

1 **Abstract:** All activity incurs costs, but animals can often alter the timing of their activity to
2 reduce these costs. Metabolic costs of activity are especially high during seasons of energy
3 deficits (such as winter), but the extent to which animals can adjust their activity timing to
4 reduce metabolic costs is unclear. Here, we test the hypothesis that the timing of small mammal
5 activity during winter minimizes heat loss. Using motion-activated cameras deployed under
6 snow, we show that a widely distributed nocturnal small-mammal species (*Peromyscus leucopus*,
7 white-footed mouse) shifted to diurnal activity in early winter, which reduced potential heat loss
8 by 4%. *Myodes gapperi* (southern red-backed vole) also avoided cold temperatures, but did so by
9 adjusting its activity timing at a broader temporal scale by minimizing activity on cold days. We
10 conclude that plasticity in activity timing—at both 24-hour and multi-day temporal scales—is an
11 important means of conserving energy during winter, and may need to be accounted for when
12 forecasting species distributions, abundances, and interactions.

13

14 **Keywords:** activity pattern; diel activity; northern temperate forest; *Myodes gapperi*;
15 *Peromyscus leucopus*; snow; subnivium

16

17 **Introduction**

18 The timing of activity determines the abiotic conditions an organism experiences, the
19 resources it can obtain, and the likelihood of encountering mates, competitors, predators, or
20 parasites (Kronfeld-Schor and Dayan 2003, Abu Baker and Brown 2014, Bennie et al. 2014, van
21 der Vinne et al. 2019). As a result, individuals exhibit variation in activity patterns in response to
22 their environment (e.g., predation risk, Connolly & Orrock, 2017; Courbin et al., 2019), which
23 may affect demography, biotic interactions, and evolution (Bennie et al. 2014, Gaston et al.
24 2015). Recent evidence also documents the importance of activity timing in the context of rapid
25 environmental change, such as invasive species (Guiden and Orrock 2019), climate change
26 (Levy et al. 2019), and anthropogenic light (Gaston et al. 2017, Hopkins et al. 2018); such shifts
27 in activity timing may lead to changes in population viability, shifts in competitive interactions,
28 and lead to the emergence of novel predator-prey dynamics (Gaynor et al. 2018, Guiden et al.
29 2019a).

30 Despite an emerging understanding that activity timing can exhibit important seasonal
31 dynamics (Guiden and Orrock 2019), our understanding of activity timing remains incomplete
32 because it is often quantified exclusively during the growing season. For example, in high-
33 latitude habitats, winter snow accumulation intercepts light (Evernden and Fuller 1972),
34 decreases resource availability (Guiden et al. 2019b), and insulates air temperatures
35 ("subnivium" formation, Pauli et al. 2013)—all of which might influence animal decisions about
36 when to be active (Kronfeld-Schor and Dayan 2003). Activity patterns under snow might
37 therefore differ greatly from growing-season activity patterns. While winter is commonly
38 described as a season of energy deficits (Marchand 1987, Williams et al. 2014), there have been
39 few studies investigating how organisms might adjust the timing of their activity to manage these

40 deficits. This lack of data describing winter activity patterns is an important gap in our
41 knowledge: 55% of the northern hemisphere experiences seasonal freezing temperatures, and
42 climate change is disproportionately altering winter conditions in many of these habitats
43 (Kreyling 2010).

44 Animals should be active as long as benefits of activity (e.g., foraging gains) outweigh
45 the costs of activity (e.g., metabolic costs or predation risk, Brown 1988, Brown and Kotler
46 2004, Gaynor et al. 2019). Metabolic costs of foraging in cold environments can be extreme,
47 especially for small homeotherms (Conley and Porter 1986). Thus, small mammals that must
48 forage during winter should be under strong selection to minimize heat loss by reducing activity
49 on cold days (Orrock and Danielson 2009). Alternatively, animals could minimize metabolic
50 costs by shifting the timing of their activity (e.g., nocturnal animals could become active during
51 the day (van der Vinne et al. 2019). We tested the hypothesis that activity patterns in two
52 common small-mammal species (*Peromyscus leucopus*, white-footed mouse, and *Myodes*
53 *gapperi*, southern red-backed vole) minimize heat loss, using a novel method of monitoring
54 subnivean (“below-snow”) foraging activity (Soininen et al. 2015). Our data reveal unexpected
55 shifts in small-mammal activity timing between summer and winter, highlighting the importance
56 of behavior for reducing metabolic costs associated with extreme winter temperatures.

57

58 **Methods**

59 This study was conducted at 10 different sites characterized by mixed-deciduous forest in
60 northern Wisconsin, USA. The 10 sites spanned a 45 km latitudinal gradient (45.80°N to
61 46.13°N). Data were collected concurrently with an experiment investigating small-mammal
62 responses to changes in snow depth and woody debris (Guiden 2019, Appendix). We monitored

63 small-mammal winter foraging activity with four subnivean camera traps (Soininen et al. 2015)
64 per site, which allowed us to identify small-mammals to genus or species. Camera traps
65 consisted of cameras placed in transparent plastic boxes (58 cm length × 41 cm width × 31 cm
66 height), with 10 cm × 10 cm holes cut to allow small mammals to access the box (Appendix).
67 Cameras were attached to the box ceiling with the lens pointed towards the ground (Soininen et
68 al., 2015, Appendix). The environment within the camera boxes therefore mimicked
69 environments typically encountered by small mammals in nature throughout the winter (e.g.,
70 areas under short shrubs that intercept snow, subnivean habitats characterized by loose snow at
71 the soil-snow interface, Pauli et al. 2013, Petty et al. 2015, Zuckerberg and Pauli 2018),
72 providing insight into how small mammals might use subnivean habitat. We placed 10 seeds of
73 five temperate tree species (n = 50 seeds total) consumed by *P. leucopus* and *M. gapperi* (*Abies*
74 *balsamea*, *Acer rubrum*, *Acer saccharum*, *Pinus resinosa*, *Quercus rubra*, Schnurr et al. 2002,
75 2004; Cramer 2014) in the leaf litter below each camera (Guiden 2019). Camera traps did not
76 bias small-mammal activity timing by providing an artificial refuge (Appendix), and there was
77 no evidence of small mammals nesting in the camera boxes. By the following spring, 78% of
78 deployed seeds were removed (Guiden 2019).

79 In order to understand how winter climate influenced small-mammal activity timing, we
80 tracked near-ground temperature and snow depth at our sites between 7 December 2017 and 20
81 February 2018. Daily snow depth observations were obtained from the closest weather station
82 (Boulder Junction, WI, mean distance from study sites: 18.44 km), and provided an excellent fit
83 to field measurements of snow depth ($r^2 = 0.83$, $P = 0.005$, d.f. = 46.77, Guiden 2019). Each
84 camera box included an iButton thermochron (Maxim Integrated, San Jose CA) suspended 15 cm
85 above the soil, which measured air temperature every four hours to quantify thermal conditions

86 experienced by small mammals foraging within the box. Because snow depth and daily
87 minimum temperatures were strongly correlated ($r = 0.56$, d.f. = 73, $P < 0.001$, Fig. 1B), we
88 conducted a correlation-based principal components analysis to reduce these variables to a single
89 principal component (see Results).

90 To test for an association between winter climate and small-mammal activity, we
91 constructed a hurdle model with a truncated negative binomial distribution using the
92 “glmmTMB” package in R (Brooks et al. 2017). This hurdle model had two components: a zero-
93 inflation model that determined the probability of a small mammal being photographed, and a
94 conditional model that modeled the number of photographs as a negative binomial distribution
95 when the number of photographs > 0 . This model allowed us to make inferences about the
96 effects of winter climate conditions on two different processes: a) the probability of small
97 mammals being active or not (i.e., the zero-inflation model), and b) for active small mammals,
98 the magnitude of activity on a given day (i.e., the conditional model). Both the zero-inflation
99 model and conditional model described *Myodes gapperi* and *Peromyscus leucopus* activity as a
100 function of species, the climate principal component, a species \times climate interaction, and a
101 random intercept for site.

102 We estimated the amount of energy small mammals would lose as heat during periods of
103 activity at two temporal scales: mean daily temperatures, and the approximate temperature
104 (within two hours) of each small-mammal photograph. Heat loss (in watts) was estimated from a
105 model accounting for the temperature gradient between the environment and core body
106 temperature, the animal’s size and shape, and the insulation provided by fur (Porter and Kearney
107 2009). We multiplied heat loss by 3600 seconds to estimate the amount of energy (in joules) a
108 small mammal would lose as heat during one hour of activity.

109 We compared estimated energetic costs of activity between *P. leucopus* and *M. gapperi*
110 using two linear mixed models. The first model compared heat loss between days when small
111 mammals were active and days when small mammals were inactive. This model described mean
112 daily energetic costs at each site as a function of species, a binary variable describing whether a
113 species was observed or not, time period (early winter or late winter), and all possible
114 interactions, and included a random intercept for site. 22 January 2018 was chosen as the
115 division between early and late winter, because on this date a large snowstorm resulted in
116 widespread subnivium formation, dramatically reducing the daily range of near-ground
117 temperatures (Fig. 2A-2B). Because these animals are typically nocturnal, the second model used
118 finer-scale temperature data to compare heat loss at the time of each photograph to heat loss at a
119 random night-time temperature recorded within 24 hours of each photograph. This model
120 described the amount of energy lost as heat as a function of species, a binary variable describing
121 the type of activity timing (observed activity or random nocturnal activity), time period (early
122 winter or late winter), and all possible interactions. This model also included a random intercept
123 term for each paired comparison between observed and random times, which was nested within
124 site. All mixed-effects models were constructed in R using the “lme4” package (Bates et al.
125 2015).

126

127 **Results**

128 Snow depth reached a maximum of 45.8 cm on 23 January 2018 (Fig. 1A). As snow
129 depth increased, daily temperature ranges decreased ($r = 0.38$, $F_{1,73} = 39.59$, $P < 0.001$, Fig. 1B).
130 Our principal component analysis identified one principal component that described 76% of the
131 variance in climate data. This principal component was correlated with deep snow and warm

132 daily minimum temperatures. 55% of deployed cameras recorded small-mammal activity (n =
133 1456 photographs); 66% of photographs could be identified to genus or species (n = 963).
134 *Peromyscus leucopus* were the most commonly photographed species (n = 660), followed by *M.*
135 *gapperi* (n = 296), *Napaeozapus insignis* (n = 5), and *Sorex* spp. (n = 2).

136 At a multi-day temporal scale, *P. leucopus* and *M. gapperi* showed distinct activity
137 patterns (Fig. 1A). The probability of observing either small-mammal species increased with the
138 climate principal component ($\beta = -0.61 \pm 0.14$, zero-inflated model: $z = 4.33, P < 0.001$). On
139 cold days with little snow (25th percentile of climate principal component), the probability of
140 observing a small mammal was 3.9%, but the probability of observing a small mammal more
141 than doubled to 8.6% on warm days with deep snow (75th percentile of climate principal
142 component). The probability of observing a small mammal was not affected by species ($\beta = 0.01$
143 $\pm 0.22, z = 0.01, P = 0.96$), but was marginally affected by the species \times climate interaction ($\beta =$
144 $0.31 \pm 0.18, z = 1.71, P = 0.09$). However, the relationship between the number of photographs
145 observed and the climate principal component differed strongly between the two species
146 (conditional model species \times climate principal component: $\beta = -0.92 \pm 0.23, z = 3.87, P = 0.001$).
147 The number of *P. leucopus* photographs was greatest on days with shallow snow and/or low
148 daily minimum temperatures (Fig. 1C), but *M. gapperi* activity was greatest on days with deep
149 snow and relatively high daily minimum temperatures (Fig. 1D). On days when activity was
150 observed, there were almost twice as many *P. leucopus* spp. photographs (10.96 ± 2.41)
151 compared to *M. gapperi* photographs (5.86 ± 1.79 , conditional model species main effect: $\beta =$
152 $0.62 \pm 0.26, z = 2.35, P = 0.02$). There was also a weak positive effect of climate principal
153 component in the conditional model ($\beta = 0.23 \pm 0.18, z = 1.29, P = 0.19$). These species
154 exhibited very different diel activity patterns: *Peromyscus leucopus* were primarily observed

155 between 08:00 and 16:00 (Fig. 1E), while *M. gapperi* had a uniform diel activity pattern (Fig.
156 1F).

157 Near-ground air temperatures were colder and more variable in early winter compared to
158 late winter (Fig. 2A), and we observed a seven-fold decrease in daily temperature range once
159 snow accumulated > 45 cm (Fig. 2B). Small mammals reduced heat loss by avoiding activity on
160 cold days (Fig. 2C-D). Based on mean daily temperatures, heat loss in early winter would have
161 been 4% greater on days when small mammals were not photographed (3725 ± 61 J) compared
162 to days when small mammals were photographed (3567 ± 68 J, Fig. 2C), but this difference in
163 heat loss disappeared in late winter ($\beta = 113.55 \pm 100.93$, time period \times photograph interaction:
164 $F_{1,737.5} = 10.10$, $P = 0.001$, Fig 2D). The marginally significant species \times time period \times
165 photograph interaction ($\beta = 241.48 \pm 144.63$, $F_{1,736.7} = 2.78$, $P = 0.09$) suggested that during early
166 winter, *M. gapperi* was active on days with lower mean energetic costs than *P. leucopus* (Fig.
167 2C). Small mammals also minimized heat loss by adjusting their diel activity patterns (Fig. 2E-
168 F). On average, heat loss was 1.6% lower during times of observed small mammal activity (3657
169 ± 11 J) compared to random nocturnal activity (3717 ± 11 J, $\beta = 110.58 \pm 22.11$, $F_{1,952} = 187.84$,
170 $P < 0.001$), but this effect was more than twice as strong during early winter (activity timing \times
171 time period interaction: $\beta = -142.17 \pm 27.38$, $F_{1,952} = 75.49$, $P < 0.001$). Full model results are
172 summarized in the Appendix.

173

174 **Discussion**

175 Temporal activity patterns are rarely quantified during winter, and consequently it is
176 difficult to appreciate the adaptive value of decisions associated with the timing of activity.
177 Moreover, activity patterns have historically been considered invariant (Bennie et al. 2014), but

178 it is becoming increasingly clear that we often underestimate the plasticity of diel activity
179 (Hazlerigg and Tyler 2019). Using a novel method to observe activity in free-ranging animals
180 below snow cover, the data presented here support the hypothesis that the timing of foraging
181 activity in two common small-mammal species (Fig. 1C-1F) minimizes metabolic costs incurred
182 by activity during winter (Fig. 2E-2F). *Peromyscus leucopus*, a ubiquitous small mammal that is
183 considered nocturnal across its range in eastern North America (Jackson 1961, Bruseo and Barry
184 1995, Whitaker and Hamilton 1998, Guiden and Orrock 2019, Appendix) was primarily diurnal
185 throughout our winter study (Fig. 1E). *Myodes gapperi*, on the other hand, greatly reduced its
186 activity on cold days with little snow cover (Fig. 1D). Such shifts in activity timing may be an
187 important adaptation to thermally challenging environments (Kearney et al. 2009), allowing
188 organisms to minimize heat loss during cold winter days (Fig. 2). Understanding how species
189 shift foraging activity patterns at different temporal scales could provide a critical missing link in
190 niche models (Roy-Dufresne et al. 2013). Day-time winter temperatures may best predict habitat
191 suitability for species responding to temperature on a 24-hour scale, such as *P. leucopus*,
192 whereas mean daily temperatures may best predict habitat suitability for species responding on a
193 multi-day scale, such as *M. gapperi* (Fig. 2C-2D). Without accounting for species-specific
194 behavioral plasticity during winter, ecologists risk mischaracterizing the thermal niche of species
195 using subnivean habitats (Pauli et al. 2013) or reaching incorrect conclusions when comparing
196 the energetic costs of activity in different mammal species (Fig. 2C-2F).

197 The different behavioral strategies employed by *P. leucopus* and *M. gapperi* might reflect
198 differences in how snow accumulation affects each species. During winter, the subnivium
199 provides an important thermal refuge as snow depth approaches 50 cm (Pauli et al. 2013, Petty et
200 al. 2015), but is unlikely to form until several weeks after the first snowfall (Fig. 2A). When

201 snow was deep enough to provide protective cover from visually hunting predators, but not deep
202 enough to provide a stable thermal environment, *P. leucopus* shifted to diurnal behavior (Fig.
203 1E), leading to an estimated 4.4% reduction in heat loss compared to the nocturnal activity (Fig.
204 2E). While *M. gapperi* did not avoid nocturnal activity (Fig. 1F), it also minimized heat loss by
205 avoiding activity on extremely cold days (Fig. 1D, Fig. 2C) while having no clear nocturnal or
206 diurnal activity pattern (Fig. 1F). The pulse of *P. leucopus* activity in December (Fig. 1A)
207 suggests this species may accept cold temperatures to forage for large seeds (e.g., *Quercus*
208 *rubra*) before deep snow covers these resources (Anderson 1986), particularly given their ability
209 to avoid the coldest time of day (Fig. 1E). *Myodes gapperi*, which likely does not cache seeds,
210 did not exhibit a December activity pulse (Fig. 1A), and became most active when temperatures
211 were mild in late January (Fig. 2A). The effect of snow on species-specific foraging strategies
212 might therefore influence whether small mammals adjust their foraging activity at broad (day-to-
213 day) or fine (diel) temporal scales.

214 Plasticity in winter activity timing may have important ecological consequences. Small
215 mammals that lose excessive energy to heat in cold temperatures can experience decreased
216 reproductive success (Bult and Lynch 1997) and impaired immune responses (Nelson and Demas
217 1996). Thus, *P. leucopus* that exhibit shifts in activity timing and *M. gapperi* that reduce activity
218 during cold days may increase their relative fitness in cold environments by avoiding these costs.
219 A key question that arises from our findings is what proportion of the *P. leucopus* population
220 switches to diurnal activity timing in early winter, given that our camera data are unable to
221 distinguish among individual *P. leucopus*. Future research could use PIT-tags or live-trapping to
222 determine if individual state (e.g., age or physiology, Clark 1994) or behavioral syndromes (e.g.,
223 bold individuals, Sih et al. 2004) makes animals more likely to shift foraging activity patterns,

224 which could select for these traits in cold environments. Seasonal shifts in foraging activity
225 patterns may also have a strong influence on species distribution and persistence, as activity
226 timing also plays an important role in moderating winter biotic interactions. For example, *P.*
227 *leucopus* may face elevated predation risk by diurnal predators (e.g., hawks, Smithers et al.
228 2005) during winter. Additionally, in the absence of a subnivium, competition between *P.*
229 *leucopus* and *M. gapperi* (Lemaître et al. 2010) may be increasingly likely due to a compressed
230 window of time where costs of activity are low. Once subnivium forms, thermal constraints on
231 activity are relaxed (Fig. 1B), and species may be less likely to encounter one another.

232 The unexpected plasticity we observed in the timing of small-mammal foraging activity
233 underneath the snow highlights the need for increased research on seasonal shifts in behavior.
234 For example, while our study shows that small mammals alter foraging activity in response to
235 cold temperatures, it is possible that these species also exhibit plasticity in other types of activity,
236 such as social interactions or territory defense (Ostfeld 1985). Additionally, the degree to which
237 this behavioral plasticity is taxonomically widespread remains unclear. Identifying which species
238 respond at 24-hour temporal scales versus multi-day temporal scales to avoid high metabolic
239 costs may help anticipate species responses to climate change (Kearney et al. 2009). It also
240 remains unknown if predators of small mammals shift their activity patterns to track their prey,
241 or if climate change (Creel et al. 2016) and human activity (Gaynor et al. 2018) constrain
242 carnivore activity timing. As northern temperate forests warm and snow ceases to provide a
243 thermal refuge for many species (Pauli et al. 2013, Seidl et al. 2017), behavioral plasticity in
244 activity timing may become an increasingly important strategy to avoid extremely cold
245 temperatures.

246

247 **References**

248 Abu Baker, M. A., and J. S. Brown. 2014. Foraging in space and time structure an African small
249 mammal community. *Oecologia* 175:521–535.

250 Anderson, P. K. 1986. Foraging range in mice and voles: the role of risk. *Canadian Journal of*
251 *Zoology* 64:2645–2653.

252 Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models
253 usling lme4. *Journal of Statistical Software* 67:1–48.

254 Bennie, J. J., J. P. Duffy, R. Inger, and K. J. Gaston. 2014. Biogeography of time partitioning in
255 mammals. *Proceedings of the National Academy of Sciences* 111:13727–13732.

256 Brooks, M. E., K. Kristensen, K. J. Van Benthem, A. Magnusson, C. W. Berg, A. Nielsen, H. J.
257 Skaug, M. Mächler, and B. M. Bolker. 2017. glmmTMB Balances Speed and Flexibility
258 Among Packages for Zero-inflated Generalized Linear Mixed Modeling. *The R Journal*
259 9:378–400.

260 Brown, J. S. 1988. Patch use as an indicator of habitat preference, predation risk, and
261 competition. *Behavioral Ecology and Sociobiology* 22:37–47.

262 Brown, J. S., and B. P. Kotler. 2004. Hazardous duty pay and the foraging cost of predation.
263 *Ecology Letters* 7:999–1014.

264 Bruseo, J. A., and R. E. Barry. 1995. Temporal activity of syntopic *Peromyscus* in the central
265 Appalachians. *Journal of Mammalogy* 76:78–82.

266 Bult, A., and C. B. Lynch. 1997. Nesting and fitness: lifetime reproductive success in house mice
267 bidirectionally selected for thermoregulatory nest-building behavior. *Genetics* 27:231–240.

268 Clark, C. W. 1994. Antipredator behavior and the asset-protection principle. *Behavioral Ecology*
269 5:159–170.

270 Conley, B. Y. K. E., and W. P. Porter. 1986. Heat loss from deer mice (*Peromyscus*): evaluation
271 of seasonal limits to thermoregulation. *Journal of Experimental Biology* 269:249–269.

272 Connolly, B. M., and J. L. Orrock. 2017. Habitat-specific capture timing of deer mice
273 (*Peromyscus maniculatus*) suggests that predators structure temporal activity of prey.
274 *Ethology* 124:105–112.

275 Courbin, N., A. J. Loveridge, H. Fritz, W. David, R. Patin, M. Valeix, and S. Chamaillé-jammes.
276 2019. Zebra diel migrations reduce encounter risk with lions at night. *Journal of Animal
277 Ecology* 88:92–101.

278 Cramer, M. J. 2014. Seeds of doubt: feeding preferences of white-footed deer mice (*Peromyscus
279 leucopus noveboracensis*) and woodland deer mice (*Peromyscus maniculatus gracilis* on
280 maple (genus *Acer*) seeds. *Canadian Journal of Zoology* 776:771–776.

281 Creel, S., N. M. Creel, A. M. Creel, and B. M. Creel. 2016. Hunting on a hot day: Effects of
282 temperature on interactions between African wild dogs and their prey. *Ecology* 97:2910–
283 2916.

284 Evernden, L. N., and W. A. Fuller. 1972. Light alteration caused by snow and its importance to
285 subnivean rodents. *Canadian Journal of Zoology* 50:1023–1032.

286 Gaston, K. J., T. W. Davies, S. L. Nedelec, and L. A. Holt. 2017. Impacts of artificial light at
287 night on biological timings. *Annual Review of Ecology, Evolution, and Systematics* 48:49–
288 68.

289 Gaston, K. J., J. P. Duffy, and J. Bennie. 2015. Quantifying the erosion of natural darkness in the
290 global protected area system. *Conservation Biology* 29:1132–1141.

291 Gaynor, K. M., J. S. Brown, A. D. Middleton, M. E. Power, and J. S. Brashares. 2019.
292 Landscapes of fear: Spatial patterns of risk perception and response. *Trends in Ecology &*

293 Evolution 34:355–368.

294 Gaynor, K. M., C. E. Hojnowski, N. H. Carter, and J. S. Brashares. 2018. The influence of
295 human disturbance on wildlife nocturnality. Science 360:1232–1235.

296 Guiden, P. W. 2019. Seasonal dynamics in the Anthropocene: novel autumn and winter
297 predation refugia modify plant-consumer interactions in temperate forests. University of
298 Wisconsin-Madison.

299 Guiden, P. W., S. L. Bartel, N. W. Byer, A. A. Shipley, and J. L. Orrock. 2019a. Predator-prey
300 interactions in the Anthropocene: reconciling multiple aspects of novelty. Trends in
301 Ecology & Evolution 34:616–627.

302 Guiden, P. W., B. M. Connolly, and J. L. Orrock. 2019b. Seedling responses to decreased snow
303 depend on canopy composition and small-mammal herbivore presence. Ecography 42:780–
304 790.

305 Guiden, P. W., and J. L. Orrock. 2019. Invasive shrubs modify rodent activity timing, revealing a
306 consistent behavioral rule governing diel activity. Behavioral Ecology 30:1069–1075.

307 Hazlerigg, D. G., and N. J. C. Tyler. 2019. Activity patterns in mammals: circadian dominance
308 challenged. PLOS Biology 17:e3000360.

309 Hopkins, G. R., K. J. Gaston, M. E. Visser, M. A. Elgar, and T. M. Jones. 2018. Artificial light at
310 night as a driver of evolution across urban-rural landscapes. Frontiers in Ecology and the
311 Environment 16:472–479.

312 Jackson, H. 1961. Genus *Peromyscus* Gloger (White-footed mice). Pages 209–219 Mammals of
313 Wisconsin. University of Wisconsin Press, Madison, Wisconsin.

314 Kearney, M., R. Shine, and W. P. Porter. 2009. The potential for behavioral thermoregulation to
315 buffer “cold-blooded” animals against climate warming. Proceedings of the National

316 Academy of Sciences 106:3835–3840.

317 Kreyling, J. 2010. Winter climate change: a critical factor for temperate vegetation performance.

318 Ecology 91:1939–1948.

319 Kronfeld-Schor, N., and T. Dayan. 2003. Partitioning of time as an ecological resource. Annual

320 Review of Ecology, Evolution, and Systematics 34:153–181.

321 Lemaître, J., D. Fortin, D. W. Morris, and M. Darveau. 2010. Deer mice mediate red-backed vole

322 behaviour and abundance along a gradient of habitat alteration. Evolutionary Ecology

323 Research 12:203–216.

324 Levy, O., T. Dayan, W. P. Porter, and N. Kronfeld-Schor. 2019. Time and ecological resilience:

325 can diurnal animals compensate for climate change by shifting to nocturnal activity?

326 Ecological Monographs 89:1–22.

327 Marchand, P. J. 1987. Life in the cold. Third. University Press of New England, London.

328 Nelson, R. J., and G. E. Demas. 1996. Photoperiod and temperature interact to affect immune

329 parameters in adult male deer mice. Journal of Biological Rhythms 11:94–102.

330 Orrock, J. L., and B. M. Connolly. 2016. Changes in trap temperature as a method to determine

331 timing of capture of small mammals. PLoS ONE 11:1–15.

332 Orrock, J. L., and B. J. Danielson. 2009. Temperature and cloud cover, but not predator urine,

333 affect winter foraging of mice. Ethology 115:641–648.

334 Ostfeld, R. S. 1985. Limiting resources and territoriality on microtine rodents. American

335 Naturalist 126:1–15.

336 Pauli, J. N., B. Zuckerberg, J. P. Whiteman, and W. Porter. 2013. The subnivium: a deteriorating

337 seasonal refugium. Frontiers in Ecology and the Environment 11:260–267.

338 Petty, S. K., B. Zuckerberg, and J. N. Pauli. 2015. Winter conditions and land cover structure the

339 subnivium, a seasonal refuge beneath the snow. PLOS One 10:e0127613.

340 Porter, W. P., and M. Kearney. 2009. Size, shape, and the thermal niche of endotherms.

341 Proceedings of the National Academy of Sciences 106:19666–19672.

342 Roy-Dufresne, E., T. Logan, J. A. Simon, G. L. Chmura, and V. Millien. 2013. Poleward

343 expansion of the white-footed mouse (*Peromyscus leucopus*) under climate change:

344 implications for the spread of Lyme disease. PLOS One 8:e80724.

345 Schnurr, J., C. Canham, R. Ostfeld, and R. Inouye. 2004. Neighborhood analyses of small-

346 mammal dynamics: impacts on seed predation and seedling establishment. Ecology 85:741–

347 755.

348 Schnurr, J. L., R. S. Ostfeld, and C. D. Canham. 2002. Direct and indirect effects of masting on

349 rodent populations and tree seed survival. Oikos 96:402–410.

350 Seidl, R., D. Thom, M. Kautz, D. Martin-benito, M. Peltoniemi, G. Vacchiano, J. Wild, D.

351 Ascoli, M. Petr, J. Honkaniemi, and M. J. Lexer. 2017. Forest disturbances under climate

352 change. Nature Climate Change 7:395–402.

353 Sih, A., A. Bell, and J. C. Johnson. 2004. Behavioral syndromes : an ecological and evolutionary

354 overview. Trends in Ecology & Evolution 19:372–378.

355 Smithers, B. L., C. W. Boal, and D. E. Andersen. 2005. Northern goshawk diet in Minnesota: an

356 analysis using video recording systems. Journal of Raptor Research 39:264–273.

357 Soininen, E. M., I. Jensvoll, S. T. Killengreen, and R. A. Ims. 2015. Under the snow: a new

358 camera trap opens the white box of subnivean ecology. Remote Sensing in Ecology and

359 Conservation 1:29–38.

360 van der Vinne, V., P. Tachinardi, S. J. Riede, J. Akkerman, J. Scheepe, S. Daan, and R. A. Hut.

361 2019. Maximising survival by shifting the daily timing of activity. Ecology Letters:2097–

362 2102.

363 Whitaker, J. O., and W. J. Hamilton. 1998. The mice of the genus *Peromyscus*. Pages 289–307

364 Mammals of the Eastern United States. Second. Cornell University Press, Ithaca, NY.

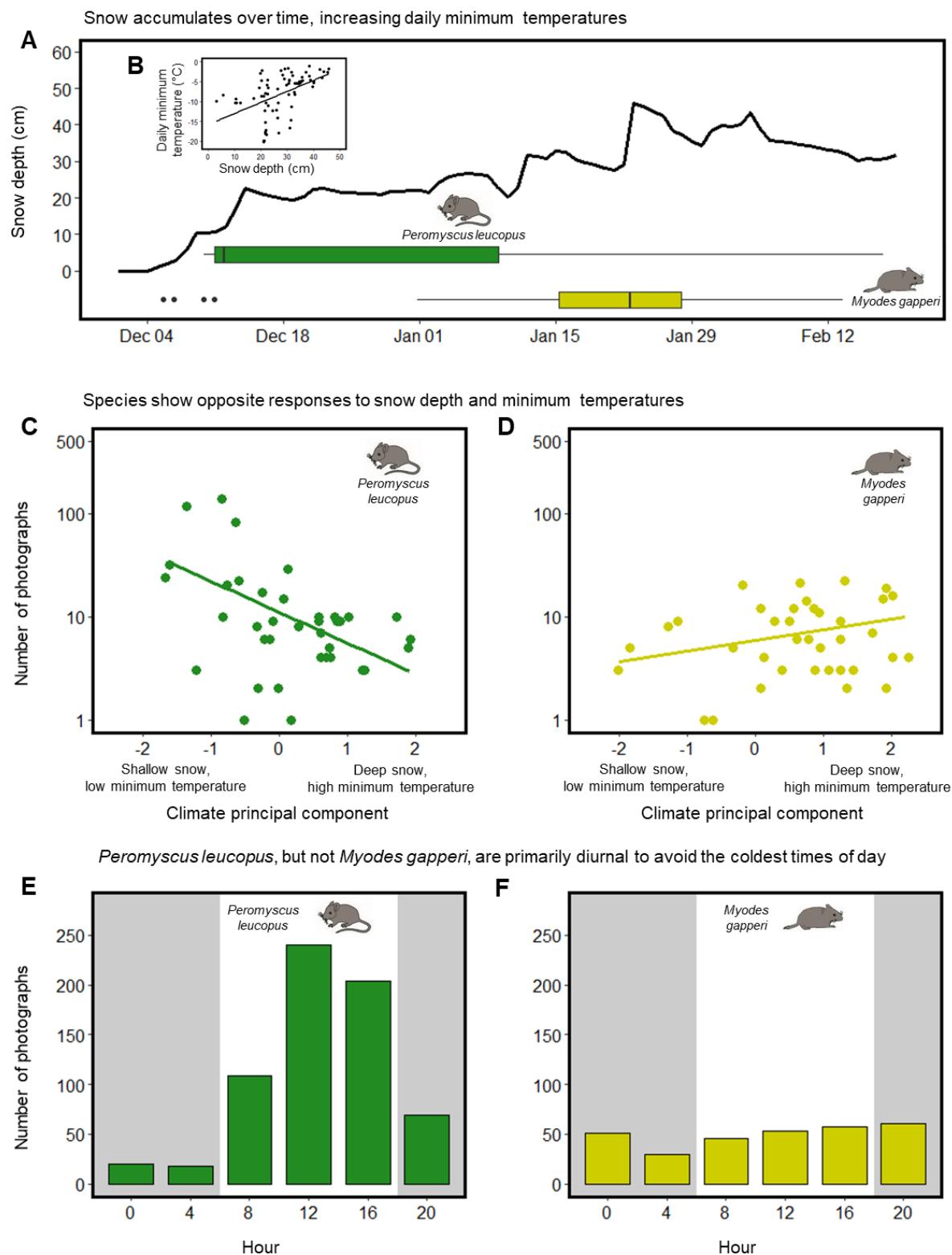
365 Williams, C. M., H. A. L. Henry, and B. J. Sinclair. 2014. Cold truths: how winter drives

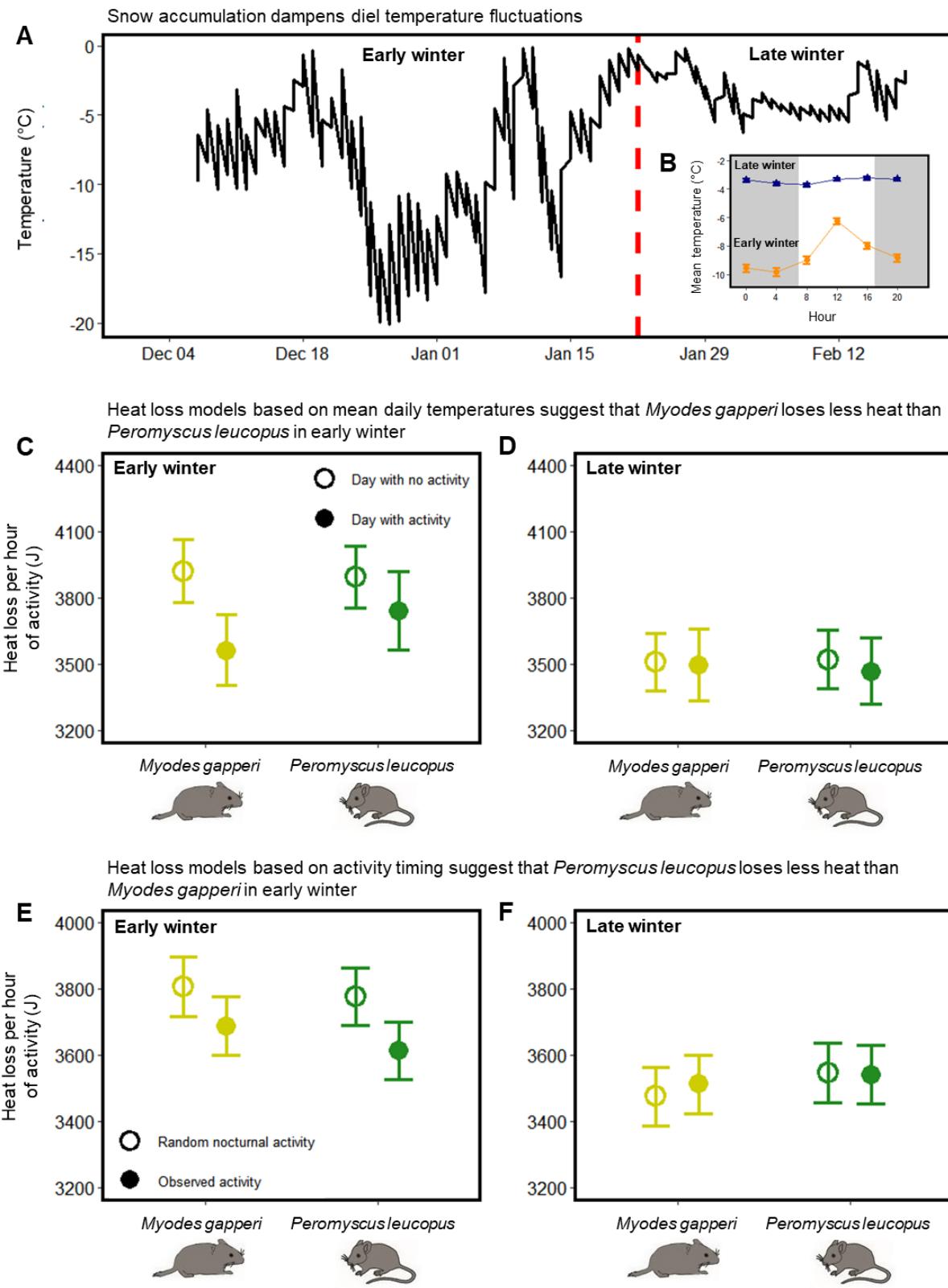
366 responses of terrestrial organisms to climate change. Biological Reviews 90:214–235.

367 Zuckerberg, B., and J. N. Pauli. 2018. Conserving and managing the subnivium. Conservation

368 Biology 32:774–781.

369


370


371 **Fig. 1:** A) Snow depth for each day of the study. Boxplots represent the distribution of
372 *Peromyscus leucopus* (green) and *Myodes gapperi* (yellow) photographs through time. B) Daily
373 minimum temperature as a function of snow depth. C) Number of *P. leucopus* and D) *M. gapperi*
374 photographs per site per day as a function of the climate principal component (high values
375 represent warmer days and/or deep snow). Curve represents hurdle model predictions. E)
376 Number of *P. leucopus* and F) *M. gapperi* photographs binned in 4-hour intervals.

377

378 **Fig 2:** A) Maximum and minimum temperatures for each day of the study averaged across all
379 sites. B) Diel temperature profiles for early winter (before 22 January 2018, orange points) and
380 late winter (after 22 January 2018, blue points) averaged across all sites and dates. C) Estimated
381 heat loss in early winter and D) late winter based on mean daily temperatures for *Peromyscus*
382 *leucopus* (green) and *Myodes gapperi* (yellow). Points represent estimated marginal means for
383 days where activity was not observed (open circles) and days where activity was observed
384 (closed circle). E) Estimated heat loss during early winter and F) late winter based on the timing
385 of small-mammal activity. Points represent estimated marginal means for the heat loss based on
386 temperatures associated with each photograph of a small mammal (to the nearest two hours,
387 closed circles). Because these species are nocturnal during the growing season, we also estimated
388 heat loss for a random night-time temperature recorded by iButtons within 24 hours of each
389 photograph (open circles). All error bars represent 95% confidence intervals.

390

395 **Appendix**

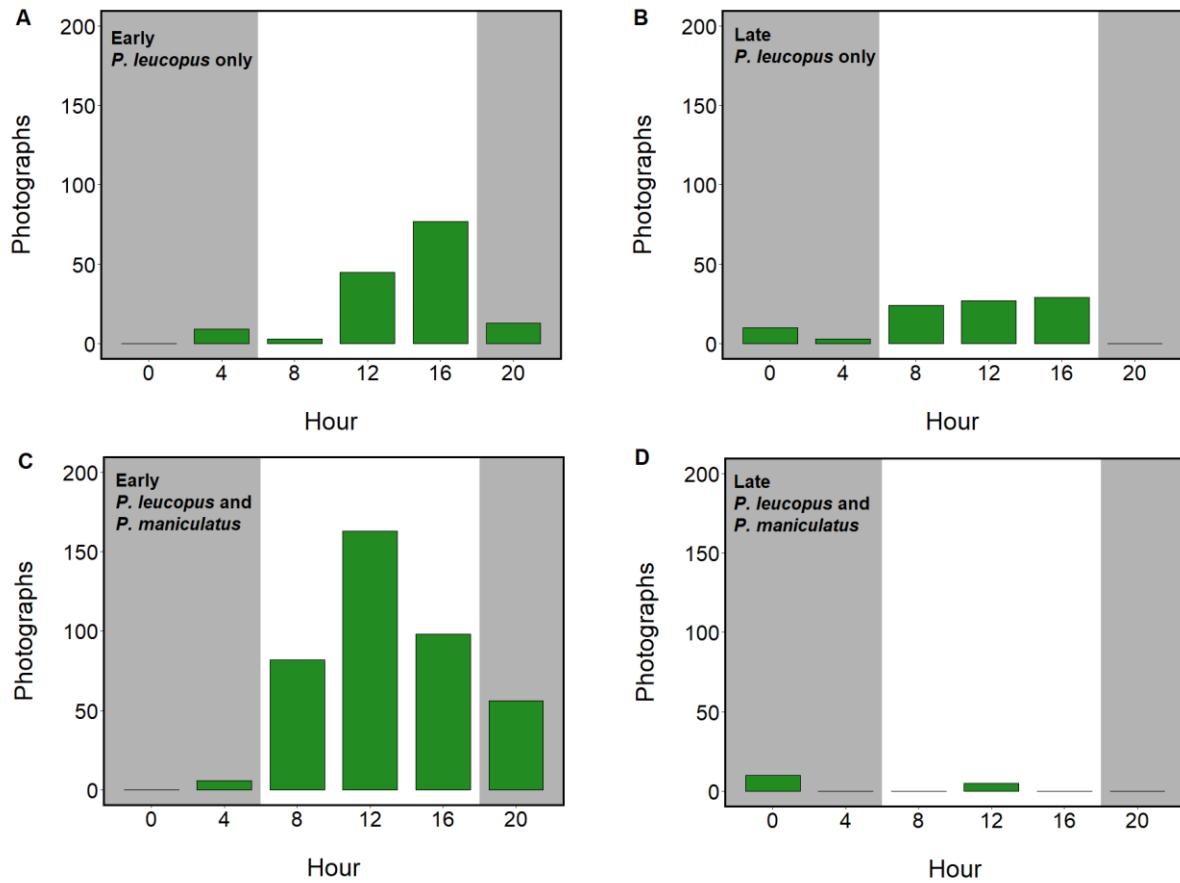
396 *Summer live-capture and activity data*

397 In order to provide context for our estimates of small-mammal winter activity, we
398 quantified small-mammal activity in the summer using live trapping. We established a 4 x 4
399 trapping grid at each site in July 2017. Grid points were spaced 10 m apart, and at each grid point
400 we deployed two Sherman live-traps within 1 m of the grid point. We pre-baited traps (i.e.,
401 placed bait in traps but locked trap doors open) for one night in order to allow animals to
402 acclimate to traps (Edalgo and Anderson 2007). Traps were deployed for four consecutive nights
403 and checked around sunrise. All captured animals were identified to species, and given an ear tag
404 with a unique number.

405 During summer live-trapping, we observed 240 capture events representing 114 unique
406 individuals and 7 taxa (Table S1). *Peromyscus leucopus* was captured the most frequently at
407 these sites (n = 119 captures) followed by *T. striatus* (n = 43 captures), *M. gapperi* (n = 30
408 captures), and *P. maniculatus* (n = 13). *Peromyscus leucopus* were captured at every site,
409 whereas *M. gapperi* were captured at 7 out of 10 sites. The number of *Peromyscus* spp. photos at
410 a site was strongly correlated with the *Peromyscus* spp. M_{t+1} (i.e., the number of individuals
411 captured, Slade and Blair 2000) during summer ($F_{1,8} = 6.93, P = 0.03$). Additionally, we
412 observed diurnal activity at 8 of our 10 sites where we trapped an average of 5.84 individual
413 *Peromyscus* spp. during summer. These data, along with observations of *Peromyscus leucopus*
414 extensively using snow-covered ground during winter as opposed to arboreal habitats (Nicholson
415 1941), suggests that shifts to diurnal activity may be a common phenomenon in northern
416 *Peromyscus* spp. populations, rather than being driven by a handful of individuals. However,
417 *Myodes gapperi* summer M_{t+1} did not predict the number of *M. gapperi* photographs in winter (r

418 $= -0.41$, $F_{1,8} = 0.02$, $P = 0.89$), and *M. gapperi* were detected at three sites in winter where they
419 were not captured during summer.

420 Because *P. leucopus* and *P. maniculatus* are morphologically similar (Stephens et al.
421 2014), we did not attempt to distinguish between these species in our photograph analysis. In
422 order to assess whether the single site with *P. maniculatus* was driving the patterns in Fig. 2
423 (main text), we repeated this analysis using only the 9 sites with only *P. leucopus*. Excluding the
424 site with both *P. leucopus* and *P. maniculatus* does not qualitatively change our results (Fig. S1).
425 Consequently, we can confidently conclude that *P. leucopus* can shift activity timing in winter.
426 However, because it was impossible to say whether *P. leucopus* or *P. maniculatus* (or both) were
427 photographed at the site where these species co-occurred, we cannot confidently conclude that *P.*
428 *maniculatus* is also able to shift its activity timing during winter.

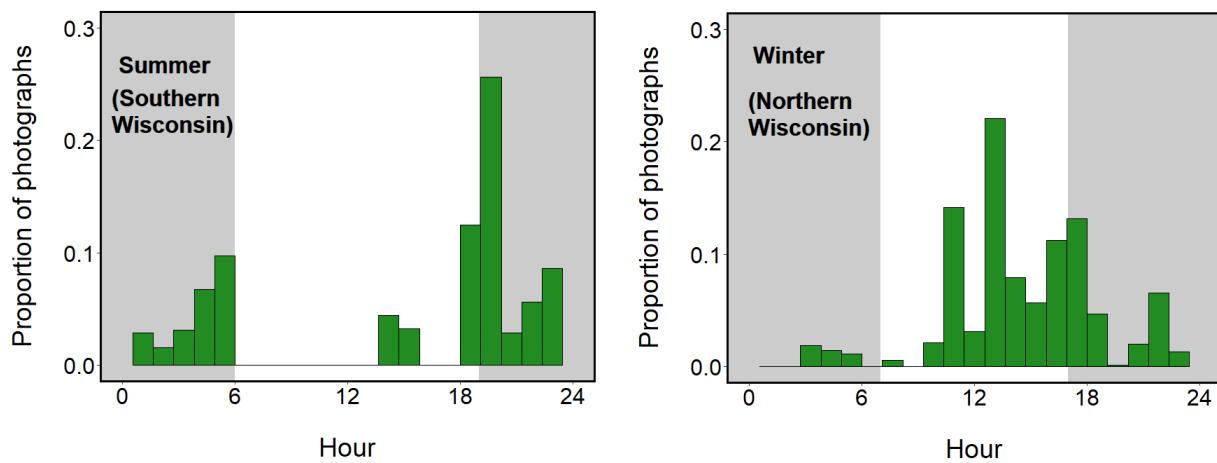

429

430

431 **Table S1:** Comparison of summer live-captures and winter photographs for several northern
432 temperate small-mammal species. Measurements of activity for each species are pooled from 10
433 sites.

Species	Live-captures (summer)	Photographs (winter)
<i>Blarina brevicauda</i>	14	0
<i>Glaucomys volans</i>	5	0
<i>Myodes gapperi</i>	30	256
<i>Napaeozapus insignis</i>	3	5
<i>Peromyscus</i> spp.	135	591
<i>Sorex</i> spp.	10	2
<i>Tamias striatus</i>	43	0

434

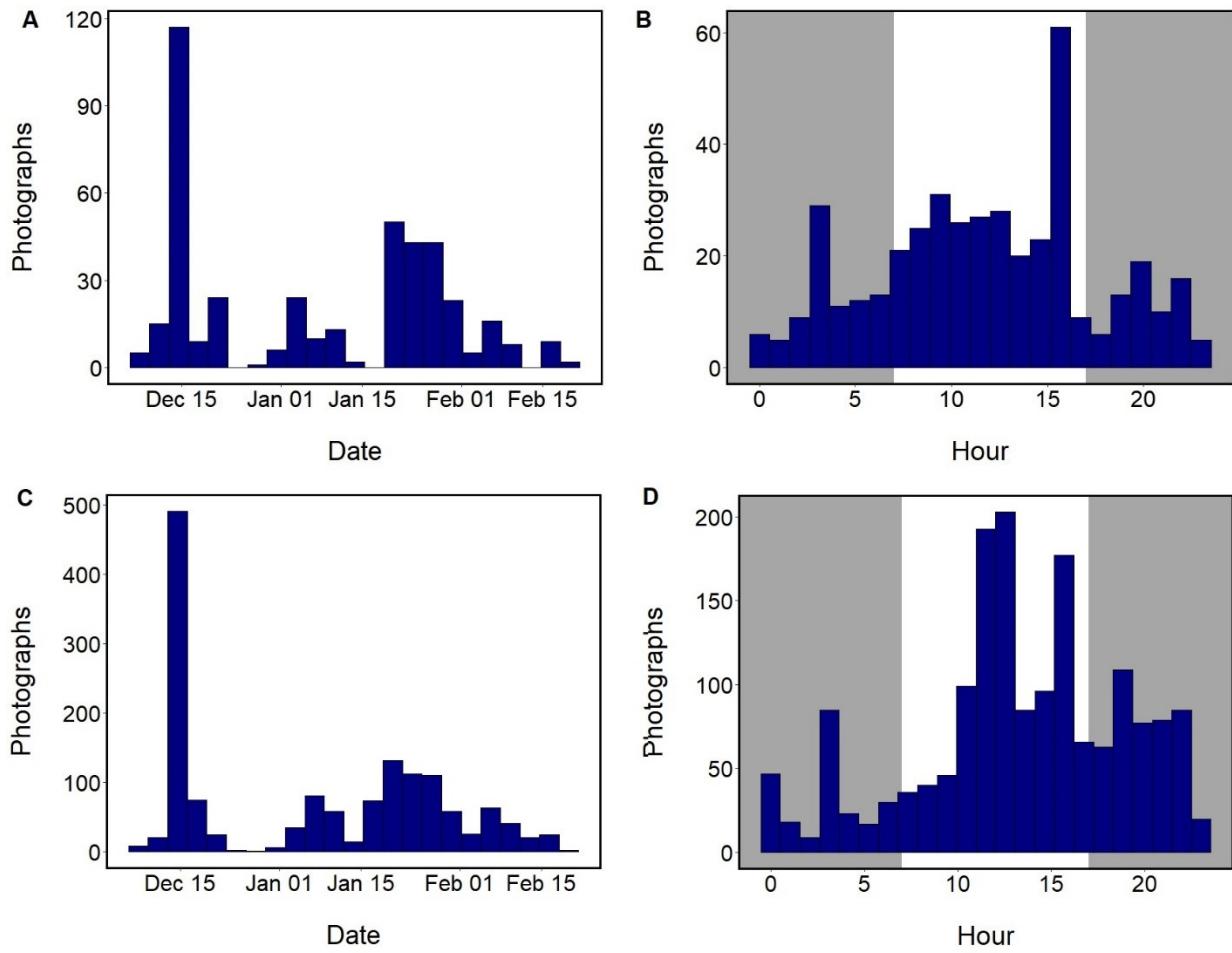


437 **Fig. S1:** Diel activity patterns during winter determined by photographs of *Peromyscus* spp.
 438 (green bars). A) At sites where only *P. leucopus* was captured ($n = 9$), we primarily observed
 439 diurnal activity in early winter, and B) no clear activity pattern in late winter (see main text
 440 Results). C) At the 1 site where *P. leucopus* and *P. maniculatus* were captured, we also primarily
 441 observed diurnal activity in early winter and D) no clear activity pattern in late winter. However,
 442 it is unclear whether *P. leucopus* or *P. maniculatus* (or both species) is driving the activity
 443 patterns in C) and D).

445

446 *Camera boxes did not modify Peromyscus leucopus behavior*

447 We chose to construct our camera boxes out of transparent plastic, because the dark
448 environment created by metal or wooden camera boxes (Soininen et al. 2015) may create an
449 artificially strong refuge for small mammals. To ensure that the shifts in activity timing we
450 observed (Fig. 1E, main text) were due to increases in snow cover, and not an artifact of refuge
451 introduced by our camera boxes, we deployed cameras in a snow-free environment. Cameras
452 were deployed for one week, starting 14 April 2019, at a temperate forest at the University of
453 Wisconsin Arboretum (43.0429°N, 89.4243°W). *Peromyscus leucopus* are the dominant small-
454 mammal species at the arboretum, but *P. maniculatus* does not occur in this study area (Guiden
455 and Orrock 2019). As expected, *P. leucopus* were almost exclusively nocturnal in the absence of
456 snow at the UW Arboretum (Fig. S2), compared to the strong shift to diurnal activity underneath
457 snow during winter at the northern WI site (Fig. S2, Fig. 1E-1F main text).


458

459 **Fig. S2:** Comparison of diel activity patterns for *Peromyscus leucopus* in summer (14 April 2019
460 to 21 April 2019) and *Peromyscus maniculatus* and *Peromyscus leucopus* in winter (7 December
461 2017 to 20 February 2018). Summer photographs were taken at the University of Wisconsin

462 Arboretum (43.0429°N, 89.4243°W). *Peromyscus* spp. were much more likely to exhibit diurnal
463 activity during winter, underneath the cover of snow.

464 *Analysis of unidentified animals*

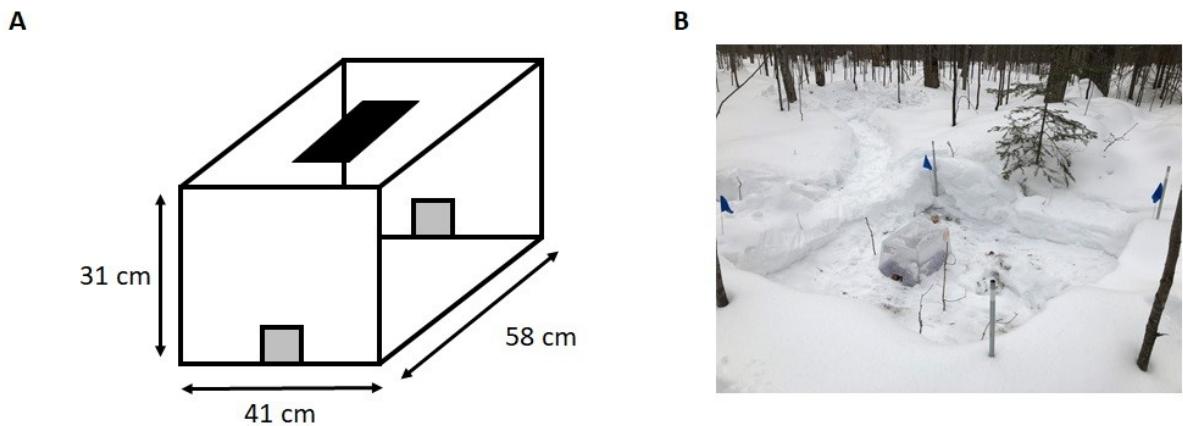
465 Because we could not identify the small-mammal species in a proportion of photographs,
466 we assessed the activity patterns of these unidentified photographs to determine whether
467 unidentified animals were exhibiting patterns of activity similar to identified ones and to be
468 certain that our conclusions for identified animals are not driven by shifts in identification (e.g.,
469 if nocturnally active animals of *P. leucopus* were less likely to be identifiable). There was no
470 clear bias in the date or time of activity in these photographs (Fig. S3). Rather, photographs
471 showed a mix of activity peaks in early and late winter (Fig. S3A), and a mix of diurnal and
472 nocturnal activity (Fig. S3B). For comparison, we provide similar figures with *P. leucopus* and
473 *M. gapperi* activity combined showing the date (Fig. S4C, data from Fig. 1A) and hour (Fig.
474 S4D, data from Fig. 1C-1D, main text) of activity from photographs were the species could be
475 identified. This suggests that unidentified photographs were a mix of the two most common
476 species, *P. leucopus* and *M. gapperi*, rather than predominantly consisting of one of these
477 species.

478

479 **Fig. S3:** Temporal distributions of photographs of unidentified animals (n = 425) at A) seasonal
 480 and B) diel scales. Most photographs are likely from *P. leucopus* and *M. gapperi* (see main text),
 481 and therefore represent a combination of activity patterns from these species. C) For comparison,
 482 combined temporal distribution of *P. leucopus* and *M. gapperi* at the seasonal scale using data
 483 from photographs where species could be identified. D) combined temporal distribution of *P.*
 484 *leucopus* and *M. gapperi* at the diel scale using data from photographs where species could be
 485 identified.

486

487

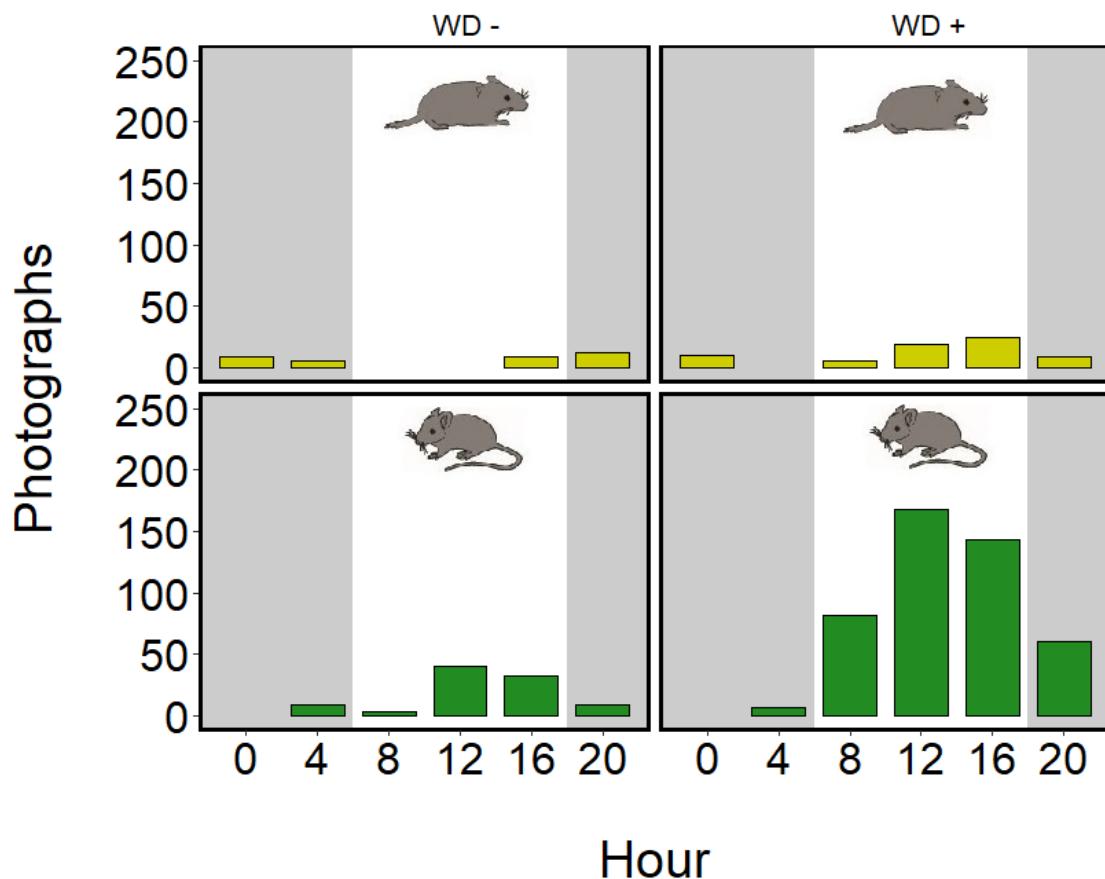

488 *Camera trap set-up, woody debris manipulation, and snow removal experiment*

489 We attached motion-activated cameras (Bushnell Essential E3, Overland Park KS) to a
490 transparent plastic box, so that the camera was suspended approximately 31 cm above the soil
491 surface, facing the soil (Fig. S4). We chose a transparent box to reduce the likelihood that small-
492 mammals would perceive the box itself as a refuge, thus obscuring possible effects of our woody
493 debris and snow removal treatments on small-mammal behavior. We cut out a 10 cm x 10 cm
494 hole cut on two ends of the box, allowing small mammals to freely pass through. This box was
495 placed in the center of the plot upside-down and anchored into the soil with turf staples. These
496 cameras use infrared flash if photos are taken in dark conditions, which is calibrated to illuminate
497 objects much farther away than the 31 cm used in our camera-trap design. In order to reduce
498 wash-out caused by the infrared flash, we covered the majority of the infrared flash bulbs with
499 duct tape. Cameras were deployed on 7 December 2017 and collected 5 May 2018, but very few
500 photographs were taken after we initiated our snow removal treatment (20 February 2018). This
501 is because cameras in snow removal plots continuously took photos until their batteries died.
502 However, even in control plots, very little small-mammal activity was observed from mid-
503 February to snow retreat. This likely reflects either a) small-mammal abundances declining over
504 winter (Merritt and Merritt 1978), or b) depletion of food resources in our patches (Brown and
505 Kotler 2004). Alternatively, disturbance caused by our snow shoveling treatment may have also
506 diminished small-mammal activity, but this explanation seems less likely because we had visited
507 sites consistently throughout winter, and because declines in small-mammal activity were
508 evident before snow shoveling began (Fig. 1A).

509 This study was conducted in conjunction with an experiment to investigate the potential
510 interactive effects of reduced snow and woody debris. In August 2017, we delineated four 2 m x
511 2 m plots at each site. All data used in this study were collected before snow was experimentally
512 removed starting in February 2018, as cameras used to document rodent activity became
513 increasingly non-functional after 20 February 2018 due to battery and data-storage limitations
514 (Guiden 2019). In July 2017, all woody debris within the plots, as well as a 0.5 m radius around
515 the plot, was removed. Half of the plots were randomly selected to have woody debris added,
516 and half of the plots were left as a control with no woody debris. In October 2017, woody-debris
517 addition plots received a standardized volume of untreated pine lumber (approximate
518 dimensions: 10 cm x 10 cm x 100 cm); this volume corresponded to the median volume of
519 woody debris removed from plots. Starting in December 2017, we measured snow depth in each
520 plot approximately every three weeks.

521 Woody debris addition had no effect on the magnitude or timing of small-mammal
522 activity. We constructed a linear mixed model that treated the number of photographs in each
523 plot as a function of species, woody debris addition, and a species x woody debris interaction.
524 This model included a random intercept term for site (n = 40 plots). The number of photographs
525 in each plot was not affected by woody debris addition ($\beta = -1.83 \pm 32.71$, $F_{1,67} = 0.77$, $P = 0.38$),
526 species ($\beta = 3.38 \pm 32.71$, $F_{1,67} = 0.68$, $P = 0.41$), or a species x woody debris interaction ($\beta = -$
527 1.61 ± 32.21 , $F_{1,67} = 0.54$, $P = 0.46$). *Peromyscus leucopus* exhibited a similar shift to diurnal
528 activity in plots with woody debris added and control plots with no woody debris (Fig. S5-S6). In
529 our main text analysis, we used photograph data from plots with woody debris and woody debris
530 controls (Fig. 1C-1F). Similarly, woody debris addition did not alter small-mammal heat loss.
531 Using a linear mixed model with a random intercept for site, we modeled heat loss as a function

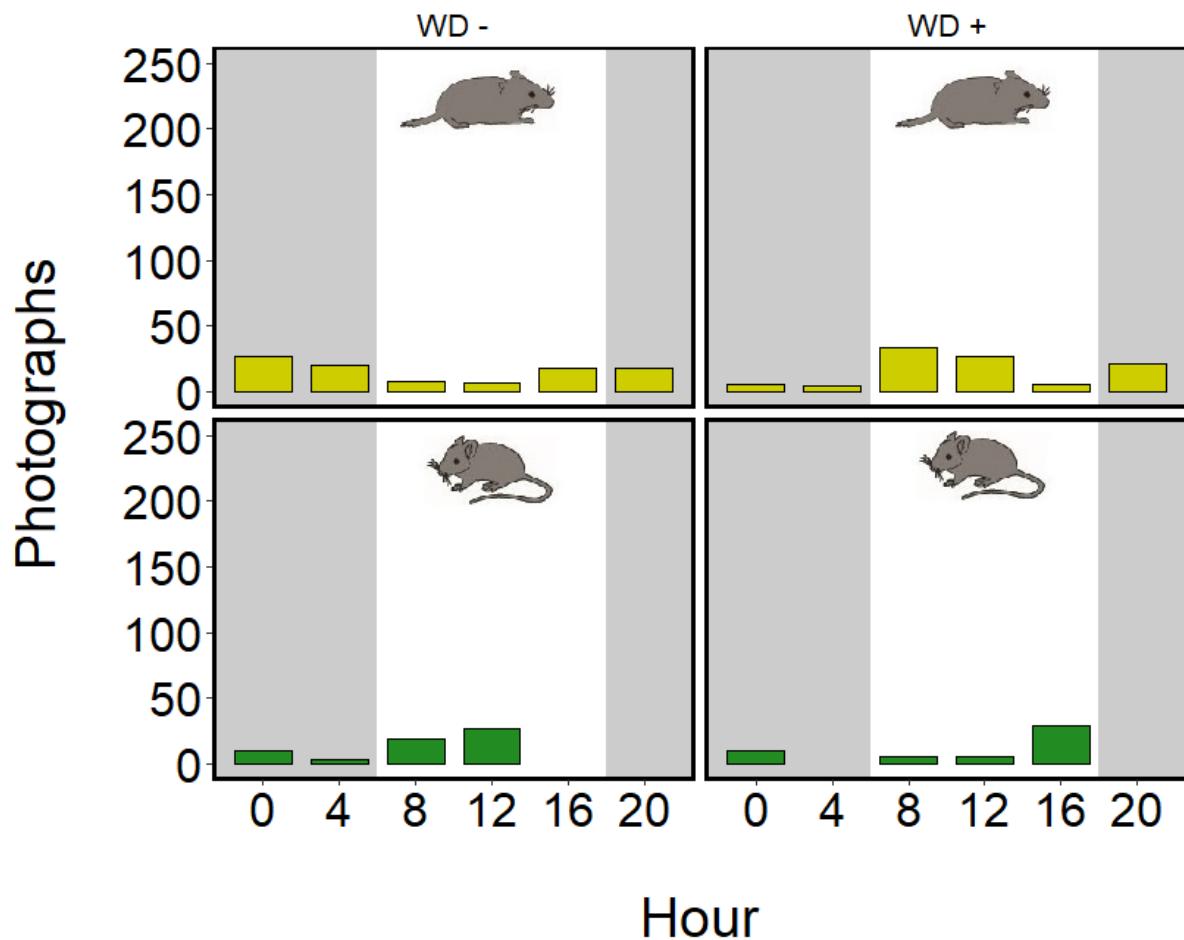
532 of woody debris treatment (woody debris addition or control), time period (early or late winter),
533 and species (*P. leucopus* or *M. gapperi*) and all possible interactions. There was no significant
534 main effect of woody debris treatment ($\beta = 262.12 \pm 145.08$, $F_{1,12.8} = 0.51$, $P = 0.50$), nor
535 significant interactions with time period ($\beta = 65.07 \pm 40.29$, $F_{1,12.0} = 0.23$, $P = 0.65$) or species (β
536 $= -148.34 \pm 50.32$, $F_{1,942.6} = 0.27$, $P = 0.60$).



537

538 **Fig. S4:** A) Camera box design (adapted from Soininen *et al.* 2015). The camera box consisted
539 of a transparent plastic box, with holes (grey) cut on either end to allow small mammals to pass
540 through. A camera (black) was secured to two holes cut on the top of the box, allowing the
541 camera to point down into the inside of the box. B) Photograph of a deployed camera box taken
542 after the snow shoveling treatment began. Data were collected before the snow shoveling
543 treatment began, spanning a period of snow accumulation from approximately 10 cm to 45 cm,
544 so that the boxes were completely covered by snow at the end of the study.

545


546

547

548 **Fig. S5:** Early winter diel activity patterns for *Myodes gapperi* (top row) and *Peromyscus*
549 *leucopus* (bottom row) subset by woody debris treatment. Control plots with no woody debris
550 added are shown in the left column, while woody debris addition plots are shown in the right
551 column. Note that in both woody debris treatments, *P. leucopus* activity timing is primarily
552 diurnal.

553

556 **Fig. S6:** Late winter diel activity patterns for *Myodes gapperi* (top row) and *Peromyscus*
 557 *leucopus* (bottom row) subset by woody debris treatment. Control plots with no woody debris
 558 added are shown in the left column, while woody debris addition plots are shown in the right
 559 column. Note that in both woody debris treatments, there is no distinct activity pattern for either
 560 species.

562 *Calculating minimum and maximum possible heat loss*

563 In order to understand whether small-mammal activity timing was optimal for reducing
 564 heat loss, we also estimated heat loss (Porter and Kearney 2009) at the warmest possible and

565 coldest possible times observed at the same site within 24 hours of each photograph. Optimal
566 activity timing should approach minimum possible heat loss, particularly when temperatures are
567 low. We modeled the amount of energy lost as heat at the time of each photograph (i.e., iButton
568 reading within two hours, “observed heat loss”), the maximum possible heat loss, and the
569 minimum possible heat loss as function of species, time period, and a species \times time period
570 interaction ($n = 3$ models). We calculated estimated marginal means and 95% confidence
571 intervals for each model using the “emmeans” package in R, which differs from ordinary
572 marginal means by accounting for imbalanced designs (Lenth 2016, Table S2).

573 Given the colder average temperatures in early winter, the average heat loss at the coldest
574 time of day was 6% greater in early winter (3996 ± 70 J) compared to late winter (3763 ± 63 J).
575 Correspondingly, the estimated heat loss at the time of small-mammal activity was 4% greater in
576 early winter (3633 ± 77 J), when the coldest temperatures occurred at night (Fig. 2B), compared
577 to late winter (3501 ± 75 J, $F_{1,951.5} = 54.31, P < 0.001$), when minimum temperatures were
578 warmer and there was less diel temperature fluctuation (Fig. 2B). A significant species \times time
579 period interaction ($F_{1,949.8} = 9.09, P = 0.002$) suggested that during early winter, *P. leucopus* heat
580 loss (3604 ± 77 J, 10% less than mean heat loss at the coldest time of day) was slightly lower
581 than *M. gapperi* heat loss (3662 ± 80 J, 8% less than mean heat loss at the coldest time of day;
582 pairwise comparison: $t = 2.49, P = 0.01$, Fig. 2E). The difference in heat loss between the two
583 species in late winter was not statistically significant (pairwise comparison: $t = 1.68, P = 0.33$,
584 Fig. 2F). There was no main effect of species on heat loss ($F_{1,951.5} = 0.28, P = 0.59$). During both
585 early winter and late winter, mean *M. gapperi* and *P. leucopus* heat loss estimated at the time of
586 photographs did not differ from the minimum possible heat loss (Table S2).

587

588 **Table S2:** Estimated marginal means and 95% confidence intervals describing heat loss for
 589 small-mammal winter activity. Heat loss was determined using three models: one that estimated
 590 heat loss using the temperature data associated with each small-mammal photograph, one that
 591 estimated heat loss at the warmest time within a 24-hour period of each photograph, and one that
 592 estimated heat loss at the coldest time within a 24-hour period of each photograph. All models
 593 included main effects for species and time period (early vs. late winter), a species \times time period
 594 interaction, and a random intercept term for site.

Model	Species	Time Period	Estimate marginal mean	Lower confidence limit (95% CI)	Upper confidence limit (95% CI)
Observed heat loss	<i>Myodes gapperi</i>	Early	3643	3533	3755
	<i>Myodes gapperi</i>	Late	3470	3368	3576
	<i>Peromyscus leucopus</i>	Early	3632	3527	3740
	<i>Peromyscus leucopus</i>	Late	3523	3418	3632
Lowest possible heat loss	<i>Myodes gapperi</i>	Early	3570	3428	3718
	<i>Myodes gapperi</i>	Late	3344	3212	3482
	<i>Peromyscus leucopus</i>	Early	3441	3305	3582
	<i>Peromyscus leucopus</i>	Late	3418	3282	3560
Highest possible heat loss	<i>Myodes gapperi</i>	Early	3994	3856	4137
	<i>Myodes gapperi</i>	Late	3762	3637	3891
	<i>Peromyscus leucopus</i>	Early	3997	3859	4140
	<i>Peromyscus leucopus</i>	Late	3764	3639	3893

595

596

597 *Detailed model results*

598 **Table S3:** Estimated marginal means and 95% confidence intervals comparing heat loss on days
599 when small mammals were active to days when small mammals were not active, based on mean
600 daily temperatures. Heat loss for a given day was modeled as a function of time period (early
601 versus late winter), species, whether or not a small mammal was active (i.e., whether species
602 were photographed), and all possible interactions. The model also included a random intercept
603 term for site. For full model description, see the main text Methods.

Species	Time Period	Active or Inactive?	Estimate marginal mean	Lower confidence limit (95% CI)	Upper confidence limit (95% CI)
<i>Myodes gapperi</i>	Early	Active	3568	3389	3748
		Inactive	3945	3801	4089
	Late	Active	3462	3289	3635
		Inactive	3523	3374	3671
<i>Peromyscus leucopus</i>	Early	Active	3746	3558	3933
		Inactive	3920	3776	4063
	Late	Active	3490	3306	3674
		Inactive	3512	3364	3660

604

605

606 **Table S4:** Estimated marginal means and 95% confidence intervals describing heat loss for
 607 small-mammal winter activity, comparing heat loss at the time of activity to heat loss at a
 608 random time at night. Heat loss was modeled as a function of time period (early versus late
 609 winter), species, activity timing (observed activity or random nocturnal activity), and all possible
 610 interactions. The model also included a random intercept term for site. For full model
 611 description, see the main text Methods.

Species	Time Period	Activity timing	Estimate marginal mean	Lower confidence limit (95% CI)	Upper confidence limit (95% CI)
<i>Myodes gapperi</i>	Early	Observed	3750	3698	3802
		Random	3861	3809	3912
	Late	Observed	3533	3496	3571
		Random	3502	3464	3539
<i>Peromyscus leucopus</i>	Early	Observed	3741	3719	3763
		Random	3904	3882	3926
	Late	Observed	3604	3554	3654
		Random	3602	3552	3652

612

613 *Supplemental References*

614 Brown, J. S., and B. P. Kotler. 2004. Hazardous duty pay and the foraging cost of predation.

615 Ecology Letters 7:999–1014.

616 Edalgo, J. A., and J. T. Anderson. 2007. Effects of prebaiting on small mammal trapping success

617 in a Morrow's honeysuckle-dominated area. Journal of Wildlife Management 71:246–250.

618 Guiden, P. W., and J. L. Orrock. 2019. Invasive shrubs modify rodent activity timing, revealing a

619 consistent behavioral rule governing diel activity. Behavioral Ecology 30:1069–1075.

620 Lenth, R. 2016. Least-squares means: the R package *lsmeans*. Journal of Statistical Software

621 69:1–33.

622 Merritt, J. F., and J. M. Merritt. 1978. Population ecology and energy relationships of

623 *Clethrionomys gapperi* in a Colorado subalpine forest. Journal of Mammalogy 59:576–598.

624 Nicholson, A. J. 1941. The homes and social habits of the wood-mouse (*Peromyscus leucopus*
625 *noveboracensis*) in southern Michigan. The American Midland Naturalist 25:196–223.

626 Porter, W. P., and M. Kearney. 2009. Size, shape, and the thermal niche of endotherms.
627 Proceedings of the National Academy of Sciences 106:19666–19672.

628 Slade, N. A., and S. M. Blair. 2000. An empirical test of using counts of individuals captured as
629 indices of population size. Journal of Mammalogy 81:1035–1045.

630 Soininen, E. M., I. Jensvoll, S. T. Killengreen, and R. A. Ims. 2015. Under the snow: a new
631 camera trap opens the white box of subnivean ecology. Remote Sensing in Ecology and
632 Conservation 1:29–38.

633 Stephens, R. B., E. M. Anderson, S. R. Wendt, and J. K. Meece. 2014. Field identification of
634 sympatric *Peromyscus leucopus noveboracensis* and *P. maniculatus gracilis* in Wisconsin
635 from External Measurements. American Midland Naturalist 171:139–146.