

1 Predator-prey interactions in the Anthropocene: reconciling multiple aspects of novelty

2

3 Peter W. Guiden¹ Email: guiden@wisc.edu, Twitter: [@Pete_Guiden](https://twitter.com/Pete_Guiden)

4 Savannah L. Bartel¹

5 Nathan W. Byer²

6 Amy A. Shipley²

7 John L. Orrock¹ Twitter: [@JohnLOrrock](https://twitter.com/JohnLOrrock)

8

9 1. Department of Integrative Biology, University of Wisconsin-Madison, 250 N Mills St,
10 Madison, WI 53706

11

12 2. Department of Forest and Wildlife, University of Wisconsin-Madison, 1630 Linden Dr,
13 Madison, WI 53706

14

15

16 **Highlights**

17 • Human activities have modified many habitats and ecological communities on earth, and
18 will continue to do so throughout the Anthropocene. Consequently, predator-prey
19 interactions will increasingly occur in settings characterized by novel abiotic and biotic
20 conditions that differ from historical conditions.

21 • We identify multiple ways by which novelty may alter predator-prey interactions,
22 illustrating the inherent complexity of predation in novel habitats.
23 • We provide a framework to organize data describing novelty in predator-prey interactions
24 based on a series of events (the “predation sequence”) common to all predator-prey
25 interactions.

26 • The predation sequence provides a way to link well-developed areas of predator-prey
27 theory, providing insight into possible outcomes of novel predator-prey interactions and
28 highlighting hypotheses to guide future research on Anthropocene predator-prey
29 interactions.

30

31

32

33 **Glossary**

34 *Antipredator behavior*: Actions taken by prey to reduce the likelihood of being captured and/or
35 consumed by other organisms.

36 *Baseline*: Abiotic and biotic conditions within a specified evolutionary range of variability.

37 Baseline systems can be used as a comparison to potentially novel interactions between predators

38 and prey, and can be described using historical data or contemporary ecosystems characterized
39 by lower novelty.

40 *Dimension*: An aspect of predator-prey interactions that is altered by abiotic or biotic novelty.
41 *Form of novelty*: A factor causing abiotic or biotic novelty (e.g., shifts in temperature or
42 introduction of a new predator species).

43 *Novel ecosystem*: A highly-modified environment that may be difficult to restore to baseline
44 conditions.

45 *Novelty*: Dissimilarity between contemporary (or future) and historic conditions (typically
46 characterized by a baseline system) that can influence the outcomes of predator-prey
47 interactions. Novelty is not simply synonymous with change; it implies conditions outside the
48 range of variability found throughout relevant evolutionary history.

49 *Predation*: A relationship where one species (a predator) kills and consumes another (a prey).

50 *Predation sequence*: A common set of steps that can unfold as part of an interaction between
51 predators and prey.

52

53 **Abstract**

54 Ecological novelty, when conditions deviate from a historical baseline, is increasingly
55 common as humans modify habitats and communities across the globe. Our ability to anticipate
56 how novelty changes predator-prey interactions will likely hinge upon the explicit evaluation of
57 multiple forms of novelty, rather than a focus on single forms of novelty (e.g., invasive predators
58 or climate change). We provide a framework to assess how multiple forms of novelty can act,
59 alone or in concert, on components shared by all predator-prey interactions (the predation
60 sequence). Considering how novelty acts throughout the predation sequence could improve our

61 understanding of predator-prey interactions in an increasingly novel world, identify important
62 knowledge gaps, and guide conservation decisions in the Anthropocene.

63

64 **Key words:** Antipredator behavior, novel ecosystem, predation sequence, species interaction

65

66 **Causes and consequences of ecological novelty in species interactions**

67 Ecosystems are inherently dynamic, but due to rapid anthropogenic environmental
68 change many species now inhabit highly-modified “**novel ecosystems**” (see Glossary). Novel
69 ecosystems are characterized by new biotic interactions in warming, fragmented, and polluted
70 habitats outside the range of conditions experienced in evolutionary history [1–3]. Predicting
71 which species will persist in novel habitats remains difficult, despite more than a decade of
72 research and debate [3–6]. While multiple definitions of “novel ecosystems” have been described
73 [5], one recent description of ecological **novelty** (see Glossary) as a quantifiable, continuous
74 dissimilarity between current and **baseline** (see Glossary) conditions provides clarity to explore
75 variation among novel ecosystems [2]. This definition suggests that while almost all ecosystems
76 experience some degree of novelty, the magnitude of individual **forms of novelty** (see Glossary)
77 vary in space and time [2,7]. While this quantitative definition of novelty provides a powerful
78 tool to compare the strength of different forms of novelty, it remains difficult to predict the
79 consequences of novelty, such as changes in the type or strength of species interactions that may
80 disrupt ecosystem function and community diversity [8–10]. Without accounting for the effect of
81 novelty on species interactions, it may remain difficult to predict human-mediated changes in
82 species distribution and abundance [11], highlighting the need to understand the complex effects
83 of novelty on species interactions.

84 **Predation** (see Glossary) is a ubiquitous species interaction that can shape predator and
85 prey behavior, population dynamics, and evolution [12], transform ecosystems [9], and influence
86 human society (e.g., disease transmission) [13]. However, we currently do not have a basis for
87 predicting where and when novelty intensifies (or dampens) the strength of predation [e.g.,
88 14,15]. Our perspective is that novel predator-prey interactions remain difficult to understand
89 because we lack a guiding set of principles to inform and organize data collection and make
90 predictions about how multiple forms of novelty should modify predator-prey interactions [16].
91 Studies of predation in novel ecosystems often focus on the effect of one form of novelty on one
92 **dimension** (see Glossary) of predator-prey interactions. Here, we highlight multiple ways by
93 which novelty can change the outcome of predator-prey interactions. We then show that many
94 diverse predator-prey interactions share a common series of component events (the **predation**
95 **sequence** [17], see Glossary), and illustrate how novelty influences each step in this sequence.
96 We then discuss the implications of novelty throughout the predation sequence, and provide
97 recommendations and hypotheses for future studies.

98

99 **Common forms of novelty and their effects on predator-prey interactions**

100 Many forms of novelty can change predator-prey interactions (Figure 1), but novelty
101 often falls into one of two categories: novelty in the environment (“novel stages”) and novelty in
102 the identity or function of organisms (“novel actors”). Examples of novel stages changing
103 predation include shifts in predator or prey phenology due to climate change (e.g., seasonal
104 migration or torpor) [14], cues of predators degraded by pollution [18], and reduced availability
105 of prey refugia following habitat fragmentation [19]. Examples of novel actors altering predation
106 include increased mesopredator activity following apex predator extirpation [20], naivete of

107 native prey to introduced predators [21], and decreased hunting efficiency due to declines in
108 social predator population sizes [22]. Because multiple forms of novelty may act on different
109 dimensions of predator-prey interactions (Figure 1), they are often studied in isolation with little
110 consideration of how one form of novelty may constrain responses to subsequent forms of
111 novelty. While these examples are not exhaustive, they illustrate the scope of the challenge posed
112 by the Anthropocene: predicting outcomes of novel predator-prey interactions will require
113 integrating data and theory describing how several forms of novelty may act in concert to alter
114 predation.

115

116 **The predation sequence: a unifying model of predator-prey interactions**

117 Predator-prey interactions consist of a series of sequential steps; as an interaction
118 escalates, the risk of prey being consumed increases [17,23]. Here, we simplify the predation
119 sequence (also known as the encounter sequence [17] or predatory sequence [23]) into three
120 component steps: 1) activity of predators and prey overlap in space and time (overlap), 2) prey
121 attempt to detect and avoid hunting predators, (avoidance), and 3) prey respond to predator
122 attacks (escape). As this sequence progresses, the spatial and temporal scales at which
123 interactions occur also change: predator-prey overlap is set at broad scales (kilometers, days),
124 avoidance takes place at intermediate scales (hectares, hours) and escape occurs at fine scales
125 (meters, minutes). To avoid being consumed, prey can use **antipredator behavior** (see
126 Glossary) to break off the predation sequence at any of these steps [17]. While we consider the
127 predation sequence primarily from the perspective of prey, this framework could easily be
128 extended to assess how novelty changes predator success.

129

130 *Step 1: Overlap*

131 Before predators can kill prey, predators and prey must first have the potential to occupy
132 the same space at the same time [17]. Empirical methods of assessing overlap between predator
133 and prey activity at broad scales include comparisons of geographic ranges [24], space use [25–
134 28], migration [29], and phenology [30] (Box 1). Habitat domain theory, which describes overlap
135 in predator and prey space use while foraging [25], may be particularly useful in anticipating
136 changes in the potential for encounter as predator species are lost or introduced. Recent
137 observational studies also highlight the importance of activity timing in predator-prey
138 interactions [14,31], suggesting that analogous concepts of temporal overlap between predators
139 and prey (i.e., “temporal domains”) are needed to fully understand encounter probability.

140

141 *Step 2: Avoid*

142 When the potential for encounter exists, prey can end the predation sequence by avoiding
143 spatiotemporal hotspots of predation risk in the “landscape of fear” [17,32–34]. Successful
144 avoidance may require prey to collect information about the risk of an encounter (direct or
145 indirect cues of risk [34,35]), distinguish between informative and non-informative stimuli, and
146 weigh the costs and benefits of a particular action [36]. For example, prey that detect predator
147 urine must be able to identify the urine as a cue of risk, determine whether the strength of the cue
148 suggests imminent attack, and evaluate if the cost of responding is too great given the
149 information at hand [1,37]. However, informed animals may not always respond to predators due
150 to other constraints (e.g., energy state). Expected utility theory [38] and signal detection theory
151 [1,39], among other approaches [40], provide a theoretical approach to predict how prey react to
152 such ambiguity (Box 1).

153

154 *Step 3: Escape*

155 If prey fail to avoid an encounter with predators, prey must resist or escape an attack in
156 order to survive [17]. Prey exhibit morphological defenses (e.g., crypsis or poisonous chemicals)
157 and behavioral defenses (e.g., group defense) that represent adaptations to traits of historical
158 predators (e.g., predator attack mode) [41]. Prey can also flee to a refuge when attacked. Because
159 the decision to flee integrates information about prey defenses and the perceived danger of
160 predators, economic models of flight [42] can be used to understand mismatches between
161 predator attack and prey defense in novel habitats, which may be measured empirically with
162 flight initiation distance [40,43] (Box 1).

163

164 **Ecological novelty and the predation sequence**

165 Although many predator-prey studies demonstrate that a single form of novelty can
166 increase [44], decrease [14], or not change [45] the probability that the predation sequence
167 escalates, predator-prey interactions increasingly occur in situations characterized by multiple
168 forms of novelty that act independently on different steps of the predation sequence (Figure 1).
169 Systematically considering the role of novelty in all steps of the predation sequence (Box 1),
170 might improve ecologists' understanding of why the outcome of novel predator-prey interactions
171 can vary over space and time (Box 2). The effect of each form of novelty can be described as a
172 continuous measure of dissimilarity from baseline conditions [2] along two dimensions in each
173 step of the predation sequence (discussed below, Figure 2).

174

175 *Effects of novelty on prey overlap with predators*

176 Novelty can change spatial and temporal overlap between predators and prey at broad
177 scales (Figure 1), forming two important dimensions for considering novelty. Many of the most
178 dramatic changes in predation pressure in the Anthropocene hinge on shifts in predator or prey
179 space use [10]. The movement of predators and prey can be either suppressed or enhanced in
180 novel stages, such as habitats characterized by fragmentation [10,46] or light pollution [47].
181 Simultaneously, novel actors may introduce new spatial dynamics, because adding or removing
182 predator species may alter the overlap between predator and prey habitat domains [25,48]
183 (Figure 2). Even introduced prey species may shift space use of native predators, leading to
184 hyperpredation of native animals [49]. However, it remains unknown whether novel stages that
185 influence predator activity (e.g., climate-mediated shifts in predator space use [50,51]) could also
186 fundamentally change predator habitat domains (Box 1).

187 Novelty can also affect the timing of predator and prey activity. Warmer or wetter
188 climates may create seasonal mismatches in the activity of predators and prey, such as migration
189 [14,29,30]. Similarly, introduced predators may be active at different times than native predators
190 (e.g., crepuscular versus nocturnal activity), eliminating an important temporal refuge for native
191 prey [48]. Alternatively, invasive plants might decrease the potential for overlap between
192 predators and prey because many predators avoid dense habitats, where moonlight cannot be
193 used to locate prey [52]. Because the overlap of predator and prey activity frames subsequent
194 steps in the predation sequence, resolving the direction of effects of ecological novelty on
195 encounter probability will be necessary to understand net changes in predation in novel habitats.

196

197 *Effects of novelty on prey avoidance of predators*

198 At finer scales, prey may fail to avoid predators for two general reasons (Figure 1): prey
199 cannot detect predators, or the costs of avoiding predators outweigh the benefits. Important cues
200 of predators might degrade or attenuate quickly in novel stages (e.g., decreased wind speed [53]
201 or light pollution [54]), decreasing the likelihood that prey detect predators. Differences in
202 sensory acuity among species [55] may therefore partly explain differences in species' ability to
203 detect predators in novel habitats. Prey may also fail to recognize novel actors, such as
204 introduced predators representing entirely new taxonomic groups [1] or archetypes [56] (Figure
205 2), or historical predators eliciting novel chemical cues (due to consumption of anthropogenic
206 food subsidies [57]). Alternatively, prey can over-respond to cues of benign stimuli (e.g., running
207 from eco-tourists), and such novel situations that are “safe but appear dangerous” may have
208 detrimental effects on prey survival [58]. Learning, cultural transmission, and transgenerational
209 plasticity may therefore be important mechanisms promoting persistence when prey populations
210 confront changing conditions (Box 1) [1,56].

211 Novelty might also change the relative costs and benefits of avoiding predators. Prey
212 commonly face a tradeoff between foraging and antipredator behavior, but animals may opt to
213 forego antipredator behavior when faced with stress caused by novel climatic conditions, such as
214 drought or extreme heat [33,59]. Anthropogenic food subsidies may relax resource constraints on
215 urban prey, providing flexibility to avoid predators [60]. Additionally, because human activity
216 [31], artificial light pollution [47], and warmer night-time temperatures [61] can constrain prey
217 activity timing, they may also increase costs of avoiding predators. Optimal decision-making
218 models (Box 1) can help predict when prey behavioral responses to the uncertainty posed by
219 novelty may be adaptive or maladaptive [36,39,40]. These or similar models may also help
220 highlight situations where avoidance does not occur because prey cannot perceive risk (e.g., a

221 novel predator that prey do not recognize) [21] or because novelty modifies the costs and
222 benefits of avoidance (e.g., prey that have access to food subsidies) [38].

223

224 *Effects of novelty on prey escape from predators*

225 Antipredator defenses represent diverse adaptations to coevolutionary arms races [62],
226 but novelty can create mismatches in predator and prey tactics by changing the efficacy of
227 predator attacks (e.g., “novel weapons”) and the efficacy of prey defenses (e.g., access to refuge
228 habitat). For example, climate change may affect the speed of predator movement [63,64], or
229 predators may learn to exploit changes in habitat structure by trapping prey against human-made
230 structures [63]. Resource subsidies [22] or climate change [65] might also alter the pack sizes of
231 social carnivores, changing their ability to coordinate against prey [50,66].

232 Prey defenses that are adaptive in baseline environments may function poorly or impose
233 new costs in novel environments. For example, seasonal camouflage in snowshoe hares provides
234 crypsis in snowy habitats, but makes hares conspicuous in warmer winters with little to no snow
235 [67]. Even without specific defenses, prey may escape predator attacks by fleeing to refuge, but
236 the likelihood of flight can be altered by multiple forms of novelty, such as land-use changes
237 increasing high-risk matrix habitat [19] (Figure 2), warmer water temperatures bleaching
238 important coral refuge [68], or invasive plants providing dense cover from predators [27].
239 Species with plastic behavioral defenses, such as an ability to hide effectively, may be less
240 vulnerable to novelty than species that rely entirely on morphological defenses [1]. Economic
241 models of flight provide theoretical expectations about when prey should pay the cost of seeking
242 refuge [42,69], which may be complemented by empirical measurements of flight initiation
243 distances [43] (Box 1). Current efforts to link flight initiation distances to specific neurological

244 circuits [70] may provide valuable insight into cognitive limitations of prey responses to novel
245 predator-prey interactions.

246

247 **Implications of novelty in the predation sequence**

248 Considering how multiple forms of novelty simultaneously alter each step of the
249 predation sequence leads to two important implications that may guide future research. First,
250 experiments studying predator-prey interactions may be most informative when they consider the
251 effect of novelty on multiple steps of the predation sequence. Additionally, multiple forms of
252 novelty could have unexpected synergistic effects on novel predator-prey interactions. We
253 explore these ideas in more detail below.

254 The predation sequence illustrates how empirical studies of novel predator-prey
255 interactions occur within a larger context. For example, salmon fisheries may be concerned that
256 juvenile salmon cannot detect cues of introduced bass [21], but fully understanding the
257 importance of this naivete for salmon survival requires data describing changes in predator and
258 prey space use or activity timing (overlap step) and refuge availability or gape limitation (escape
259 step). Experiments that collect data describing novelty at all three steps promise to be
260 particularly informative, but at minimum ecologists should qualitatively consider the effects of
261 novelty at other predation sequence steps when interpreting their data. Because very different
262 predator-prey interactions can be described using the same set of steps (Box 2), the predation
263 sequence may also facilitate meta-analysis or coordinated continental-scale replicated studies to
264 identify general patterns in species' responses to novelty [2]. Ideally, the net effects of novelty
265 on predator-prey interactions could be represented as the change in conditional probability that

266 prey fail to end each step of the predation sequence in novel versus baseline habitats (i.e., using
267 information-theoretic approaches [1,40,58]).

268 Species responses to ecological novelty are often unpredictable [71], and empirical
269 studies that examine multiple forms of novelty in predator-prey interactions sometimes report
270 synergistic effects [16]. Synergistic effects may be most likely in scenarios where novelty in one
271 step of the predation sequence is positively associated with novelty in another step. For example,
272 invasive plants may simultaneously increase predator-prey overlap (e.g., providing resource
273 subsidies [72]) and decrease the efficacy of prey defenses (e.g., robins nest closer to the ground
274 in invasive shrubs [73]). Using the predation sequence to anticipate synergistic effects among
275 different forms of novelty could help ecologists identify worst- and best-case scenarios that can
276 guide conservation planning [71].

277

278 **Concluding Remarks**

279 Both novel actors and novel stages influence the probability of prey overlapping with,
280 avoiding, and escaping predators. Although it is not always documented, novelty is likely
281 increasingly pervasive in many predator-prey interactions around the globe. Without accounting
282 for both novel actors and novel stages in each step of the predation sequence, studies of novel
283 predator-prey interactions likely underestimate the effect of novelty on predation (see
284 Outstanding Questions). While our framework focuses on prey survival in novel predator-prey
285 interactions, novelty may also impose sublethal effects on prey fitness that should be integrated
286 into the predation sequence. As prey face escalating encounters with predators, prey reproduction
287 may be limited by increasing stress hormones (including trans-generational effects [74]) or
288 constraining foraging opportunities [58,75]. Moreover, we demonstrate the importance of the

289 predation sequence for predator-prey interactions, but similar sequential approaches could be
290 used to model pathogen-host [13,76,77] or plant-consumer interactions [14]. Because
291 contemporary ecology increasingly studies highly-modified, novel systems [2], embracing the
292 complexity of novel actors on novel stages will be essential for anticipating shifts in the strength
293 of species interactions in the Anthropocene.

294

295 **Acknowledgements**

296 We thank V. Radeloff and graduate seminar participants for thoughtful discussions that inspired
297 this work. D. Blumstein, J. Cruz, J. Hellmann, A. Larsen, and an anonymous reviewer provided
298 helpful comments on the manuscript. PWG was supported by a National Science Foundation
299 IGERT award (grant # DGE-1144752) while writing the manuscript.

300

301 **References**

- 302 1 Sih, A. *et al.* (2011) Evolution and behavioural responses to human-induced rapid
303 environmental change. *Evol. Appl.* 4, 367–387
- 304 2 Radeloff, V.C. *et al.* (2015) The rise of novelty in ecosystems. *Ecol. Appl.* 25, 2051–2068
- 305 3 Hobbs, R.J. *et al.* (2009) Novel ecosystems: implications for conservation and restoration.
306 *Trends Ecol. Evol.* 24, 599–605
- 307 4 Aronson, J. *et al.* (2014) The road to confusion is paved with novel ecosystem labels: a
308 reply to Hobbs et al. *Trends Ecol. Evol.* 29, 646–647
- 309 5 Murcia, C. *et al.* (2014) A critique of the ‘novel ecosystem’ concept. *Trends Ecol. Evol.*
310 29, 548–553
- 311 6 Hobbs, R.J. *et al.* (2014) Managing the whole landscape: historical, hybrid, and novel

312 ecosystems. *Front. Ecol. Environ.* 12, 557–564

313 7 Ordonez, A. *et al.* (2016) Mapping climatic mechanisms likely to favour the emergence of
314 novel communities. *Nat. Clim. Chang.* 6, 1104–1109

315 8 Rayner, M.J. *et al.* (2007) Spatial heterogeneity of mesopredator release within an oceanic
316 island system. *Proc. Natl. Acad. Sci.* 104, 20862–20865

317 9 Estes, J.A. *et al.* (2011) Trophic downgrading of planet Earth. *Science*. 333, 301–6

318 10 Tucker, M.A. *et al.* (2018) Moving in the Anthropocene: Global reductions in terrestrial
319 mammalian movements. *Science*. 359, 466–469

320 11 Urban, M.C. *et al.* (2016) Improving the forecast for biodiversity under climate change.
321 *Science*. 353, aad8466

322 12 Lapiendra, O. *et al.* (2018) Predator-driven natural selection on risk-taking behavior in
323 anole lizards. *Science*. 360, 1017–1020

324 13 Ostfeld, R.S. *et al.* (2018) Tick-borne disease risk in a forest food web. *Ecology* 99, 1562–
325 1573

326 14 Deacy, W.W. *et al.* (2017) Phenological synchronization disrupts trophic interactions
327 between Kodiak brown bears and salmon. *Proc. Natl. Acad. Sci.* 114, 10432–10437

328 15 Blecha, K.A. *et al.* (2018) Hunger mediates apex predator's risk avoidance response in
329 wildland–urban interface. *J. Anim. Ecol.* 87, 609–622

330 16 Doherty, T.S. *et al.* (2015) Multiple threats, or multiplying the threats? Interactions
331 between invasive predators and other ecological disturbances. *Biol. Conserv.* 190, 60–68

332 17 Lima, S.L. and Dill, L.M. (1990) Behavioral decisions made under the risk of predation: a
333 review and prospectus. *Can. J. Zool.* 68, 619–640

334 18 Kleist, N.J. *et al.* (2018) Chronic anthropogenic noise disrupts glucocorticoid signaling

335 and has multiple effects on fitness in an avian community. *Proc. Natl. Acad. Sci.* 115,
336 E648–E657

337 19 Penn, H.J. *et al.* (2017) Land cover diversity increases predator aggregation and
338 consumption of prey. *Ecol. Lett.* 20, 609–618

339 20 Ripple, W.J. *et al.* (2014) Status and ecological effects of the world's largest carnivores.
340 *Science*. 343, 1241484

341 21 Kuehne, L.M. and Olden, J.D. (2012) Prey naivety in the behavioural responses of
342 juvenile Chinook salmon (*Oncorhynchus tshawytscha*) to an invasive predator. *Freshw.*
343 *Biol.* 57, 1126–1137

344 22 Newsome, T.M. *et al.* (2016) Food habits of the world's grey wolves. *Mamm. Rev.* 46,
345 255–269

346 23 Caro, T. (2005) *Antipredator defenses in birds and mammals*, University of Chicago
347 Press.

348 24 Taylor, D.J. *et al.* (2016) Climate-associated tundra thaw pond formation and range
349 expansion of boreal zooplankton predators. *Ecography*. 39, 43–53

350 25 Schmitz, O.J. *et al.* (2017) Toward a community ecology of landscapes: predicting
351 multiple predator–prey interactions across geographic space. *Ecology* 98, 2281–2292

352 26 Schmitz, O.J. *et al.* (2004) Trophic cascades: The primacy of trait-mediated indirect
353 interactions. *Ecol. Lett.* 7, 153–163

354 27 Guiden, P.W. and Orrock, J.L. (2017) Invasive exotic shrub modifies a classic animal–
355 habitat relationship and alters patterns of vertebrate seed predation. *Ecology* 98, 321–327

356 28 Malo, A.F. *et al.* (2013) Positive effects of an invasive shrub on aggregation and
357 abundance of a native small rodent. *Behav. Ecol.* 24, 759–767

358 29 Silliman, B.R. *et al.* (2013) Consumer fronts, global change, and runaway collapse in
359 ecosystems. *Annu. Rev. Ecol. Evol. Syst.* 44, 503–38

360 30 Yang, L.H. and Rudolf, V.H.W. (2010) Phenology, ontogeny and the effects of climate
361 change on the timing of species interactions. *Ecol. Lett.* 13, 1–10

362 31 Gaynor, K.M. *et al.* (2018) The influence of human disturbance on wildlife nocturnality.
363 *Science*. 360, 1232–1235

364 32 Moll, R.J. *et al.* (2016) Spatial patterns of African ungulate aggregation reveal complex
365 but limited risk effects from reintroduced carnivores. *Ecology* 97, 1123–1134

366 33 Riginos, C. (2015) Climate and the landscape of fear in an African savanna. *J. Anim. Ecol.*
367 84, 124–133

368 34 Gaynor, K. M., J. S. Brown, A. D. Middleton, M. E. Power, and J. S. Brashares. In press.
369 Landscapes of fear: Spatial patterns of risk perception and response. *Trends in Ecology &*
370 *Evolution*

371 35 Orrock, J.L. *et al.* (2004) Rodent foraging is affected by indirect, but not by direct, cues of
372 predation risk. *Behav. Ecol.* 15, 433–437

373 36 Mendelson, T.C. *et al.* (2016) Cognitive phenotypes and the evolution of animal
374 decisions. *Trends Ecol. Evol.* 31, 850–859

375 37 Brown, J.S. and Kotler, B.P. (2004) Hazardous duty pay and the foraging cost of
376 predation. *Ecol. Lett.* 7, 999–1014

377 38 Johnson, D.D.P. *et al.* (2013) The evolution of error: error management, cognitive
378 constraints, and adaptive decision-making biases. *Trends Ecol. Evol.* 28, 474–481

379 39 Trimmer, P.C. *et al.* (2017) The erroneous signals of detection theory. *Proc. R. Soc. B
380 Biol. Sci.* 284,

381 40 Stephens, D.W. *et al.* (2007) *Foraging: Behavior and ecology*, University of Chicago
382 Press.

383 41 Stankowich, T. *et al.* (2014) Ecological drivers of antipredator defenses in carnivores.
384 *Evolution (N. Y.)*. 68, 1415–1425

385 42 Ydenberg, R. and Dill, L.M. The economics of fleeing from predators. In *Advances in the*
386 *study of behavior* pp. 229–249

387 43 Stankowich, T. and Blumstein, D.T. (2005) Fear in animals: a meta-analysis and review of
388 risk assessment. *Proc. R. Soc. B Biol. Sci.* 272, 2627–2634

389 44 Dixson, D.L. *et al.* (2010) Ocean acidification disrupts the innate ability of fish to detect
390 predator olfactory cues. *Ecol. Lett.* 13, 68–75

391 45 Bradshaw, W.E. and Holzapfel, M. (2006) Evolutionary response to rapid climate change.
392 *Science*. 312, 1477–1478

393 46 Mahlaba, T.A.M. *et al.* (2017) Domestic cats and dogs create a landscape of fear for pest
394 rodents around rural homesteads. *PLoS One* 12, 1–9

395 47 Hopkins, G.R. *et al.* (2018) Artificial light at night as a driver of evolution across urban-
396 rural landscapes. *Front. Ecol. Environ.* 16, 472–479

397 48 Savidge, J.A. (1987) Extinction of an island forest avifauna by an introduced snake.
398 *Ecology* 68, 660–668

399 49 Roemer, G. W., C. J. Donlan, and F. Courchamp. 2002. Golden eagles, feral pigs, and
400 insular carnivores: How exotic species turn native predators into prey. *Proceedings of the*
401 *National Academy of Sciences* 99:791–796.

402 50 Creel, S. *et al.* (2016) Hunting on a hot day: Effects of temperature on interactions
403 between African wild dogs and their prey. *Ecology* 97, 2910–2916

404 51 Gallagher, A.J. *et al.* (2017) Energy landscapes and the landscape of fear. *Trends Ecol. Evol.* 32, 88–96

405 52 Mattos, K.J. and Orrock, J.L. (2010) Behavioral consequences of plant invasion: an invasive plant alters rodent antipredator behavior. *Behav. Ecol.* 21, 556–561

406 53 Cherry, M.J. and Barton, B.T. (2017) Effects of wind on predator-prey interactions. *Food Webs* 13, 92–97

407 54 Gaston, K.J. *et al.* (2017) Impacts of artificial light at night on biological timings. *Annu. Rev. Ecol. Evol. Syst.* 48, 49–68

408 55 Caves, E.M. *et al.* (2018) Visual acuity and the evolution of signals. *Trends Ecol. Evol.* 33, 358–372

409 56 Carthey, A.J.R. and Blumstein, D.T. (2017) Predicting predator recognition in a changing world. *Trends Ecol. Evol.* 33, 106–115

410 57 Parsons, M.H. *et al.* (2018) Biologically meaningful scents: a framework for understanding predator–prey research across disciplines. *Biol. Rev.* 93, 98–114

411 58 Trimmer, P.C. *et al.* (2017) Predicting behavioural responses to novel organisms: state-dependent detection theory. *Proc. R. Soc. B Biol. Sci.* 284, 20162108

412 59 Ferrari, M.C.O. *et al.* (2015) Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities. *Glob. Chang. Biol.* 21, 1848–1855

413 60 Lyons, J. *et al.* (2017) Fat and happy in the city: Eastern chipmunks in urban environments. *Behav. Ecol.* 28, 1464–1471

414 61 Barton, B.T. and Schmitz, O.J. (2018) Opposite effects of daytime and nighttime warming on top-down control of plant diversity. *Ecology* 99, 13–20

427 62 Brodersen, J. *et al.* (2018) Upward adaptive radiation cascades: predator diversification
428 induced by prey diversification. *Trends Ecol. Evol.* 33, 59–70

429 63 Fleming, P.A. and Bateman, P.W. (2018) Novel predation opportunities in anthropogenic
430 landscapes. *Anim. Behav.* 138, 145–155

431 64 Penczykowski, R.M. *et al.* (2017) Winter is changing: trophic interactions under altered
432 snow regimes. *Food Webs* 13, 80–91

433 65 Woodroffe, R. *et al.* (2017) Hot dogs: high ambient temperatures impact reproductive
434 success in a tropical carnivore. *J. Anim. Ecol.* 86, 1329–1338

435 66 McConkey, K.R. and O’Farrill, G. (2015) Cryptic function loss in animal populations.
436 *Trends Ecol. Evol.* 30, 182–189

437 67 Zimova, M. *et al.* (2014) Snowshoe hares display limited phenotypic plasticity to
438 mismatch in seasonal camouflage. *Proc. R. Soc. B Biol. Sci.* 281, 20140029–20140029

439 68 Ainsworth, T.D. *et al.* (2016) Climate change disables coral bleaching protection on the
440 Great Barrier Reef. *Science*. 352, 2–6

441 69 Cooper, W.E. and Frederick, W.G. (2007) Optimal flight initiation distance. *J. Theor.*
442 *Biol.* 244, 59–67

443 70 Qi, S. *et al.* (2018) How cognitive and reactive fear circuits optimize escape decisions in
444 humans. *Proc. Natl. Acad. Sci.* 115, 201712314

445 71 Williams, J.W. and Jackson, S.T. (2007) Novel climates, no-analog communities, and
446 ecological surprises. *Front. Ecol. Environ.* 5, 475–482

447 72 Orrock, J.L. *et al.* (2015) Apparent competition and native consumers exacerbate the
448 strong competitive effect of an exotic plant species. *Ecology* 96, 1052–1061

449 73 Schmidt, K. A., and C. J. Whelan. 1999. Effects of exotic *Lonicera* and *Rhamnus* on

450 songbird nest predation. *Conservation Biology* 13:1502–1506.

451 74 Sheriff, M.J. *et al.* (2015) Predator-induced maternal stress and population demography in
452 snowshoe hares: The more severe the risk, the longer the generational effect. *J. Zool.* 296,
453 305–310

454 75 Creel, S. (2018) The control of risk hypothesis: reactive vs. proactive antipredator
455 responses and stress-mediated vs. food-mediated costs of response. *Ecol. Lett.* 21, 947–
456 956

457 76 Weinstein, B.S.B. *et al.* (2018) A landscape of disgust. *Science*. 359, 1213–1215

458 77 Buck, J.C. *et al.* (2018) Ecological and evolutionary consequences of parasite avoidance.
459 *Trends Ecol. Evol.* 33, 619–632

460 78 Northfield, T.D. *et al.* (2017) A spatial theory for emergent multiple predator–prey
461 interactions in food webs. *Ecol. Evol.* 7, 6935–6948

462 79 Kotler, B.P. *et al.* (2010) Moonlight avoidance in gerbils reveals a sophisticated interplay
463 among time allocation, vigilance and state-dependent foraging. *Proc. R. Soc. B* 277, 1469–
464 1474

465 80 Samia, D. S. M., S. Nakagawa, F. Nomura, T. F. Rangel, and D. T. Blumstein. 2015.
466 Increased tolerance to humans among disturbed wildlife. *Nature Communications* 6:8877.

467 81 Cooper, W. E., and D. T. Blumstein. 2015. Escaping from predators: An integrative view
468 of escape decisions. Cambridge University Press, Cambridge.

469 82 Wiles, G.J. *et al.* (2003) Impacts of the brown tree snake: patterns of decline and species
470 persistence in Guam’s avifauna. *Conserv. Biol.* 17, 1350–1360

471 83 Benkitt, C.E. (2016) Central-place foraging and ecological effects of an invasive
472 predator across multiple habitats. *Ecology* 97, 2729–2739

473 84 Albins, M.A. (2013) Effects of invasive Pacific red lionfish *Pterois volitans* versus a
474 native predator on Bahamian coral-reef fish communities. *Biol. Invasions* 15, 29–43

475 85 Green, S.J. and Côté, I.M. (2014) Trait-based diet selection: prey behaviour and
476 morphology predict vulnerability to predation in reef fish communities. *J. Anim. Ecol.* 83,
477 1451–1460

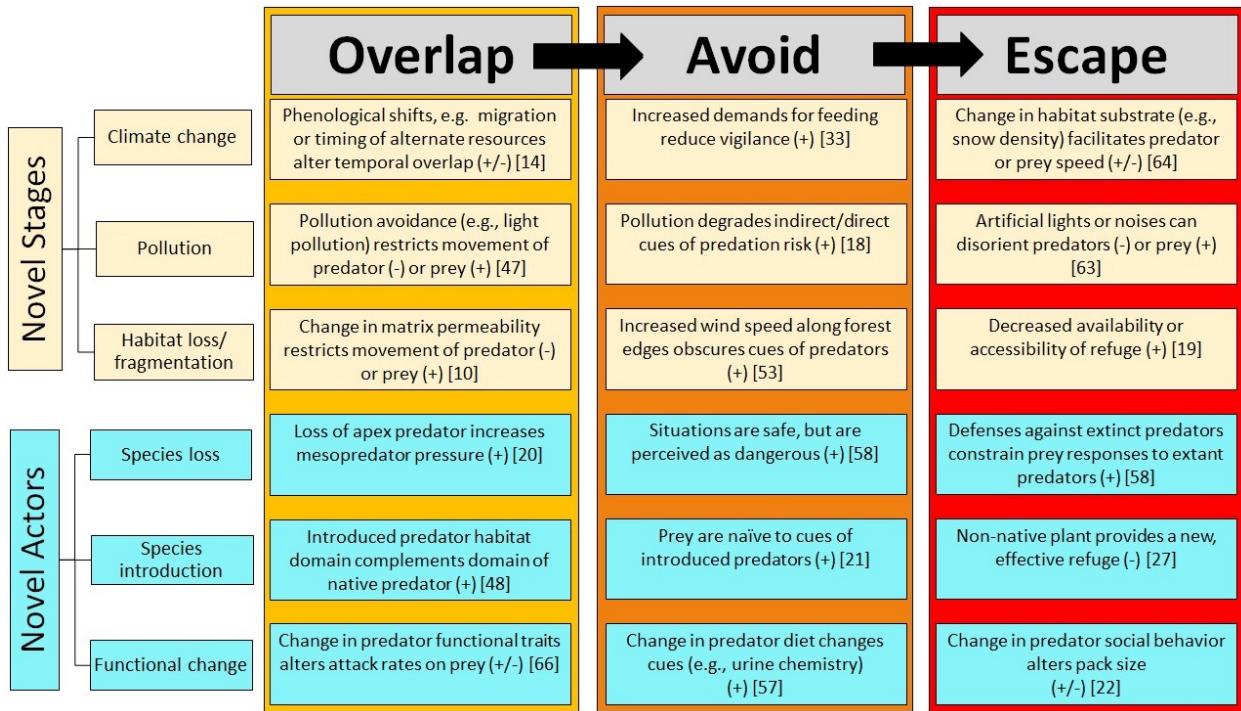
478 86 Jud, Z.R. *et al.* (2015) Broad salinity tolerance in the invasive lionfish *Pterois* spp. may
479 facilitate estuarine colonization. *Environ. Biol. Fishes* 98, 135–143

480 87 Knopff, A.A. *et al.* (2014) Flexible habitat selection by cougars in response to
481 anthropogenic development. *Biol. Conserv.* 178, 136–145

482 88 Moss, W.E. *et al.* (2016) Human expansion precipitates niche expansion for an
483 opportunistic apex predator (*Puma concolor*). *Sci. Rep.* 6, 2–6

484

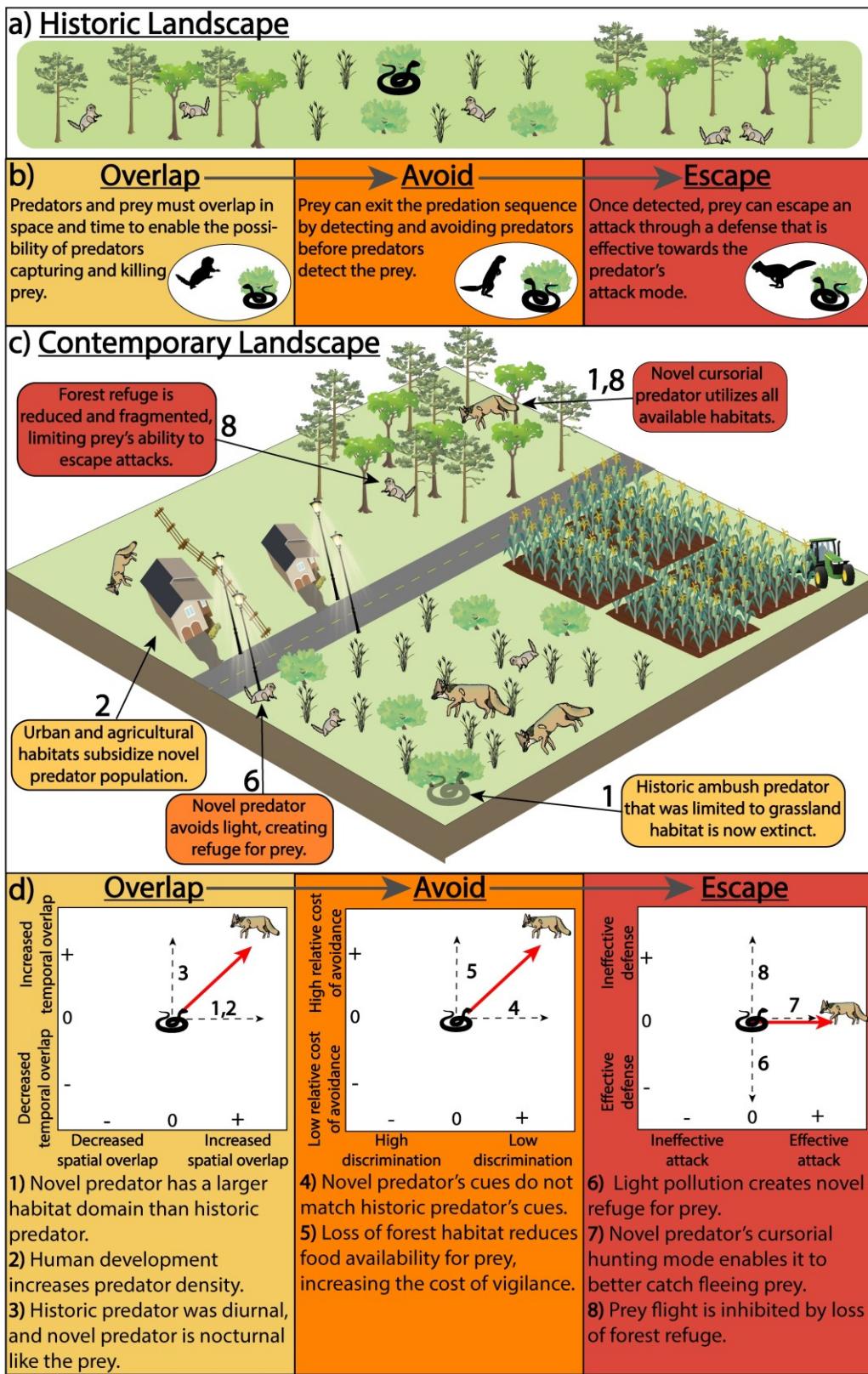
485 **Figure legends**


486

487 **Figure 1:** Six common forms of novelty (three novel stages and three novel actors) that may
488 influence the three steps of the predation sequence. Novelty may change the likelihood that prey
489 overlap, avoid, and escape predators (plus (+): increases the likelihood that the predation
490 sequence proceeds, minus (-): decreases the likelihood that the predation sequence proceeds).

491 Text boxes within a column describe changes in the corresponding step of the predation
492 sequence (Overlap, Avoid, Escape), while text boxes within a row describe consequences of the
493 corresponding form of novelty (climate change, pollution, etc.). See Figure 2 for additional
494 information and examples regarding the steps of the predation sequence.

495


496 **Figure 2:** a) We consider a simplified, hypothetical historic landscape, with an ambush predator
497 (a snake) that is more likely to attack the prey (a squirrel) in grassland habitat. b) Predator-prey
498 interactions in the historic landscape consist of three sequential steps: predators and prey overlap
499 in space and time, prey detect and avoid predators, and prey attempt to escape predator attacks.
500 c) In the contemporary landscape, both novel actors and novel stages introduce dissimilarity
501 between the historic and contemporary predator-prey interaction. Habitat degradation and the
502 introduction of a novel predator (a canid) increase the spatial and temporal overlap of predators
503 and prey. The novel predator elicits unfamiliar cues, and prey are less vigilant due to energetic
504 constraints. Prey flight is less effective against the novel cursorial predator, but light pollution
505 provides a novel predation refuge from the introduced predator. d) The probability that each step
506 of this predator-prey interaction proceeds to a more dangerous step in the predation sequence can
507 be increased or decreased by novelty. The effect of novelty on predator-prey interactions can be
508 measured as continuous dissimilarity from the historic landscape along two dimensions (for more
509 details, see “The predation sequence: a unifying model of predator-prey interactions” in the main
510 text). These dimensions capture changes in the spatial and temporal scale of predator-prey
511 interactions as the predation sequence proceeds. Within each step of the predation sequence, the
512 origin represents the baseline predator-prey interaction and the novel predator-prey interaction is
513 shown as the relative change from this baseline. Predator-prey interactions pushed into the
514 upper-right corner of each step of the predation sequence are more likely to proceed to the next
515 step; in the case of the attack step, this means capture and possibly death for the prey.
516

517

518 **Figure 1**

519

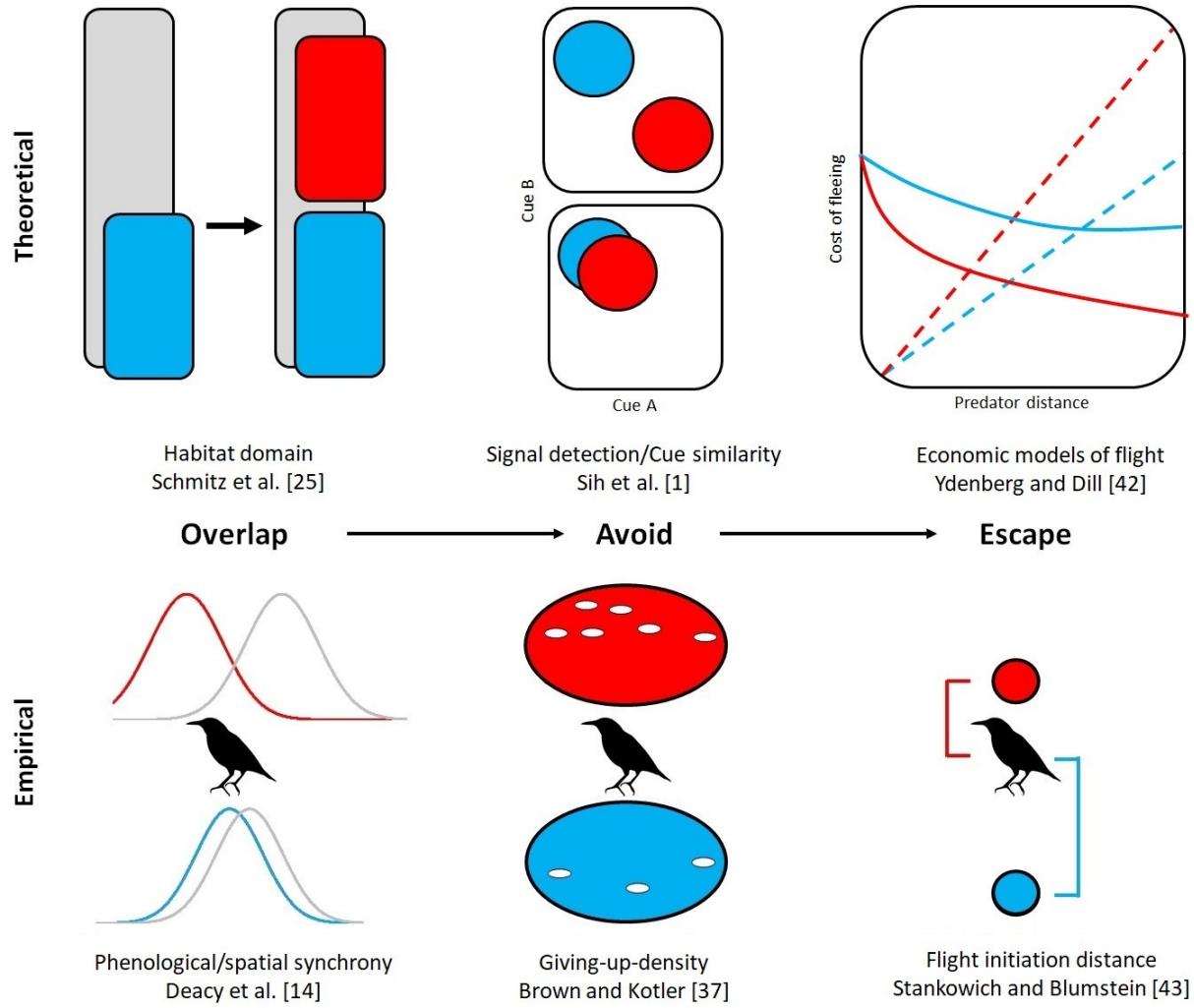
522

523 **Box 1: Empirical and theoretical tools for assessing novel predator-prey interactions**

524 Quantifying novelty requires measurements of dissimilarity between baseline and
525 contemporary conditions. Evaluating novelty across the three steps of the predation sequence is
526 greatly simplified by existing empirical and theoretical tools that address individual steps of the
527 predation sequence.

528 *Quantifying overlap*

529 A variety of techniques exist to quantify the spatiotemporal distribution of activity (e.g.,
530 GPS-tracking or camera traps), which can be used to assess synchrony between predator and prey
531 activity patterns. However, predators may only use part of their total home range to forage
532 (habitat domain), and thus may only be dangerous in this subset of their range [25]. Habitat
533 domain theory [78] provides a theoretical tool to evaluate activity patterns (Figure I). One key
534 prediction of habitat domain theory is that adding predators with complementary activity patterns
535 enhances risk [25].


536 *Quantifying avoidance*

537 Evolutionary history is central to understanding organisms' ability to recognize novel
538 stimuli. Cues that differ from those experienced throughout eco-evolutionary history are least
539 likely to be accurately identified as dangerous [1,56]. Signal detection theory provides one way
540 to predict how organisms discriminate between risky and safe cues, and may explain why
541 organisms seemingly make inappropriate choices when given imperfect information (Figure I)
542 [1]. Expected utility theory provides a means to incorporate costs and benefits of prey actions
543 when faced with uncertainty, demonstrating how selection can produce decision rules to
544 consistently err on the side of safety or risk (error-management theory). These approaches can be

545 extended by models that allow animals to make repeated choices [58]. Many empirical tools also
546 exist to quantify prey avoidance of predation risk, including giving-up-density experiments that
547 determine the costs prey are willing to accept to avoid predators [37,79]. Future studies assessing
548 the interplay of novel actors (e.g., cues of novel predators) and novel stages (e.g., anthropogenic
549 resource subsidies) will be particularly important in understanding how prey avoid predators in
550 novel habitats.

551 *Quantifying escape*

552 While prey employ a diverse suite of morphological and behavioral antipredator defenses
553 [75], many prey ultimately rely on reaching a predator-free refuge. Economic models of flight
554 [42] suggest that even if prey detect predators, they may not attempt escape immediately given
555 costs associated with flight (e.g., reduced foraging [80]). Decisions about when to attempt flight
556 often integrate information about prey morphological defenses (e.g., crypsis), as well as prey
557 experience with predators and the distance to refuge [43]. Comparing flight-initiation distance
558 between novel and baseline habitats [81] may help ecologists identify mismatches between novel
559 predator and prey tactics.

560

561 **Figure I:** Theoretical (top) and empirical (bottom) approaches to understand changes in the
 562 strength of predation in novel (red) and baseline (blue) habitats at in each step of the predation
 563 sequence for a generic prey (starling silhouette). In the overlap step, habitat domain theory
 564 provides predictions about changes in predator (blue, red) and prey (grey) space use, which
 565 might be used to interpret broad patterns of spatial or temporal overlap between prey and its
 566 novel and historical predators. In the avoidance step, the similarity between novel and baseline
 567 cues (cue similarity hypothesis) might predict the ability of prey to detect predators, and giving-
 568 up-density can be calculated to determine how much food (white) prey sacrifice for safety in
 569 novel and baseline foraging patches. In the escape step, economic models of flight can help

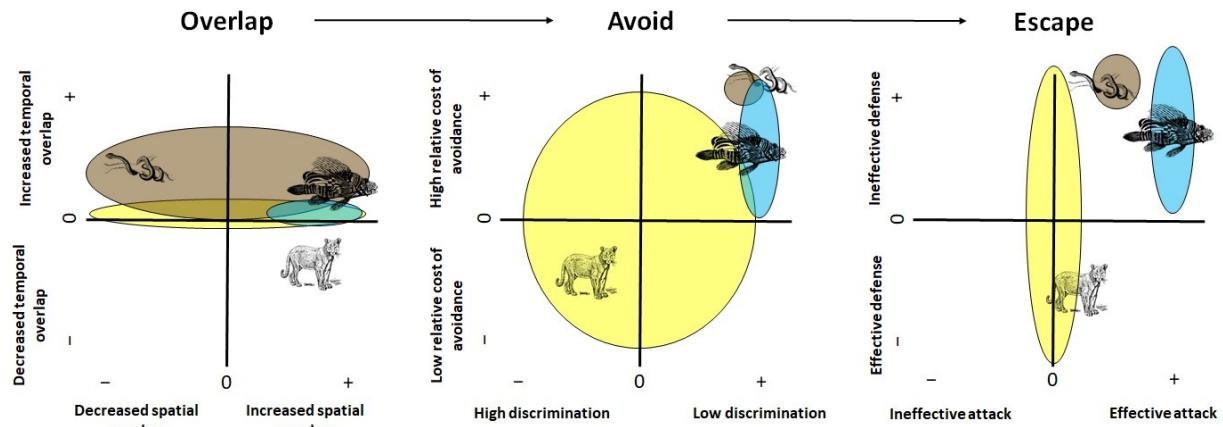
570 anticipate how prey balance costs (dashed lines) and benefits (solid lines) associated with
571 seeking refuge, and flight initiation distance provides a convenient way to integrate prey
572 perceptions about defenses, safety, and predator danger.

573

574 **Box 2: Case studies of novelty in the predation sequence**

575 We used the predation sequence to build hypotheses about several novel predator-prey
576 interactions from the perspective of prey. Figure I shows how novelty can increase or decrease
577 the probability that the predation sequence proceeds to the next step; ellipses indicate variation in
578 the effects of novelty. Regardless of the specific assumptions made (Supplemental Information),
579 the predation sequence provides a tool to synthesize disparate elements of predator-prey ecology.

580 *Brown Tree Snake* (*Boiga irregularis*)


581 This introduced snake decimated Guam's avian community [82], yet not all prey species
582 declined. Snakes avoid urban areas, providing refuge for urban-dwelling prey. Forest-dwelling
583 prey with arboreal nests experienced more overlap with snakes, exacerbated by the snake's
584 narrow habitat domain and nocturnal habit (both of which are novel to Guam's forest). Because
585 Guam has no native predatory snakes [48], prey were naïve to the danger posed by snakes.
586 Brown tree snakes are Guam's only ambush predator [48], and its arboreal habit implies that
587 trees no longer provide refuge for avian prey. The predation sequence illustrates how species
588 responses to novelty may either increase or decrease predation, explaining why some bird
589 species were extirpated following the introduction of the brown tree snake, while others persist
590 today (Figure I).

591 *Pacific lionfish* (*Pterois volitans*)

592 Lionfish have drastically altered Caribbean reef ecosystems. Space use data suggest
593 lionfish have a broader habitat domain than native predators [83]. Lionfish are unlikely to be
594 detected due to their novel crypsis [84], and prey may take greater risks in warm or acidic waters
595 due to metabolic stress [59]. Native fish defenses are ineffective against lionfish [84], who
596 deploy novel tactics (herding) and weapons (venom) to subdue prey [85]. The predation
597 sequence illustrates why lionfish may be a particularly problematic invasive predator (Figure I).
598 As lionfish expand into new habitats (e.g., estuaries [86]), the predation sequence could identify
599 important knowledge gaps (e.g., comparing habitat domain between lionfish and native
600 predators).

601 *Cougar (Puma concolor)*

602 Not all novel predator-prey interactions involve introduced species, as cougars are
603 surprisingly well-adapted to some novel habitats. Cougars that select urban habitats overlap with
604 synanthropic prey, but not wild prey [87,88]. Anthropogenic food subsidies [87] may produce
605 novel chemical signatures in cougar urine, making it difficult for prey to detect cougars.
606 Avoidance of cougars may be costly given strong constraints on diel activity timing in urban
607 areas [31]. Artificial light may provide an effective refuge from cougars [47], but asocial urban
608 prey lack a group defense against cougar ambushes [15]. Using the predation sequence to
609 generate hypotheses about cougar use of novel habitats may help reduce human-wildlife conflicts
610 by helping to anticipate where and when such conflicts are likely to arise.

611

612 **Figure I:** The predation sequence can be used to generate hypotheses about novel predator-prey
 613 interactions in a diverse suite of predators, including invasive predators (brown tree snake,
 614 brown; lionfish, blue) and native predators (cougars, yellow). Each axis represents a dimension
 615 of predator-prey interactions that can be altered by novelty, but the magnitude and direction of
 616 the effects of novelty on predator-prey interactions can differ in space and time. The intersection
 617 of the axes represents baseline (historical) conditions. Positive values (+) indicate that the
 618 interaction is increasingly likely to proceed to the next, more dangerous step of the predation
 619 sequence, while negative values indicate that the predation sequence is more likely to end.
 620 Ellipses illustrate the range of potential outcomes in novel habitats, which is determined by local
 621 context (e.g., broad ellipses represent more uncertainty in the magnitude and/or direction of the
 622 consequences of novelty for predator-prey interactions). Predator-prey interactions pushed into
 623 the upper-right corner of each step of the predation sequence are most likely to proceed to the
 624 next step; in the case of the attack step, this means capture and possibly death for the prey.

625 **Outstanding Questions**

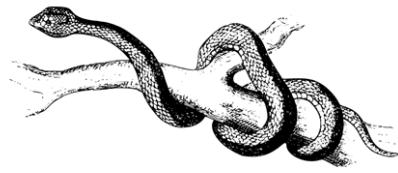
626 • Which steps of the predation sequence are most strongly affected by novelty, and do the
 627 effects of novelty on each step vary predictably over large spatial gradients?

628 • What is the capacity for predators and prey to adapt to novel actors and novel stages, and
629 how will adaptation change the outcome of predator-prey interactions?

630 • Can specific traits or habitat conditions reliably predict increases or decreases in the
631 probability that the predation sequence proceeds to more dangerous steps?

632 • While the causes of novelty can be readily mapped over large spatial scales, how might
633 the consequence of novelty for species interactions be similarly mapped?

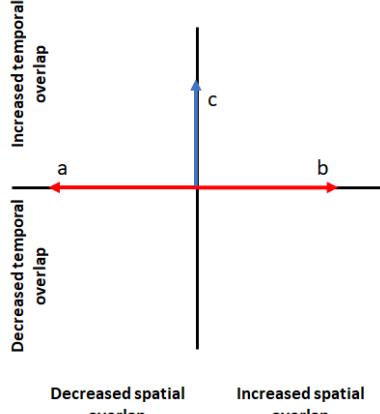
634 • How often do multiple forms of novelty exhibit synergistic effects?

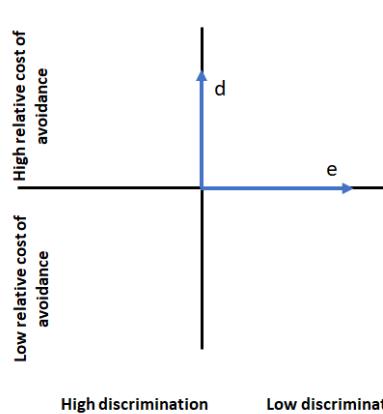

635 • Is novelty more likely to change the lethal or non-lethal effects of predation?

636 • How readily can new technologies (e.g., using Next Generation Sequencing to
637 reconstruct animal diets) and continental/global databases (e.g., Global Biodiversity
638 Information Facility distribution data) be used to quantify novelty in species interactions?

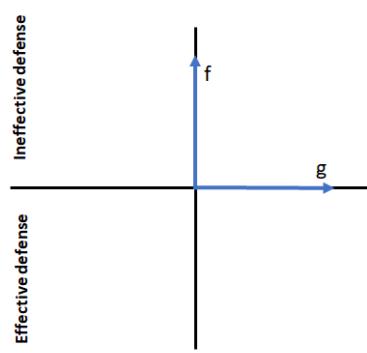
639 • Can the predation sequence be used to develop strategies that mitigate the effect of
640 novelty on predator-prey interactions?

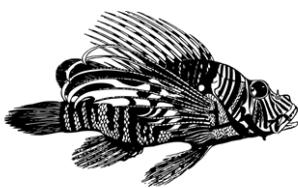
641


642 Supplemental Information: Assumptions for Box 2, Figure I

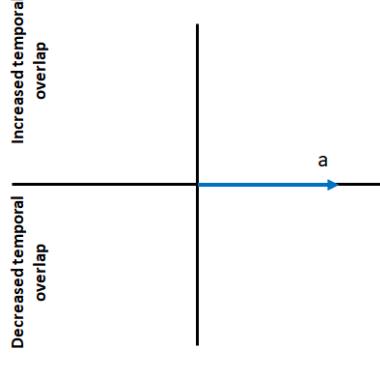

Legend

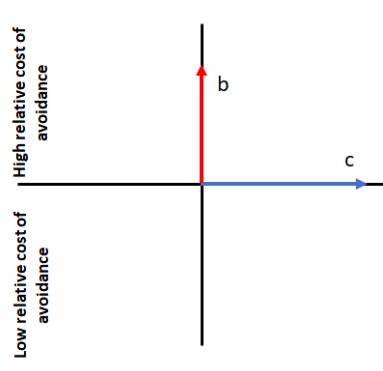
Novel stage
Novel actor
a) Forest habitat selection - urban prey (Wiles et al. [82])
b) Forest habitat selection - forest prey (Wiles et al. [82])
c) Predator nocturnality (Savidge 1987; Wiles et al. [82])
d) Prey constrained by nesting sites (Wiles et al. [82])
e) Novel predator archetype (Savidge [48])
f) Ineffective refuge (Savidge [48])
g) Novel tactics - ambush predator (Savidge [48])


Overlap

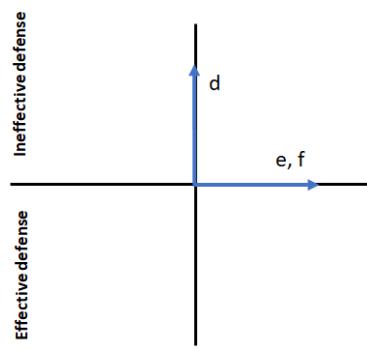

Avoid

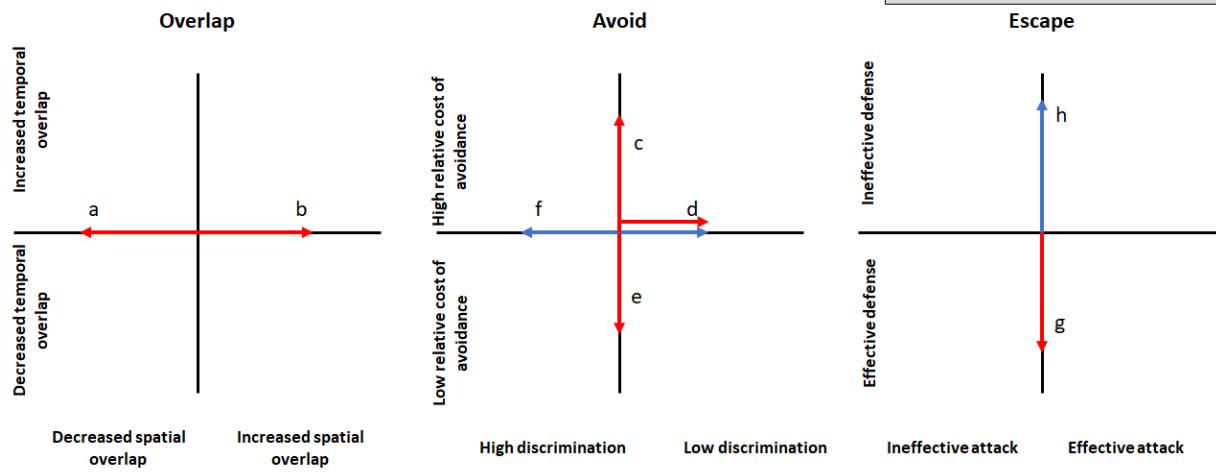
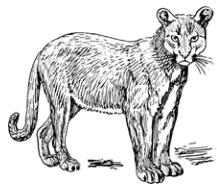
Escape


643


Legend

Novel stage
Novel actor
a) Broad habitat domain (Jud et al. [86])
b) Warm/acidic waters impose metabolic stress on prey (Ferrari et al. [59])
c) Novel predator crypsis (Albins [84])
d) Ineffective prey defenses (Green and Côté [85])
e) Novel predator weapons - venom (Albins [84])
f) Novel predator tactics - herding (Albins [84])


Overlap



Avoid

Escape

644

645