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Abstract
Apache Spark is a popular cluster computing framework
for iterative analytics workloads due to its use of Resilient
Distributed Datasets (RDDs) to cache data for in-memory
processing. We have revealed that the performance of Spark
RDD cache can be severely limited if its capacity falls short
to the needs of the workloads. In this paper, we have ex-
plored different memory hybridization strategies to leverage
emergent Non-Volatile Memory (NVM) devices for Spark’s
RDD cache. We have found that a simple layered hybridiza-
tion approach does not offer an effective solution. Therefore,
we have designed a flat hybridization scheme to leverage
NVM for caching RDD blocks, along with several architec-
tural optimizations such as dynamic memory allocation for
block unrolling, asynchronous migration with preemption,
and opportunistic eviction to disk. We have performed an
extensive set of experiments to evaluate the performance of
our proposed flat hybridization strategy and found it to be
robust in handling different system and NVM characteristics.
Our proposed approach uses DRAM for a fraction of the hy-
brid memory system and yet manages to keep the increase
in execution time to be within 10% on average. Moreover,
our opportunistic eviction of blocks to disk improves per-
formance by up to 7.5% when utilized alongside the current
mechanism.

CCS Concepts • Information systems → MapReduce-
based systems; Storage class memory.
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1 Introduction
In recent years, big data analytics has seen wide adoption
in many places, ranging from industry leading enterprises
to small startups and research labs. In-memory distributed
processing frameworks, e.g., Apache Spark [28], M3R [19]
have seen tremendous success and growth in use because of
their incredible speed and performance that outclass well-
established frameworks like Hadoop [6]. The impressive
success of these in-memory cluster computing frameworks
can largely be attributed to their ability of processing data
in the memory without involving the disk, thus avoiding
serialization cost and reducing a significant amount of I/O
overhead [13, 26].

On the other hand, the advent of “big data” has put tremen-
dous pressure on the existing data analytics systems that
has to process terabytes or even petabytes worth of data
routinely [29]. The speed at which the datasets are getting
bigger outpaces the drop in DRAM price, and memory re-
mains a scarce resource in these data analytics clusters [27]
[3]. Apache Spark uses Resilient Distributed Datasets (RDDs)
to store data in memory that can be reused efficiently and
recomputed using the dependency graph (RDD lineage) in a
fault-tolerant manner. Utilization of RDDs to avoid recom-
putation of frequently required data in iterative workloads
significantly improves the application execution time but
puts a huge burden on the memory system. When working
with large datasets, memory constraint can force Spark to
either drop the RDDs from memory or write them to disk.
Dropping critical RDDs from memory can lead to a large
drop in performance which diminishes the appeal of using
in-memory frameworks.
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Non-Volatile Memory (NVM) has been touted as a solution
to the ever growing need for memory. NVM can be coupled
with Dynamic Random Access Memory (DRAM) to create
heterogeneous memory systems having higher capacity and
lower cost. Although NVM offers much better I/O capabili-
ties, treating it like a disk will incur software overheads that
will introduce a performance bottleneck [7]. When incorpo-
rating NVM in the memory system to achieve hybridization,
cluster computing frameworks, e.g., Apache Spark needs to
redesign their software stack responsible for handling in-
memory data to take advantage of the benefits of NVM (e.g.,
byte addressability, higher capacity) while minimizing the
disadvantages (e.g., higher access latency).

In this paper, we explore different hybridization approaches
for incorporating NVM in the caching component of Apache
Spark. We first consider a simple layered hybridization ap-
proach which is attractive due to its simplicity of implemen-
tation and integration. Due to inheriting current mechanisms
that are not optimized for handling hybrid memory, the lay-
ered approach suffers from poor performance. We closely
inspect the mechanisms involved in caching to identify the
problems and propose a flat hybridization approach along
with three optimizations to the caching mechanism. Our
proposed optimizations include dynamic memory allocation
for block unrolling (dynamic unrolling) that avoids stalling
due to synchronous transfer by switching between memory
regions as required. We also propose a technique termed
“asynchronous migration with preemption” that works with
dynamic unrolling to avoid synchronous transfer of RDD
blocks between memory regions. Finally, we propose a mech-
anism that monitors the RDD cache to detect imminent
disk eviction and writes blocks to the disk ahead of time
to achieve better I/O and computation overlap, which we
term as opportunistic eviction to disk. Our flat hybridization
approach proves to be robust in handling different scenarios
of DRAM/NVM ratio and NVM bandwidth as the increase in
execution time compared to a DRAM-only system is limited
to 8%, 6% and 16% respectively for the tested workloads of
PageRank, ConnectedComponent, and PregelOp.
The rest of the paper is organized as follows - Section 2

introduces some background on Apache Spark and hybrid
memory architecture. In Section 3, we explore the possible
hybridization strategies and present insights achieved from
our implementation of layered hybridization of the RDD
cache. Section 4 presents the design for a flat hybridization
of the RDD cache along with our architectural optimizations.
Section 5 gives details of our implementation and experi-
mental results are presented in Section 6. We discuss the
related works in Section 7 and finally conclude the paper in
Section 8.

2 Background and Motivation
2.1 Apache Spark
Apache Spark is a framework which enables in-memory
data processing to gain scalability over MapReduce and thus
offers strong support for iterative workloads [18], such as
K-Means and PageRank. Spark provides APIs in different lan-
guages (e.g., Java, Scala, Python, and R); however, internally
it is written in Scala and Java and runs atop JVMs. Spark deals
with the fault tolerance of the large scale data processing
system by introducing the abstraction of lazily computed Re-
silient Distributed Datasets (RDDs). An RDD is a collection
of objects that are partitioned across the nodes of the cluster.
These RDD partitions are also referred to as RDD blocks. In
Spark, there are several types of RDDs (e.g., ShuffledRDD,
MapPartitionsRDD) and each RDD can be (re)computed from
its parent RDDs using a dependency graph or lineage. A stage
is a physical unit of execution in Spark where an RDD is
transformed from one type to another through a series of
transformations. An RDD is divided into multiple partitions
so that each task operates on one partition in parallel. Spark
applications can choose to persist any RDD in memory to
avoid recomputation when needed. Spark internally con-
trols the allocation of memory for different purposes (e.g.,
caching of RDD blocks, execution memory for join opera-
tion) through a MemoryManager module where one single
instance exists per JVM. The BlockManager module pro-
vides the interface for putting and getting RDD blocks from
different storage options (e.g., memory, disk) and manages
metadata for the cached RDD blocks.

MemoryRequirements fromRDD:Whilememory res-
ident RDDs greatly benefit iterative processing, they do pose
a hefty requirement on the available memory. A Spark-based
cluster typically consists of a driver node and several worker
nodes where multiple executors will launch the actual Spark
tasks. Aside from a small fraction of memory (typically 300
MB) for system use, each executor splits its memory between
user created data structures and the Spark internal functions
(storage and execution related to RDD computation, shuf-
fling and caching). By default, the latter in total is allocated
60% of the available JVM heap memory. In turn, half of this
allocation is reserved for caching RDD blocks where they are
immune from eviction due to the execution memory pres-
sure. Evidently, this amounts to nearly 30% of memory being
reserved for caching of RDD blocks. At run time, memory de-
mands from user tasks and other Spark execution activities
can fluctuate, resulting in constant competition for mem-
ory. When there is not enough memory for all RDD blocks,
some will simply be dropped from the RDD Cache, or evicted
to disk if Spark RDD blocks are allowed to reside on both
memory and disk, i.e., MEMORY_AND_DISK.
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2.2 Performance Impact of Limited RDD Cache
When an application requiresmorememory for RDD caching
than what Spark has provisioned, severe performance degra-
dation can occur. To quantify the impact of limited RDD
cache, we ran PageRank (PR) and ConnectedComponent (CC)
applications with 16 GB of input data on a Spark cluster
with four workers and a driver node, each with a JVM heap
size of 56 GB. By changing the configuration parameter
spark.memory.fraction, we vary the amount of memory
for Spark. We measure the resulting execution time and nor-
malize them against the execution time when 90% of the JVM
heap is allocated for Spark.
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Figure 1. Spark Execution with Limited RDD Cache.

As shown in Figure 1, when RDD blocks are only cached
in memory (MEMORY_ONLY), workload execution time dramat-
ically increases as we reduce the allocated memory to be less
than 50%, in which case many critical RDD blocks need to be
repeatedly recomputed using the dependency graph. When
the allocation is only 10%, the execution time can be as much
as 32x and 3x, respectively for PageRank and ConnectedCom-
ponent. Even if eviction to disk is allowed for RDD blocks, i.e.,
when the cache level is MEMORY_AND_DISK, Spark execution
time still increases significantly. When the allocation is only
10%, the degraded execution time can be as much as 4x and
2.8x, respectively for PageRank and ConnectedComponent.
We also observe that when the allocated memory is suf-

ficient, i.e., (≥ 50%), eviction of non-critical RDDs to disk
actually hurts the execution time (caching level is set to
MEMORY_AND_DISK). As documented by Zhang et al. [30], un-
necessary movement of RDD blocks to and from disk can
cause performance degradation due to the (de)serialization
cost and the disk I/O.

Our experiments demonstrate that, without sufficientmem-
ory, the performance of iterative workloads can degrade se-
verely. Even with the help of disk to store evicted blocks, the
performance degradation is quite alarming.

2.3 NVM and Hybrid Memory Architectures
Non-Volatile Memory (NVM) is an emerging technology
that has already attracted both industry and academia due to
its potential inmeeting the need for cheaper byte-addressable
memory. Due to being denser and cheaper, NVM can be a

feasible alternative to DRAM. However, NVM has several
disadvantages (e.g. higher read/write latency, higher write
power consumption) that require considerable attention and
prevents a direct substitution of DRAM by NVM in most
systems. NVM read latency can vary from being similar to
DRAM to being up to 4x higher [3, 24]. According to Dul-
loor et al. [3], NVM’s slower write translates to lower band-
width to NVM, as writes to write-back cacheable memory
are posted. This bandwidth can be as low as 1/10th [8] of
DRAM or even lower [23], depending on the NVM technol-
ogy. Hence, hybrid memory architectures utilizing a small
fraction of DRAM and a large amount of NVM have been
touted to be more promising which exploit the cost and ca-
pacity benefits of NVM while minimizing the disadvantages
of NVM with DRAM [1, 5, 23].
Existing hybrid memory architectures can generally be

categorized into two types, layered hybrid memory systems,
and flat-addressable hybrid memory systems. Layered hy-
bridmemory systems commonly use the DRAM as a cache
to the NVM [9, 11, 14, 15]. The DRAM is transparent to the
OS in this case and is entirely managed by the hardware.
Layered hybrid memory systems require extra storage space
to store the metadata for tracking the data blocks in the
DRAM and also usually employ on-demand cache fetching
policies. Flat-addressable hybrid memory systems form
the main memory by organizing the DRAM and NVM in
the same address space [10, 16, 31]. These hybrid systems
overcome the disadvantages of the NVM by migrating fre-
quently accessed pages to the DRAM for avoiding higher
access latency. However, page migrations involve multiple
read/write operations, which can be costly as NVM has a
much higher write latency than DRAM. Flat-addressable
hybrid memory systems employ additional hardware in the
memory controller to track hot pages. In the rest of the paper,
we explore both strategies of memory hybridization in the
context of Spark to leverage the benefits provided by NVM
for RDD caching.

3 Exploration of Hybridization Strategies
for RDD Cache

Spark currently provides a layered architecture for the caching
of RDD blocks [30] using both the memory and the disk.
RDD blocks cached at the memory level are managed under
the MemoryStore and those in the disk are handled by the
DiskStore. In this section, we explore two main strategies,
layered and flat hybridization, to leverage the NVM as an
additional source of RDD cache. Due to the challenge posed
by the JVM in emulating NVM, we use a simple methodology
for emulation of NVM in our system. The details about the
methodology are described in Section 5.2. Based on our ex-
ploration, we offer some observations about the issues that
need to be tackled when hybridizing the RDD cache.
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3.1 Comparison of Hybridization Strategies
Layered Hybridization: A straightforward and non-intrus-
ive strategy is to introduce NVM as a separated and inter-
mediate level between memory and disk, as shown by the
left portion in Figure 2. Due to its layered composition, its is
termed as Layered Hybridization. This strategy retains the
modularity of the current implementation of RDD cache in
Spark. Memory, NVM and disk-based RDD stores are all man-
aged through discrete modules. Each level is opaque to the
internal intricacies of the other ones, while they still coordi-
nate together to allow the migration of RDD blocks across
them through their caching and eviction mechanisms.This
modularity leads to a straightforward implementation for
the stores, as the DRAM store (MemoryStore) can be left
as it is and the NVM store can be inserted between the
MemoryStore and the DiskStore. This architecture allows
for a completely pluggable interface that should be able to
integrate NVMwith minimal changes in the implementation.
The blessings of simplicity and modularity of Layered Hy-
bridization can easily become its curses when it comes to the
need of transparency for block management and migration
across multiple levels. The modular and opaque design offers
only a local visibility of RDD blocks at each level, preventing
a globally optimal decision on the placement and mobility
of blocks across multiple levels.

DiskStore

Block Manager

DiskStore

DRAM
Storage
Region

NVM Storage 
Region

HybridStore

DRAM Storage Region

MemoryStore

NVM Storage Region

NVMStore

Put/Get 
Blocks

Evict 
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Get 
Blocks

Layered Hybridization Flat Hybridization

Block Manager

Migration
Mechanism

Figure 2. Comparison of Layered and Flat Hybridization for
RDD Cache.

Flat Hybridization: In contrast to the layered strategy,
another strategy is to leverage NVM as an expansion of
DRAM, and integrate NVM and DRAM seamlessly together
for RDD caching. This is shown as the Flat Hybridization
scheme in Figure 2. Under the flat scheme, both DRAM and
NVM will be managed within the same store. This scheme
can allow for much better visibility across both memory re-
gions and better migration strategy of RDD blocks across
DRAM and NVM for performance gains. However, flat hy-
bridization requires significant architectural changes in the
design of MemoryStore for DRAM and NVM regions to be
used in a coordinated manner. We will elaborate the flat
hybridization scheme in Section 4.

3.2 Assessment of Layered Hybridization
For its simplicity and modularity, we have developed a con-
ceptual implementation of layered hybridization which is
achieved by introducing an independent block store for NVM
(NVMStore), and interfacing it as the intermediary between
the MemoryStore and the DiskStore. In this way, we can
achieve a hybridization with minimal changes to the rele-
vant Spark modules. We evaluate the performance impact
of this layered hybridization, using a combination of DRAM
and NVM, which we emulate by introducing appropriate
read/write latencies.

Impact ofNVM latency and bandwidth:Weuse PageR-
ank in our tests to measure the impact of NVM latency. In our
test, we configure a hybrid RDD cache with 1/8th as DRAM
and the rest NVM, and compare its performance to an RDD
cache composed of only DRAM. We first measure the impact
of higher read latency while keeping the write bandwidth
fixed. We have observed a minor performance degradation of
2-4% when the read latency of NVM ranges from 2x and 4x to
8x of the DRAM (results omitted for brevity). This test indi-
cates that higher read latency of NVM does not influence the
performance of our workloads to a great extent. On the other
hand, the performance impact of NVM bandwidth exhibits a
different trend. Lower NVM bandwidth has a severe effect
on the performance of the PageRank workload. As shown
in Figure 3, when the NVM bandwidth is set to be 1/16 of
the DRAM, the application execution time increases signifi-
cantly, by up to almost 1.5 times compared to the DRAM-only
case. Since the performance is so closely correlated with the
NVM bandwidth, we further examine the block management
process in Spark to pinpoint the underlying issues.
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Figure 3. Impact of NVM write bandwidth for the layered
organization of RDD cache. NVM write bandwidths are ex-
pressed as fractions of the DRAM write bandwidth.

3.3 Block Management Issues in Spark RDD Cache
In Spark, the BlockManager is responsible for interactingwith
the underlying block stores, e.g., MemoryStore, DiskStore
for putting a block or reading from them. When a task
requests an RDD block from the BlockManager which is
marked for caching, but currently is not present in any of
the stores, the MemoryStore tries to compute and store the
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block if possible. The developers of Spark combined the com-
putation and caching process of a block and termed it as the
Unrolling process. An un-computed block is passed as an
iterator that can be looped through to compute the values
of the RDD block one by one. The MemoryStore periodi-
cally checks whether it should acquire more memory for
the temporary vector that is storing the computed values.
If all the values are successfully computed and put into the
vector, it is converted into an array and stored as a block
in the MemoryStore. This process of periodically checking
whether more memory is needed, allocating space for to
be computed values and finally registering the block with
the BlockManager is termed as the Unrolling process. When
there is not enough memory for expanding the unroll vector,
the MemoryStore evicts blocks to make space for unrolling.
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We instrument the code of the unrolling process to detect
the bottleneck when the stores are organized in a strictly
layered manner. The unrolling process can be thought to
have two components, one is computing new values and the
other is allocating memory for expanding the unroll vector.
From Figure 4, we see that in most cases the percentage of
time spent allocating memory in the layered hybridization
takes up more than 50% of time in the unrolling process,
while in the DRAM only case, it usually takes less than 10%.

In Figure 5, where we depict the process of freeing up
space for allocating unroll memory, we see that the process
is synchronized and only a single task thread gets to enter
the critical block. In the face of memory contention, one
task thread frees up space for itself while the computation of
new values stalls. If other task threads require more memory
during the process, they need to wait for acquiring the lock
for evicting LRU blocks. This can lead to increased waiting
time for allocating memory in the unrolling process, which
is what we see in Figure 4.
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of an RDD block.

Here we summarize our observations from the examina-
tion of Spark RDD cache.
Observation 1: Memory contention during unrolling leads

to increased execution time. When we reduce the amount
of DRAM space and organize the caching layers in a strict
hierarchy, if we try to unroll a new block on the DRAM, the
time taken by the memory allocation routine goes up due to
increased wait time while the DRAM is being freed by the
synchronized transfer mechanism.

Observation 2: The synchronized transfer mechanism is in-
sufficient. The current mechanism processes a single RDD
block at a time, while the other task threads wait. This is
suitable when we completely drop the block, which takes no
time or write to disk, where sequential write is preferable.
For transferring across memory regions, where random ac-
cess is not a problem, we can employ multiple threads to
transfer blocks asynchronously.
Observation 3: NVM read latency does not influence the

execution time to any noticeable degree. We do not need to
move frequently accessed blocks to the DRAM as the effect of
read latency is very minimal. RDD blocks are read in parallel
and the increase in read latency is amortized across all the
task executions.
Observation 4: Low NVM bandwidth can degrade perfor-

mance if it is on the critical path. Lower bandwidth of NVM
has a noticeable effect because execution of task threads can
stall while a block is being transferred.

4 Flat Hybridization of RDD Cache
Based on our assessment of layered hybridization and rev-
elation of drawbacks in the Spark RDD cache, we propose
to design flat hybridization for addressing them through a
combination of three techniques, namely dynamic memory
allocation for block unrolling, asynchronous migration with
preemption, and opportunistic eviction to disk. We describe
these techniques in detail in the rest of this section.

4.1 Dynamic Memory Allocation for Block
Unrolling

From our observations, we know that memory contention
during the unrolling process leads to increased execution
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time. We design our hybrid memory system as a flat-address-
able space to avoid placing all newly computed blocks en-
tirely in either the DRAM or NVM.We switch between mem-
ory regions to allocate memory for block unrolling depend-
ing on a couple of indicators.
We term our proposed technique as Dynamic Memory

Allocation for Unrolling or in short dynamic unrolling.
If the required memory amount exceeds the free memory
space in DRAM, the requesting task thread must invoke the
synchronous transfer mechanism to make space and ensure
allocation. As an invocation of the synchronous mechanism
has much overhead associated with it, we avoid it by mon-
itoring the free space left in the DRAM region. We keep a
rolling average of the size of cached RDD blocks in a stage
(a phase of execution in Spark). As blocks cached during a
particular stage are very similar in size (blocks of the same
RDD), we can use this as an indicator or reference to predict
how big the unrolling vector of the requesting thread may
become. We calculate a threshold using the average cached
block size. If the requested memory amount or the calcu-
lated threshold is greater than the current free memory in
the DRAM, we switch to NVM as the region for allocating
memory for the requesting thread. We have found that using
a multiplier of two with the average block size to calculate
the threshold is conservative enough to handle the variation
in the amount of memory required per task.
Using dynamic unrolling to switch between DRAM and

NVM region helps eliminate the problem of stalling during
the unrolling process and we pair this with the following two
techniques to avoid memory contention during unrolling.

4.2 Asynchronous Migration with Preemption
From our observations, we know that the current block trans-
fer or evictionmechanism in Spark is designed for either writ-
ing blocks to the disk in a sequential manner or completely
drop blocks from the memory. To better utilize the random
access capability and byte-addressability of NVM, we de-
sign a mechanism that synergizes with dynamic unrolling
to ensure computation of RDD blocks without stalling.
Generally, in a hybrid system the amount of DRAM is a

small fraction of the total memory, thus in a point of time
during the execution of a workload, we may find that the
DRAM is full with RDD blocks. If we place new blocks in the
completely occupied DRAM, the synchronous transfer mech-
anism will be invoked to ensure that the task gets enough
memory for unrolling, which we want to avoid for the associ-
ated overhead. If we use the dynamic unroll routine to avoid
DRAM, but no mechanism removes blocks from DRAM after
it becomes full, every newly created block after that point in
time will be placed in the NVM. We remedy this potential
problem by preemptively migrating blocks from the DRAM
to NVM in the background while dynamic unrolling switches
between regions depending on the availability of memory.

In our proposedmechanism,we aim to avoid serial transfer
of blocks and opt for concurrent transfer using multiple
threads. As a transfer between DRAM and NVM regions does
not require CPU-intensive serialization and deserialization
operation, these threads are only bound by the I/O capability
of the NVM device.

Algorithm 1Monitor memory usage and Initiate migration
Require: Caching is ongoing in the current Stage
1: procedureMonitorMemoryUsage
2: dramUsaдe ← getDramUsage()
3: if dramUsaдe ≥ InitiatinдThreshold then
4: multiplier ←Min(multiplier ,waveWidth)
5: tctSize is the total concurrent transfer amount
6: tctSize ← avдBlockSize ×multiplier

◃ Increase multiplier for later invocations
7: multiplier ←Min(multiplier + 1,waveWidth)

◃ curTrans is the current transfer amount
8: tarдetSize ← tctSize − curTrans
9: while size < tarдetSize do
10: selectedBlock ← getLruBlock()
11: size += getSize(selectedBlock)
12: blocks += selectedBlock
13: end while
14: submitToMigrartionService(blocks)
15: else

◃ Reset migration multiplier
16: multiplier ←Max(waveWidth ÷ 2, 1)
17: end if
18: end procedure

Monitor ServicePoll Usage

Cached Thread Pool

Migration Service

Submit Transfer 
Requests

Asynchronously 
Transfer Blocks

Block 1 Block 2 Block 3

Block 4 … …

… … …

… … …

… … …

… … …

… … Block N

Initiating 
Threshold

Block 1 Block 2 Block 3

Block 4 … …

… … …

… … Block N

DRAM Storage Memory NVM Storage Memory

Request queue

Figure 6. Asynchronous Migration with Preemption

Combining these ideas, we design a mechanism named
Asynchronous Migration with Preemption (AMP). Fig-
ure 6 depicts the two components of AMP, one is the mon-
itoring service, and another is the migration service. The
migration service uses a pool of cached threads to handle
block transfer requests that are submitted by the monitoring
service. We show the process of monitoring and submitting
transfer requests to the migration service in Algorithm 1.
The monitoring service invokes this procedure repeatedly
in intervals given that the caching of RDD blocks is ongoing
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in the current stage. If the procedure detects that free mem-
ory in the DRAM has gone below an InitiatingTheshold, it
calculates a target transfer amount and selects LRU (Least
Recently Used) blocks to submit them to our asynchronous
migration service. Several factors are used to determine the
transfer size. We keep a rolling average of the cached block
size of the current stage and update it whenever a new block
is cached. As the wave width or the number of available cores
to the application is generally the number of threads concur-
rently caching, we use half of that number as a multiplier to
the average cached block size to calculate the initial transfer
amount conservatively. If we detect that the DRAM usage
by RDD caching continues to be greater than the configured
threshold, we increase the transfer amount by gradually in-
crementing the multiplier to the average cached block size.
We ramp up until the multiplier reaches the available core
count of the application to aggressively migrate blocks to
the NVM from the DRAM.

4.3 Opportunistic Eviction to Disk
The AMP mechanism is sufficient for the default caching
level (MEMORY_ONLY), where we only need to migrate blocks
between two memory regions. However, for caching level
MEMORY_AND_DISK, where blocks evicted frommemory must
be written to disk, we propose further optimizations in the
system. In this optimization, we aim for an overlap of compu-
tation and disk I/O to make eviction to disk faster. However,
this requires careful consideration of different factors.
Unlike NVM, the random write capability of traditional

disk drives is quite limited and reading RDD blocks back
from the disk involves the costly process of deserialization.
If we are too aggressive in evicting blocks to the disk, applica-
tion performance can get degraded for several reasons. If the
blocks are needed after they were aggressively evicted, read-
ing them back from disk introduces unnecessary overhead.
Also if we constantly evict blocks to disk too frequently, it
can cause the disk to perform poorly, as it struggles to keep
up with the write requests. Considering these factors, we pro-
pose to opportunistically write a limited number of blocks to
the disk when eviction due to memory pressure is imminent.
Using a monitoring service, we detect when eviction to disk
is imminent and write a limited number of cached blocks
using a dedicated daemon thread. The written blocks are
kept in memory for the time being and are tracked through
a list of processed blocks. When the memory is full, and the
eviction mechanism kicks in, the processed blocks are given
priority for eviction from memory. As the processed blocks
are already in the disk when their eviction request is handled,
all the eviction mechanism has to do is to clear out the space
used by them and skip the disk writes.
The monitor service uses an eviction window threshold

for detecting whether disk write is imminent or not. We
calculate the threshold value using the average amount of
eviction per event multiplied by a tunable configuration

parameter. The disk eviction service uses the LRU policy
to select blocks with their size totaling up to the eviction
window amount and writes them to the disk. The monitor
service detects the use of processed blocks and submits new
requests if the amount of free memory is shrinking and disk
eviction window has space for more blocks.

5 Implementation
In this section, we discuss our implementation details. We
have implemented the proposed flat hybrid architecture in
HybridStore, which is a pluggable block store for Spark. The
default MemoryStore implementation and our HybridStore
is extended from a high-level abstract class and thus can be in-
stantiated and plugged in interchangeably depending on the
configuration. Besides the standard methods for interacting
with the other modules of Apache Spark, we have imple-
mented the proposed mechanisms inside our HybridStore.
We also implemented an NvmEmulator that can be used by
other modules, e.g., HybridStore to calculate and add delays
for emulating reads and writes to the NVM region. The Key
APIs of our implementation are listed in Table 1.

5.1 HybridStore
The Monitoring Service is implemented as an executor
service with a single daemon thread, which is scheduled to
run periodically with a fixed delay. Currently, we use a few
milliseconds as the fixed delay period after which the mon-
itoring service submits transfer requests to the migration
service if proper conditions are met.

We implement theMigration Service as an executor ser-
vice with a cached daemon thread pool. Caching the migra-
tion threads allows for reuse without having to invoke thread
creation routines excessively. We also limit the maximum
number of threads in the executor service to the number of
cores allocated for the corresponding Spark application.

DynamicUnrolling is incorporated in ourmodifiedmem-
ory allocation for unrolling routine. Depending on the passed
configuration, our HybridStore can switch between the de-
fault or the dynamic allocation method.
The Disk Eviction Service is implemented as a single

threaded executor service with a limited queue size. When
the number of requests for disk eviction exceeds the queue
size, instead of running it, the monitoring service is handed
back the work which serves as a feedback mechanism to
slow the request rate down if necessary.

5.2 NVM Emulation
Although NVM is a technology that is on the cusp of be-
coming mainstream, the required hardware is still not that
widely available. We have thus evaluated several approaches
to emulate the read and write characteristics of NVM devices.
We have explored the choice of introducing latency using
emulation frameworks against instrumenting the code of
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Table 1. Key APIs of Our Implementation

API Description

putBlockInNvm

The HybridStore moves the specified
block from DRAM to NVM. The transfer
time is calculated and emulated through
the NvmEmulator.

updateAvgCached-
BlockSize

The HybridStore updates the average
size of the cached blocks for the current
active stage. Called after each block is
successfully cached.

monitorUsage(x)

Called periodically by the monitor
service. Checks DRAM or NVM usage
and submits requests to the migration
service or disk eviction service
respectively.

reserveUnrollMemory-
Dynamic

Dynamically allocate memory for the
reqeusting task.

Apache Spark. Lightweight NVM emulation frameworks like
Quartz [21] and HME [2] provide options to applications for
emulating NVM and hybrid memory. Unfortunately, they
are geared towards languages like C and C++ and do not
provide support for JVM languages, e.g., Java and Scala. Also,
they make use of remote NUMA nodes to emulate NVM
access and do not make use of all the CPU cores in the re-
mote NUMA nodes. All these obstacles preclude us from
using an established emulation framework, i.e., Quartz in
our work. So, we have chosen to instrument the code of
Apache Spark to introduce the required latency by injecting
software induced delays.
Software-induced delays can be injected during the exe-

cution of a program in many ways. Researchers have used
RDTSC [24][12] instruction of the processor to introduce
a specific amount of delay by spinning until the processor
timestamp counter reaches the intended delay to emulate
access to NVM during the execution of their software. For
JVM-based research works, a common approach for intro-
ducing latency is to utilize Java Thread.sleep() function.
For example, Islam et al. [8] and Rahman et al. [22] used
this approach to introduce latency in the write operation of
an HDFS block and shuffle output file respectively. In both
cases, the data size written to NVM is large enough such that
the added latency is expected to be at the level of several
milliseconds. However, RDD blocks can be as small as a few
megabytes, which requires the injected latency to be at a
finer granularity.
In our experiments, we have seen (Table 2) that Java

thread sleep is unable to introduce a latency of length shorter
than 1 ms (Section 6.1 gives details about the testbed). For
cases where the required latency is shorter than 1 ms, using
Thread.sleep() will introduce a significant amount of er-
ror to our emulation procedure. To tackle this problem, we
implement a shared library that uses RDTSC instruction to
loop for the specified amount of time, and we invoke the

Table 2. Comparison of time taken by RDTSC and Thread
Sleep. Unit of measurement is nanoseconds.

Latency RDTSC Avg. Thread Sleep Avg.

800 902 1110185

1600 1705 1111296

2000000 2000273 2107764

4000000 4000433 4110156

required functions of this library from Spark code through a
JNI interface. In this way, we can introduce latency far more
accurately when the time is shorter than 1 ms.

6 Evaluation
6.1 Experimental Setup
Cluster deployment: We deploy our implementation on
our in-house cluster. Each of our used nodes is equipped with
two 8-core 2.1 GHz Intel Xeon(R) E5-2620 CPUs, 64 GB of
memory and a 7200-RPM 1 TB Seagate ST1000NM0033 SATA
hard disk. Nodes are connected by a 10-Gigabit Ethernet
network. Our implementation is based on Spark 2.1.1, and
HDFS 2.7.3 is used for storing input and output data. All
experiments are done using five nodes (one driver and four
workers) of our system. The used JVM in our experiment is
the OpenJDK 64-Bit Server VM with version 1.8.0_171. For
all the experiments, we use a JVM heap size of 56 GB to allow
resources for HDFS and other system activities to continue
when our workloads are running.

Workloads: In our experiments we use PageRank (PR),
ConnectedComponent (CC) and PregelOp to test and analyze
the implemented techniques. The selected workloads are
heavily dependent on caching [27] and thus suitable for
evaluating our implemention. We use SparkBench [20] to
generate the different datasets used in the experiments. The
workloads are modified and adapted from SparkBench for
accepting our custom parameters. We use an input dataset
of 16 GB for both PageRank and ConnectedComponent and a
dataset of size 8 GB for PregelOp.

Unless otherwise specified, we allocate 90% of the heap for
storage and execution purpose and use the caching level of
MEMORY_ONLY for RDDs. We evaluate for a scenario where all
the blocks fit in memory due to having a larger hybrid mem-
ory system. If no block is evicted due to memory pressure,
MEMORY_ONLY and MEMORY_AND_DISK performs the same. In
which case, MEMORY_ONLY is a good baseline for evaluating
the impact of our hybridization techniques as it is the default
caching level for RDDs. We use an InitiatingThreshold of 60%
for the AMP mechanism. We consider NVM read latency to
be comparable to DRAM and don’t evaluate for other cases
as the impact is very minimal and emulate as such.
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6.2 Sensitivity to NVM bandwidth
In our first experiment, we evaluate the sensitivity of our
hybridization approaches to NVM bandwidth for three work-
loads. In our tests, we use the same amount of total memory
for both types of hybrid organization and the DRAM only
case. We normalize the performance of the hybrid organiza-
tions against the DRAM-only baseline to see how well they
perform using a lesser amount of DRAM and lower band-
width of NVM. In the hybrid systems, we configure 1/8th of
the total memory to be DRAM. As NVM still is a developing
technology, we use a range of NVM bandwidths to evaluate
the performance.
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Figure 7. Sensitivity of hybridization approaches for dif-
ferent NVM bandwidths. Here DRAM is 1/8th of the total
available memory. NVM bandwidth is varied from 1/4x of
DRAM bandwidth to 1/16x of it.

Figure 7 shows the results of our evaluations. We see that
with the reduction of NVM bandwidth, all three workloads
experience a significant increase in execution time for the
layered hybridization approach. The trend of increased ex-
ecution time is correlated with the decrease in NVM band-
width, as we recall from earlier discussion how invocation
of the synchronized mechanism places the transfer of blocks
in the critical path. With the flat hybridization approach,
we see much better performance. For all the workloads, the
execution time is very close to the baseline. In the case of
PageRank, the increase in execution time is only 2-8%, for
ConnectedComponents the increase is 4-6% and for PregelOp
we see that the increase is within 16%. The performance
of the flat-hybridization approach stems from avoiding the
bottleneck of synchronous block transfer using dynamic al-
location of memory for block unrolling and asynchronous
migration of blocks between the DRAM and NVM region. As
dynamic unrolling places some of the newly created blocks
in the NVM directly, we do see an increase in execution time
but that is much less compared to the layered approach. Thus,
our experiments reveal that the flat hybridization approach
copes very well with different NVM bandwidths and is an
excellent choice for a hybrid RDD cache.

6.3 Sensitivity to DRAM/NVM ratio
We evaluate how the different hybridization approaches react
to different DRAM/NVM ratios, as in a hybrid system, only a

fraction of the total memory is expected to come fromDRAM.
For this set of experiments, we fix the NVM bandwidth to be
1/8th of the DRAM and vary the amount of DRAM available
to the hybrid systems. We normalize our results with respect
to a baseline DRAM-only system.
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Figure 8. Sensitivity of hybridization approaches for differ-
ent DRAM/NVM ratios. The NVM bandwidth is set to 1/8x
of DRAM, while the DRAM/NVM ratio is varied.

Figure 8 depicts our results. As the amount of DRAM
shrinks in a hybrid system, due to increased memory con-
tention during the unrolling process, the layered hybridiza-
tion approach suffers significantly. We see when the DRAM
amount is 1/16th of the total amount, the execution time is
1.88 to 2.39 times of the DRAM-only system. If we increase
the amount of DRAM to 1/4th of the total memory, we see a
lot of improvement compared to the case when it is 1/16th,
but still, the execution time ranges from 1.21 to 1.37 times of
DRAM-only, which is not that good. The flat hybridization
approach performs excellently for all three workloads. For
PageRank, we see at most 7% degradation and Connected-
Component and PregelOp sees an increase in execution time
of at most 6%. So, the flat hybridization approach shows very
little sensitivity to the reduction of DRAM amount in the
hybrid system, which is very encouraging from a cost benefit
standpoint.
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Figure 9. Initial placement of blocks for varying DRAM
ratio.

We analyze the results for the flat hybridization approach
to better understand the impact of our implemented tech-
niques. Figure 9 shows the initial placement of newly com-
puted blocks and Table 3 shows the percentage of transfer
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in terms of the number of blocks using the AMP mecha-
nism. Results show that synchronous transfer from DRAM
to NVM is almost eliminated. Also, the percentage of blocks
initially placed on the DRAM is much higher than the ac-
tual DRAM ratio. We observe that our dynamic unrolling
technique was able to switch between allocation regions
seamlessly to avoid triggering synchronous transfers. Since
the synchronous transfer of blocks was the main bottleneck,
by avoiding that we were able to achieve almost DRAM-like
performance. Also, we note that placing newly computed
blocks on the NVM does not cause a bottleneck and only
influences the performance modestly.

Table 3. Percentage of blocks transferred using the AMP
mechanism. NVM bandwidth is 1/8x of DRAM here.

Workload 1/16 DRAM 1/8 DRAM 1/4 DRAM
PR 96.5% 93.97% 99.87%
CC 97.58% 99.01% 100%

PregelOp 99.23% 99.43% 99.98%

6.4 Layered Hybridization with AMP
We also explore the performance impact of enhancing the
layered approach with the AMP mechanism to see whether
that makes it viable. The AMP mechanism should reduce
the memory contention during unrolling in the layered hy-
bridization by preemptively moving blocks. We use a com-
paratively higher NVM bandwidth of 1/4x to assess whether
in a favorable configuration, the AMP mechanism can make
the layered approach comparable to the flat one.
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Figure 10. Performance of layered hybridization enhanced
with AMP.

In Figure 10, we see that indeed the layered approach ben-
efits from utilizing AMP. For the AMP-enhanced layered
hybridization (Layered Hybridization + AMP), when DRAM
is 1/4th of the total memory, the increase in execution time
from the baseline DRAM-only system is at most 7%. In this
case, the AMP-enhanced layered approach is very much com-
parable to the flat one, albeit a little worse. However, as we
decrease the amount of DRAM in the system, we see degra-
dation in the performance of this approach. The increase in

Table 4. Method of block transfer for the AMP-enhanced
layered hybridization approach with PageRank workload.
NVM bandwidth is 1/4x of DRAM here.

DRAM Ratio Synchronous
Transfer

Asynchronous
Transfer

1/4 44.94% 55.06%
1/8 75.84% 24.16%
1/16 82.76% 17.24%

execution time for PageRank (PR), ConnectedComponent (CC)
and PregelOp is as much as 26%, 24% and 46% respectively.

We examine the method of block transfer for the PageRank
workload with AMP-enhanced layered hybridization. Table 4
shows, when the amount of DRAM shrinks, the percentage of
blocks asynchronously transferredwith the AMPmechanism
decreases. This is expected as NVM bandwidth is lower than
the DRAM, even a constantly working AMP mechanism fails
to keep up with the speed of writing blocks in the DRAM.

From the results of Figure 10 and Table 4, it becomes evi-
dent that, even though the AMP-enhanced layered approach
is comparable to the flat one in some cases, it is not as robust.
Thus we reiterate that the flat hybridization approach is the
most sensible option.

6.5 Impact of Opportunistic Eviction of Blocks to
Disk

For testing the opportunistic disk eviction technique, we use
the workload PregelOp with our flat hybridization approach.
To quantify the impact of opportunistic eviction and the win-
dow multiplier, we focus on the flat hybridization approach
and do not include other variations of implementation. We
reduce the available memory for caching to 20% of the heap
size to force the eviction of blocks to disk and set the NVM
write bandwidth to be 1/4th of the DRAM. We vary the tun-
able window size multiplier parameter to see how smaller
or bigger windows affect the performance of opportunistic
disk eviction. We test for both the MEMORY_AND_DISK and
MEMORY_AND_DISK_SER caching levels of RDD.
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Figure 11. Performance Improvement trend for different
window sizes.

From Figure 11, we see that with a suitable multiplier, a
performance improvement of around 7.5% happens for both

50



Exploration of Memory Hybridization for RDD Caching in Spark ISMM ’19, June 23, 2019, Phoenix, AZ, USA

types of caching levels. From the results, we can infer that,
when the disk eviction window size is relatively small the
overlap of I/O with computation is not that much; hence
the improvement is lower. When we increase the window
size, it gets better until the point where opportunistic disk
eviction triggers too early and causes eviction of blocks that
are again needed shortly, which somewhat diminishes the
benefits. We see that our mechanism handles suboptimal
multiplier size quite well, as there is no performance degra-
dation. Depending on the memory capability, input dataset
size, and workload characteristics the optimal window size
will vary but as our mechanism is robust, we expect the user
can use this to tune and improve the performance of the
caching mechanism.

7 Related Work
There have been some research works that tackle differ-
ent aspects of caching in Apache Spark and other DAG
based cluster-computing frameworks. Least Reference Count
(LRC) [27] analyzes the application DAG to evict the RDD
blocks which have the least number of child blocks that are
yet to be computed. LCS [4] or Least Cost Strategy evicts the
blocks that will lead to minimum recovery cost in the future.
Neutrino [25] proposes a fine-grained caching mechanism
that allows serialized or deserialized caching for different
blocks of the same RDD depending on the runtime charac-
teristics of the cluster.
Clash of the Titans [18] explored the impact of storage

levels and memory constraints for iterative workloads (e.g.,
PageRank). Zhang et al. [30] explored the impact of different
types of storage devices and data abstractions for disk-based
caching in Apache Spark and show that serialization cost
dominates rather than disk I/O bandwidth and suppressing
the excessive movement of blocks between disk and memory
can lead to improved performance.

Quartz [21] is an emulator of persistent memory that uti-
lizes DRAM thermal control to emulate bandwidth and uses
hardware performance counters to calculate the required
latency to be added after fixed time intervals to emulate
latency of NVMs. HME [2] is another emulator for hybrid
memory that exploits feature available in NUMA architec-
tures to emulate NVM by injecting software added latency
after memory accesses to remote NUMA nodes.
There have been efforts to utilize the byte-addressability,

size, and bandwidth of NVM in other data-intensive frame-
works. NVFS [8] is a proposed design of HDFS that imple-
ments HDFS I/O with memory semantics to exploit the byte-
addressability of NVM and reduces DRAM memory con-
tention by allocating buffers for RDMA-based communica-
tion from NVM. Rahman et al. [22] proposed to speed up
the map-phase of RDMA-enabled Hadoop by spilling shuffle
data to NVM SSDs instead of traditional disk storage.

Prominent research on hybrid memory design include
works like DBUFF [15] and RaPP [17]. In DBUFF, the DRAM
is used as a buffer and is not visible to the OS for alloca-
tion. The DRAM buffer along with a write queue is used to
mitigate the write latency of PCM by enabling a lazy-write
mechanism. RaPP organizes DRAM and PCM memory in
a flat manner and migrates pages between them using a
modified multi-queue (MQ) algorithm. RaPP ranks the mem-
ory pages depending on both access frequency and recency
and dynamically places them depending on their popularity.
These works are focused on the system level memory con-
troller while our research focuses on a higher level caching
mechanism i.e., caching in cluster computing framework.

8 Conclusion
In this paper, we have examined the key components of
RDD caching used by Spark to support iterative in-memory
data processing. We found that the performance of Spark
RDD caching is not only affected by the capacity of available
memory but also hindered by the suboptimal management of
block allocation and eviction, due to its tightly coupled pro-
cess of unrolling which combines computation and caching.
Accordingly, we have explored two different strategies, lay-
ered and flat hybridization, to leverage emergent non-volatile
memory devices for the Spark RDD cache. A simple layered
hybridization could not address many drawbacks of the ex-
isting RDD cache in Spark. In contrast, flat hybridization
can be designed to decouple the unrolling and block trans-
fer decisions, and effectively leverage NVM devices for the
RDD cache. Our experimental results demonstrate that flat
hybridization can use DRAM as only a fraction of an ex-
panded hybrid memory system and retain the degradation
of execution time within a small percentage.
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