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Abstract

This work reports on the measurement of the internal temperature distributions of parts being
manufactured via the Powder Bed Fusion (PBF) process. Eight test coupons were machined from
a piece of wrought 304 stainless steel (SS). Thermocouples were inserted into the test coupon in-
teriors to sample internal thermal history. The coupons were then placed into the open architecture
laser PBF machine housed at EWI and covered to their uppermost surfaces with 316 SS powder.
Three tests were executed: First, the laser rastered over the coupons without inducing melting.
Second, the laser rastered over the coupons while melting the exposed faces. Lastly, five layers of
316 SS were built atop the coupons. The main result is a comprehensive data set of a multitude
of measured physical inputs and outputs under typical build conditions: embedded thermocouple
temperatures, laser centroid, laser power, and infrared imagery of the exposed coupon faces.

1 Introduction

Powder Bed Fusion (PBF) belongs to a class of manufacturing processes known as additive
manufacturing (AM). The PBF process builds 3-D parts out of layers of metal powder using a
build cycle consisting of three stages: 1) sweeping of a thin layer of powder over a base plate
or previously applied powder, 2) selectively melting a 2-D pattern of desired geometry into the
powder by application of a high-powered laser or electron beam, and 3) lowering the build plat-
form in the —z direction to accommodate a fresh layer of powder. Fig. 1 demonstrates the PBF
architecture.

Of interest to the PBF community is the validation of temperature predictions supplied by PBF
process models, which may be used to better predict the formation of common defects such as
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Figure 1: Schematic of experimental setup and measurements. Objective of experiment is to sample
internal temperature distributions within simulated mid-build PBF conditions under a range of increasingly
complex modes of heat transfer. Measurements 1-10 were collected with data acquisition system (DAQ) and
stored as a single array. Measurements 11-12 were stored as separate video files. Representative images of
Measurements 11-12 taken from experimental data.

high levels of residual stresses [1-3], porosity [4—6], and anisotropy in material properties [6—11].
The general Laser Powder Bed Fusion (L-PBF) model validation task is as follows: Given a part
geometry, termed coupon here, and process inputs and parameters, qualitatively or quantitatively
compare a set of measurable process outputs to process outputs predicted by a model. These
validations a critically important task for researchers in the field and is accomplished through
taking in-situ temperature data of the process. We now give a brief sampling of such efforts and
discuss the limitations of the strategies employed therein.

In-situ temperature measurements are typically gathered with IR camera measurements of the
exposed build surface [12, 13]. Less commonly available are studies which validate models of sub-
surface temperature distributions by directly measuring these subsurface temperatures with ther-
mocouples (TCs) embedded in the base plate adjacent to and/or underneath the coupon [14-19].
Regardless of strategy, works presenting validations of PBF heat transfer models typically only
provide plots of the data in a journal article, not the raw data itself. Additionally, nominal process
inputs and parameters are often provided; however, the actual input often deviates from nominal
and thus measurements of these inputs provide a more realistic understanding of the input that
should be provided to the process model. These practices hurt the community’s ability to repli-
cate the authors’ analysis and precisely reproduce the exact process inputs corresponding to the
observed data when validating their own models.
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Additionally, validations performed with embedded TCs typically lack repeat measurements,
i.e., multiple measurements taken during the same experimental run. For example, [15,17,18, 18,
19] use only two TCs in their experimental apparatus, and [14, 16] use three. [16], which studied
Direct Energy Deposition (DED), embedded one of the TCs inside the coupon itself. These valida-
tion strategies also typically lack replicate measurements, ie data from multiple experiments with
the same setup. Of the aforementioned studies, only [16, 17] used more than one test coupon when
validating their models, providing a visual representation of two and three two and three coupons,
respectively. Such limited quantities of data limit the application of statistical tools that account
for the presence of experimental uncertainty. The typical far-afield placement of the embedded
TCs further compounds this uncertainty due to the negative effect of distance on the information
content carried by the TC signals regarding melt pool and heat affected zone dynamics.

Finally, the coupons employed when validating PBF thermal models are typically simplistic.
[13, 17] validated their models by fusing a single layer of powder to the base plate. [12, 18, 19]
employed cuboid geometries. Researchers studying DED typically validate their thermal models
on thin wall coupons, as in [14-16]. Validating models using such simple geometries presents
a set of model boundary conditions that fail to reflect realistic build scenarios and thus limit the
validations’ applicability to predicting process dynamics in real-world contexts.

The purpose of this paper is to supply an exhaustive dataset containing sampled internal tem-
perature dynamics and corresponding process inputs and outputs of the PBF process along with
a complete description of the associated experimental procedures, for direct validation of PBF
thermal models. Fig. 1 demonstrates the basic architecture of the experiment and the experiment
outputs. We performed this experiment on the open architecture PBF machine at EWI, which pro-
vided our team with full access to all process inputs and outputs. The experiment consisted of
rastering a laser sequentially over eight test coupons that were raised above a base plate and instru-
mented with TCs. Coupons 1-4 featured a simple cuboid geometry, while coupons 5-8 featured an
I-beam shaped cross section. This approach provides four replicates for both coupon architectures
under consideration. Additionally, positioning TCs symmetrically in the northeast (NE) and north-
west (NW) corners of the coupons as shown in Fig. 1 generates two repeats within each coupon
due to the rastering laser exciting them identically. The large number of repeats and replicates
offered by our experiment increases the effectiveness of statistical tools when accounting for ex-
perimental uncertainty in our data. Additionally, we carried out our testing on all coupons in three
stages, as detailed in Fig. 2 and Table 1 and denoted hereafter as “Tests:” Test 1 heated the exposed
coupon surfaces beneath melting temperature, Test 2 melted the coupon surfaces, and Test 3 built
five layers of material on the coupon surfaces. Each Test induced more complex modes of heat
transfer, thus affording opportunities to analyze the effect of complex cross-sectional geometries
on nonlinear PBF process dynamics. During each Test, for each coupon, we collected the follow-
ing signals: four TC signals from TCs embedded within the coupon, a TC signal corresponding
to a TC embedded far afield in the base plate as shown in Fig. 1, X and Y position signals of the
laser centroid, the signal governing the laser power, coaxial IR camera footage of the melt pool,
off-axis IR camera footage of the build chamber and a machine trigger signal that synchronized
all other data streams. The galvanometer and power process input signals may be integrated into
PBF thermal models to more accurately compare predicted process dynamics and outputs against
the measured dynamics and outputs provided by our data. We make this data publicly available as
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2.2 Test part design

Here we present the geometry, TC integration, and material selection and rationale of the part
used during our experiment, hereafter referred to as the “test part.” Fig. 3 displays the test
part, which takes the form of a base plate with eight raised test coupons and assorted sacrifi-
cial coupons machined from a single piece of 304 stainless steel (SS). Each coupon represents a
partially-completed part, which allows us to emulate mid-build PBF internal temperature distribu-
tions and measure temperature at specific spatial locations inside the part. Appendix B displays
the dimensions of the part, the measured dimensions of the part as performed by the fabricators
and photographs of the part inside the experimental setup, labeled as necessary with part numbers
and numbering conventions. TCs were embedded in the coupon holes and labeled according to the
convention given in Fig. 3. Fig. 15 shows the test part after TC insertion.

Three factors governed the choice of test part geometry as shown in Fig. 3:

1. Sample from a multitude of spatial locations. Each coupon had four integrated TCs,
measuring temperature near the top surface (A and B), geometric center (C), and near the
base plate (D). The symmetric placement of TCs A and B within all coupons as shown in
Fig. 3 measured identical excitement from the rastering laser and thus constituted repeat
measurements.

2. Multiple coupon architectures Four of the test coupons (5-8, as shown in Fig. 3) were
constructed with an I-beam structure instead of as simple cuboids to better investigate the
role of complex geometry in PBF heat transfer.

3. Replicate measurements. Each design was repeated four times to provide four independent
measurements to assess process variability. These coupons were configured on the perimeter
of the test part to accommodate the build chamber IR camera FOV and machining limita-
tions. Rotating the test part by 180° clockwise brought coupons 5-8 into the build chamber
IR camera’s FOV. These test part configurations within the PBF machine are shown in Fig.
16b and Fig. 17a.

Omega TJ36-CASS-020E-6 TCs were inserted into the holes marked A-D for all coupons as
shown in Fig. 3, which are Type K TCs with exposed junctions and 304 SS sheathes. This TC
model was chosen because its 0.5 mm sheath diameter provides a minimal sensor time constant
and footprint on the surrounding coupon heat transfer within machining constraints. Based on
consultation with Omega Engineering, the time constant for these TCs was expected to be roughly
75 ms. TC locations A and B were selected to be the minimal feasible distance from the NE and
NW coupon corners for 0.6 6mm diameter holes having a depth of 2.5 mm, as determined by
consultation with machinists. The TCs were held in place with Omega OB-600 high temperature
cement. The TC embedded into the build plate was a standard Type K TC with an ungrounded
junction and 304 SS sheath, Omega TJ36-CASS-18U-6.

The test part was constructed from 304 SS in order to match the sheath material of the em-
bedded TCs. For all tests, the part was immersed in 316L SS powder and for Test 3 the part was
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covered in a thin (40 um, Table 1) layer of powder. 316L SS was used as it is a commonly used
stainless steel available in powdered form for L-PBF. As Table 2 shows, the thermal properties of
316L SS and 304 SS are in good agreement over a wide range of temperatures and therefore we
assumed that the material mismatch would not induce appreciable heat transfer artifacts.

Table 2: Comparison between thermal properties of 304 and 316L SS [20]

Property symbol 304 SS 316L SS
density (kg/m>) p 7920-8070 (0-100 °C)  7860-8020 (0-100 °C)
specific heat (J/kg-K) Cp 500-640 (20-927 °C) 500-630 (20-700 °C)

thermal conductivity (W /m-K) k 16.0-24.0 (100-627 °C)  16.0-23.0 (100-700 °C)

2.3 Non-IR signal acquisition

Here we describe procedures for acquiring all non-IR camera data. Fig. 4 displays the signal
acquisition pathways used throughout our experiments. The signals stored in the DAQ output array
are sampled at 1000 Hz and ordered as follows:

1. Time stamp, ¢.

2-5) Temperature readings from TCs TCA-TCD for the coupon being tested, respectively, de-
noted as Ty (¢) through Tp(¢). (analog)

6. Temperature readings from the base plate TC, denoted as Tp,q (7). (analog)

7. X-coordinate of the laser centroid, denoted as x.(7) (analog). This measurement was col-
lected from the position of the corresponding galvanometer, hereafter referred to as the “X-
Galvo.” Data converted from units of volts to mm via calibration map.

8. Y-coordinate of the laser centroid, denoted as y.(f) (analog). This measurement was col-
lected from the position of the corresponding galvanometer, hereafter referred to as the “Y-
Galvo.” Data converted from units of volts to mm via calibration map.

9. Laser power, denoted as P(¢). (analog)

10. Trigger signal used to synchronize all data streams (digital).

The TC voltage signals were amplified with two PlayingWithFusion SEN-30101/K1 TC am-
plifier boards, which feature a 50 kHz bandwidth. Correlation tables supplied by the manufac-
turer related the measured voltage to temperature. The amplifiers were powered by an HQ Power
PS23003AU DC power supply. As shown in Fig. 4, each TC lead was passed out of the machine
through an air tight Roxtec port. These leads are Omega TT-K-24-TWSH shielded TC cables with
Omega GMP-K-F(M) TC connectors, shielded according to [21].
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Figure 3: Test part used to conduct experiment, showing the numbering convention for the associated test
coupons and TC holes.

Cables carrying the X-Galvo, Y-Galvo and laser power signals were run out of the open ar-
chitecture PBF machine hardware and fed directly into the DAQ. The correlations between gal-
vanometer signal (V) and laser position (mm), and laser power signal (V) and power (W) are
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linear:

x(t) 1 125 mm/V
Ye(t) : 125 mm/V (1)
P(t): 175WIV.

The native 24V machine trigger signal was stepped down to a 5V signal by means of an Allen
Bradley 700-TBS24 solid state relay, as shown in Fig. 4, so as to not saturate the DAQ. The pickup
time for this relay is 30 us, which is is beneath our sampling period of 1 ms and thus incurred no
signal lag. A 10 ms delay between the trigger activation and laser activation was inserted into the
G-code to ensure that any transient dynamics in the startup of various machine components had
settled prior to beginning the test and thus could not introduce artifacts in the data.

2.4 1R camera signal acquisition

The EWI PBF machine was equipped with two IR cameras: a Stratonics HSTV camera (the
“melt pool camera”) which had a FOV of the melt pool and a Micro-Epsilon TIM 640 camera (the
“build chamber camera”) which had a FOV covering the NE quadrant of the test part (Fig. 3).
The melt pool camera camera operates with dual-color pyrometery and thus required no emissivity
calibrations to function, having an emissivity-independent calibration curve given in Appendix A.
The build chamber camera uses single color pyrometery and therefore necessitated emissivity cal-
ibrations of the coupon metal and surrounding powder. These calibration procedures are discussed
in Appendix A. Both cameras were triggered by the same trigger signal described in the previ-
ous section and stored with proprietary software for each respective camera. The Micro-Epsilon
camera has a maximum framerate of 30 Hz. The Stratonics camera has a maximum framerate of
10 kHz, however RAM limitations within the camera imposed a strict 1000 sample limit with the
default FOV before the system exhausted its memory, thus collecting only 0.1s of data. For this
reason, the FOV of the camera was slightly reduced to allow the acquisition of 3000 samples and
the sampling rate was reduced from 10 kHz to 1 kHz to allow for three seconds of data acquisi-
tion. Three seconds of footage corresponds to capturing 46% of data from Tests 1-2, which used
five sweeps, and 100% of data from Test 3, which used one. The 960 mm/s laser traversed the
Smm coupon widths at a rate of 192 Hz and completed one 10 mm sweep in approximately 1.31
s. Sampling at 1000 Hz thus satisfied the Nyquist criteria for capturing the melt pool temperature
data. However the build chamber camera, which sampled at 30 Hz, could not capture traversing the
coupon widths and was restricted by Nyquist limitations to capturing the “mean” laser direction
(Fig. 2) dynamics. Additionally, it was found during testing that the melt pool camera included
14 “dead” frames at the start of every acquisition in which no melt pool was visible despite the
camera being active. No means of disabling or reducing this dead frame count were found. As a
consequence the melt pool camera data does not capture the beginning of each raster scan.
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3 Experimental Procedures

The experiment procedures are summarized below and will be discussed in more detail within
the following Tests. Prior to running these Tests, basic calibration and identification of proper
operating parameters was performed. Critically, we identified a minimum melting power, P, at
which the laser can raster continually without melting the top surface, and a nominal power, P,
at which PBF printing is performed.

Test 1: Raster the laser overtop a coupon at a laser power beneath that required to melt the metal,
while the part is immersed in powder.

1A) Run laser power at 6.875 W, or 25% of P,;p.
1B) Repeat with laser power at 13.75 W, or 50% of P,;,.
1C) Repeat with laser power at 20.625 W, or 75% of Py.

Test 2: Raster the laser overtop a coupon at a laser power set to 275 W (P,,.;;), while the part is
immersed in powder.

Test 3: Build five layers of 316L SS on top of a coupon.

Tests 1-3 were first completed on coupons 1-4, and then repeated for coupons 5-8 after rotat-
ing the block as described in Section 2, so as to minimize the number of part rotations and, by
extension, damage to the fragile TCs. Unlike Test 1, Tests 2 and 3 were irreversable because we
wanted to preserve the microsctructures obtained by melting and fusing material, which eliminated
the possibility of remelting.

Laser scans during all Tests followed the scan configuration shown in Fig. 2 and Table 1. All
scan parameters except P, and s were held constant. Fig. 2 details the laser behavior during
each sweep. A “sweep” was defined as rastering through the complete length of the coupon in one
direction.

3.1 Tests 1 and 2: scanning without building

Tests 1 and 2 were carried out on coupons 1-4 by performing the corresponding laser scans
defined in Fig. 2 and Table 1 sequentially on each coupon while collecting all data streams. Both
Tests 1 and 2 were carried out in succession on each coupon before proceeding to the next. Fig.
16b shows the configuration of the test part setup when completing these tasks. After completion
of Tests 1-3 on coupons 1-4, the test part was rotated to construct the configuration shown in Fig.
17a. Tests 1 and 2 were carried out on coupons 5-8 using the same procedure as done for coupons
1-4. Table 3 lists the filenames given to all data collected during Tests 1 and 2.
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3.2 Test 3: five layer build

After the completion of Tests 1-2 on coupons 1-4, the top surfaces of the coupons were covered
by powder as shown in Fig. 16¢c with a sweep of the recoater blade. Test 3 then was carried out
on coupons 1-4. This consisted of performing the corresponding laser scan defined in Fig. 2 and
Table 1 sequentially on each coupon while collecting all data streams. After material was fused
on all four coupons, the build platform was dropped in the negative z direction and a new layer of
powder was applied. This procedure was repeated until five layers of new material were fused on
top of coupons 1-4. After rotation of the part and completion of Tests 1-2 on coupons 5-8, the top
surfaces of coupons 5-8 were covered by powder as shown in Fig. 17b with a sweep of the recoater
blade. Test 3 then was carried out on coupons 5-8 using the same procedure as done for coupons
1-4. Table 3 lists the filenames given to all data collected during Test 3.

Table 3: Filenames for data from each test. X denotes coupon number.

Test DAQ (extension “.mat”) build chamber camera (extension “.ravi”) melt pool camera (frames stored in file folder)
1A Test_1_25_pX_DAQ Test_125_pX_build_camera Test_1_25_pX_melt_camera
Test 1 1B Test_1_50_pX_DAQ Test_1_50_pX_build_camera Test_1_50_pX_melt_camera
1C Test_1_75_pX_DAQ Test_1_75_pX_build_camera Test_1_75_pX_melt_camera
Test 2 Test 2 pX_DAQ Test_2_pX_build_camera Test_2_pX_melt_camera
Layer 1 Test_3_layer_1_pX_DAQ Test_3_layer_1_pX_build_camera Test_3_layer_1_pX_melt_camera
Layer2 Test 3 _layer 2 pX DAQ Test_3_layer 2_pX build_camera Test_3_layer_2_pX_melt_camera
Test3 Layer3 Test_3_layer_3_pX_DAQ Test_3_layer_3_pX_build_camera Test_3_layer_3_pX_melt_camera
Layer4 Test_3_layer_4_pX_DAQ Test_3_layer_4_pX_build_camera Test_3_layer_4_pX_melt_camera
Layer 5 Test 3 _layer 5 pX_DAQ Test_3_layer_5_pX_build_camera Test_3_layer_5_pX_melt_camera

3.3 Unexpected events

This section covers events which occurred during testing that resulted in the unexpected al-
teration of the test setup or an accidental loss of data. These events must be factored into any
conclusions drawn from this data set. Appendix B tabulates which measured data are available for
which Tests.

1. Calibrating the high-temperature emissivity of the unwelded material as described in Ap-
pendix A altered the microstructure of coupon 3, discoloring it to be visibly darker than
coupons 1, 2, and 4. This alteration of the coupon emissivity resulted in more efficient laser
heat absorption than coupons 1, 2, and 4 and thus demonstrated higher temperature values
for the same process inputs.

2. TC insertion and retention in their respective holes was delicate and led to errors. Three TCs
came loose during the experiment and were not able to be replaced because the hole was
plugged with cement. Accordingly, the dataset is missing TC data for 3D, 4B, and 6B.

3. The emissivity measurement for welded metal powder was first attempted on coupons 1-3
prior to coupon 4, but a combination of mistakes prevented this data from being recorded.
This emissivity calibration required holding the coupons at elevated temperature and there-
fore may present artifacts in the final coupon microstructures.
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4. The build chamber heater design unexpectedly provided nonuniform heating to the build
plate. Accordingly, the single build plate TC shown in Fig. 3 did not permit accurate mea-
surement of the build plate temperature for coupons 5 - 8. The base plate TC was moved to
the placement shown in Fig. 17C to better measure the base plate temperature near coupons
5-8.

5. Anunexpectedly high amount of background noise was encountered in the laser power signal
when testing coupons 5-8. A set of data for zero nominal laser power was collected to
characterize this noise for signal filter application. This data is provided as a part of the
“Calibration studies” data set of Table 4 as “5-8 _laser_background.mat.”

6. The melt pool camera frame storage limitation discussed in Section 2 was only caught after
performing Tests 1 and 2 on both coupons 1 and 2. These tasks were repeated for these two
coupons, and emissivity values were re-taken.

7. The melt pool camera crashed during the following tests:

e Test 2, coupon 4
e Test 3, layer 4, coupon 4

e Test 3, layer 3, coupon 5
No melt pool temperature data was recorded for these tests.

8. 5 sweeps were mistakenly ran instead of 1 sweep overtop coupon 8 for Test 3, layer 1.

3.4 Data storage

All data from this experiment is stored on Amazon Web Services (AWS), which is a publicly-
available archive. The data is divided into ten files that represent each test performed. Table 4
displays the download links for this data.

Table 4: Download links for experimental data

Test download link
Calibration studies http://hrl-pbf-thermal-validation-study.s3.amazonaws.com/calibration_data.zip
1A http://hrl-pbf-thermal-validation-study.s3.amazonaws.com/test_la.zip
Test 1 1B http://hrl-pbf-thermal-validation-study.s3.amazonaws.com/test_1b.zip
1C http://hrl-pbf-thermal-validation-study.s3.amazonaws.com/test_1c.zip
Test 2 http://hrl-pbf-thermal-validation-study.s3.amazonaws.com/test_2.zip

Layer 1  http://hrl-pbf-thermal-validation-study.s3.amazonaws.com/test_3_layer_1.zip
Layer2  http://hrl-pbf-thermal-validation-study.s3.amazonaws.com/test_3_layer_2.zip
Test 3 Layer3  http://hrl-pbf-thermal-validation-study.s3.amazonaws.com/test_3_layer_3.zip
Layer4  http://hrl-pbf-thermal-validation-study.s3.amazonaws.com/test_3_layer_4.zip
Layer5 http://hrl-pbf-thermal-validation-study.s3.amazonaws.com/test_3_layer_5.zip
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4 Experimental Results

In this section we present results pertaining to measured material emissivity €, measured TC
data Ty (1)-Tpuse(t), measured centroid position data x.(¢) and y. (), measured power P(t), and IR
camera footage. We present TC data from Tests 1-3 for coupons 1 and 5, which display typical
results for all TC data collected and are thus used as representative examples. Similarly, P(z),
xc(1), yo(t) signals gathered from Test 2, coupon 1 is presented as typical of data gathered from
these coupons during the experiment. This was done for the sake of brevity, as the entire dataset is
exhaustive; encompassing Tests 1-3 for all 8 coupons and all 12 data streams.

4.1 Emissivities

Table 5 lists € measured at specific time points during the experiments, as measured according
to the procedures given in Appendix A. These results show that the welded metal powder had the
highest €, followed by the wrought steel, with the laser treated steel having the lowest. Coupon
3 was recorded as an exception to the rule as explained in Section 3.3. The high € of the welded
metal powder is in agreement with the knowledge that 304 SS € increases as surface roughness
increases [22,23] and that the surface roughness of parts manufactured via PBF are rough [4].

Table 5: Emissivity € calibration values. “Applicable Test” refers to the Tests in which the given material
type appears.

Material type Applicable Test Low temp. € (temperature) High temp. € (temperature)
Powder 1,2,3 0.440 (331.2 K) -
Wrought steel 1,2 0.075 (334 K) 0.120 (823.2 K)
Laser treated steel, coupon 2 2,3 0.10 (342.7 K) 0.010 (863.2 K) (lower saturation limit reached)
Laser treated steel steel, coupon 3 2,3 0.70 (345.9 K) 0.09 (773.2 K)
Welded powder surface 3 0.115 (343.2 K) 0.20 (873.2 K)

4.2 Representative results: TC data

Here we show representative TC data from Tests 1 - 3. For Tests 1 - 2, the raw temperature
signal from either coupon 1 or 5 is shown, with the envelope of replicated experiments shaded
behind the raw signal (Fig. 5, 6). Only the raw data from coupons 1 and 5 are shown for Test 3 for
clarity. The labels TCA-TCD follow the convention outlined in Fig. 3.

Temperature data for Test 1 and 2 (Fig. 5-6) share a common trend of TCs A and B demon-
strating temperature peaks which alternate in time and TCC sharing temperature peaks of both
TCA and TCB. This trend is explained in Fig. 7. As the laser sweeps across the length of the
coupon, the laser passes over TCA (or TCB) twice in quick succession, yielding a single oberved
peak. Since TCC is in the middle of the part, the duration between laser passes is longer and thus
a peak is observable at each pass. The temperature signals produced by the three power levels of
Test 1 were similar for both coupons 1 and 5, which may be due to the presence of inconsistent
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laser power at low laser powers as demonstrated in Fig. 10. The unusually low initial signal from
TC 5B may be attributable to artifacts induced by re-inserting the TC into its connection after it
was dislodged during part rotation, or due to the proximity of coupon 5 to the position of the gas
orifice during testing shown Fig. 16a.

Fig. 8 demonstrates representative TC data from coupons 1-4 for Test 3, while Fig. 9 does the
same for coupon 1-5 Test 3 data. Coupons 1 and 5 displayed opposing trends over the course of
their five layer builds: As additional layers were built on coupon 1 the TCs measured lower tem-
peratures, whereas when the same was done to coupon 5 the TCs measured higher temperatures.
A decrease in measured temperature as layers are built on top of the TCs, as demonstrated by the
coupon 1 data, is consistent with intuition since a greater volume has a greater heat capacity and
thus a smaller temperature gradient for the same heat input. Further analysis is needed to explain
the trend of increasing measured temperature in the coupon 5 TC data.

4.3 Representative results: Laser/Galvanometer data

Sample data from Tests 1 and 2 were used as representative examples of P(7) because these
samples illustrate the difference in signal-to-noise (SNR) level encountered at low and high laser
powers, respectively. Fig. 10 shows that P, = 6.875 W produced a laser signal that oscillated
up from 6.75 W to 9.5W with a period of roughly 1 second. The figure also shows that in Test 2,
in which P,,,,, = 275 W, received an actual laser signal of approximately 225 W. The oscillation
of the laser signal from its peak value to approximately O in Test 2 was due to the laser being shut
off at the end of each traversal of the coupon width prior to changing directions. However, Fig. 10
illustrates that the laser never truly turned off, settling instead to a value of about 7 W.

Fig. 10 demonstrates x.(z) and y.(z). The X-Galvo rapidly oscillates between minimum and
maximum x-coordinates as it rasters across the width of the coupon. The Y-Galvo signal presents
a slow triangular wave as it governs the sweep down the length of the coupon. Sudden spikes in
the Y-Galvo position at t = 1, 4 seconds of Fig. 10 are due to the G-code routine commanding the
Y-Galvo to return to a “home” position prior to the beginning of each sweep.

4.4 Representative results: IR camera footage

Fig. 11 shows representative screenshots of IR camera footage. Fig. 11a is representative of
build chamber camera footage during Test 1. Unique to the build camera footage of Test 1 are
features besides those produced by the rastering laser such as the powder and reflected light from
the tape used to hold down the TC cables. Fig. 11b is representative of build chamber camera
footage during Tests 2 and 3. For properly-calibrated €, the only visible features for this Test
footage are regions of material that are at elevated temperatures due to the rastering laser. Fig.
11c is representative of melt pool camera footage during Tests 2 and 3. No representative image
for Test 1 is given because the elevated temperatures during Test 1 were insufficient to produce
a corresponding visible image on the melt pool camera and therefore produced seemingly-blank
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footage. The melt pool camera operated with dual-color pyrometry and hence measured incident
radiation intensity at two wavelengths simultaneously with two different cameras. Footage from
both cameras constitutes the melt pool camera measurement output for all Tests. These images
may be post-processed to recover temperature information according to the procedures given in
Appendix A.

S Summary and Conclusions

This work reviews the setup, procedures, findings, and data storage of an experiment carried
out using an open-architecture laser powder bed fusion (L-PBF) system. The experiment mea-
sured internal temperature signals within parts being manufactured by the L-PBF process along
with corresponding process input signals and surface temperature distributions. These tests were
performed on a test part consisting of a base plate with eight raised coupons that was constructed
from 304 stainless steel with thermocouples (TCs) embedded within the base plate and all coupons.
This part was built to mimic a set of partially-built test coupons. The TC-embedded test part was
inserted into the open architecture L-PBF machine, immersed in powder, and connected to a DAQ
setup. Three tests were carried out: rastering the machine laser overtop the exposed coupon sur-
faces without inducing melting, rastering the machine laser overtop the exposed coupon surfaces
at sufficiently high power to melt the metal, and building five layers of fresh steel on top of the
exposed coupon surfaces. All data from the DAQ and IR cameras was collected during each test
and is freely available to download as specified in Table 4. Representative samples of this dataset
are included with this paper.

We expect this dataset to be valuable to researchers with an interest in understanding the pro-
cess dynamics of L-PBF. Unlike typical L-PBF model validation studies which consider thin-
walled structures or plates and measure internal temperatures in at most three locations that are far
afield of the melt pool, our dataset measures internal temperatures of test coupons with complex
geometry at two subsurface locations near the melt pool that were designed to generate repeat data
signals in addition to two far afield measurements. Furthermore, unlike typical L-PBF model val-
idation studies which measure data from single test coupons, our dataset provides data from two
test coupon geometries with four replicates for each geometry. Our dataset includes process data
for three increasingly-complex levels of process dynamics: pure heat conduction during the first
test in which no metal was melted, phase change and fluid flow mechanics during the second test in
which a melt pool was generated, and material addition during the last test. Our dataset is therefore
valuable for validating models with a wide range of complexity. We also provide measured data of
process input/output signals such as laser power, laser centroid position, and IR camera data for all
tests. These input signals can be fed into process models to generate a better basis for comparing
model predictions with our dataset’s observed dynamics and process outputs.

Future work includes analyzing the microstructure of the coupons and presenting this data to
the L-PBF community. This data will help researchers validate process models with observed mi-
crostructures for complex geometries and specified loading conditions. We also intend to leverage
this dataset in future works that validate our own PBF process models. This experiments’ design is
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highly modular, with the procedures being repeated easily for different combinations of recorded
available inputs/outputs of the open architecture machine as well as with different coupon geome-
tries.
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Appendix A: Calibration routines

All data corresponding to these calibrations is available with our Test data as specified in Table
4.

A.1 Emissivity calibrations

Table 6 lists the emissivity calibration tests that were performed over the course of the tests
along with available data from the calibrations. All calibrations followed the procedures of Fig.
13. In summary, to calibrate € for elevated temperatures, a test TC (the “emissivity TC”) was
placed on the exposed surface of a coupon and the laser rastered over the exposed surface. The
emissivity TC and exposed surface were assumed isothermal when the laser rastered over the
TC. Therefore by comparing the TC reading with the apparent temperature observed by the build
chamber camera, one could adjust the emissivity € value until they matched. Calibrating € for low
temperatures followed a simpler procedure. The L-PBF system was allowed to idle at ambient
temperature until the system reached steady state. Fig. 12 demonstrates representative measured
data from TCA-TCD for these conditions. The temperature gradient between TCA and TCC was
within 1K, and as such the temperature gradient between TCA and TCB and the exposed surface
was assumed to be negligible. Therefore temperature measurements from these TCs were used in
lieu of a TC resting on the exposed build surface. The build chamber camera was used to measure
the apparent temperature of the exposed surface, and € was adjusted until this apparent temperature
matched measurements of TCA and TCB.

A.2 Background noise calibration for coupons 5-8

As mentioned in Section 3.3, the background noise in the TC data for coupons 5-8 was unusu-
ally high. No means of eliminating this noise from the TC signals was found. It was decided to
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Table 6: Emissivity € calibration tests. All emissivity calibrations performed according to the procedures
given in Fig. 13. Data is available as specified in Table 4

material temp. range coupon tested (j)  emissivity TC placement applicable filename
Powder low 0 (powder) beneath surface -
Wrought steel low 3 TCs A, B (beneath surface) -

wrought_emissivity_calibration_high.ravi

Wrought steel high 3 on exposed surface wrought_emissivity_calibration_high.mat
Laser treated steel low 2 TCs A, B (beneath surface) -
Laser treated steel high 2 on exposed surface laser,treated,em1ss1.v%ty,cal,h1.gh.raV1
laser_treated_emissivity_cal_high.mat
Laser treated steel low 3 TCs A, B (beneath surface) -
Laser treated steel high 3 on exposed surface laser,treated,em1ssTV%ty,cal,p:%,h?gh.rav1
laser_treated_emissivity_p3_cal_high.mat
Welded powder surface low 4 TCs A, B (beneath surface) welded,powder,emfsm.v?ty ,cah.brat%on,low.raw
welded_powder_emissivity calibration_low.mat
Welded powder surface high 4 on exposed surface welded_powder_emissivity_calibration_high.ravi

welded_powder_emissivity_calibration_high.mat

measure a sample of isolated noise data to better understand its characteristics. This was accom-
plished by letting the DAQ measure a stream of data while no laser rastered over the coupons. Any
perturbations from a uniform temperature signal in the measured TC data streams was assumed to
result from this noise. We provide this data under the filename ““5-8_laser_background.mat.”

A.3 melt pool camera calibration

As discussed in Section 4, the output of the melt pool camera comprised footage from two
IR cameras measuring the intensity of light incident on the melt pool camera at two different
wavelengths, with the IR camera corresponding to the larger wavelength being denoted as “long
radiation” camera (R1) and that corresponding to the shorter wavelength being denoted as the ““short
radiation” IR camera (R;). The temperatures associated with these intensity measurements may
be recovered by computing the ratio of observed measurements from the two IR cameras, Ry =
R1/R;. Fig. 14 shows the EWI-supplied calibration points which relate R to surface temperature.

Appendix B: Tabulated experimental data

Here we tabulate available experimental data and experimental setup information. Appendix
B.1 presents the available measured data for each test. Appendix B.2 contains photographs of the
experimental setup. Appendix B.3 displays the nominal dimensions of the test part. Appendix B.4
lists the measured dimensions of the test part.

B.1 Available measurements

Table 7 lists the available measurements for all tests performed during this work.
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INSTRUMENTED TEST PART

Omega TJ36-CASS-020E-6 (x32)

Figure 15: Photograph of test part with embedded TCs

B.2 Photographs of Experimental setup

We provide the following figures of our experimental setup:

e Fig. 15 shows the configuration of the test part with embedded TCs.

e Fig. 16 shows the configuration of the test part within the EWI open source PBF machine
during testing on coupons 1-4.

e Fig. 17 shows the configuration of the test part within the EWI open source PBF machine
during testing on coupons 5-8.

B.3 Nominal dimensions of test part

Fig. 18 demonstrates the nominal dimensions of all features within the test part.
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Base plate TC:
Omega TJ36-CASS-18U-6

(b)

Coupons 1-4 immersed in powder to complete Test 3

Figure 16: Placement of test part in machine for running Tests on coupons 1-4: (a): general location of
test part in machine, relative to TC extension cables. (b) Coupons 1-4 immersed in powder for completing
Tests 1, 2. (¢) Coupons 1-4 covered by powder for completing Test 3.
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(a)

Coupons 5-8 immersed in powder to complete Tests 1, 2

(b)

Figure 17: Placement of test part in machine for running Tests on coupons 5-8: (a) Coupons 5-8 im-
mersed in powder for completing Tests 1, 2. (b) Coupons 5-8 covered by powder for completing Test 3.

B.4 Measured dimensions of test part

The dimensions of all features of the test part were measured by Selecteon Corporation after
manufacturing. Fig. 19 displays the feature labeling convention used by Selecteon when reporting
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their findings. Tb. 8 lists these dimensions.

Table 8: Measured dimensions of test part. Numbers in reference to Fig. 19. Dimensions in inches.

Dimension  value Dimension value | Dimension value

1 6.108 32 0.587 8A (X)  0.0630
2 3.156 33 0.197 8A(Y) 0.1601
3 6.301 34 0.377 8B (X)  0.0609
4 0.196 35 11.2 8B(Y) 0.1611
5 0.201 36 10.2 8C(X) 0.0712
6 3.149 | 37 (diameter) 0.127 8C(Y) 0.0623
7 6.102 37 (depth) 0.982 8D (X)  0.0605

0.191 38 0.0005 8D (Y)  0.1606

0.189 39 0.0029

0.191 1A (X) 0.0396

0.190 1A (Y) 0.0320
0.190 1B (X) 0.0406
0.191 1B (Y) 0.0426
0.190 1C (X) 0.098
0.191 I1C (Y) 0.1997
0.191 1D (X) 0.0333
0.191 1D (Y) 0.0307
0.191 2A (X) 0.0390
0.191 2A (Y) 0.0402
0.387 2B (X) 0.0405
0.388 2B (Y) 0.0404
0.388 2C (X) 0.0989
0.388 2C(Y) 0.1972
0.387 2D (X) 0.0322
0.387 2D (Y) 0.0409
0.387 3A (X) 0.0401
0.387 3A (Y) 0.0609
0.388 3B (X) 0.0405
0.387 3B (Y) 0.0406
0.388 3C (X) 0.0980
0.387 3C(Y) 0.1974
9 0.244 3D (X) 0.0359
10 0.160 3D (Y) 0.0610
0.1627 4A (X) 0.0397

11 (x3) 0.1625 4A (Y) 0.0388
0.1631 4B (X) 0.0408

12 0.6018 4B (Y) 0.0382
13 0.200 4C (X) 0.0988
0.1627 4C (Y) 0.1936

14 (x3) 0.1627 4D (X) 0.0556

8 (X) (x12)

8 (Y) (x12)
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[1]

(2]

[3]

0.1627 4D (Y) 0.0407

15 0.3997 S5A (X) 0.0583
16 0.483 SA (Y) 0.1623
17 0.087 5B (X) 0.0612
18 2.120 SB (Y) 0.1608
19 2.113 5C (X) 0.0655
20 6.301 5C(Y) 0.0685
21 0.0875 5D (X) 0.0620
22 0.4766 5D (Y) 0.1611
23 0.9988 6A (X) 0.0612
24 0.183 6A (Y) 0.1608
25 0.243 6B (X) 0.0570
26 0.516 6B (Y) 0.1619
27 0.388 6C (X) 0.0674
28 1.173 6C (Y) 0.0658

0.164 6D (X) 0.0629
29 (x3) 0.164 6D (Y) 0.1613
0.164 TA (X) 0.0662
0.387 TA (Y) 0.1602
0.388 7B (X) 0.0638

064 387 7B (Y) 0.1615
0.387 7C(X)  0.0750
0.193 7C(Y)  0.0590
ey 0191 7D (X)  0.0591

0.192 7D (Y) 0.1603
0.191
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