Multivariate Modeling and Two-Level Scheduling of Analytic Queries

Zhuo Liu?, Amit Kumar Nath®, Xiaoning Ding®, Huansong Fu®, Md. Muhib Khan®, Weikuan Yu®*

“Auburn University, Alabama, United States
bFlorida State University, Florida, United States
“New Jersey Institute of Technology, New Jersey, United States

Abstract

Analytic queries are typically compiled into execution plans in the form of directed acyclic graphs (DAGs) of MapReduce jobs.
Jobs in the DAGs are dispatched to the MapReduce processing engine as soon as their dependencies are satisfied. MapReduce
adopts a job-level scheduling policy to strive for balanced distribution of tasks and effective utilization of resources. However, such
simplistic policy is unable to reconcile the dynamics of different jobs in complex analytic queries, resulting in unfair treatment
of different queries, low utilization of system resources, prolonged execution time, and low query throughput. Therefore, we
introduce a scheduling framework to address these problems systematically. Our framework includes two techniques: multivariate
DAG modeling and two-level query scheduling. Cross-layer semantics percolation allows the flow of query semantics and job
dependencies in the DAG to the MapReduce scheduler. With richer semantics information, we build a multivariate model that
can accurately predict the execution time of individual MapReduce jobs and gauge the changing size of analytics datasets through
selectivity approximation. Furthermore, we introduce two-level query scheduling that can maximize the intra-query job-level
concurrency, and at the same time speed up the query-level completion time based on the accurate prediction and queuing of
queries. At the job level, we focus on detecting query semantics, predicting the query completion time through an online multi-
variate linear regression model, thereby increasing job-level parallelism and maximizing data sharing across jobs. At the task level,
we focus on balanced data distribution, maximal slot utilization, and optimal data locality of task scheduling. Our experimental
results on a set of complex query benchmarks demonstrate that our scheduling framework can significantly improve both fairness
and throughput of Hive queries. It can improve query response time by up to 43.9% and 72.8% on average, compared to the
Hadoop Fair Scheduling and the Hadoop Capacity Scheduling, respectively. In addition, our two-level scheduler can achieve a
query fairness that is, on average, 59.8% better than that of the Hadoop Fair Scheduler.

Keywords: MapReduce, Multivariate Modeling, Query Scheduling

1. Introduction are often depicted as directed acyclic graphs (DAGs). A job
in a DAG can only be submitted to MapReduce when its de-
pendencies are satisfied. A DAG query completes when its last
job is finished. Thus, the execution of analytic queries is cen-
tered around dependencies among jobs in a DAG, as well as the
completion of jobs along the critical path of the DAG. On the
other hand, to support MapReduce jobs from various sources,
the lower level MapReduce systems usually adopt a two-phase
scheme that allocates computation, communication, and I/O re-
sources to two types of constituent tasks (map and reduce tasks)
: X X from concurrently active jobs. For example, the Hadoop Fair
Ing requirements on Fhe performance of underlying MapR.educe Scheduler (HFS) and Hadoop Capacity Scheduler (HCS) strive
systems; such as high throughput, low latency, and fairness to allocate resources among map and reduce tasks to aim for

among jobs. For e)famp]e, to support .latency—sensmve app?“ good fairness among different jobs and high throughput of out-
cations from advertisements and real-time event log analysis, standing jobs. When a job finishes, a scheduler will immedi-
MapReduce must. provide f?St turnaround time. ately select tasks from another job for resource allocation and

Because of their declarative nature and ease of development, .. vion However. these two jobs may belong to DAGs of
analytics applications are often created using high-level query two different queries. Such interleaved execution of jobs can

la“z‘:fuages~ These.analytic queries. are transformed .by compil— cause prolonged execution for different queries and delay the
ers into an execution plan of multiple MapReduce jobs, which completion of all queries. Besides, the lack of query seman-
tics and job relationships in these schedulers can also cause un-

*Corresponding author fairness to queries of distinct structures, e.g., chained or tree-
Email address: yuw@cs. fsu.edu (Weikuan Yu)

According to IDC [1], the total digital data generated per
year would reach 40,000 exabytes by 2020. Among such a gi-
gantic amount of data, 33% can bring valuable information if
analyzed. However, currently only 0.5% of total data can be
analyzed due to limited analytic capabilities. MapReduce [2]
and its open-source implementation Hadoop [3] have become
powerful engines for processing BigData and extracting pre-
cious knowledge for various business and scientific applica-
tions. Analytics applications often impose diverse yet conflict-

Preprint submitted to Journal of Parallel Computing November 2, 2018

shaped queries.

Such problems occur due to the mismatch between system
and application objectives. While the schedulers in the MapRe-
duce processing engine focus on job-level fairness and through-
put, analytic applications are mainly concerned with query-
level performance objectives. This mismatch of objectives of-
ten leads to prolonged execution of user queries, resulting in
poor user satisfaction. As Hive [4] and Pig Latin [5] have been
used pervasively in data warehouses, such problems become a
serious issue and must be timely addressed. More than 40% of
Hadoop production jobs at Yahoo! run as Pig progra
Facebook, 95% Hadoop jobs are generated by Hive [

In this paper, we propose a multivariate query
and two-level scheduling (TLS) framework that ca
these problems systematically. Two techniques are i
including multivariate DAG modeling and two-le
scheduling. First, we model the changing size o
through DAG queries and then build a multivariate r
can accurately predict the execution time and resou
of individual jobs and queries. Then, based on the
ate modeling, we introduce two-level query schedulir
maximize the intra-query job-level concurrency, spe
query completion, and ensure query fairness. Furtheri
in the same DAG may share their input data, but M
schedulers have difficulties in recognizing the locali
across jobs. Our two-level scheduler is designed to
existence of common data among jobs in the same
accordingly share the data across jobs.

Our experimental results on a set of complex °
demonstrate that TLS can significantly improve bot
and throughput of Hive queries. Compared to HCS
TLS improves average query response time by 4
27.4% for the Bing benchmark and 40.2% and 72.8
Facebook benchmark. Additionally, TLS achieves 5
ter fairness than HFS on average. Our contributions tuw uns
research are listed as follows.

e We create a multivariate regression model that can lever-
age query semantics to accurately predict the execution
time of jobs and queries.

e We design a two-level scheduling framework that can
schedule analytics queries at two levels: the intra-query
level for better job parallelism and the inter-query level
for fast and fair query completion.

e Using an extensive set of queries and mixed workloads,
we have evaluated TLS and demonstrated its benefits in
improving system throughput and query fairness.

2. Motivation

In the current MapReduce-based query processing frame-
work, a physical execution plan for Hive queries is generated
as a DAG of MapReduce jobs after being processed by the
parser and semantic analyzer. These DAGs are then submit-
ted to Hadoop according to precedence constraints. Traditional
Hadoop schedulers such as HCS and HFS are adopted to allo-
cate resources to runnable MapReduce jobs, which may belong

to different DAGs (meaning that the jobs stem from different
queries). As we have mentioned in Section 1, the lack of query
semantics awareness can result in inefficient execution of ana-
lytic queries, which can be seen in both HCS and HFS. In HCS,
it is possible for jobs belonging to different queries to have their
executions interleaved. In HFS, resource allocation can be di-
vided too thinly among jobs. Furthermore, the lack of query se-
mantics and job relationship knowledge within schedulers can
also cause unfairness to different types of queries. The remain-
der of this section investigates and proposes a solution for the

QBJ1 QBJ2

Scheduling priority is alternated among queries

Fig. 1: Under HCS, scheduling priority is alternated among different queries
due to semantic unawareness, causing resource thrashing.

TPC-H [8] represents a popular online analytical workload.
We have conducted a test using a mixture of three TPC-H
queries which contains two instances of Q14 and one instance
of Q17. Ql14 evaluates the market response to a production
promotion in one month. Q17 determines the loss of average
yearly revenue if some orders are not properly fulfilled in time.
For convenience, we denote the two instances of Q14 as QA
and QC, and the only instance of Q17 as QB. Fig. 1 shows the
DAGs for these three queries and their constituent jobs. Both
QA and QC have 10 GB of input data and are composed of two
jobs: Aggregate (AGG) and Sort. QB is a query composed of
four jobs and with larger input data size of 100 GB.

In our experiment, we submit QA, QB, and QC one after
another to our Hadoop cluster. Fig. 1 shows that the schedul-
ing priority in this test is alternated among three query jobs un-
der the HCS scheduler, which causes serious resource thrashing
among different queries. Since J1 and J2 from QB arrive before
QA-J2 and QC-J2 respectively, they are scheduled for execu-
tion. As a result, QA-J2 and QC-J2 are blocked from getting
container resources and experience execution stalls due to the
lack of available containers. Such stalls delay the execution of
QA and QC (small queries) by 3x more than when they are
running alone.

When a job is satisfied in HCS, the scheduler immediately
selects tasks from another job to receive resource allocation and
begin execution. It is possible for these two jobs to exist in the
DAGs of different queries. Such interleaved execution of jobs
can increase the makespan of different queries, which results in
a significant delay of the completion for all queries.

The HFS scheduler is known for its monopolizing behav-
ior, causing different jobs to stalls [9, 10]. Applying the same
experimental setup as the HCS experiment described above to
HFS, we have observed similar execution stalls of QA and QC.
For succinctness, the results are not shown here. Suffice to say
that, in HFS, the thinly divided resource allocation among all
active jobs can result in suboptimal performance of queries.

Therefore, due to the lack of knowledge about query compo-
sitions and actual resource demand, Hadoop schedulers cause
execution stalls and performance degradation of small queries.
In a large-scale analytics system with many concurrent query
requests, the issue of execution stalls caused by semantic-
oblivious scheduling is exacerbated.

2.2. Unfairness to Queries with Different Topologies

The lack of query semantics and job relationships at the
schedulers can also cause unfairness to different types of
queries. For example, some analytic queries possess signifi-
cant parallelism and they are compiled into DAGs that exhibit
a flat star or tree-shaped topology, with many branches such as
TPC-H Q18 and Q21 [8]. Other queries do not have much par-
allelism, thus are often compiled into DAGs that have a chained
linear topology, with very few branches. As depicted in Fig. 2,
we build two groups of queries: Group 1 (Chain) composed of
Q5, Q9, Q10, Q12 with a chain topology and Group 2 (Tree)
composed of Q7, Q8, Q17, Q21 with a tree topology. Both

Chain Query Group

.

Tree Query Group

2 8 . A

& Chain Query Group

B Tree Query Group

unfair

4

} unfair
2 %
0

HCS HFS TLS

Avg Query Slowdown

Fig. 3: Fairness to Queries of Different Compositions

Fig. 3 shows the average execution slowdown of two groups
with different scheduling algorithms. Group 1 has an average
slowdown much larger than Group 2, about 2.8 x and 1.7 x un-
der HCS and HFS, respectively. This is because the Hadoop
schedulers are oblivious to high-level query semantics, thus un-
able to cope with queries with complex, internal job depen-
dencies. For example, according to HFS, a tree-shaped query
that has more branches (more runnable jobs) will be allocated

with more resources than a chain-shaped query. Such unfair
treatment to queries of different compositions can incur unsat-
isfactory scheduling efficiency for users. A scheduler that is
equipped with high-level semantics can eliminate such unfair-
ness. As shown in Fig. 3, our two-level scheduler (TLS) can
leverage the query semantics that is percolated to the scheduler,
and complete queries of different DAG topologies under com-
parable slowdowns.

2.3. Proposed Solution: Multivariate Query Modeling and
Scheduling

Within the Hadoop MapReduce framework, Hive queries are
first processed by the parser and the semantic analyzer, and then
a physical execution plan is generated as a DAG of MapReduce
jobs which are submitted to YARN side according to the prece-
dence constraint. YARN is a new version of Hadoop computing
platform, which consists of three major types of components:
ResourceManager (RM), NodeManager (NM) and Application-
Master (AM). The RM takes charges of job-submissions from
clients, monitoring NMs and resource allocation among all ap-
plications in units of containers. Each container is configured
with certain memory and CPU usage limitations. An NM mon-
itors the runtime information of its containers and reports to the
RM. A per-application AM is initiated for each job which is
responsible for resource negotiation, launching and monitoring
tasks.

For all jobs in a DAG, Hive submits one job to the Job-
Listener when that job’s dependency has been satisfied. Jobs
from various queries are linearly ordered at the Hadoop sched-
uler, which then assigns map and reduce slots according to ei-
ther HCS or HFS. Clearly, all the query-level semantics are
lost when YARN’s ResourceManager receives a job from Hive.
Thus the traditional Hadoop scheduler can only see the pres-
ence of individual jobs, not their parent queries. As a result,
there is no coordination among jobs to ensure the best over-
all progress for the query. In addition, without global resource
usage information of each query, it would be difficult for the

crhadnlar ta arhiave afficiant recnnirea allacatinn amana Amariac

Parser HiveQL Queries

E Semantics Execution i
i Analyzer Engine i
A 2 . y

Job &
Semantics Results
i YARN ResourceManager

Fig. 4: Semantics-Aware Multivariate Query Modeling and Scheduling

In this framework, we extract the query semantics informa-
tion during the query compilation and its execution plan con-

struction, and then submit this information along with the jobs
to the ResourceManager. The semantics information includes
query attributes such as the DAG of jobs, dependencies among
the jobs, the operators and predicates of the query, and the input
tables.

The two main techniques, multivariate query prediction
model and two-level query scheduling, are introduced in the
framework, as shown in Fig. 4. Query selectivity prediction is
designed to evaluate query predicates and estimate the chang-
ing size of data during the query execution. Accordingly, we
formulate a multivariate regression model to predict the execu-
tion times of the jobs in the query. With the help of the model,
two-level scheduling is designed to (1) manage queries for ef-
ficient resource utilization and ensure fair execution progress
at a coarse-grained inter-query level; and (2) leverage our mul-
tivariate prediction model to gauge the progress of jobs at the
intra-query level, prioritize jobs on the critical path of a DAG,
thereby achieving fast overall execution of queries. Multivari-
ate query prediction model and two-level query scheduling are
described in detail in Sections 3 and 4, respectively.

3. Multivariate Query Modeling

Modeling of query execution time and resource usage is crit-
ical for efficient scheduling. A query usually consists of mul-
tiple MapReduce jobs, each with a separate scan of its input
tables, materialization and de/serialization. Therefore, model-
ing of individual jobs can gain insights about their execution
statistics and dynamic behaviors. In addition, there are multiple
phases of data processing and movement during the execution
of a job, and the data size changes inside a job and along the
DAG of a query. A good model also needs to reflect such dy-
namics of data [11]. We first describe the selectivity estimation
of different jobs in a query and then elaborate the integration of
selectivity estimation in the job time model.

3.1. Selectivity Estimation

For a MapReduce job in a query DAG, the output of its map
tasks provides the input for its reduce tasks. One job’s output
is often taken as part of the input of its succeeding job in the
same DAG. The input size of a job directly affects its resource
usage (number of map and reduce tasks) during execution in
MapReduce. In addition, the data size of map output (interme-
diate data) affects the execution time of reduce tasks and that
of the downstream jobs in the query. Accurate modeling of ex-
ecution for the job and/or the query requires a good estimation
of the dynamic data size during execution. We divide this re-
quirement into two metrics: Intermediate Selectivity and Final
Selectivity. Let us denote the input of a job as Dy, Dyeq as
the intermediate data, and Dg,; as the output. The Intermediate
Selectivity (IS) is defined as the ratio between Dy, and Dy,
and the final selectivity (FS) as the ratio between Dy, and Dy,,.

3.1.1. Intermediate Selectivity
In general, a job’s intermediate selectivity is determined by
the semantics of its predicate and projection clauses on the input

tables. For some jobs with a local combine step in its map tasks,
e.g., groupby, the impact of combination needs to be taken into
account by their intermediate selectivity. Let us denote |/n| and
|Med)| as the numbers of tuples in the input table and the inter-
mediate data, respectively.

The selectivity of a project clause, S, can be calculated as
the ratio between the average width of the selected attributes
and the average tuple size in a table. We rely on the table statis-
tics information for estimating S,,,;.

The selectivity of a predicate clause, Sy, can be calculated
as Sprea = |Med|/|In| if there is no local combine operation in
the map tasks. We build off-line histograms for the attributes of
the input table for estimating S,.4. Assuming piece-wise uni-
form distribution of attribute values, equi-width histograms [12]
are built on tables’ attributes to be filtered through a MapRe-
duce job and stored on HDFS.

When analytic queries are compiled into DAGs, there ex-
ist a variety of different operators. The operators for global
shuffle/aggregation will be converted into separated MapRe-
duce jobs, which are referred to as major operators, including
groupby, orderby and join. Other operators will be carried out
within the map phase of a job, which are referred to as minor
operators, such as normal range and equality predicates and
map-side join. We categorize jobs into three types with respect
to their major operators: groupby, join and extract (including
orderby and all other major operators). Next we elaborate fur-
ther on our estimation of IS for these jobs.

Extract: An extract operation usually scans one input table
and we have its intermediate selectivity as IS = Speq * Spro)-

Groupby: In a groupby operation, its local combine can fur-
ther reduce the intermediate data. Let S.,,; denote the com-
bination selectivity. We can calculate its intermediate selectiv-
ity as IS = Scomp * Sproj. The calculation of S¢,n, needs to be
elaborated further with an example. Suppose a job performs a
groupby operation on Table T’s keys x and y. Let T.d,, denote
the product from the numbers of distinct keys for x and y. If the
groupby keys are all clustered in the table, S, is calculated as
Seomp = min(1, %) #Spred = Min(Sprea, 7). Otherwise,

if the groupby keys are randomly distributed, S¢,p i then cal-

T T.dyy
culated as Scomp = min(Spred, m), where Nqps denotes

the number of map tasks in the job. We omit the calculation for
other minor cases.

Join: A join operation may select tuples from two or more
input tables. We describe the calculation of IS for a simple
join job of two tables. Let r| represent the percentage of one
table’s data in the total input of a job, r, = (1 —r) for the other
table. We can calculate IS for a join job with two input tables
as: IS = Spredl *Sproj] *r] +Spred2*Sproj2* (1 — rl).

3.1.2. Final Selectivity

Let us denote |Out| as the number of tuples and W, the av-
erage width of tuples in the output (Out), a job’s final selectivity
is calculated as FS = |Out|*Wo,, /Dj,. Specially, FS = 1 for
map-only jobs. The key of calculating F'S is to compute |Out|.
Our discussion focuses on three common operations including
extract, groupby and join.

Extract: In Hive, there are two common extract operations,
“limitk” and “orderby”. For the former, |Out| = min(|In|,k);
and for the latter, |Out| = |In|.

Groupby: A groupby operation may use one or more keys.
The number of tuples in the output is determined by the cardi-
nalities of the keys and the predicates on the keys. We show the
calculation for an example operation with one key. For a table
T, let us denote the cardinality of Key x as T.dy. A groupby
operation on key x will have |OQut| = min(T.dx, |T | * Sprea).

Join: There are many variations of join operations. Multiple
operations may hierarchically formulate as a join tree. We focus
on a few common join operations with two or three tables to
illustrate the calculation and the most important case: equi-join
between a primary key and a foreign key (and tables should
obey referential integrity).

An equi-join operation from these two tables 77 and 7, will
have |Out| = |T) < | = |Th| % | T2 | * m if join keys
follow uniform distribution [13]. However, uniform distribution
is rare in practical cases; in addition, this approach only applies
for multiple joins that share a common join key. In our work,
we assume piece-wise uniform distribution, where in each equi-
width bucket keys follow uniform distribution. Let 77; denote
the i-th bucket in the equi-width histogram for a join operation
on Key x. Then we can calculate the number of tuples in a join
job’s result set as:

1
max(Th;.dy, Tr;.dy)

n
T > To| = Y [Tl | Tai M
i=1

i=

Since (Tq; > Tr;).dyy = min(Ty;.dy, Tr;.dy), the equation above
can be evolved to calculate the join selectivity for shared-key
joins on three or more tables.

For chained joins with unshared keys, e.g., 71 and 7, joining
on Key x and 75 and T3 joining on Key y, we leverage the tech-
niques introduced in [14] by acquiring the updated piece-wise
distribution of Key y after the first join for selectivity estimation
of cascaded joins. For natural joins (each operator joins one
table’s primary key with another table’s foreign key) with lo-
cal predicates on each table, selectivities are accumulated along
branches of the join tree, thus the number of tuples in the result
set can be approximated as:

|Ty.pred) < Tr.predy < - - - <1 Ty, pred,,|)

= Spred1Spred2 - - -Spred11max<‘Tl|7 |T2|,..) |Tn|)

3.1.3. An Example of Selectivity Estimation

We use a modified TPC-H [8] query Q11 as an example to
demonstrate the estimation of selectivities. Fig. 5 shows the
flow of selectivity estimation. This query is transformed into
two join jobs and one groupby job. In Job 1, the predicate on the
nation table has a predicate selectivity of 96% and it is relayed
to the upcoming jobs along the query tree. Thus we can predict
IS and F'S for Job 1 and Job 2 according to the equations above.
In Job 3, since the groupby key (partkey) has a cardinality of
200,000 that is much less than input tuples of this job, the output
tuples of Job 3 is approximated as 200,000.

SELECT ps_partkey, sum(ps_supplycost*ps_availqgty)
FROM nation n JOIN supplier s ON
s.s_nationkey=n.n_nationkey AND n.n_name<>’CHINA'
JOIN partsupp ps ON
ps.ps_suppkey=s.s_suppkey
GROUP BY ps_partkey;

Job 1 Job 2 Job 3
25 24

Pred
—
Join———> 768000 768000 200000
Joi nXs Group | ———
e T B o
Vd by
10000 10000 —>

800000 800000

|Out|= 0.96*25*10000 *1/max(25,25) |Out|=0.96 * max(25, 10000, 800000) |Out| = min(768000,200000)

Fig. 5: An Example of Selectivity Estimation

3.2. A Multivariate Time Prediction Model

Based on the estimation of selectivities, we build a multivari-
ate time prediction model for jobs. We focus on the three op-
erations as we have discussed in Section 3.1: extract, groupby
and join. As listed in Table 1, we rely on several input features
to model the execution time. First, for simple jobs with the
groupby or extract operator, we include three parameters Dy,
Doys and Dyy.q which can provide sufficient modeling accuracy.
Second, different types of jobs display distinct selectivity char-
acteristics. Thus we include the operator type as part of our
multivariate model.

Table 1: Input Features for the Model

Name Description

Y The Operator Type: 1 for Join, 0 for others
Dy, The Size of Input Data

Doy med Avg Intermediate Data Per Reduce Task
Do The Size of Output Data

P(1—P)Dpeq The Data Growth of Join Operators

However, for a join job, these parameters are not enough to
reflect the growth of data sizes because the number of tuples
can be the Cartesian product of input tables. Let |7;| and |73
denote the number of tuples for the two input tables of a join
operator. We define P as the ratio between the number of tuples
in the larger filtered table and that of the two filtered tables,

: max(|Ty |Spred1 7‘T2|Spred2>
ie., P= 0 < P < 1. SoP(1—P) reflects
‘Tl ‘Spredl‘HTZlSpredZ ’ < < ()

the factor of a join operator, P(1 —P) € (0, ;]. In our model,
we include an additional parameter about the data growth for
better prediction accuracy.

Based on these input features, we formulate a linear model
with a set of coefficients 6 = [00,01,...,0,] to predict the job
execution time (ET) as:

ET =860+01Dy, +02Dgygped +03D0us +040% P(1 —P)Dyyeq.

3
Note that 6 is trained separately for each of the three different
operator types.

More features may lead to better prediction accuracy [15].
However, they can cause more monitoring overhead and are ex-
pensive to obtain in real-time. Thus the rationale behind our
choice of features is to balance the need of accuracy with the

complexity of extracting input features. Note that in the pa-
per we concentrate on selectivity prediction for analytic queries,
for other non-relational workloads such as User-Defined Func-
tions (UDFs), there are some available solutions in recent
work [16, 17].

3.3. Model Validation

We further validate the accuracy of our execution prediction
for jobs and queries. To validate our model, we build up a train-
ing set using queries from TPC-H and TPC-DS benchmarks [8].
The data size ranges from 1 GB to 100 GB. Our validation
test uses about 1,000 queries, which are converted into 5,647
MapReduce jobs. Among them, 3/4 queries are used as the
training set while the rest are used as the part of the test set. In
addition, we add 150 GB to 400 GB scale queries into the test
set for assessing the model’s scalability.

3000
I 4 Model Estimation {
& 2500 —— Perfect estimation
Q
£ “ N
= 2000 o
2 e
3 . s
g 1500 A
w NS
a ar
o 4 B
> 1000 a
° A
2 N
© NS
'g 500 &
7] adia
w
0
0 500 1000 1500 2000 2500 3000

Actual Job Execution Time (sec)

Fig. 6: Accuracy of Job Execution Prediction

The prediction accuracy of our model on job execution time
is shown in Fig. 6. The X-axis denotes the actual job execu-
tion time while the Y-axis denotes the predicted job execution
time. The straight line demonstrates a perfect prediction. We
can observe that our model can accurately predict the execution
time of MapReduce jobs through a careful process of selectivity
estimation based on a few input parameters.

Table 2: Accuracy Statistics for Job Execution Prediction

Types R-squared accuracy Avg Error
Extract 83.22% 10.14%
Groupby 91.59% 10.48%
Join 87.2% 15.67%
TestSet N/A 14.84%

Table 2 summarizes the R-squared accuracy and the average
error rate of our model for jobs of each operator. R-squared
accuracy shows how well data fit a statistical model and a value
approaching 1 indicates a good fit. The average error rate for
the test set of jobs is 14.84%.

Built on top of such job time prediction, we can further pre-
dict the query execution time with good accuracy. For example,
we have applied our model to 22 TPC-H queries (each with
100 GB data) and achieved a low 8.3% error rate on average in
modeling the execution time of these queries.

1400

1200 +--| BActual BEStM |-

7
000 === o

Query Response Time (sec)

Fig. 7: Accuracy of Query Response Time Prediction

3.4. Validation for Predicted Query Execution

The execution time of a query can be approximated as the
sum of execution times of all jobs along the critical path of its
DAG and other large jobs which are able to use up the resources
of the system. Thus we directly use our time prediction model
of tasks to predict the execution of whole jobs, as a job is com-
bined with several tasks.

We compare the actual execution time and estimated exe-
cution time of 100 GB TPC-H queries. As shown in Fig. 7,
the deviation between the estimation and actual results are very
closed. The average prediction error rate can be as low as 8.3%.
Again, this error rate adequately validates the accuracy of our
prediction model and strengthens the correctness of our selec-
tivity estimation.

4. Two-Level Query Scheduling

Based on the multivariate query model, our objective is to
schedule the queries for better resource utilization, efficiency
and fairness. We propose to schedule queries and their internal
tasks and jobs at two levels.

Fig. 8(a) shows three Hive queries to a Hadoop system. In
the default case, as shown by Fig. 8(b), jobs are admitted as
active jobs when their dependencies in a DAG are satisfied,
and arranged based on their arrival order. Hadoop then adopts
job-based scheduling policies such as HCS and HFS to allo-
cate low-level container resources for these active jobs. Thus
Hadoop by default is oblivious to the relationship of jobs within
or across high-level queries. In contrast, our proposed schedul-
ing framework will schedule queries and their internal jobs at
two levels as shown in Fig. 8(c).

At the coarse-grained query level, an inter-query scheduler
selects queries for system efficiency and ensures fairness among
concurrent queries. At the fine-grained job level, an intra-query
scheduler increases parallelism and adopts input sharing within
a query to reduce its processing time. Taken together, two-level
scheduling is designed to (1) ensure fair execution progress at
a coarse-grained inter-query level; and (2) improve resource
utilization and minimize query makespans at the fine-grained
intra-query level.

4.1. Inter-Query Scheduling

When analytic queries are first submitted to our scheduling
framework, we admit the query and initialize the structure to

Active Jobs in Arrival Order
—}

o) (o) Cane) (oo () (i)

(b) Hadoop Task-based Scheduling

Inter-Query Scheduling
[—————— S ——

****** *****

dory Soheduing |
| Q112 :
; |

(a) Hive Queries

(c) Two-Level Scheduling

Fig. 8: Diagram of a Two-Level Scheduling Framework

keep track of its runtime information, according to our multi-
variate model. A query queue (L,) is maintained for the ac-
tive queries each of which contains a DAG of runnable or run-
ning jobs. We apply our selectivity estimation and multivariate
model recursively from the largest depth of the query DAG to
the smallest depth, i.e. the root node. To be specific, Dy, IS,
Dyeq, F'S and Do, are initialized based on the job type, pred-
icate and projection selectivities as mentioned in Section IV.
When one task gets completed, we will update the number of
remaining tasks for this query. When one job is completed, we
recursively update our estimation of input, output and execution
time for the downstream jobs along the DAG.

4.1.1. Selection Metric — Weighted Resource Demand

We need to ensure all queries be fairly treated with compara-
ble slowdown ratios so that small queries can turn around faster
while big queries still get their fair share of time and resources
for execution if delayed by a certain degree. However, in select-
ing queries that are organized as DAGs of jobs, we cannot solely
rely on the temporal resource demand of a query, i.e. its remain-
ing time that can be estimated from our multivariate model. A
query and all of its jobs often employ a dynamic number of
tasks during its execution. Each task may have its own exe-
cution time, CPU, memory and I/O resource demand. There-
fore, we introduce a simple metric called Weighted Resource
Demand (WRD) to quantify the resource demand of individual
tasks in a query. WRD is intended as a metric to estimate the
resource requirements of a query or a job. A query’s WRD is
calculated as:

N K
WRD =Y 0;«MT; Ny + Y Bj*RT;*Ngj, (4)
i=1 J=1

where M T; denotes the resource demand from the i-th map task,
Ny i denotes the number of remaining map tasks for an arbitrary
job i of the query. Similarly, RT; denotes the resource demand
for the j-th reduce task and Ng; the number of remaining re-
duce tasks. o; and B; are coefficients introduced to capture the
linear relationship between the resource demand of a task and
its execution time. For a job that is large enough to occupy all
the available containers of the system, its execution time can
be approximated as the job’s WRD divided by the number of
available containers plus scheduling overheads.

Even though we have a job-level multivariate linear model,
the ranges of the parameter values for various jobs can some-
times go far beyond our training set, thereby causing underes-
timation of job execution time [18]. To deal with such issue,
we further empirically build prediction models for the average
execution time of a job’s map or reduce tasks based on the task
type, the operator type, job scale, the per-task input size and
output size. Table 3 demonstrates the R-squared accuracy for
map tasks and reduce tasks with three types of operators. Such
close estimation of task execution also allows us to determine
the WRDs of all queries. We can then select the best query for
execution.

Table 3: Accuracy for Task Execution Prediction

e
| R-squared accuracy | 82%

[Map Task [Extract | Groupby [Join
[9594% | 9261% | 80.87% |

4.1.2. Query Scheduling for Efficiency and Fairness

We have introduced an inter-query scheduling algorithm for
Query Efficiency and Fairness (QEF) management. It strives
to reconcile efficiency and fairness among concurrent queries
within the same queue (L, in Algorithm 1). For optimal
scheduling efficiency at the inter-query level, we adopt an
SWRD policy that orders the queries with the Smallest WRD at
the head of L. This heuristic algorithm is expected to achieve
comparable query scheduling performance as SRPT (shortest
remaining processing time) does in M/G/1 queue (see a brief
proof in Section 4.1.3).

As shown in Algorithm 1, QEF includes the SWRD-based
selection policy and a fairness guarantee policy, which ad-
dresses potential starvation and fairness issues among queries.
In particular, all the queries are sorted within L, according
to their WRD requirement (Line 1). Our algorithm selects the
query with the least WRD (Line 15). However, to ensure fair-
ness, we look for the query that has been severely slowed down
in L, and prioritize it (Lines 4-7). Meanwhile, the query with
slow progress is put into another list Ly, (Lines 8-10). QEF
checks the size of Ly,,, and schedule the last query in Ly, if its
size exceeds a configurable threshold Limity,,, (Lines 12-13).

QEF computes the slowdown that each query experiences by
considering each query’s sojourn time 7y joum and estimated
remaining execution time 7,.,,. The slowdown is defined as
Tsojourn + Trem

Taione .
Ts0journ 18 the amount of time the query has spent in the sys-
tem since its submission. 7y;,,. denotes the estimated execu-
tion time of the query when it runs alone in the system. Mean-
while, the threshold Dyjesn01q that determines whether a query
has been unfairly treated is computed as 1%, where p is the ac-
cumulated load on the system. Such threshold exhibits expected

slowdown with the Processor-Sharing (PS) policy as proven by
M/G/1 model [19].

slowdown =

(&)

4.1.3. Proof for SWRD
According to the Little’s Law [20], a schedule for minimizing
average response time translates to a schedule for minimizing

Algorithm 1 Query Efficiency and Fairness Management

1: Lye: {alist of queries in the ascending order of WRD.}

2: Lg,y:{a list of queries that have exceeded the slowdown
threshold in the ascending order. }

3: forall Q € L, do

4 if (Q.slowdown > 2 X Dpreshola) then

5 Schedule Q via Algorithm 2

6: Return

7 end if

8 if (Q.slowdown > Dyjresnorq) then

9: leow-add(Q)

10: end if

11: end for

12: if sizeof (Lyjpy) > Limity,,, then

13: Qgchea < {last query in Ly, }

14: else

15: Qschea + {first query in Ly, } //ISWRD

16: end if

17: Schedule Qgcpeq via Algorithm 2

the average number of queries in a system. Similar to the proof
introduced in [21], let N(£)S"RP and N(¢)® denote the num-
ber of queries residing in the system for the SWRD schedul-
ing policy and for any other policy, respectively. For the J
queries with the largest WRD and J <= min(N(t)S"EP N (1)?),
we have Y/ | WRDWERP >=y7 | WRD? because SWRD fa-
vors the queries with smallest WRD. With the assumption that
the possible resource utilization difference caused by job ph~e~
independence and intra-query dependence is neligible, the

maining workloads (WRDs) at any time should be the same

SWRD
any scheduling algorithm, thus we have):?;(ll) WRDSWRE

ng:(,l)«o WRD?. Therefore, N(t)SWRP <= N(1)®.

4.2. Intra-Query Scheduling

At the intra-query level, our target is to minimize
makespan of a query that consists of a DAG of MapRed
jobs. This problem is analogous to the multiprocessor sched
ing problem for a DAG of tasks. The HLFET algorithm [22
able to achieve the best makespan for the scheduling of DA
of parallel tasks. The level of a task is calculated as the
tal execution time of all constituent tasks along its longest p
and the task at the highest level is prioritized in HLFET. Hc
ever, the execution of DAGs for analytic queries on MapRed
systems is very different from the DAGs of parallel tasks o
multiprocessor environment because each job in the DAG ¢
query requires a collection of map and reduce tasks, i.e., ca
ing rounds of resource allocation and task scheduling. The
fore, the HLFET algorithm is not a good fit to achieve the mi
mal makespan for DAGs of analytic queries. It can cause ins...
ficient job parallelism and underutilization of system resources.

Depth-First Algorithm: Based on the internal complexity
of MapReduce jobs in the DAGs, we design an algorithm that
would first prioritize the job with the largest depth. In addition,
for jobs of the same depth, our algorithm prefers the job with
a larger WRD of the path from this job to the root node. We

‘) o
) Un-submitted Job | Runnable Job

C) Runnable Job to Prioritize

(1) —_ o) End L) — L0
HLFET n (1) i
o
)) ua‘\ () pe=v PL=1
S 7t
[15) PL=3 (5) PL=2 Avg PL=1.75
[0 — (10) e (10) — [(n)
n (\ 1 (\ L)) i)
[2) L 2 (e | U2
—
.15 PL=3 PL=3 Avg PL=2.5

Fig. 9: Comparison between HLFET and DFA Algorithms

refer to this algorithm as the Depth-First Algorithm. As shown
in Fig. 9, a query is compiled into a DAG of six jobs. J2 and J4
are big jobs with highest levels in the HLFET algorithm. Thus
HLFET schedules jobs J2, J4 and J5 in sequence according to
their levels. In four steps of job scheduling, it can only achieve
a job parallelism (PL) of 1.75 on average. System resources
can be under-utilized with very low job parallelism. In con-
trast, DFA chooses the jobs with higher depths, whose results
are needed by more downstream jobs. In the same number of
steps, DFA achieves a job parallelism of 2.5 on average. When
prioritizing one job with the biggest depth, the remaining sys-
tem containers can be leveraged by other concurrent jobs for
boosting the progress of the whole query. Thus DFA recog-

TPC-H Q21
C "

Job
%0
Table

Intra-query
table sharing

| Supplier | [Nation | | orders | [Lineitem

Fig. 10: An Example of Table Sharing for a TPC-H Query

Locality through Input Sharing: To further strengthen
DFA, we exploit input-sharing opportunities for better memory
locality. For example, as shown 1Sn3 1Fig. 10, the TPC-H query
Q21 contains two groupby (AGG) jobs and a join job that share
the lineitem table as their input, an opportunity for intra-query
table sharing. This input locality can be exploited to achieve
better memory locality and reduce disk I/0. Note that input ta-
bles can be shared across different queries, e.g., between Q21
and Q17 (not shown for succinctness). Exploiting inter-query
input sharing would complicate our design with diminishing re-

Algorithm 2 Locality-Based Depth-First Algorithm

1: Initialization:
2: DAG(Q),Ready(Q),IT(Q) + {Query Q’s DAG, Runnable
jobs, Input Tables}

3: LA(e): {Jobs sharing Table e, first empty. }

4: for all j € DAG(Q) do

5. Depthj,WRD;,Input; < {Job j’s depth, WRD, tables}
6: Insert Job jinto Ready(Q) if its dependencies are ready.
7. foralle € IT(Q) do

8: if e € Input; and e.size > Input .size/2 then

9: Insert Job j into LA(e) in descending WRD.
10: end if
11: end for

12: end for

13: Method:

14: A container is assigned to this query by Algorithm 1

15: e < the max table among the query’s inputs whose
LA(e).size >=12

16: if LA(e) <> null then

17: Select a runnable Job k with the max job-WRD in LA(e)

18: Allocate the container to Job k

19: Check and update WRDy, LA(e) and Ready(Q)

20: Return

21: end if

22: Select jobs with the highest depth from Ready(Q) as Lyyq,
23: In L;,4,, select Job k with the max WRD from the root

24: Allocate the container to Job k

25: Check and update WRDy, and Ready(Q)

turns. We focus on intra-query input sharing opportunities in
this paper.

Combined Algorithm: We propose a Locality-Based
Depth-First Algorithm (LoDFA) to combine both ideas. As
shown in Algorithm 2, LoDFA first initializes the depth, WRD
and input tables for each job (Lines 5-6). In addition, for each
input table, it creates a set that includes the jobs that share the
table (Lines 7-11). Once a container is assigned to this query, it
finds the sets of jobs that share the input table (e), and schedules
a task from the job with the largest job WRD (Lines 16-21).
This allows LoDFA to exploit the benefit of memory locality
by opportunistically launching the batch of sharing-input jobs
together similar to the fairshare manner [23]. If there are no
runnable sharing-input jobs in this query, LoDFA then follows
the DFA algorithm to select the job with the highest depth and
then the largest accumulated WRD along the path from this job
to the root node (Lines 22-25).

5. Evaluation

In this section, we carry out extensive experiments to eval-
uate the effectiveness of the framework with a diverse set of
analytic query workloads.

5.1. Experimental Settings

Testbed: We have implemented our prediction-based
scheduling framework in Hive v0.12.0 and Hadoop v2.5.0
(YARN). Our experiments are conducted on a cluster of 17
nodes, one of which dedicatedly serves as both the Resource-
Manager of Hadoop MapReduce and the namenode of HDFS
while each of the other nodes serves as both the NodeManager
and datanode. Every node features two 2.67 GHz hex-core Intel
Xeon X5650 CPUs, 24 GB memory and two 500 GB Western
Digital SATA hard drives. The heap size for JVM is set as 2 GB
and the HDFS block size as 256 MB. All other Hadoop param-
eters are same as the default configuration. We employ Hive
with the default configuration, while allowing the submission
of multiple jobs into Hadoop.

Table 4: Workload Characteristics

. . Number of Queries

Bin | Input Size Bing Facebo?k QMix
1 1-10 GB 44 85 85
2 20 GB 8 4 4
3 50 GB 24 8 8
4 100 GB 22 2 2
5 >100 GB 2 1 1

Benchmarks and Workloads: We choose a wide spectrum
of benchmarks to conduct the experiments. We first choose a
few TPC-H queries with tree-structure execution plans to exam-
ine the efficacy of the intra-query scheduling. Then, we test the
overall performance of the two-level scheduling under large-
scale workloads with concurrent queries. For this purpose, with
the TPC-H and TPC-DS queries, we first build two workloads
based on the workload composition on Facebook and Bing pro-
duction systems characterized in [24]. We name them Facebook
workload and Bing workload, respectively. Though our frame-
work is mainly targeted for Hive queries, we also test the feasi-
bility of the framework on scheduling mixed workloads consist-
ing of singleton MapReduce jobs and Hive queries. For these
experiments, we build the QMix workload, which mixes TPC
queries with non-Hive benchmarks (Terasort, WordCount and
Grep, processed as single-job queries).

Table 4 summarizes the composition of the Bing, Facebook
and QMix workloads. Each workload has 100 queries with
different input sizes and these queries are divided into 5 bins
based on their input sizes. We carefully tune the scales of the
data sets and select queries, such that the numbers of queries in
each bin follow a similar distribution as that described in [24].
While Facebook workload has a dominant portion of queries
with small input sizes, queries of the Bing workload are more
uniformly distributed in the bins. The QMix workload is built
by replacing 20 Hive queries in the Facebook workload with 20
non-Hive MapReduce jobs such that the QMix workload fol-
lows a long-tailed distribution similar to the Facebook work-
load. The queries are submitted into the system following a
random Poisson distribution of inter-arrival times.

5.2. Intra-Query Scheduling Evaluation

To test the effectiveness of the intra-query scheduling algo-
rithm LoDFA, we collect the response time of each query when

2500 | 7HCS mHFS LoDFA|

2000

1500

1000

Query Response Time (sec)

[
o
S

Q9 Q18 Q17 Q21

Fig. 11: Query Response Times of Q9, Q18, Q17, and Q21 when They Use
System Resources Alone

it uses the whole system dedicatedly. While queries with chain-
structured execution plans usually have similar response times
under LoDFA as they do under conventional Hadoop schedulers
HCS and HFS. We found that LoDFA can effectively reduce the
response times for queries with tree-structured execution plans.
Fig. 14 illustrates the response times of a few representative
TPC-H queries of 200 GB scale under LoDFA and conventional
Hadoop schedulers.

Compared to HCS, LoDFA reduces the response times
(tree-structured version), Q18, Q17, and Q21 by 16.3%, 1t
27.0% and 23.0%, respectively. Compared to HFS, LoDF
duces the response times of Q9, Q18, Q17 and Q21 by~
12.9%, 14.2% and 15.8%, respectively. LoDFA improve
performance of Q9 and Q18 mainly because it preferen
schedules jobs such that it increases the number of conct
jobs in these queries to fully utilize resources. To be spe
our DFA favors jobs with large depths and WRDs which &
critical paths. LoDFA improves the performance of Q1
Q21 mainly since it is aware of the data sharing betwee
jobs in each query and schedules the jobs in a way that ca
ploit memory locality for efficient execution.

Since in Q17 and Q21 the jobs on the leaf nodes of their ex-
ecution plans share the same big table (lineitem), the sharing-
aware scheduling in LoDFA can consecutively execute the tasks
of jobs sharing the same data sets and improve data accesses’
temporal locality for these jobs. Such strategy reduces the
amount of data to be read from disks and accelerates the ex-
ecution of map and reduce tasks.

When queries run concurrently and contend for resources,
the intra-query scheduling algorithm - LoDFA becomes more
effective in reducing query response times, especially for small
queries. At the same time, it improves the data temporal lo-
cality among jobs that share data and hence increases system
throughput.

5.3. Improving Scheduling Fairness

For a system shared by queries from multiple users, it is de-
sirable to schedule the queries fairly. To measure the fairness,
we run the concurrent query workloads (Bing and Facebook)
and collect the slowdown of each query, which is calculated as
the ratio of the response time of a query to its response perfor-
mance when executing alone. In an ideal system, we expect the
queries to be slowed down by similar percentages.

Fig. 12 shows the maximum slowdown of the queries for
each bin in Bing and Facebook workloads. A smaller value
of the maximum slowdowns indicates that the queries in the
corresponding bin are more fairly scheduled, since it is the up-
per bound of the slowdown difference between any two queries
in the bin. In Fig. 13, we show the average slowdown of the
queries in each bin. By comparing the average slowdowns of
different bins, we can estimate how fairly the queries across

thnnna Kinn nvn mnali A 1443

«
S

Iy
S

HCS mHF¢

w
S

Maximum Slowdown
N
S

N
5]

o

Binl Bin2 Bin3 E

(a) Bing (b) Facebook

Average Slowdown

Binl Bin2 ! Binl Bin2 Bin3 Bin4 Bin5

(a) B (b) Facebook

Fig. 13: Average Slowdown

Not surprisingly, for both Bing and Facebook workloads,
when they run with the HCS or HFS scheduler, the maximum
slowdowns of the bins with large queries are usually lower than
those of bins with small queries. For example, as shown in
Fig. 12, the maximum slowdowns of their first bins are higher
than those of any other bins. This indicates that with HCS
or HFS the performance of small queries are more subject to
unfair scheduling than large queries. Fig. 12 also shows that
though replacing HCS with HFS generally helps improve the
fairness for the bins to some extent, HFS still cannot render
satisfactory fairness among different query bins. The main rea-
son is that HFS strives to achieve job-level fairness but lacks
the semantic information at query-level. Therefore, HFS can-
not achieve good fairness among queries with different input
sizes and DAG structures (e.g., tree-shaped and chain-shaped
topologies described in Fig. 2). However, TLS achieves much
lower maximum slowdowns for all the bins than HCS and HFS.
To be specific, for Bing and Facebook workloads, TLS reduces
the means of maximum slowdowns by 75.9% and 65.2% com-
pared to HCS; compared to HFS, the improvement percentages
are 55.2% and 62.5%, respectively. This confirms that TLS can
improve fairness significantly and consistently, irrespective of
the query input sizes.

As shown in Fig. 13, with HCS, small queries are biased by
the scheduler, and they are usually slowed down by higher per-
centages than large queries. For example, for the Bing work-
load, HCS incurs 13.5x average slowdown for the queries in
Binl but 2.23x for Bin5. Though HFS may improve the fair-
ness, the improvement comes at the cost of the performance
of large queries. For example, compared to HCS, HFS signifi-
cantly increases the average slowdowns of Bin4 and Bin5 in the
Facebook workload. However, TLS can improve fairness more
effectively than HFS. With TLS, the average slowdowns of dif-
ferent bins show much smaller variations than those with HFS.
More importantly, the better fairness comes without degrading
the performance. For all the bins, the average slowdowns are
much lower than those with either HFS or HCS.

5.4. Overall Benefits to Query Response Time

We also use Bing, Facebook and Qmix workloads to evaluate
the overall performance of our framework.

4000 -
3500
3000
2500
2000 -

1500

Query Response Time (sec)

1000 |- ¢

500 +-

0 4

Bing Facebook Qmix

Fig. 14: Average Query Response Times

Fig. 14 summarizes the average query execution times of
Bing, Facebook, and Qmix workloads under three scheduling
policies. Among all scheduling policies, TLS achieves the best
performance by leveraging the semantics information that en-
sures all queries are fairly treated with negligible slowdowns.
HCS has reversed performance compared to HFS, because of
the characteristics of HCS that maximizes the utilization of the
cluster. As the resources always have the higher priority in
HCS, the semantics are broken severely under HCS than HFS.
However, HFS neglects the resources utilization. TLS consid-
ers the resource demands and the time, which avoids breaking
the semantics and delaying priorities. Compared to HFS, TLS
reduces the average query response times by 40.2% and 43.9%,
respectively. Compared to HCS, the average query response
times of TLS are decreased by 72.8% and 27.4%, respectively.
For QMix workload, TLS reduces the average query response
time by 45.96% and 76.28% respectively, relative to HFS and
HCS. This clearly demonstrates the capability of TLS to handle
query workloads with the help of semantics-aware query pre-
diction.

An Analysis on Response Times: Besides an evaluation
on the overall performance benefits, we have analyzed the dis-
tribution of response times with semantics-aware scheduling.
Fig. 15 and 16 plot the CDFs of the query response times
for these scheduling schemes under Bing and Facebook work-
loads. As we can observe, TLS consistently reduces the re-
sponse times for almost all the queries.

Allocating more resources to small jobs sacrifices the per-
formance of large jobs. This can be confirmed with the HFS
curves in Fig. 15(c) and Fig. 15(d). Thus, the Bing workload,
which has more queries with large inputs, exhibits larger aver-
age response time with HFS than it does with HCS.

In the Facebook workload, most queries have small input
sizes and thus have small jobs. With the HCS scheduler, the
executions of the small jobs are significantly delayed due to the
interleaving of the execution of large queries. The HFS sched-
uler reduces the response times for small queries by allocating
a fair amount of resources to small jobs (Fig. 16(b)). This is
why the average query response time is smaller with HFS than
that with HCS. TLS outperforms both HFS and HCS due to
help from query-based semantic-aware scheduling and accurate
query prediction.

5.5. Comparison against the Built-in Schedulers of YARN

System Response Time: When queries run concurrently and
contend for resources, TLS becomes effective in reducing query
response time. This is especially true for small queries. To test
how TLS performs compared to HCS and HFS, we submit 5
queries with the same query number over different inputs (with
sizes ranging from 10 GB to 200 GB) simultaneously to the
system. We collect and compare the response times of each
query under HCS, HFS, and TLS.

Fig. 17 shows the response times of each query, as well as
the average response time of Q21 in TPC-H. Overall, TLS is
substantially more responsive than HCS and HFS, especially
for the small queries. With HCS, five queries have similar re-
sponse times. This is because HCS groups jobs into multiple
queues and adopts the FIFO scheduling policy for each queue.
This means that HCS is imposing the bias that FIFO holds to-
wards small queries, leading to the execution priority turning
around among each of the five queries. Compared to HCS,
TLS reduces the response times of small queries to a large ex-
tent (up to 74.6% for the query with 10GB input). Concering
HFS, it splits resources among jobs so that each job receives its
fair share, which allows small queries turn around faster, while
large queries progress slowly. Throughput indicates the num-
ber of queries that a MapReduce cluster handles successfully
during an interval and is considered as an primary unit of mea-
surement in scheduling. Fig. 17 also shows that TLS reduces
the response time for the query that finishes last, indicating the
increase of the system throughput compared to HCS and HFS.
To be specific, TLS reduces the response time by 36.1% and in-
creases system throughput by 22.5% on average compared with
HFS. The reason of these performance improvements is that
the semantic information of TLS enables it to run queries in se-
quence while HFS runs them in parallel. By running queries se-
quentially, TLS allocates as much resource as a query demands
so that the query can finish quickly without penalizing other
queries, leading to increased overall performance. At the same
time, the LoDFA at the intra-query level improves the number
of concurrent running jobs and the data locality among jobs that
share a common input within a query. It is important to note that
TLS not only caters to the interactivity requirement of small in-

08 0.8

6 X
g 0 ——HCS 06
© o4 —— HFs 0.4

LS
0.2 |} 02 f
ol ol
0 2000 4000 6000 8000 0 1000 2000 3000 4000 5000

Response Time (sec)

(a) Combined

Response Time (sec)

(b) Binl

1 1

Fig. 15: CDF of Query Response Time in Bing Workload

0.8 0.8

0.6 0.6
u —— Hcs

© o4 —— HFs 0.4
LS

0.2 0.2

0 ol
0 2000 4000 0 1000 2000

Response Time (sec)

(a) Combined

Response Time (sec)

(b) Binl

0.8 0.8
0.6 0.6
04| ¢ 0.4
/ {
0.2t} 0.2
0 % 0 i
0 1000 2000 3000 4000 5000 [2000 4000 6000 8000
Response Time (sec) Response Time (sec)
(¢) Bin2-3 (d) Bin4-5
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 { [
(] 1000 2000 3000 L] 2000 4000
Response Time (sec) Response Time (sec)
(c) Bin2-3 (d) Bind-5

ssponse Time in Facebook Workload

4000
3500
3000
2500
2000
1500
1000

500

HCS

Query Response Time (sec)

Fig. 17: Query Response Times for Q21 in TPC-H

teractive queries, but also to the performance requirements of
large queries.

6. Related Work

In this section, we review recent work on query modeling and
scheduling in the MapReduce environment.

6.1. Query Modeling

Morton et al. [16] proposed the Paratimer model to estimate
the progress of Pig queries, which are translated into DAGs of
MapReduce jobs. Their model incorporated dataset cardinal-
ity and unit processing time. Verma et al. [17, 25] provided
different “work/speed” time models for the relationship of exe-
cution time and available resources. Both time models require
pre-execution profiling or debug runs of the same job in order
to acquire the necessary phase information to estimate the job’s
execution time. Our work builds on top of its precursor [26]
and exploits selectivity estimation and does not require such
pre-execution or debug runs of MapReduce queries.

In [27], Mullin proposed a partial bloom filter based join se-
lectivity estimation algorithm. In [14], Bell et. al presented
a piece-wise uniform approach for estimating the frequency
distribution of join attributes by equal-width histograms. Our
paper can utilize their method for join selectivity estimation
without the uniform and independent distribution assumption.
In [28], Dell’aquila exploited the canonical coefficient param-
eters of estimating selectivity factors for relational operations
through approximating both the multivariate data distribution
and distinct values of attributes. Swami et al. [13] attempted
selectivity prediction for multi-join operations with a common
key and uniform key distribution. Our work extends this prior
study to provide selectivity prediction for multi-join operations
on different keys with piece-wise uniform distribution in the
MapReduce environment.

Wu et al. [15] proposed AQUA as a comprehensive cost
model to estimate CPU, network and I/O costs of database oper-
ations and MapReduce jobs. Our work is different from AQUA
as a time based model and includes selectivity estimation for
different types of query jobs. Li et al. [18] estimated resource
demands of queries using statistical models for individual op-
erators of database queries. Ganapathi et al. [29, 30] developed
a KCCA (Kernel Canonical Correlation Analysis) model based
prediction system to solve the database query time estimation.
Compared to these studies, we design a multivariate model for
queries in MapReduce-based data warehouse systems.

6.2. MapReduce Job Scheduling

Algorithms for scheduling jobs and/or DAGs of jobs have
been studied based on general models. For example, the John-
son’s algorithm [31] was proposed to solve two and three-stage
Job-shop problems. HLFET was proposed by Adam et al. [22]

as a scheduling algorithm for DAGs of jobs in a multiproces-
sor environment. Similarly, Hu et al. [32] proposed a poly-
nomial schedule algorithm for in-tree structured DAGs with
unit computation cost. These algorithms cannot be directly
applied to schedule analytic Hive queries due to the special
features of Hive queries and frameworks. For example, John-
son’s algorithm is not applicable for query scheduling due to the
precedence constraint of jobs. In addition, parallelism level in
MapReduce environment is flexible and job nodes in the query
DAG are of non-uniform costs, which are different from the
scenarios in [22] and [32].

Targeting the scheduling of individual MapReduce jobs, var-
ious algorithms were proposed. For example, Zaharia et al. [33]
proposed delay scheduling to promote data locality in the
scheduling of MapReduce jobs. Wolf et al. proposed a mal-
leable scheduler Flex for optimizing the minisum and minimax
metrics of response time, stretch, deadlines, etc [34]. They are
not aware of the relationship of jobs in a DAG. Luo et al. [35]
identified and transmitted critical semantic information from
DBMS down to the hybrid storage layer, enabling the adop-
tion of different QoS policies for different queries. Shenker et
al. [36] implemented Shark as a scalable SQL and Rich Ana-
lytics on top of Spark. Yu et al. [37] designed the DryadLINQ
model for users to conduct declarative operations on distributed
datasets. A DryadLINQ program is translated into an execution
plan graph where each vertex is to execute as a Dryad job on
the cluster-computing infrastructure. Ke et al. [38] provided a
framework called Optimus for dynamically rewriting EPG (Ex-
ecution Plan Graph) at runtime in DryadLINQ. Compared to
these studies, our work leverages semantic information from
DAG queries for modeling of job execution time and resource
usage and then employs the model for developing an efficient
query scheduler. Unlike the aforementioned studies, our work
advances query processing capability of MapReduce, and en-
ables support for query level scheduling.

6.3. MapReduce Query Scheduling

MapReduce job scheduling has already received much atten-
tion and has been studied extensively. Beyond job scheduling
mechanisms, there are several interesting research efforts for
scheduling queries like our paper. Oozie [39] was proposed
by Yahoo! as a scalable workflow scheduler built on top of
Hadoop. The Oozie server accepts textually specified workflow
DAGs submitted by multiple Oozie clients, splits these work-
flows into sub-tasks, and dispatches the sub-tasks to a Hadoop
cluster for processing. However, a user must specify some pa-
rameters for the job chronology when submitting a workflow
job. Zhang et al. [40] offers a performance modeling environ-
ment that automatically profiles jobs from past runs and es-
timates the required resources for completing a Pig program
within a given deadline so that it can meet SLO. MRShare [41]
and CoScan [42] offer a similar automatic scheduling frame-
work that merges the execution of MapReduce jobs with com-
mon data inputs in such a way that this data is only scanned
once and the entire workflow completion time is reduced.

All of the above approaches study the Apache Pig frame-
work. In contrast, we demonstrate our proposed scheduler us-

ing the more widely adopted framework, Hive, whose success
in large-scale analysis greatly inspired our work. A perfor-
mance comparison is conducted in [43] which shows that Hive
is more efficient than Pig.

7. Conclusion

Many popular data warehouse systems are deployed on top
of MapReduce. Complex analytic queries are usually compiled
into directed acyclic graphs (DAGs). However, the simplistic
job-level scheduling policy in MapReduce is unable to balance
resource distribution and reconcile the dynamic needs of dif-
ferent jobs in DAGs. To address such issues systematically,
we first develop a semantic-aware query prediction framework
which includes three main techniques: semantic percolation,
selectivity estimation and multivariate time prediction for an-
alytic queries. Our framework is able to bridge the semantic
gap between Hadoop and Hive. In addition, the multivariate
query prediction can accurately predict the changing data sizes
and the execution time of jobs in DAG queries. In addition, a
two-level scheduling scheme is designed to allocate resources
and schedule tasks at both inter-query and intra-query levels for
efficient and fair execution of concurrent queries. The query
prediction framework offers important inputs for scheduling de-
cisions in Hadoop scheduler. Experimental results demonstrate
that our semantic-aware framework can achieve accurate query
prediction and enable more efficient query scheduling than tra-
ditional Hadoop schedulers. Furthermore, our two-level sched-
uler significantly enhances query fairness.

Acknowledgments

We are very thankful for the helpful discussions and com-
ments from many graduate students from the CASTL group,
particularly Mr. Fang Zhou and Ms. Lizhen Shi. This work is
funded in part by the U.S. National Science Foundation awards
1561041 and 1564647.

[1] J. Gantz, D. Reinsel, The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east, IDC iView: IDC Analyze the
Future.

[2] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large
clusters, in: OSDI’04, USENIX, Berkeley, CA, USA, 2004.

[3] Apache Hadoop Project, http://hadoop.apache.org/.

[4] A.Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony,
H. Liu, R. Murthy, Hive-a petabyte scale data warehouse using hadoop,
in: ICDE, IEEE, 2010, pp. 996-1005.

[5] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig latin: a
not-so-foreign language for data processing, in: SIGMOD, ACM, New
York, NY, USA, 2008, pp. 1099-1110.

[6] A.F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayanamurthy,
C. Olston, B. Reed, S. Srinivasan, U. Srivastava, Building a high-level
dataflow system on top of map-reduce: the pig experience, Proceedings
of the VLDB Endowment 2 (2) (2009) 1414-1425.

[7]1 R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, X. Zhang, Ysmart: Yet an-
other sql-to-mapreduce translator, in: Distributed Computing Systems
(ICDCS), 2011 31st International Conference on, IEEE, 2011, pp. 25—
36.

[8] TPC, http://www.tpc.org/.

[9] Y. Wang,J. Tan, W. Yu, L. Zhang, X. Meng, X. Li, Preemptive reducetask
scheduling for fair and fast job completion., in: ICAC, 2013, pp. 279-289.

[10]

(1]

[12]
[13]
[14]
[15]
[16]
[17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

J. Tan, X. Meng, L. Zhang, Delay tails in mapreduce scheduling, in: Pro-
ceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint inter-
national conference on Measurement and Modeling of Computer Sys-
tems, SIGMETRICS 12, ACM, New York, NY, USA, 2012, pp. 5-16.
doi:10.1145/2254756.2254761.

URL http://doi.acm.org/10.1145/2254756.2254761

J. Duggan, U. Cetintemel, O. Papaemmanouil, E. Upfal, Performance pre-
diction for concurrent database workloads, in: SIGMOD, ACM, 2011, pp.
337-348.

G. Piatetsky-Shapiro, C. Connell, Accurate estimation of the number of
tuples satisfying a condition, in: SIGMOD, ACM, 1984.

A. Swami, K. Schiefer, On the estimation of join result sizes, IBM Tech-
nical Report.

D. A. Bell, D. Link, S. McClean, Pragmatic estimation of join sizes and
attribute correlations, in: ICDE, IEEE, 1989, pp. 76-84.

S. Wu, E. Li, S. Mehrotra, B. C. Ooi, Query optimization for massively
parallel data processing, in: SOCC, ACM, 2011, p. 12.

K. Morton, M. Balazinska, D. Grossman, Paratimer: a progress indicator
for mapreduce dags, in: SIDMOD, ACM, 2010, pp. 507-518.

A. Verma, L. Cherkasova, R. H. Campbell, Aria: automatic resource in-
ference and allocation for mapreduce environments, in: ICAC, ACM,
2011, pp. 235-244.

J. Li, A. C. Konig, V. Narasayya, S. Chaudhuri, Robust estimation of re-
source consumption for sql queries using statistical techniques, Proceed-
ings of the VLDB Endowment 5 (11) (2012) 1555-1566.

R. W. Wolff, Stochastic modeling and the theory of queues, Vol. 14, Pren-
tice hall Englewood Cliffs, NJ, 1989.

Little’s Law, https://en.wikipedia.org/wiki/Little

J. L. Hennessy, D. A. Patterson, Computer architecture: a quantitative
approach, Elsevier, 2012.

T. L. Adam, K. M. Chandy, J. Dickson, A comparison of list schedules for
parallel processing systems, Communications of the ACM 17 (12) (1974)
685-690.

S. Keshav, An engineering approach to computer networking: Atm net-
works, the internet, and the telephone network, Reading MA 11997.

G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,
S. Shenker, I. Stoica, Pacman: Coordinated memory caching for parallel
jobs, in: USENIX NSDI, 2012.

A. Verma, L. Cherkasova, V. S. Kumar, R. H. Campbell, Deadline-based
workload management for mapreduce environments: Pieces of the per-
formance puzzle, in: Network Operations and Management Symposium
(NOMS), 2012 IEEE, IEEE, 2012, pp. 900-905.

W. Yu, Z. Liu, X. Ding, Semantics-aware prediction for analytic queries
in mapreduce environment, in: Proceedings of the 47th International Con-
ference on Parallel Processing Companion, ICPP *18, ACM, New York,
NY, USA, 2018, pp. 27:1-27:9. doi:10.1145/3229710.3229713.
URL http://doi.acm.org/10.1145/3229710.3229713

J. K. Mullin, Estimating the size of a relational join, Information Systems
18 (3) (1993) 189-196.

C. Dellaquila, E. Lefons, F. Tangorra, Analytic-based estimation of query
result sizes, in: Proceedings of the 4th WSEAS International Conference
on Artificial Intelligence, Knowledge Engineering Data Bases, WSEAS,
2005, p. 24.

A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, D. Pat-
terson, Predicting multiple metrics for queries: Better decisions enabled
by machine learning, in: ICDE, IEEE, 2009, pp. 592-603.

A. Ganapathi, Y. Chen, A. Fox, R. Katz, D. Patterson, Statistics-driven
workload modeling for the cloud, in: ICDEW, IEEE, 2010.

S. M. Johnson, Optimal two-and three-stage production schedules with
setup times included, in: Naval research logistics quarterly, Vol. 1, Wiley
Online Library, 1954, pp. 61-68.

T. C. Hu, Parallel sequencing and assembly line problems, Operations
research 9 (6) (1961) 841-848.

M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, I. Sto-
ica, Delay scheduling: a simple technique for achieving locality and fair-
ness in cluster scheduling, in: Proceedings of the 5th European confer-
ence on Computer systems, ACM, 2010, pp. 265-278.

J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar, S. Parekh, K.-L.
Wu, A. Balmin, Flex: A slot allocation scheduling optimizer for mapre-
duce workloads, in: Middleware 2010, Springer, 2010, pp. 1-20.

T. Luo, R. Lee, M. Mesnier, F. Chen, X. Zhang, hstorage-db:

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

heterogeneity-aware data management to exploit the full capability of hy-
brid storage systems, Proceedings of the VLDB Endowment 5 (10) (2012)
1076-1087.

S. Shenker, I. Stoica, M. Zaharia, R. Xin, J. Rosen, M. J. Franklin, Shark:
Sql and rich analytics at scale, in: ACM SIGMOD, 2013.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, J. Cur-
rey, Dryadling: A system for general-purpose distributed data-parallel
computing using a high-level language., in: OSDI, Vol. 8, 2008, pp. 1-14.
Q. Ke, M. Isard, Y. Yu, Optimus: a dynamic rewriting framework for
data-parallel execution plans, in: Proceedings of the 8th ACM European
Conference on Computer Systems, ACM, 2013, pp. 15-28.

M. Islam, A. K. Huang, M. Battisha, M. Chiang, S. Srinivasan, C. Peters,
A. Neumann, A. Abdelnur, Oozie: towards a scalable workflow man-
agement system for hadoop, in: Proceedings of the 1st ACM SIGMOD
Workshop on Scalable Workflow Execution Engines and Technologies,
ACM, 2012, p. 4.

Z. Zhang, L. Cherkasova, A. Verma, B. T. Loo, Automated profiling and
resource management of pig programs for meeting service level objec-
tives, in: Proceedings of the 9th international conference on Autonomic
computing, ACM, 2012, pp. 53-62.

T. Nykiel, M. Potamias, C. Mishra, G. Kollios, N. Koudas, Mrshare: shar-
ing across multiple queries in mapreduce, Proceedings of the VLDB En-
dowment 3 (1-2) (2010) 494-505.

X. Wang, C. Olston, A. D. Sarma, R. Burns, Coscan: cooperative scan
sharing in the cloud, in: Proceedings of the 2nd ACM Symposium on
Cloud Computing, ACM, 2011, p. 11.

R. J. Stewart, Performance and programmability comparison of mapre-
duce query languages: Pig, hive, jaql & java, Ph.D. thesis, Masters thesis,
Heriot Watt University, Edinburgh, United Kingdom (2010).

http://doi.acm.org/10.1145/2254756.2254761
http://dx.doi.org/10.1145/2254756.2254761
http://doi.acm.org/10.1145/2254756.2254761
http://doi.acm.org/10.1145/3229710.3229713
http://doi.acm.org/10.1145/3229710.3229713
http://dx.doi.org/10.1145/3229710.3229713
http://doi.acm.org/10.1145/3229710.3229713

	Introduction
	Motivation
	Inefficient Interleaved Execution of Analytic Queries
	Unfairness to Queries with Different Topologies
	Proposed Solution: Multivariate Query Modeling and Scheduling

	Multivariate Query Modeling
	Selectivity Estimation
	Intermediate Selectivity
	Final Selectivity
	An Example of Selectivity Estimation

	A Multivariate Time Prediction Model
	Model Validation
	Validation for Predicted Query Execution

	Two-Level Query Scheduling
	Inter-Query Scheduling
	Selection Metric – Weighted Resource Demand
	Query Scheduling for Efficiency and Fairness
	Proof for SWRD

	Intra-Query Scheduling

	Evaluation
	Experimental Settings
	Intra-Query Scheduling Evaluation
	Improving Scheduling Fairness
	Overall Benefits to Query Response Time
	Comparison against the Built-in Schedulers of YARN

	Related Work
	Query Modeling
	MapReduce Job Scheduling
	MapReduce Query Scheduling

	Conclusion

