (e.g., win rate) in evaluation

episodes, conducted periodically during training, exceeds a thresh-

old αthreshold. At high α , low-level policies learn independently to

maximize the team reward by taking useful actions, some of which

can be composed into interpretable behavior. As α decreases and

the skill decoder associates trajectories with latent variables, the

low-level policy is increasingly rewarded for generating easily de-

codable modes of behavior when conditioned on different z. A high

αthreshold can be more suitable for highly stochastic games (see Sec-

tion 5.2), so that the weight on the intrinsic reward increases later

during training, after agents have learned to take useful actions.

3.3 Algorithm

Algorithm 1 is our approach to the optimization problem eqs. (1)

and (2), with skill discovery based on eq. (3). We initialize replay

buffers BH ,BL for both levels of the hierarchy, for off-policy up-

dates in similar style to DQN [24], and initialize a dataset D for

the decoder (line 2). At the k-th high-level step, which occurs once

for every tseg primitive time steps (line 6), we compute the SMDP

reward R̃t :=
∑tseg−1

i=0 γ iR(st−i , at−i ) for the high-level policy (line

8) [37]. Each agent computes its reward and independently selects

a new skill to execute for the next high-level step (lines 12-13). We

periodically take gradient steps to optimize the high level coopera-

tive skill-selection objective (1) (lines 15-17), using QMIX [27] to

2As a first step, we do not include higher-order skills that involve coordinated behavior
of two ormore agents. Ourmethod can be extended to higher-order skills by associating
multiple agents’ concurrent trajectories with a single skill.

Algorithm 1Hierarchical MARLwith unsupervised skill discovery

1: procedure Algorithm

2: Initialize high-level Qϕ , low-level Qθ , decoder pψ , high-

level replay buffer BH , low-level replay buffer BL , and

trajectory-skill dataset D

3: for each episode do

4: st , ot = env.reset()

5: Initialize trajectory storage {τn }N
n=1 of max length tseg

6: for each step t = 1, . . . ,T in episode do

7: if t mod tseg = 0 then

8: if t > 1 then

9: Compute R̃t := γ
tseg ∗

∑tseg

k=0
Rt−k

10: Store (st−tseg , ot−tseg , z, R̃t , st , ot ) into BH
11: for each agent n do

12: Store (zn ,τn ) into D

13: Compute intrinsic reward Rn
I
using (4)

14: end for

15: end if

16: Select new zn by ϵ-greedy(Qn
ϕ
(on , z)),∀n ∈ [N ]

17: if # (high level steps) mod ttrain = 0 then

18: Update Qϕ (s, z) using BH and (5)

19: end if

20: end if

21: Get ant from ϵ-greedy(Q(ont , z
n
t ,a)) for each agent

22: st+1, ot+1,Rt = env.step(at )

23: Compute Rn
L
:= αRt + (1 − α)R

n
I
for each agent

24: For all agents, store (ont ,a
n
t ,R

n
L
,on
t+1, z

n ) into low-

level replay buffer BL , and append ont to trajectory τn

25: if # (low-level steps) mod ttrain = 0 then

26: Update Qθ (o
n , zn ,an ) using BL and (7)

27: end if

28: end for

29: if size of D ≥ Nbatch then

30: Update decoder pψ (z |τ ) using D, then empty D

31: end if

32: if evaluation win rate exceeds αthreshold then

33: α ← max(αend,α − αstep)

34: end if

35: end for

36: end procedure

train a centralized Q-function Q tot
ϕ
(st , z) via minimizing the loss:

L(ϕ) := Eµ,π

[

1

2

(

yk −Q
tot
ϕ
(sk , zk )

)2
]

(5)

yk := R̃k + γQ
tot
ϕ
(sk+1, z

′)|{z′n=argmax
zn

Qn

ϕ
(on
k+1

,zn )}N
n=1

(6)

Q tot
ϕ

is a non-linear function (e.g., neural network) that is mono-

tonic in individual utility functionsQn
ϕ
,n ∈ [N ], and we denote µ as

the collection of greedy policies induced by Qn
ϕ
. The hypernetwork

of QMIX enforces ∂Q tot
ϕ
/∂Qn

ϕ
> 0, which is a sufficient condition

for a global argmax to be achieved via decentralized argmax, i.e.,

argmaxzQ
tot
ϕ
(·, z) = {argmaxzn Q

n
ϕ
(·, zn )}N

n=1. This allows central-

ized training with decentralized skill selection. In general, one can
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choose from a diverse set of cooperative MARL algorithms with

decentralized execution [10, 31, 35, 43].

Conditioned on the choices of skills, each agent independently

executes primitive actions at every low-level time step (lines 19-

20), using the greedy policy πn induced by low-level Q-functions

Qn
θ
(ont , z

n
t ,a

n ). We periodically take gradient steps to optimize the

low level objective (2) (lines 23-25), by using independent DQN

[24, 38, 41] to optimize Qn
θ
via minimizing the loss:

L(θ ) := Eµ,π

[

1

2

(

ynt −Q
n
θ
(ont , z

n ,ant )
)2
]

(7)

ynt := RL(z
n ,τn ) + γ max

an
Q̂n
θ
(ont+1, z

n ,an ),∀n ∈ [N ] (8)

π denotes the collection of greedy policies induced by all Qn
θ
. The

low level rewardRL includes the contribution of the intrinsic reward

RI only at the final time step of each length-tseg trajectory segment,

i.e., at every high-level step. Q̂ is a target network [24].

Once Nbatch number of (zn ,τn ) are collected into the dataset D

(lines 11, 27-29), the skill decoder pψ (z |τ ) is trained to predict z

given τ via supervised learning on D by minimizing a standard

cross-entropy loss. Each chosen zn acts as the class label for the

corresponding trajectory τn . Periodically, we evaluate the agents’

performance (e.g., win rate) in seperate evaluation episodes; if per-

formance exceeds αthreshold, we decrease the weight α by αstep with

lower bound αend (Section 3.2). While it is extremely challenging to

provide theoretical guarantees for hierarchical methods, especially

due to the need for nonlinear function approximation to tackle high-

dimensional continuous state spaces, simultaneous optimization in

hierarchical RL has shown promising practical results [4, 40].

3.4 Trajectory segmentation and compression

Hierarchical MARL requires agents to change their choice of skills

dynamically at multiple times within an episode, such as in response

to a change of ball possession in soccer. This means we use partial

segments instead of full episode trajectories for skill discovery, in

contrast to the single-agent case [1, 9, 13]. At first glance, using

a fixed time discretization hyperparameter tseg for segmentation

may pose difficulties for the skill decoder, such as when a segment

contains qualitatively different behavior that should correspond

to different skills. We address this issue by using the time points

at which the high-level policy chooses a new set of skill assign-

ments as the segmentation. Hence, π learns to generate trajectory

segments in between the time points, and pψ learns to associate

these segments with the chosen latent variables. We synchronize

the time points of all agents’ high-level skill choice, and all skills

are sustained for tseg low-level steps. This corresponds to a special

case of the “anyž termination scheme, which is dominant over other

termination schemes considered in [28]. A practical approach is to

define a range of values based on domain knowledge (e.g., average

duration of a player’s ball possession) and include it in hyperpa-

rameter search. Agents can still learn skills that require more than

tseg steps, by sustaining the same skill for multiple high-level steps.

Building on [1], we preprocess each trajectory before using it as

input to the decoder. We downsample by retaining every kskip steps,

which filters out low-level noise in stochastic environments. We use

the element-wise difference between the downsampled observation

vectors. This discourages the possibility that more than one skill

exhibits stationary behavior (e.g., camping at different regions of a

field), as the difference will be indistinguishable for the decoder and

result in low intrinsic reward. We reduce the dimension of obser-

vation vectors for the decoder by removing entries corresponding

to all other agents, while retaining game-specific information (e.g.,

ball possession). Hence an agent’s own trajectory must contain

enough information for decoding the latent skill variable.

4 EXPERIMENTAL SETUP

Our experiments demonstrate that the proposed method discovers

interpretable skills that are useful for high-level strategies and

has potential for human-AI cooperation in team sports games3. We

contribute evidence that hierarchical MARL with unsupervised skill

discovery can meet or exceed the performance of non-hierarchical

methods in high-dimensional environments with only a global team

reward. We describe the simulation setup in Section 4.1 and provide

full implementation details of all methods in Section 4.2.

4.1 Simple Team Sports Simulator

The Simple Team Sports Simulator (STS2) captures the high-level

rules and physical dynamics of general N versus N team sports

while abstracting away fine-grained details that do not significantly

impact strategic team play [46]. Stochasticity of ball possession and

goals makes STS2 a challenging environment for MARL. Comple-

mentary to 3D simulations such as Kurach et al. [17] that require

massively parallelized training, STS2 is a lightweight benchmark

where MARL agents can outperform the scripted opponent team

within hours on a single CPU. We train in 3v3 mode against the

scripted opponent team for 50k episodes. Each episode terminates

either upon a goal or a tie at 500 time steps.

State. We define a state representation that is invariant under

180 degree rotation of the playing field and switch of team perspec-

tive. For one team, the state vector has the following components,

making up total dimension 34: normalized position of the player

with possession relative to the goal, and its velocity; a 1-hot vector

indicating which team or opponent player has possession; for each

team and opponent player, its normalized position and velocity.

Observation. Each agent has its own egocentric observation

vector with the following components, making up total dimension

31: normalized position and velocity of the player with possession

relative to this agent; a binary indicator of whether this agent has

possession; a binary indicator of whether its team has possession;

its normalized position and its velocity; relative normalized position

of each teammate, and their relative velocities; a binary indicator

of whether the opponent team has possession; relative normalized

position of each opponent player, and their relative velocities.

Action. The low-level discrete set of actions consists of: do-

nothing, shoot, pass-1, ... , pass-N, down, up, right, left. Movement

and shoot directions are relative to the team’s field side. If the agent

does not have possession and attempts to shoot or pass, or if it has

possession and passes to itself, it is forced to do nothing.

Reward. The team receives reward +1 for scoring, −1 when the

opponent scores, ±0.1 on the single step when it regains possession

from, or loses possession to, the opponent. We include a reward of

±1/(2∗max steps per episode) for having or not having possession.

3Code for experiments is available at https://github.com/011235813/hierarchical-marl
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Game events. We define a set of game events, which are fre-

quently used for analyzing team sports [11], to quantify the effect

of skills. Goals: agent scored a goal, upon which an episode ends.

Offensive rebound: agent’s teammade a shot attempt, whichmissed,

and the agent retrieved possession. Shot attempts: agent attempted

to score a goal. Made or received pass: agent made (received) a suc-

cessful pass to (from) a teammate. Steals: agent retrieved possession

from an opponent by direct physical contact.

4.2 Implementation and baselines

We use parameter-sharing among all agents, as is standard for ho-

mogeneous agents in cooperative MARL [14]. For function approxi-

mation, we use fully-connected neural networks without recurrent

units since the game is fully observable. Each component is de-

picted in Figure 1. The low-level Q-function has two hidden layers,

each with 64 units, and one output node per action. The high-level

Q-function is a QMIX architecture: the individual utility function

has two layers with 128 units per layer, and one output node per

skill. Utility values of all agents are passed into a mixer network,

whose non-negative weights in two hidden layers are generated by

hypernetworks of output dimension 64, and whose final output is a

single global Q value (see [27]). The skill decoder is a bidirectional

LSTM [29] with 128 hidden units in both forward and backward

cells, whose outputs are mean-pooled over time and passed through

a softmax output layer to produce probabilities over skills. We use

batch size Nbatch = 1000 to train the decoder; ϵ-greedy exploration

at both high and low levels with ϵ decaying linearly from 0.5 to

0.05 in 1e3 episodes; replay buffers BH and BL of size 1e5; learning

rate 1e-4; and discount γ = 0.99. High and low level action-value

functions are trained using minibatches of 256 transitions every 10

steps at the high and low levels, respectively. Target networks [24]

are updated after each training step with update factor 0.01. We

conduct 20 episodes of evaluation once every 100 training episodes.

We experimented with 4 and 8 latent skills, tseg = 10, and let α de-

cay from 1.0 to a minimum of 0.6 by αstep = 0.01 whenever average

win rate during evaluation exceeds αthreshold = 70%. We process

trajectory segments as described in Section 3.4 with kskip = 2.

As we instantiate our general method using QMIX [27] at the

high level and independent Q-learning (IQL) [24, 38] at the low

level, we compare performance with these two baselines to demon-

strate that the new hierarchical architecture maintains performance

while gaining interpretability. QMIX uses the same neural archi-

tecture as our method, except that the individual utility function

outputs action-values for primitive actions instead of action values

for high-level skills. IQL uses a two-layer Q-network with 128 units

per layer. We first performed a coarse manual search for hyper-

parameters of QMIX and IQL, and used the same same values for

the corresponding subset of hyperparameters in our method. Ad-

ditional hyperparameters (αthreshold,αstep, and tseg) in our method

were chosen from a coarse manual search, and we show results on

hyperparameter sensitivity. We also compared with a variant of our

method that uses two hand-scripted subtask reward functions with

the same hierarchical architecture. An agent with subtask 1 gets

reward +1 for making a goal when having possession; an agent with

subtask 2 gets +1 for stealing possession from an opponent. These

individual rewards mitigate the difficult problem of multi-agent

credit assignment, and so this variant gives a rough indication of

maximum possible win rate against the scripted opponent team.

5 RESULTS

Our method for Hierarchical learning with Skill Discovery, labeled

“HSDž, learns interpretable skills that are useful for high-level co-

operation. HSD meets the performance of QMIX and IQL, exceeds

them in ad-hoc cooperation, and enables deeper policy analysis due

to its hierarchical structure. Section 5.1 provides a detailed quan-

titative behavioral analysis of learned skills. Section 5.2 discusses

performance, hyperparameters sensitivity, and ad-hoc cooperation.

5.1 Quantitative behavioral analysis

We conducted a quantitative analysis of the discovered skills by

measuring the impact of skills on occurrence of game events and

primitive actions, agents’ choices of skills over an episode, and

the spatial occurrence of skills. Figure 2 shows results for the case

of four latent skills, which we describe immediately below. We

describe the case of eight latent skills later in Figure 3.

Analysis of game events. Figure 2a shows the counts of each

game event under each skill, summed over any agent who was

assigned to execute the skill, and averaged over 100 test episodes.

Skill 1 makes the most shot attempts, Skill 2 provides defense by

focusing on steals, while Skill 3 contributes to the most number of

successful goals. This difference in game impact, which emerged

without any skill-specific reward functions, is also reflected by the

large separation of principal components in Figure 2b that result

from applying PCA to the vector of event counts of Figure 2a. Fig-

ure 2b suggests that component 1 corresponds to tendency to make

offensive shots, while component 2 corresponds to tendency to

make steals. Figure 2c shows the distribution of primitive actions

taken by the low-level policy when conditioned on each latent

skill. Skill 0 predominantly moves up towards the opponent net

to begin offense, Skill 1 is more biased toward the left field, while

Skill 2 moves down to defend the home net more than other skills.

Figure 2e shows the usage of each skill by the high-level policy,

under the cases when agent team has possession and when the op-

ponent team has possession. Skill 2 is strongly associated with lack

of possession since it is a defensive skill for regaining possession.

Time series of skill usage. Figure 2f shows a time series of

skill usage over high-level steps by each agent during three differ-

ent episodes (from top to bottom). Importantly, agents learned to

choose complementary skills, such as in Episode 3 when Agent 3

stays for defense while Agents 1 and 2 execute offense via Skills 1

and 3, at step 9. Each individual agent also dynamically switches

between skills, such as in Episode 1 when Agents 1 and 3 switch

from the defensive Skill 2 to the offensive Skill 3 at step 6. As shown

by the extended periods in all episodes when all agents play the

defensive Skill 2, agents are able to sustain the same skill over mul-

tiple consecutive high-level steps, which mitigates the concern over

choosing a fixed tseg. Note that at any given time in the game, the

defensive Skill 2 is almost always used by some agent either to

make steals or cover the home net.

Spatial occurrence of skills. Figure 2g is a heatmap of skill

usage over the playing field. Consistent with the previous analysis,

Skill 0 is used for moving up for offense, Skills 1 and 3 tend to
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