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ABSTRACT

Human players in professional team sports achieve high level coor-
dination by dynamically choosing complementary skills and exe-
cuting primitive actions to perform these skills. As a step toward
creating intelligent agents with this capability for fully cooperative
multi-agent settings, we propose a two-level hierarchical multi-
agent reinforcement learning (MARL) algorithm with unsupervised
skill discovery. Agents learn useful and distinct skills at the low
level via independent Q-learning, while they learn to select comple-
mentary latent skill variables at the high level via centralized multi-
agent training with an extrinsic team reward. The set of low-level
skills emerges from an intrinsic reward that solely promotes the de-
codability of latent skill variables from the trajectory of a low-level
skill, without the need for hand-crafted rewards for each skill. For
scalable decentralized execution, each agent independently chooses
latent skill variables and primitive actions based on local observa-
tions. Our overall method enables the use of general cooperative
MARL algorithms for training high level policies and single-agent
RL for training low level skills. Experiments on a stochastic high
dimensional team game show the emergence of useful skills and
cooperative team play. The interpretability of the learned skills
show the promise of the proposed method for achieving human-AI
cooperation in team sports games.
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1 INTRODUCTION

Fully cooperative multi-agent reinforcement learning (MARL) is
an active area of research [14, 25] with a diverse set of real-world
application, which include autonomous navigation [6], game Al
micromanagement [10, 27], and traffic network optimization [44].
A unique challenge is the need for centralized training for agents
to find global optimal cooperative policies, while ensuring scalable
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decentralized execution whereby agents choose actions indepen-
dently. In this paradigm of centralized training with decentralized
execution [5], a common approach [10, 27, 31, 35, 43] is to conduct
centralized training at the level of primitive actions, which are the
actions used in the transition function of the Markov game [20].
However, the design of hierarchical agents who can cooperate at a
higher level of abstraction using temporally-extended skills in high-
dimensional multi-agent environments is still an open question. A
skill is a policy that is conditioned on a latent variable, executed
for an extended duration, and generates behavior from which the
latent variable can be decoded [1, 9]. It is also not clear how multiple
agents can discover skills without hand-crafted reward functions for
each skill, and how to construct such hierarchical policies to allow
human interpretation of skills for potential human-AI cooperation.
In this paper, we take a hierarchical approach to fully cooperative
MARL and address these questions by drawing inspiration from
team sports games. At the team level, coaches train human players
to execute complementary skills in parallel, such as moving to dif-
ferent field positions in a formation, as well as effective sequences
of skills over time, such as switching between offensive and defen-
sive maneuvers when ball possession changes. At the individual
level, each player learns a sequence of primitive actions to execute
a chosen skill. Hierarchical approaches inspired from such real-
world practices have several benefits for fully cooperative MARL.
From an algorithmic viewpoint, a hierarchical decomposition in
two key dimensions—over agents, and across time—simultaneously
addresses both the difficulty of learning cooperation at the level
of noisy low-level actions in stochastic environments and the diffi-
culty of long-term credit assignment due to highly-delayed rewards
(e.g., scoring a goal in football) [12, 40]. Hierarchical approaches
may also reduce computational complexity [37] to address the ex-
ponential increase in sample complexity with number of agents in
MARL. From the viewpoint of human-AlI cooperation, which has
near-term application to video game Al to improve human players’
experiences [45], hierarchical policies trained with explicit skills is
a key step toward interpretable and modular policies. In this work,
we take interpretability to mean the decodability of a latent skill
from an agent’s observed behavior—i.e., a policy is interpretable if
it produces events and actions in a consistent or distinguishable
manner. While a flat policy is a black-box, since the action output is
purely determined by the agent’s observation input, the modularity
of hierarchical models also provides an entry point for external
control over the skills executed by Al teammates (e.g., execute the
offense skill when it observes a human teammate doing so).
However, decomposing a global team objective such as “scoring
a goal” into many sub-objectives for training a collection of skills is
extremely difficult without expert knowledge, which may be hard
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to access for complex settings such as competitive team sports. Man-
ually crafting reward functions for each skill in high-dimensional
state spaces involving numerous agents is also prone to misspecifi-
cation and cause unintended behavior [3]. Instead, we investigate
a method for hierarchical agents in MARL to discover and learn
a set of high-level latent skills. Agents should learn to cooperate
by choosing effective combinations of skills with their teammates,
and also dynamically choose skills in response to the state of the
game. In contrast to prior work in single-agent settings, where
motion skills were discovered purely via an intrinsic reward [1, 9],
MARL poses significant new challenges for skill discovery. Merely
discovering distinguishable individual motion in an open-ended
multi-agent environment may be useless for a team objective. While
increasing the number of skills increases the chance that some are
useful for a task [9], doing so in the hierarchical multi-agent setting
means exponentially increasing the size of a joint high-level action
space and will exacerbate the difficulty of learning.

We present a method for training hierarchical policies with un-
supervised skill discovery in cooperative MARL, with the following
key technical and experimental contributions. 1) We construct a
two-level hierarchical agent for MARL by defining a high-level
action space as a set of latent variables. Each agent consists of a
high-level policy that chooses and sustains a latent variable for
many time steps, and a low-level policy that uses both its obser-
vation and the selected latent variable to take primitive actions. 2)
We use an extrinsic team reward to conduct centralized training
of high-level policies for cooperation, while we use a combination
of an intrinsic reward and the team reward to conduct decentral-
ized training of low-level policies with independent reinforcement
learning (RL). This allows the use of powerful and general algo-
rithms for cooperative MARL and single-agent RL to train high- and
low-level policies, respectively. 3) We define the intrinsic reward as
the performance of a decoder that predicts the ground truth latent
variable from trajectories generated by low-level policies that were
conditioned on the latent variables. By dynamically weighting the
intrinsic versus extrinsic reward, each low-level policy is trained to
reach a balance between decodability and usefulness—it executes a
skill, without the need for hand-designed skill-specific reward func-
tions. 4) We applied this algorithm to a highly stochastic continuous
state simulation of team sports and performed a detailed quantita-
tive investigation of the learned behaviors. Agents discover useful
skills, that affect game events and determine low-level actions in
distinct and interpretable ways, such as grouping together to steal
possession from an opponent. They learn to choose complementary
skills among the team, such as when one agent camps near the
opponent goal to get a rebound when its teammate makes a long-
range shot attempt. 5) Our hierarchical agents perform higher than
flat methods in ad-hoc cooperation when matched with teammates
who follow policies that were not encountered in training. This is
an encouraging result for the possibility of human-AI cooperation.

2 RELATED WORKS

Building on the framework of options, temporally-extended actions,
and hierarchical single-agent RL [8, 26, 32, 37], early work on hier-
archical MARL in discrete state spaces with hand-crafted subtasks
[12, 22] showed that learning cooperation at the level of subtasks
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significantly speeds up learning over flat methods [20, 34, 38]. Re-
cent work built on deep reinforcement learning [24, 30] to demon-
strate hierarchical single-agent RL in high-dimensional continuous
state spaces, using predefined subgoals [16], end-to-end learning
of options [4], and latent directional subgoals [40] in a two-level
hierarchy. In hierarchical MARL, different subtasks are chosen con-
currently by all agents, whereas only a single subtask is chosen for
each segment in single-agent hierarchical RL [4, 40].

Progress in hierarchical learning benefits from a complementary
line of work on automatic subgoal discovery [23]. Our work draws
inspiration from variational option discovery [1, 9, 13], which—
in formal analogy with variational auto-encoders [15]—trains a
maximum-entropy policy encoder to map latent context vectors
into trajectories from which the context can be recovered by a
supervised decoder. In contrast to prior work on single-agent skill
discovery that focus on finding distinguishable behavior in simu-
lated robotics environments, option discovery in cooperative MARL
poses significant new demands: 1) individually distinguishable be-
haviors must be useful for the team objective; 2) hoping to discover
useful skills by increasing the number of latent skills is impractical
for the exponentially larger action space of MARL; and 3) skills
must be discovered in the actual multi-agent environment rather
than in an isolated single-agent setting.

The key differences from recent work in hierarchical MARL
[2, 39] are that we discover skills with an intrinsic reward instead
of hand-crafting subtask-specific rewards [39], and our agents are
on equal footing without a dedicated “Manager” [2]. A concurrent
work on MARL with latent skills [19] require fully-centralized
execution using global state information, while our method enables
decentralized execution with local observations. A complementary
line of work learns role-specific parameters and assignment of roles
to agents with unique features, where each role is sustained for an
entire episode [42], while our agents can dynamically choose skills
multiple times in an episode. We design our hierarchical agents
using QMIX [27] and independent DQN [24, 38]; other decentralized
cooperative MARL [14] and single-agent RL [36] algorithms are
equally applicable.

3 METHODS

We present a method for fully-cooperative hierarchical MARL,
whereby independently-acting agents learn to cooperate using la-
tent skills that emerge from a combination of intrinsic and extrinsic
rewards. Inspired by training practices of real world professional
sports teams, we create our method within the paradigm of central-
ized training with decentralized execution [5]. For ease of exposition
and intuition, we assume all agents have the same observation space
and action space; nevertheless they take individual actions based
on individual observations. In the rest of this section, we define the
objective of hierarchical MARL with skill discovery, describe our
method to solve the optimization problem, and discuss practical
implementation techniques for effective learning.

3.1 Combining centralized and decentralized
training in hierarchical MARL

We describe a two-level hierarchical MARL setup for training N
agents, labeled by n € [N], as follows. Let Z denote a set of latent
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Figure 1: Hierarchical MARL with unsupervised skill discovery. At the high level (left), the extrinsic team reward is used to
train a centralized action-value function Qot(s, z) that decomposes into individual utility functions Q" (0", z") for decentralized
selection of latent skill variables z. At the low level (right), skill-conditioned action-value functions Q" (0", z", a") take primi-
tive actions independently. Trajectories 7 generated under each z are collected into a dataset D = {(z, 7)}, which is used to train
a skill decoder p(z|7) to predict z from 7. The probability of selected skills under p(z|7) is the intrinsic reward for low-level Q".

variables z, each of which corresponds to a skill. In this work, we use
a finite set of latent variables with one-hot encoding; it is possible
to generalize Z to be a learned continuous embedding space [1].
We treat Z as the action space for high-level policies' y™: O
Z,V¥n € [N], each of which maps from an agent’s observation
o™ € O to a choice of skill z" € Z. Each choice of z"
for tseg time steps: letting T = Ktseg denote the length of an episode,
there are K time points at which a high-level skill selection is made
(see Section 3.4). Conditioned on a chosen latent skill and given an
agent’s observation, a low-level policy 7" : O X Z +— A outputs
a primitive action a" in a low-level action space A. Each z € Z
and the latent-conditioned policy 7" (-;2") is a skill, in accord with
terminology in the literature [1, 9, 13]. Let boldface p, 7, and a
denote the joint high-level policy, joint low-level policy, and joint
action, respectively. Let (-)~" denote a joint quantity for all agents
except agent n. At the high level, p learns to select skills to optimize
an extrinsic team reward function R: S X {ﬂ},ﬂ\il — R that maps
global state and joint action to a scalar reward. At the low level,
{7[”})11\]:1 learn to choose primitive actions to produce useful and
decodable behavior by optimizing a low-level reward function Ry .
Combining the learning at both levels, we view hierarchical MARL
as a bilevel optimization problem [7]:

is sustained

T
t
%¥E2~y,P Est,a,~7r,P ;}’ R(shat)H (1)
K
7" € argmaxE, p p ZET]?N,,’p [RL(ZZ,T]?)] ,Vn e [N] (2)
4 k=1

where 7" is the k-th trajectory segment that consists of a sequence
of observations by agent n, P denotes the environment transition
probability P(s¢+1s¢,a),and Ry (2", ") == X (s,,a,)ern RL(Z": 5t, ar)
denotes the sum of agent n’s low-level rewards along trajectory
7. This may also be viewed as a general-sum meta-game between
a p-player and another z-player. When Ry is the extrinsic team
reward, we have a fully-cooperative meta-game, while the other

!Without loss of generality, and for consistency with our algorithm implementation
below, we use the notation for deterministic policies in this paper.
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extreme is where R}, solely promotes decodability. Our approach,
explained in Section 3.2, lies in between these extremes to strike a
balance between usefulness and decodability.

It is difficult to solve (1)-(2) exactly in high-dimensional con-
tinuous state spaces. Furthermore, we adjust Ry dynamically to
promote skill predictability (see Section 3.2). Instead, we approach it
using powerful algorithms for MARL and RL. First, we use central-
ized MARL algorithms to train high-level policies u for cooperative
high-level skill selection. While cooperative behavior may emerge
from flat policies trained by a team reward [21], explicitly training
high-level skill-selection policies allows external control over the
choice of skills performed (by fixing a latent variable), and sub-
sequent analysis of the behavior for each skill. Second, we apply
independent RL to train low-level policies {n"}nN: 1> €ach condi-
tioned on a skill selected by the agent’s corresponding high-level
policy, to take primitive actions to optimize Ry (z",7") (defined
below in Section 3.2). This reflects the fact that human players in
team sports can master skills individually outside of team practice.

3.2 Skill discovery via dynamically weighted
decoder-based intrinsic rewards

We define the low-level reward by first introducing a skill decoder
py(2"|r") that predicts the ground truth latent skill z" that was
used in the low-level policy 7(-; z") that generated the trajectory
™. The decoder is trained using a dataset D = {(z,7)} of skill-
trajectory pairs, where each consists of the z chosen by a high level
policy and the corresponding trajectory 7 generated by the low
level policy given z, over all agents. D is accumulated in an online
manner during training. Hence, training py, alone can be viewed as
a supervised learning problem where we have access to the ground
truth “label” z associated with each “datapoint” 7

We define the intrinsic reward R I(Zk, r”) for agent n’s k-th tra-
jectory segment Tk via the prediction performance of the skill
decoder on the tuple (z, 7;/). Agent n receives this scalar reward
upon generating the segment 7;’. The key intuition is that a skill in
many complex fully-cooperative team games can be inferred from
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the trajectory of primitive actions that implement the skill [14, 18].
For example, any agent who executes a defensive subtask in soccer
will move toward opponents in a consistent way that mainly de-
pends on its own observations, with only weak dependence on the
behavior of other physically distant agents?. This intrinsic reward
encourages the generation of distinguishable behavior for different
skills, since only by doing so can the low-level policy produce suffi-
ciently distinct “classes” in the dataset D for the decoder to achieve
high prediction performance. Hence we define the low-level reward
Ry as a combination of team reward R and intrinsic reward Rj:

RL(z", ") = Z v R(star) + (1 — @)Ri(2", 7"  (3)
St a; €ETN
where Ry := py (2" |7") 4)
a € R is a dynamic weight (specified below) that determines the
amount of intrinsic versus environment reward. In contrast to prior
work on single-agent option discovery that do not use an extrinsic
reward [1, 9, 13], we take advantage of the team reward in MARL
to guarantee that skills are useful for team performance, and rely
on the intrinsic reward only to promote the association of latent
variables with predictable behavior. This ensures that low-level
policies, when conditioned on different latent variables, produce
trajectories that are 1) sufficiently different to allow decoding of the
latent variable, and 2) useful for attaining the true game reward—
e.g. “attack opponent net” and “defend own net”. We decrease a
from 1.0 to depq via an automatic curriculum in which o decreases
by astep only when the performance (e.g., win rate) in evaluation
episodes, conducted periodically during training, exceeds a thresh-
old @hreshold- At high a, low-level policies learn independently to
maximize the team reward by taking useful actions, some of which
can be composed into interpretable behavior. As @ decreases and
the skill decoder associates trajectories with latent variables, the
low-level policy is increasingly rewarded for generating easily de-
codable modes of behavior when conditioned on different z. A high
Qthreshold can be more suitable for highly stochastic games (see Sec-
tion 5.2), so that the weight on the intrinsic reward increases later
during training, after agents have learned to take useful actions.

3.3 Algorithm

Algorithm 1 is our approach to the optimization problem egs. (1)

and (2), with skill discovery based on eq. (3). We initialize replay

buffers By, B for both levels of the hierarchy, for off-policy up-

dates in similar style to DQN [24], and initialize a dataset D for

the decoder (line 2). At the k-th high-level step, which occurs once

for every tseg primitive time steps (line 6), we compute the SMDP
tseg—1

reward R; := 2ico yiR(st_i, a;_;) for the high-level policy (line
8) [37]. Each agent computes its reward and independently selects
a new skill to execute for the next high-level step (lines 12-13). We
periodically take gradient steps to optimize the high level coopera-
tive skill-selection objective (1) (lines 15-17), using QMIX [27] to

2 As a first step, we do not include higher-order skills that involve coordinated behavior
of two or more agents. Our method can be extended to higher-order skills by associating
multiple agents’ concurrent trajectories with a single skill.

1569

AAMAS 2020, May 9-13, Auckland, New Zealand

Algorithm 1 Hierarchical MARL with unsupervised skill discovery

1: procedure ALGORITHM

2: Initialize high-level Qy, low-level Qg, decoder py, high-
level replay buffer Bp, low-level replay buffer B;, and
trajectory-skill dataset D

3 for each episode do

4 s¢,04 = env.reset()

5 Initialize trajectory storage {f”}nN: ; of max length tseg
6: for eachstept = 1,...,T in episode do

7: if t mod tseg = 0 then

8: if t > 1 then

9 Compute R := yhes « Z]t;e:go Rk

10: Store (St—tseg,Ot—tseg»Z,Rt,St,Ot) into By
11: for each agent n do

12: Store (z",7™) into D

13: Compute intrinsic reward R} using (4)
14: end for

15: end if

16: Select new z" by e—greedy(QZ(o", z)),¥n € [N]
17: if # (high level steps) mod ftaiy = 0 then

18: Update Q4 (s, z) using By and (5)

19: end if
20: end if
21: Get a} from e-greedy(Q(o}, z}', a)) for each agent
22: St+1,01+1, Ry = env.step(ay)
23: Compute R} := aR; + (1 — )R for each agent
24: For all agents, store (o}, a;’,RZ, O?H, z") into low-

level replay buffer B, and append o} to trajectory 7™

25: if # (low-level steps) mod fyain = 0 then
26: Update Qg (0", 2", a™) using By, and (7)
27: end if

28: end for

29: if size of D > Npyich then

30: Update decoder py (z|7) using D, then empty D
31 end if

32: if evaluation win rate exceeds @ipreshold then
33: @  max(dend, & — Astep)

34: end if

35: end for

36: end procedure

tot

é

train a centralized Q-function Q'%'(s;, z) via minimizing the loss:

L) =Epn [% (1 - 0" sk zk))z] (5)

Yk = R + Qg k1.2l m cangmar o 010, oz, (©

Q;)t is a non-linear function (e.g., neural network) that is mono-
tonic in individual utility functions Qg, n € [N], and we denote p as
the collection of greedy policies induced by Qg. The hypernetwork
of QMIX enforces 6Qg’t/ 6Q(’;S > 0, which is a sufficient condition
for a global argmax to be achieved via decentralized argmax, i.e.,
argmax, Q'°'(-, z) = {argmax,n Qg(-, z”)}gle, This allows central-

ized training with decentralized skill selection. In general, one can



Research Paper

choose from a diverse set of cooperative MARL algorithms with
decentralized execution [10, 31, 35, 43].

Conditioned on the choices of skills, each agent independently
executes primitive actions at every low-level time step (lines 19-
20), using the greedy policy 7" induced by low-level Q-functions
Qp (o}, 2z}, a"). We periodically take gradient steps to optimize the
low level objective (2) (lines 23-25), by using independent DQN
[24, 38, 41] to optimize Qg via minimizing the loss:

1 2
L) =By n [5 (y? - QS(O?,Z",a? ) ] )
y} :=Rp(z", ") + y max QAS(O?_H,Zn, a),Yne[N] (8)
an

7t denotes the collection of greedy policies induced by all Qg. The
low level reward Ry, includes the contribution of the intrinsic reward
Ry only at the final time step of each length-seg trajectory segment,
i.e., at every high-level step. Q is a target network [24].

Once Npuiep, number of (2", 7™) are collected into the dataset D
(lines 11, 27-29), the skill decoder py (z|7) is trained to predict 2
given 7 via supervised learning on D by minimizing a standard
cross-entropy loss. Each chosen z" acts as the class label for the
corresponding trajectory 7". Periodically, we evaluate the agents’
performance (e.g., win rate) in seperate evaluation episodes; if per-
formance exceeds apreshold, We decrease the weight a by astep with
lower bound @epq (Section 3.2). While it is extremely challenging to
provide theoretical guarantees for hierarchical methods, especially
due to the need for nonlinear function approximation to tackle high-
dimensional continuous state spaces, simultaneous optimization in
hierarchical RL has shown promising practical results [4, 40].

3.4 Trajectory segmentation and compression

Hierarchical MARL requires agents to change their choice of skills
dynamically at multiple times within an episode, such as in response
to a change of ball possession in soccer. This means we use partial
segments instead of full episode trajectories for skill discovery, in
contrast to the single-agent case [1, 9, 13]. At first glance, using
a fixed time discretization hyperparameter tse; for segmentation
may pose difficulties for the skill decoder, such as when a segment
contains qualitatively different behavior that should correspond
to different skills. We address this issue by using the time points
at which the high-level policy chooses a new set of skill assign-
ments as the segmentation. Hence, 7 learns to generate trajectory
segments in between the time points, and py, learns to associate
these segments with the chosen latent variables. We synchronize
the time points of all agents’ high-level skill choice, and all skills
are sustained for tseg low-level steps. This corresponds to a special
case of the “any” termination scheme, which is dominant over other
termination schemes considered in [28]. A practical approach is to
define a range of values based on domain knowledge (e.g., average
duration of a player’s ball possession) and include it in hyperpa-
rameter search. Agents can still learn skills that require more than
tseg steps, by sustaining the same skill for multiple high-level steps.

Building on [1], we preprocess each trajectory before using it as
input to the decoder. We downsample by retaining every kg steps,
which filters out low-level noise in stochastic environments. We use
the element-wise difference between the downsampled observation
vectors. This discourages the possibility that more than one skill
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exhibits stationary behavior (e.g., camping at different regions of a
field), as the difference will be indistinguishable for the decoder and
result in low intrinsic reward. We reduce the dimension of obser-
vation vectors for the decoder by removing entries corresponding
to all other agents, while retaining game-specific information (e.g.,
ball possession). Hence an agent’s own trajectory must contain
enough information for decoding the latent skill variable.

4 EXPERIMENTAL SETUP

Our experiments demonstrate that the proposed method discovers
interpretable skills that are useful for high-level strategies and
has potential for human-Al cooperation in team sports games>. We
contribute evidence that hierarchical MARL with unsupervised skill
discovery can meet or exceed the performance of non-hierarchical
methods in high-dimensional environments with only a global team
reward. We describe the simulation setup in Section 4.1 and provide
full implementation details of all methods in Section 4.2.

4.1 Simple Team Sports Simulator

The Simple Team Sports Simulator (STS2) captures the high-level
rules and physical dynamics of general N versus N team sports
while abstracting away fine-grained details that do not significantly
impact strategic team play [46]. Stochasticity of ball possession and
goals makes STS2 a challenging environment for MARL. Comple-
mentary to 3D simulations such as Kurach et al. [17] that require
massively parallelized training, STS2 is a lightweight benchmark
where MARL agents can outperform the scripted opponent team
within hours on a single CPU. We train in 3v3 mode against the
scripted opponent team for 50k episodes. Each episode terminates
either upon a goal or a tie at 500 time steps.

State. We define a state representation that is invariant under
180 degree rotation of the playing field and switch of team perspec-
tive. For one team, the state vector has the following components,
making up total dimension 34: normalized position of the player
with possession relative to the goal, and its velocity; a 1-hot vector
indicating which team or opponent player has possession; for each
team and opponent player, its normalized position and velocity.

Observation. Each agent has its own egocentric observation
vector with the following components, making up total dimension
31: normalized position and velocity of the player with possession
relative to this agent; a binary indicator of whether this agent has
possession; a binary indicator of whether its team has possession;
its normalized position and its velocity; relative normalized position
of each teammate, and their relative velocities; a binary indicator
of whether the opponent team has possession,; relative normalized
position of each opponent player, and their relative velocities.

Action. The low-level discrete set of actions consists of: do-
nothing, shoot, pass-1, ..., pass-N, down, up, right, left. Movement
and shoot directions are relative to the team’s field side. If the agent
does not have possession and attempts to shoot or pass, or if it has
possession and passes to itself, it is forced to do nothing.

Reward. The team receives reward +1 for scoring, —1 when the
opponent scores, +0.1 on the single step when it regains possession
from, or loses possession to, the opponent. We include a reward of
+1/(2*max steps per episode) for having or not having possession.

3Code for experiments is available at https://github.com/011235813/hierarchical-marl
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Game events. We define a set of game events, which are fre-
quently used for analyzing team sports [11], to quantify the effect
of skills. Goals: agent scored a goal, upon which an episode ends.
Offensive rebound: agent’s team made a shot attempt, which missed,
and the agent retrieved possession. Shot attempts: agent attempted
to score a goal. Made or received pass: agent made (received) a suc-
cessful pass to (from) a teammate. Steals: agent retrieved possession
from an opponent by direct physical contact.

4.2 Implementation and baselines

We use parameter-sharing among all agents, as is standard for ho-
mogeneous agents in cooperative MARL [14]. For function approxi-
mation, we use fully-connected neural networks without recurrent
units since the game is fully observable. Each component is de-
picted in Figure 1. The low-level Q-function has two hidden layers,
each with 64 units, and one output node per action. The high-level
Q-function is a QMIX architecture: the individual utility function
has two layers with 128 units per layer, and one output node per
skill. Utility values of all agents are passed into a mixer network,
whose non-negative weights in two hidden layers are generated by
hypernetworks of output dimension 64, and whose final output is a
single global Q value (see [27]). The skill decoder is a bidirectional
LSTM [29] with 128 hidden units in both forward and backward
cells, whose outputs are mean-pooled over time and passed through
a softmax output layer to produce probabilities over skills. We use
batch size Npateh, = 1000 to train the decoder; e-greedy exploration
at both high and low levels with e decaying linearly from 0.5 to
0.05 in 1e3 episodes; replay buffers By and By of size 1e5; learning
rate le-4; and discount y = 0.99. High and low level action-value
functions are trained using minibatches of 256 transitions every 10
steps at the high and low levels, respectively. Target networks [24]
are updated after each training step with update factor 0.01. We
conduct 20 episodes of evaluation once every 100 training episodes.
We experimented with 4 and 8 latent skills, tseg = 10, and let « de-
cay from 1.0 to a minimum of 0.6 by astep = 0.01 whenever average
win rate during evaluation exceeds dhreshold = 70%. We process
trajectory segments as described in Section 3.4 with kg, = 2.

As we instantiate our general method using QMIX [27] at the
high level and independent Q-learning (IQL) [24, 38] at the low
level, we compare performance with these two baselines to demon-
strate that the new hierarchical architecture maintains performance
while gaining interpretability. QMIX uses the same neural archi-
tecture as our method, except that the individual utility function
outputs action-values for primitive actions instead of action values
for high-level skills. IQL uses a two-layer Q-network with 128 units
per layer. We first performed a coarse manual search for hyper-
parameters of QMIX and IQL, and used the same same values for
the corresponding subset of hyperparameters in our method. Ad-
ditional hyperparameters (ihreshold» ®step, and tseg) in our method
were chosen from a coarse manual search, and we show results on
hyperparameter sensitivity. We also compared with a variant of our
method that uses two hand-scripted subtask reward functions with
the same hierarchical architecture. An agent with subtask 1 gets
reward +1 for making a goal when having possession; an agent with
subtask 2 gets +1 for stealing possession from an opponent. These
individual rewards mitigate the difficult problem of multi-agent
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credit assignment, and so this variant gives a rough indication of
maximum possible win rate against the scripted opponent team.

5 RESULTS

Our method for Hierarchical learning with Skill Discovery, labeled
“HSD”, learns interpretable skills that are useful for high-level co-
operation. HSD meets the performance of QMIX and IQL, exceeds
them in ad-hoc cooperation, and enables deeper policy analysis due
to its hierarchical structure. Section 5.1 provides a detailed quan-
titative behavioral analysis of learned skills. Section 5.2 discusses
performance, hyperparameters sensitivity, and ad-hoc cooperation.

5.1 Quantitative behavioral analysis

We conducted a quantitative analysis of the discovered skills by
measuring the impact of skills on occurrence of game events and
primitive actions, agents’ choices of skills over an episode, and
the spatial occurrence of skills. Figure 2 shows results for the case
of four latent skills, which we describe immediately below. We
describe the case of eight latent skills later in Figure 3.

Analysis of game events. Figure 2a shows the counts of each
game event under each skill, summed over any agent who was
assigned to execute the skill, and averaged over 100 test episodes.
Skill 1 makes the most shot attempts, Skill 2 provides defense by
focusing on steals, while Skill 3 contributes to the most number of
successful goals. This difference in game impact, which emerged
without any skill-specific reward functions, is also reflected by the
large separation of principal components in Figure 2b that result
from applying PCA to the vector of event counts of Figure 2a. Fig-
ure 2b suggests that component 1 corresponds to tendency to make
offensive shots, while component 2 corresponds to tendency to
make steals. Figure 2c shows the distribution of primitive actions
taken by the low-level policy when conditioned on each latent
skill. Skill 0 predominantly moves up towards the opponent net
to begin offense, Skill 1 is more biased toward the left field, while
Skill 2 moves down to defend the home net more than other skills.
Figure 2e shows the usage of each skill by the high-level policy,
under the cases when agent team has possession and when the op-
ponent team has possession. Skill 2 is strongly associated with lack
of possession since it is a defensive skill for regaining possession.

Time series of skill usage. Figure 2f shows a time series of
skill usage over high-level steps by each agent during three differ-
ent episodes (from top to bottom). Importantly, agents learned to
choose complementary skills, such as in Episode 3 when Agent 3
stays for defense while Agents 1 and 2 execute offense via Skills 1
and 3, at step 9. Each individual agent also dynamically switches
between skills, such as in Episode 1 when Agents 1 and 3 switch
from the defensive Skill 2 to the offensive Skill 3 at step 6. As shown
by the extended periods in all episodes when all agents play the
defensive Skill 2, agents are able to sustain the same skill over mul-
tiple consecutive high-level steps, which mitigates the concern over
choosing a fixed tseg. Note that at any given time in the game, the
defensive Skill 2 is almost always used by some agent either to
make steals or cover the home net.

Spatial occurrence of skills. Figure 2g is a heatmap of skill
usage over the playing field. Consistent with the previous analysis,
Skill 0 is used for moving up for offense, Skills 1 and 3 tend to
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camp near the opponent net (top) to attempt shots, while Skill 2 is
concentrated near the home net (bottom) to make defensive steals.

Increasing number of skills. The number of latent skills is
also a key design choice to make based on domain knowledge.
Figure 3 analyzes HSD when trained with eight skills. Skills 0, 3,
and 6 focus on shot attempts and offensive rebounds (Figure 3a), and
they have high values of the first principal component (Figure 3b).
Skills 1 and 2 focus on defensive steals. Figure 3¢ shows that Skill
0 moves up for offense the most, while Skill 4 moves down to
play defense. This is reflected by their large separation in the first
principal component (Figure 3d).

5.2 Performance and parameter sensitivity

Figure 4 shows win rate against the scripted opponent team over
training episodes for HSD and baselines, each with 5 independent
runs, and for varying hyperparameter settings of HSD, each with
3 independent runs. HSD agents learn faster than QMIX and IQL,
consistent with findings on hierarchical versus non-hierarchical
methods in early work [12], while their final performance are within
the margin of error (Figure 4a). HSD-ext does not have access to
extrinsic rewards and underperforms the rest. This supports our
hypothesis that the extrinsic team reward is needed in combination
with the intrinsic reward to promote useful behavior. HSD-scripted
outperformed other methods, showing that using cooperative learn-
ing at the high-level and independent learning at the low level is a
strong approach, and improvement to skill discovery is possible.
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We investigated the effect of varying the key hyperparameters
of HSD. Figure 4b shows that larger values of apreshold gives higher
performance and lower variance. A small preshold increases the
likelihood that a spuriously high evaluation performance crosses
Qthreshold> Which would cause a re-weighting of the extrinsic versus
intrinsic reward even when the agents have not yet adapted to
the current reward. This explains the instability of @ypreshold = 0.4
in Figure 4b. Likewise, Figure 4c shows that a smaller value of
astep performs better, because each adjustment of the low-level
reward is smaller and hence the automatic curriculum is easier for
learning. Figure 4d shows that agents who sustain high-level skills
for 10 or 20 time steps perform better than agents who sustain only
for 5 steps. A smaller t;e; means that agents make more frequent
decisions to sustain or switch their choice of skill, which allows for
more flexible policies but increases the difficulty of learning.

Table 1: Win/lose percentage of final policies over 100 test
episodes and 5 seeds, matched with different teammates.

HSD QMIX 1QL
Teammate Win  Lose Win Lose Win Lose
Training 46(4) 39(4) 55(3) 23(3) 36(7) 46(4)
1 scripted 49(4) 45(3) 48(4) 44(4) 32(3) 54(4)
2 scripted 52(3) 45(1) 45(2) 51(2) 37(2) 58(1)
1 defensive 43 (5) 42 (4) - - - -
1 offensive 45 (2) 41(1) - - - -
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Ad Hoc cooperation. We investigated the test performance
of agents in ad-hoc cooperation, by giving them teammate(s) with
whom they never previously trained [33]. This mimics the setting
where Al agents must cooperate with a human player in team
sports games. Table 1 shows the win and lose percentage of HSD,
QMIX, and IQL (draws are possible). HSD agents perform as well or
better when one or two of their teammates are replaced by scripted
bots, possibly due to independently-trained low-level policies in
HSD. However, QMIX agents performed significantly worse when
paired with scripted bots, likely because the out-of-training be-
havior of bots pose difficulties for QMIX agents who underwent
fully-centralized training. IQL agents also lost significantly more
often with scripted teammates. For HSD, we can also fix one agent
to always play a defensive or offensive skill. Based on Figure 2a,
we chose Skill 1 for offense and Skill 2 for defense. HSD agents are
able to maintain their performance within the margin of error.

6 CONCLUSION AND DISCUSSION

We presented a method for hierarchical multi-agent reinforcement
learning that discovers useful skills for strategic teamwork. We
train cooperative decentralized policies for high-level skill selec-
tion and train independent low-level policies to execute chosen
skills, which emerge from a dynamically weighted combination of
intrinsic and extrinsic rewards. We demonstrated the emergence
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of quantifiable, distinct and useful skills in stochastic team sports
simulations without assigning a reward to each skill. These find-
ings are a step toward multi-agent game Al that execute realistic
high-level strategies and can cooperate with human players.
There are many interesting avenues for future work. One may
condition high-level policies on unique agent features, such that
agents play different roles [42] that affect their choice of skills.
Asynchronous termination [4] of subtasks allows learning a larger
space of policies. Optimizing the number of skills is also a natural
generalization. One may apply curriculum-learning approaches that
initialize skill-conditioned low-level policies from pretraining in an
induced single-agent setting [43] or using expert data, analogous to
professional players practicing skills outside of team matches. This
may speed up training since low-level policies can already generate
useful trajectories that can be segmented into distinguishable skills.
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