

1 Seedling responses to decreased snow depend on canopy composition and small-mammal
2 herbivore presence

3

4 Running head: Seedling responses to snow and herbivory

5

6 Peter W. Guiden^{1*}

7 Brian M. Connolly^{1,2}

8 John L. Orrock¹

9

10 ¹Department of Integrative Biology, University of Wisconsin-Madison, 250 N. Mills St, Madison
11 WI 53706

12

13 ²Current address: Department of Biology, Eastern Michigan University, 441 Mark Jefferson
14 Science Complex, Ypsilanti MI 48198

15

16 *Corresponding author. Phone: (937) 545-8926, E-mail: guiden@wisc.edu

17

18

19

Abstract

20 Winter is becoming warmer and shorter across the northern hemisphere, but reductions in snow
21 can decrease tree seedling survival by exposing seedlings to harmful winter microclimates.
22 Similarly, herbivory by small mammals can also limit the survival and distribution of woody
23 plants, but it is unclear whether winter climate change will alter small-mammal herbivory.
24 Although small-scale experiments show that snow removal can either increase or decrease both
25 soil temperatures and herbivory, we currently lack large-scale snow-removal experiments needed
26 to predict the effect of reduced snow. To understand how winter herbivory and snow conditions
27 influence seedling dynamics, we transplanted *Acer saccharum* and *Tsuga canadensis* seedlings
28 across a 180 km latitudinal gradient in northern Wisconsin, where snow depth varied seven-fold
29 among sites. Seedlings were transplanted into one of two herbivory treatments (small-mammal
30 exclosure, small-mammal access) and one of two late-winter snow removal treatments (snow
31 removed, snow unmanipulated). Snow removal increased soil freeze-thaw frequency and
32 cumulative growing degree-days (GDD), but the magnitude of these effects depended on forest
33 canopy composition. *Acer saccharum* survival decreased where snow was removed, but only at
34 sites without conifers. Excluding small mammals increased *A. saccharum* survival at sites where
35 the small-mammal herbivore *Myodes gapperi* was present. Excluding small mammals also
36 increased *T. canadensis* survival in plots with < 5 cm snow. Because variation in canopy
37 composition and *M. gapperi* presence were important predictors of seedling survival across the
38 snow-depth gradient, these results may provide a way to make more accurate predictions of
39 winter seedling survival over large spatial scales. Global change scenarios that project future
40 patterns of seedling recruitment may benefit from explicitly considering interactions between
41 snow conditions and small-mammal winter herbivory.

42 Key words: northern temperate forest; *Myodes gapperi*; winter climate change

43 **Introduction**

44 Climate change is projected to alter patterns of forest biodiversity by shifting the ranges
45 of many species poleward (Parmesan et al. 1999, Iverson et al. 2008), but observational evidence
46 suggests the ranges of many temperate tree species are contracting or not shifting (Zhu et al.
47 2012). Discrepancies between model projections and observational data may arise because
48 abiotic conditions (e.g., freezing events) and biotic interactions (e.g., herbivory) can limit tree
49 seedling survival and performance, either alone or in concert (Tylianakis et al. 2008, Brown and
50 Vellend 2014, Urban et al. 2016). For example, hot and dry conditions may directly increase tree
51 mortality (Chmura et al. 2011), but may also increase herbivory, resulting in landscape-wide
52 changes in plant survival (Raffa et al. 2008). Despite the possibility that climate and herbivory
53 can interact to generate non-intuitive shifts in consumer pressure (Brown and Vellend 2014), few
54 studies examine changes in herbivory along climatic gradients, such as snow depth, which
55 represents a key knowledge gap in efforts to predict changes in community dynamics under
56 future climate scenarios.

57 Climate and climate-mediated changes in herbivory may both have particularly strong
58 effects in temperate ecosystems, where snow cover directly influences overwinter plant survival
59 (Tessier 2017) and also moderates herbivory (Swihart and Bryant 2001, Roy et al. 2004, Martin
60 and Maron 2012, Christenson et al. 2014). These effects are important to understand because
61 warming winter temperatures are decreasing snow depth and snow cover across the northern
62 hemisphere (Dye 2002, Henry 2008, Brown and Robinson 2011), possibly exposing plants to
63 damaging freeze-thaw events that lead to mortality or delayed leaf-out (Tierney et al. 2001,
64 Inouye 2008, Kreyling et al. 2010). Predicting the effect of winter climate change on plant-

65 herbivore interactions is difficult because snow cover can have multiple effects on herbivores,
66 and the relative magnitude of these effects is poorly understood. Small mammals, such as the
67 southern red-backed vole (*Myodes gapperi*), can be important consumers of seeds or seedlings in
68 temperate ecosystems during winter (Haken and Batzli 1996, Ostfeld et al. 1997, Howe and
69 Brown 2000, Manson et al. 2001, Korslund and Steen 2006, Sullivan and Sullivan 2008), and
70 snow cover may facilitate herbivory by small mammals by providing a refuge from predation or
71 harsh temperatures (Kausrud et al. 2008, Pauli et al. 2013, Sultaire et al. 2016, Sanders-DeMott
72 et al. *in press*). However, small mammals may alternatively find seeds and seedlings more
73 readily in areas with less snow (i.e., reduced snow increases food apperency; Anderson 1986,
74 Shimano and Masuzawa 1998). Because of the potential for interactions among regional-scale
75 abiotic gradients in winter conditions and the strength of small-mammal herbivory, experiments
76 that manipulate snow depth and small-mammal access should be replicated across large spatial
77 scales in order to understand the unique and interactive contributions of winter climate and
78 herbivores to large-scale patterns in tree seedling survival and performance (Maron et al. 2014,
79 Penczykowski et al. 2017).

80 In this study, we examined the response of seedlings to experimental manipulations of
81 snow depth and small-mammal herbivory along a natural gradient in snow accumulation (Notaro
82 et al. 2011). Using exclosures that manipulated small-mammal access, we monitored the effects
83 of small-mammal herbivory and experimental snow removal on seedling survival, phenology,
84 and growth of two regionally important tree species (*Acer saccharum* and *Tsuga canadensis*).
85 We hypothesized that snow removal would increase late-winter soil temperature variability,
86 reducing seedling survival and delaying leaf-out of deciduous seedlings. We also expected snow
87 depth to influence winter herbivory by small mammals, leading us to test two alternative

88 hypotheses: a) snow removal would reduce small-mammal herbivory by eliminating important
89 winter habitat and restricting herbivore movement (e.g., Korslund and Steen 2006), and b) snow
90 removal would increase small-mammal herbivory by increasing seedling apparenency (e.g.,
91 Anderson 1986).

92 **Materials and Methods**

93 *Study area and focal species*

94 This work was conducted at ten sites spanning a 180 km latitudinal gradient in northern
95 Wisconsin, USA (44.55 to 46.14 °N, Figure 1A). Long-term winter temperature and precipitation
96 summaries for this region are provided in Appendix S1. Sites along this gradient vary in canopy
97 composition (Curtis 1959) and small-mammal community composition (Stephens and Anderson
98 2014), but variation in canopy and small-mammal community composition are independent of
99 variation in snow depth (Appendix S2, Appendix S3). Each 18 x 12 m site was subdivided into
100 four 12 x 1.5 m plots. Common tree species in these forests included (in descending order of
101 basal area) *Acer saccharum* (Sapindaceae), *Quercus rubra* (Fagaceae), *Abies balsamea*
102 (Pinaceae), *Acer rubrum* (Sapindaceae), and *Tsuga canadensis* (Pinaceae). Winter soil
103 temperatures can differ considerably between coniferous and deciduous forests (Petty et al.
104 2015), so we recorded the presence or absence of conifers at each site. Conifers were present at
105 four sites. Because the abundance of small mammals can strongly influence tree seedling
106 survival (Gill 1992), we quantified variation in the small mammal community of each site using
107 live-trapping (Appendix S2). *Myodes gapperi* was present at half of the sites (n = 5).

108 We investigated the response of seedlings of two tree species, *A. saccharum* and *T.
109 canadensis*, to winter herbivory and decreased snow depth. These species are projected to
110 decline in importance throughout northern temperate forests in the next century as mean

111 temperatures warm (Iverson et al. 2008), and anecdotal evidence suggests that these seedlings
112 may be vulnerable to winter herbivory by voles (Cleavitt et al. 2014). *Acer saccharum* and *T.*
113 *canadensis* seeds were obtained from the Wisconsin Department of Natural Resources Griffith
114 State Nursery (Wisconsin Rapids, WI). All seeds were cold-stratified at 1°C for eight weeks,
115 after which they were placed in a growth chamber (model E-41L2, Percival Scientific, Perry IA)
116 programmed to a 12-hour 25°/15°C, light/dark cycle to induce germination (Burns and Honkala
117 1990). Emerging seedlings were transferred to containers with potting medium (Metromix 366,
118 Sun Gro Horticulture, Agawam, MA) in a greenhouse, where they received supplemental light
119 and daily watering. Seedlings also received fertilizer (Peters Professional 20-10-20, Everris NA,
120 Inc. Dublin, OH) 3-4 times per week at 380 ppm nitrogen. Because we continuously transferred
121 seedlings to the greenhouse, seedling age at the time of transplant ranged from approximately
122 four to six weeks, but seedling age was stratified by treatment and site.

123 *Experimental design*

124 Within each field plot, we installed two open-top cylindrical small-mammal exclosures in
125 June 2015, for a total of 8 exclosures at each site (Figure 1B; for details about exclosure design,
126 see Appendix S4). On 20-21 July 2015, we transplanted 80 *A. saccharum* and 58 *T. canadensis*
127 seedlings into the exclosures (maximum of 1 seedling per species per exclosure), and did not
128 give seedlings any supplemental water or fertilizer. The lower number of *T. canadensis* seedlings
129 was a result of low germination success. Immediately before transplanting, we measured the
130 aboveground stem height of each seedling. We placed a small wooden popsicle stick
131 approximately 5 cm away from seedlings to help relocate seedlings (Schnurr et al. 2004). We
132 recorded seedling survival in September 2015, November 2015, June 2016, and September 2016.
133 Seedlings were considered alive if stem and leaf tissue were both present. Seedlings were also

134 observed in March, April, and May 2016, but because we could not distinguish dead seedlings
135 from those that had not yet leafed out, we did not model seedling survival at those times,
136 although these data were used to quantify the effect of snow removal and winter herbivory on
137 seedling phenology.

138 On November 6-7, 2015, we conducted an herbivory experiment to investigate the
139 importance of small mammal herbivory during winter in northern temperate forests (Figure 1B).
140 One of two exclosures per plot was designated as a control treatment, in which seedlings
141 experienced no herbivory. A second exclosure was used to manipulate small-mammal herbivore
142 access, which had two 7 x 7 cm holes to allow small mammals to freely enter the exclosures and
143 consume seedlings. By placing seedlings in an “open” exclosure, we created a pseudo-exclosure
144 treatment that controlled for potential differences in microclimate elicited by our exclosure
145 design (Radtke and Wilson 2015).

146 Starting in February 2016, we experimentally removed snow to evaluate the role of snow
147 cover in affecting seedling survival and small-mammal herbivory. Adjacent plots were paired (n
148 = 3 plot pairs per site), and within each pair one plot was randomly designated to have snow
149 removed (Figure 1B). We removed snow by shoveling until snow was 5 cm deep (Hardy et al.
150 2001, Drescher and Thomas 2013, Christenson et al. 2014); see Appendix S5 for additional
151 information. The second plot was designated as a control with ambient (i.e., unmanipulated)
152 snow depth. This resulted in a split-split-plot design, where herbivore treatment was nested
153 within snow removal treatment, which was nested within site. Although many snow-removal
154 treatments remove snow throughout the entire winter (e.g., Groffman et al. 2001, Drescher and
155 Thomas 2013), we restricted our shoveling treatment to three sessions in the late winter and early
156 spring of 2016 to mimic the most likely winter climate change scenarios in this region (Brown

157 and Robinson 2011, Notaro et al. 2011): mid-February (February 19-21), early March (March 4-
158 5), and mid-March (March 18). In order to track differences in snow accumulation among sites,
159 two snow-depth measurements were made in each plot with a graded polyvinyl chloride (PVC)
160 pole every two weeks between December 2015 through March 2016. While we reduced snow
161 depth in order to manipulate the availability of subnivium habitat, changing soil temperatures
162 and herbivore behavior (Pauli et al. 2013, Penczykowski et al. 2017), it is important to note that
163 snow removal also potentially reduces soil water and nutrient availability (Hardy et al. 2001).

164 *Statistical analysis*

165 We quantified the effect of snow removal on snow accumulation and soil temperatures
166 across the ten sites in this study area using linear regression. For each snow removal session
167 (mid-February, early March, mid-March), we modeled the mean snow depth in each plot after
168 removal as a function of snow removal treatment and shoveling session, using a linear mixed
169 model with a random intercept term for site. To understand how our snow-removal treatment
170 altered soil temperature, we modelled the response of cumulative growing-degree days (GDD),
171 using a growing threshold of 10°C (Raulier and Bernier 2000), and the frequency of freeze-thaw
172 events to snow removal using MANOVA. Subsequently, we modeled the response of soil
173 temperature variables to snow removal with univariate ANOVA. Because conifers can have a
174 strong influence on winter soil temperatures (Petty et al. 2015), we included the presence or
175 absence of conifers in the canopy as a covariate in univariate models (Appendix S3).

176 We used Kaplan-Meier survival analysis (“survival” package in R; Therneau and
177 Grambsch 2000) to evaluate the time course of survival across the four periods when seedlings
178 were checked in the field. This provided a seasonal estimate of survival, but we were unable to
179 detect differences in the time course of survival between herbivory and snow-removal treatments

180 due to the relatively low number of sampling points. In order to understand the interactive effects
181 of reduced snow cover and small-mammal herbivory on seedling survival, we constructed a
182 generalized linear mixed model with a binomial error structure (“lme4” package in R; Bates et al.
183 2015). We used seedling survival at the end of the study (September 2016) as the response
184 variable, but using June 2016 seedling survival did not change our conclusions. We tested the
185 effect of small-mammal winter herbivory by modeling *Acer saccharum* seedling survival as a
186 function of snow removal treatment (ambient snow, snow removed), herbivory treatment (small-
187 mammal access, small-mammal exclosure), *M. gapperi* presence or absence, and all possible
188 interactions. Our model also accounted for seedling responses to changes in microclimate caused
189 by snow removal by including the presence or absence of conifers at each site (which had a
190 strong effect on soil temperatures, see Results and Appendix S2), as well as a snow removal ×
191 conifer interaction. Finally, we included snow depth after shoveling (measured in early March, to
192 capture peak differences in snow depth among sites), and a snow depth × herbivory treatment
193 interaction in order to investigate how the strength of small-mammal herbivory changed across
194 the snow depth gradient encompassed at our sites. *Tsuga canadensis* survival was modeled
195 similarly, but due to the low number of surviving *T. canadensis* seedlings (see Results), models
196 with three-way interactions did not converge, so we report only main effects and significant two-
197 way interactions.

198 In addition to *Acer saccharum* seedling survival, we modeled the response of leaf
199 phenology to winter herbivory and snow conditions in surviving seedlings. We did not model
200 *Tsuga canadensis* phenology due to low numbers of surviving individuals. We recorded seedling
201 leaf phenology in March 2016, April 2016, mid-May 2016, and late May 2016 by classifying
202 each *A. saccharum* seedling into one of three categories based on the most advanced stage

203 present: dormant, buds opening, or new leaf tissue visible (Wesołowski and Rowiński 2006). For
204 analysis, we used the most conservative approach possible and only considered seedlings with
205 new, unfolded leaf tissue visible as having initiated leaf-out. Seedling leaf-out was modeled as a
206 binomial variable at each of the four sampling dates. This model was structured similarly to the
207 model of survival described above, but included sampling date as an ordinal predictor variable
208 and a random intercept for each unique seedling.

We also measured stem height of all species (measured as the distance between the apical meristem and the ground) in June 2016, as *A. saccharum* stem growth is typically completed for the season at this time (Burns and Honkala 1990). To understand how snow removal and herbivory affected seedling growth, we calculated relative stem growth rate for each seedling. Relative stem growth rate, calculated as the difference of log-transformed stem height in 2016 from log-transformed stem height in 2015, divided by the time interval between measurements ($t = 0.96$ years), accounts for differences in growth rate due to differences in initial size or study duration (Gibson 2002). Seedling growth was modeled as a linear mixed-effects model in the “lme4” package in R, using similar model structures as described for models of survival. In all survival and performance models, a random intercept term was included for plot nested within site to account for our split-plot design (Schielzeth and Nakagawa 2013). All analyses were conducted in R (R Core Team 2017), and post-hoc pairwise comparisons were conducted using the “lsmeans” package in R (Lenth 2016). Detailed results for all mixed-effects models are provided in Appendix S6.

Results

224 The winter of 2015-2016 was abnormally warm and had below-average snowfall
225 (Appendix S1). Across the latitudinal gradient encompassed by our sites, we observed the

226 greatest variation in ambient snow depth in early March (range: 6.3 to 42.2 cm; Figure 2A). In
227 addition to this natural snow depth gradient, our shoveling treatment reduced snow depth by an
228 average of 15.7 ± 3.4 cm in snow-removal plots in mid-February and 15.2 ± 3.8 cm in early
229 March (Figure 2A). Differences in snow depth between snow-removal and ambient-snow plots
230 largely disappeared by mid-March with the onset of spring, when shoveling only reduced snow
231 depth by 1.1 ± 0.5 cm (Figure 2A). During the 42 days between the initiation of our snow-
232 removal treatment and final snow retreat, our snow removal treatment increased both freeze-
233 thaw frequency and growing degree-days (MANOVA: $F_{2,35} = 17.59, P < 0.0001$). Univariate
234 tests showed that snow-removal plots experienced 72% more freeze-thaw events (12.93 ± 1.94
235 freeze-thaw events) compared to plots with ambient snow depth (7.53 ± 1.08 freeze-thaw events,
236 $F_{1,24.6} = 22.30, P < 0.001$), but snow removal increased freeze-thaw frequency the most at sites
237 with conifers (snow removal \times conifer interaction: $F_{1,24.6} = 7.69, P = 0.01$, Appendix S3).
238 Additionally, snow-removal plots also accumulated 92% more growing degree-days ($5.09 \pm$
239 0.43) compared to plots with ambient snow depth ($2.66 \pm 0.22, F_{1,26.7} = 69.94, P < 0.001$), which
240 was driven by an increase in GDD at sites with no conifers (snow removal \times conifer interaction:
241 $F_{1,26.6} = 59.92, P < 0.001$, Appendix S3). Whereas unmanipulated control plots were
242 characterized by either high GDD or high freeze-thaw frequency depending on the presence of
243 conifers, snow-removal plots experienced a combination of both high GDD and high freeze-thaw
244 frequency that was rarely seen in plots with ambient snow depth (Figure 2B).

245 Patterns of seedling survival differed considerably between *A. saccharum* and *T.*
246 *canadensis*. At the conclusion of the experiment (September 2016), *A. saccharum* seedling
247 survival was relatively high (0.561 ± 0.045 , Kaplan-Meier estimator \pm standard error), whereas
248 *T. canadensis* seedling survival was almost an order of magnitude lower (0.067 ± 0.026). The

249 time interval encompassing winter and spring represented the greatest period of seedling
250 mortality for both species. *Acer saccharum* survival decreased from 0.952 ± 0.023 in November
251 to 0.771 ± 0.046 in June 2016 (n = 15 deaths, $\chi^2 = 4.18$, d.f. = 1, $P = 0.04$) and *T.*
252 *canadensis* survival decreased from 0.617 ± 0.063 in November 2015 to 0.200 ± 0.052 in June
253 (n = 25 deaths, $\chi^2 = 136.5$, d.f. = 1, $P < 0.001$).

254 Winter microclimate and small-mammal herbivory were important predictors of *A.*
255 *saccharum* seedling survival, as demonstrated by a significant interaction between *M. gapperi*
256 presence and herbivory treatment ($\chi^2 = 5.18$, d.f. = 1, $P = 0.02$, Figure 3A). This interaction arose
257 because seedling survival in the herbivore-access treatment was lower at sites where *M. gapperi*
258 were captured compared to sites where *M. gapperi* were not captured (pairwise comparison: $z =$
259 2.64, $P = 0.04$). Seedling survival in herbivore exclosures did not differ between sites with and
260 without *M. gapperi* (pairwise comparison: $z = 1.41$, $P = 0.50$). There was no main effect of
261 small-mammal exclosures ($\chi^2 = 0.12$, d.f. = 1, $P = 0.73$) or *M. gapperi* presence ($\chi^2 = 1.37$, d.f. =
262 1, $P = 0.24$) on seedling survival. Seedling survival was reduced in plots with snow removed, but
263 only at sites without conifers (snow removal \times conifer: $\chi^2 = 3.87$, d.f. = 1, $P = 0.05$, Figure 4A).
264 There was no significant main effect of snow removal ($\chi^2 = 1.55$, d.f. = 1, $P = 0.21$) or conifers
265 ($\chi^2 = 0.18$, d.f. = 1, $P = 0.67$). *Acer saccharum* survival was not affected by snow depth after
266 shoveling ($\chi^2 = 0.06$, d.f. = 1, $P = 0.81$), or a snow depth \times herbivory treatment interaction ($\chi^2 =$
267 0.71, d.f. = 1, $P = 0.40$).

268 While *T. canadensis* survival was low throughout the study area, winter herbivory and
269 snow conditions may explain some variation in *T. canadensis* seedling survival. *Tsuga*
270 *canadensis* survival increased in plots with low snow depth, but only where small-mammal
271 herbivores were excluded ($\chi^2 = 5.23$, d.f. = 1, $P = 0.02$, Figure 3B). There was a marginally

272 significant main effect of herbivory treatment ($\chi^2 = 1.64$, d.f. = 1, $P = 0.06$), suggesting that
273 survival was approximately three times greater in small-mammal exclosures (0.178 ± 0.073)
274 compared to the small-mammal access treatment (0.067 ± 0.046). There was no significant main
275 effect of snow depth on *T. canadensis* seedling survival ($\chi^2 = 0.13$, d.f. = 1, $P = 0.72$). *Tsuga*
276 *canadensis* survival was not affected by snow removal ($\chi^2 = 0.01$, d.f. = 1, $P = 0.92$), conifers (χ^2
277 = 2.68, d.f. = 1, $P = 0.11$), *M. gapperi* presence ($\chi^2 = 0.17$, d.f. = 1, $P = 0.68$).

278 *Acer saccharum* seedlings were more likely to leaf out at later sampling dates ($\chi^2 = 58.00$,
279 d.f. = 1, $P < 0.0001$), but snow conditions and herbivory had a strong effect on the timing of
280 seedling leaf-out. A significant snow depth \times herbivory interaction suggested that small-mammal
281 herbivory delayed leaf-out, but only in plots with shallow snow ($\chi^2 = 4.56$, d.f. = 1, $P = 0.03$,
282 Figure 3C). Seedlings in small-mammal exclosures leafed out earlier on average than seedlings
283 in the small-mammal access treatment ($\chi^2 = 5.18$, d.f. = 1, $P = 0.02$), but there was no significant
284 main effect of snow depth after shoveling on seedling leaf-out date ($\chi^2 = 0.65$, d.f. = 1, $P = 0.42$).
285 Delayed leaf-out in the herbivore access treatment was driven by seedlings with obvious signs of
286 stem damage (Appendix S7). Additionally, a significant snow removal \times conifer interaction ($\chi^2 =$
287 3.65, d.f. = 1, $P = 0.05$) and main effect of conifers ($\chi^2 = 10.84$, d.f. = 1, $P = 0.0009$) suggested
288 that seedlings leafed out later in sites with conifers, particularly in plots with snow removed
289 (Figure 4B). However, leaf-out date was unaffected by the main effect of snow removal ($\chi^2 =$
290 0.75, d.f. = 1, $P = 0.39$), snow depth after shoveling ($\chi^2 = 0.65$, d.f. = 1, $P = 0.42$), or *M. gapperi*
291 presence ($\chi^2 = 0.75$, d.f. = 1, $P = 0.39$), and there was no significant snow removal \times herbivory
292 interaction ($\chi^2 = 0.80$, d.f. = 1, $P = 0.37$), snow removal \times *M. gapperi* presence interaction ($\chi^2 =$
293 0.15, d.f. = 1, $P = 0.70$), herbivory \times conifer interaction ($\chi^2 = 0.07$, d.f. = 1, $P = 0.79$) or

294 herbivory \times *M. gapperi* presence interaction ($\chi^2 = 1.11, P = 0.29$). We found no effect of snow
295 removal or herbivore exclosure on seedling growth (Appendix S6).

296 **Discussion**

297 Projected shifts in winter climate may alter snow cover and snow depth in northern
298 temperate ecosystems (Notaro et al. 2011), potentially changing the survival and distribution of
299 tree seedlings by modifying plant-herbivore interactions. Using an experiment that manipulated
300 snow cover and winter herbivory across sites that varied substantially in snowfall, we found
301 evidence that winter herbivory by small mammals reduced *A. saccharum* and *T. canadensis*
302 survival and delayed *A. saccharum* leaf-out, and that these negative effects were often strongest
303 in areas characterized by shallow snow (Figure 3). We also found that snow removal decreased
304 seedling survival at sites with conifers, but delayed leaf-out at sites with conifers (Figure 4).
305 Three implications of these results are discussed below. First, reduced snow depth might change
306 foraging behavior of small-mammal herbivores in temperate forests by increasing seedling
307 apparencty. Second, by altering seedling phenology, winter herbivory and winter climate change
308 might indirectly shape subsequent plant-herbivore interactions in spring and summer. Third,
309 predicting the ecological effects of reduced snow cover will require an understanding of factors
310 influencing local soil temperatures. These findings suggest that winter herbivory and snow
311 conditions can have important effects on seedling dynamics observed in summer, but that the
312 direction and magnitude of the effects of winter climate change can vary substantially across
313 landscapes.

314 *Snow depth drives variation in small-mammal winter herbivory*

315 In boreal systems, deep snow generally increases small-mammal herbivory by decreasing
316 predation risk or providing a stable subnivium habitat where small mammals can locate seedlings

317 (Korslund and Steen 2006, Kausrud et al. 2008, Penczykowski et al. 2017). However, in the
318 temperate forests we studied, we found evidence that negative effects of small-mammal
319 herbivory were strongest in shallow snow. Herbivore exclosures in shallow snow marginally
320 increased *T. canadensis* survival (Figure 3B) and prevented *A. saccharum* seedling damage that
321 was associated with delayed leaf-out (Figure 3C, Appendix S7). We suggest that these patterns
322 were observed because in a historically warm winter, where subnivium formation was rare, snow
323 removal primarily altered the apparence of seedlings to small mammal herbivores (i.e., seedlings
324 were more likely to be discovered by small-mammal herbivores where snow was shallow). Snow
325 has been shown to reduce seedling apparence to large ungulate herbivores (e.g., Christenson et
326 al. 2014), and anecdotal evidence from temperate systems suggest that snow cover may also
327 obscure seeds from small mammals (Anderson 1986, Shimano and Masuzawa 1998). Greater
328 within-site replication of seedlings in future studies could improve our understanding of the
329 importance of increased seedling apparence in years of high versus low seedling density that
330 characterize the mast cycle of many temperate tree species (Manson et al. 1998).

331 While large ungulate herbivores can limit *A. saccharum* and *T. canadensis* seedling
332 survival (e.g., Salk et al. 2011), our work demonstrates that voles can also be important seedling
333 herbivores in temperate forests. *Myodes gapperi* presence was an important predictor of *A.*
334 *saccharum* seedling mortality in herbivore access plots (Figure 3A, Appendix S7), suggesting
335 that land managers could expect decreased natural seedling recruitment in habitats with *M.*
336 *gapperi*, particularly in years with shallow snow cover. The weak effect of *M. gapperi* presence
337 on *T. canadensis* survival suggests that low *T. canadensis* seedling survival, likely driven by
338 unfavorable climatic conditions, reduced the number of *T. canadensis* seedlings available for *M.*
339 *gapperi* to encounter. However, even after escaping herbivory as seedlings, trees may face *M.*

340 *gapperi* herbivory as saplings that could delay phenology or decrease survival (Sanders-DeMott,
341 et al. in press). While we found important negative effects of *M. gapperi* herbivory, warming
342 temperatures in this region have been associated with declines in *M. gapperi* relative abundance
343 (Myers et al. 2009). Therefore, it will be important to consider how winter climate change will
344 alter seedling herbivory by both voles and other herbivore guilds that typically benefit from
345 reduced snow, such as large ungulates (Murray et al. 2014).

346 *Winter climate and herbivory may affect plant-herbivore dynamics in the growing season*

347 Understanding links between winter conditions and summer seedling performance could
348 improve our ability to predict conditions that cause herbivores to limit plant establishment
349 (Patankar et al. 2013), helping to resolve the considerable variation often observed in plant-
350 herbivore interactions (Agrawal 2011). While reduced snow and winter herbivory can be
351 important causes of plant mortality (Howe and Brown 2000, Schaberg et al. 2008, Martin and
352 Maron 2012, Drescher and Thomas 2013, Drescher 2014), the potential for variation in winter
353 climates to influence herbivory of surviving individuals is less understood (Connolly et al. 2017).
354 Here, we show that winter herbivory and variable winter soil temperatures may delay *A.*
355 *saccharum* seedling leaf-out, and suggest that seedlings that survive harsh winter conditions
356 could alter herbivory in the growing season.

357 We found evidence that leaf-out in deciduous tree seedlings can be delayed by both
358 winter herbivory (Figure 3B, Appendix S7; Herder et al. 2009), and variable winter temperatures
359 (Figure 4B; Bokhorst et al. 2011). While damage from either winter herbivory or winter climate
360 may have strong lethal effects on seedlings (Figure 3A, Figure 4A, Appendix S7), damaged
361 seedlings that survive winter may suffer subtler sublethal effects. For example, leaf phenology
362 can play a key role in plant-herbivore interactions in spring and summer by either increasing or

363 decreasing the temporal overlap of invertebrate herbivores and expanding seedling leaves (Boege
364 and Marquis 2005). Understanding phenological shifts by both seedlings (Figure 4B) and
365 invertebrate herbivores (Pureswaran et al. 2014) to changing winter temperatures could provide
366 important insights about how winter climate change modifies herbivory in the growing season.
367 Additionally, winter injuries can alter the morphology and chemistry of leaves produced in
368 spring. Injured seedlings may produce poorly defended leaves that are more susceptible to
369 invertebrate herbivory (Herder et al. 2009, Patankar et al. 2013, Rubert-Nason et al. 2017), or
370 low-quality leaves that are avoided by herbivores (St. Clair et al. 2009). Future studies that focus
371 on the effect of winter injuries on plant phenology, and in particular how phenology may shape
372 seedling defense (Bryant 2003), could identify patterns in what we currently interpret as
373 idiosyncratic responses of spring and summer herbivory to variation in winter climate (Roy et al.
374 2004).

375 *Spatial variation in the effects of snow removal*

376 Climate velocity, the rate and direction of climate change, may vary across relatively
377 short spatial scales (e.g., Ordonez and Williams 2013), making it difficult to predict the
378 ecological consequences of climate change for plant communities. For example, warmer winters
379 with reduced snow can either increase the duration of soil freezing and the frequency of
380 damaging freeze-thaw events (e.g., Tierney et al. 2001), or increase the length of the growing
381 season (e.g., Sherwood et al. 2017). The large spatial extent of our study helps resolve previously
382 observed discrepancies in snow removal experiments by showing that the effects of snow
383 removal can vary along canopy composition gradients (Appendix S2): removing snow at sites
384 without conifers increased cumulative GDD, but removing snow at sites with conifers increased
385 freeze-thaw frequency (Figure 2B). Consequently, reduced snow depth may have lethal effects

386 on seedlings in some habitats, but sublethal effects in other habitats. While many temperate
387 species can tolerate extremely low temperatures, seedlings may respond to warmer winter
388 temperatures by decreasing investment in cold tolerance, and thus repeated freeze-thaw cycles
389 can decrease seedling survival (Figure 4A, Kreyling 2010). In habitats with fewer freeze-thaw
390 events, such as sites with conifers in our study area, milder injuries caused by reduced snow
391 depth may be more likely to delay the initiation of growth, rather than kill seedlings outright
392 (Figure 4B, Blume-Werry et al. 2016). However, because this experiment was conducted in a
393 historically warm winter, these results may not inform efforts to predict the response of soil
394 temperatures or seedling dynamics to reduced snow depth in winters that characterized by
395 historically average temperatures. By combining canopy data with other proxies for winter
396 temperatures, such as topography or proximity to lakes (Ordonez and Williams 2013), it may be
397 possible for land managers to identify areas that are most likely to experience potentially
398 dangerous winter soil temperatures in future climates characterized by reduced snow, and
399 prioritize resources to protect seedlings in those microsites (Schaberg et al. 2008).

400 Adaptations to winter temperature variability may increase the survival and performance
401 of southern tree species relative to northern tree species in sites where seedlings experience an
402 early growing season together with increased freeze-thaw frequency. Our study area represents
403 the northern end of the *A. saccharum* distribution, but marks the southern end of the *T.*
404 *canadensis* distribution (Burns and Honkala 1990, Fisichelli et al. 2014). Frequent freeze-thaw
405 events may contribute to recruitment failure in relict *T. canadensis* populations (Friesner and
406 Potzger 1944), but freeze-thaw events are relatively common throughout most of the current *A.*
407 *saccharum* distribution (Hershfield 1974, Burns and Honkala 1990). Species that are poorly
408 adapted to freeze-thaw events, including *T. canadensis*, may benefit from active management

409 (e.g., insulating soil near seedlings) where winter temperature or precipitation preclude the
410 formation of a subnivium (Schaberg et al. 2008), particularly in low-mast years.

411 **Conclusions**

412 Snow depth can be a key predictor of northern temperate forest composition (Henne et al.
413 2007), and might also affect the strength of winter herbivory by changing herbivore behavior
414 (Fisichelli et al. 2012, Martin and Maron 2012). Despite calls to integrate species interactions
415 into models of future plant species distributions (e.g., Urban et al. 2016), the potential for
416 reduced snow cover to limit seedling establishment is not often explicitly considered in efforts to
417 map projected range shifts. Here, we show that the effects of winter climate change on soil
418 temperatures, and consequently seedling dynamics, will likely vary across regional landscapes,
419 and that snow depth may play an underappreciated role in shaping winter herbivory by small
420 mammals. This work suggests several new directions for future research. While our work
421 demonstrates an important interaction between snow cover and small-mammal herbivory,
422 climate change will likely alter northern temperate forest snow conditions at larger spatial and
423 temporal extents than we manipulated here. Snow removal experiments could be conducted at
424 larger spatial scales that approach small-mammal home ranges in winter (15 m x 15 m, Merritt
425 and Merritt 1978) for several years (Blume-Werry et al. 2016) to capture fluctuations in winter
426 temperatures, seedling density, and small-mammal population size. Additionally, variation in
427 canopy composition may provide a means of predicting the effects of reduced snow on winter
428 soil temperatures, and consequently seedling survival, at large spatial scales. While ecologists
429 grapple with the challenge of predicting species distributions and abundances in a rapidly
430 changing world, understanding the intricate links between winter and summer processes could

431 provide an important perspective in predicting the future composition of northern temperate
432 forests.

433 **Acknowledgements**

434 This work was made possible by outstanding logistical support from Trout Lake Field Station.
435 We thank J. Casper, L. Maillefer, and M. Rowe for field assistance. S. Bartel, B. Bron, J.
436 Chandler, R. Eddy, and H. Howe provided valuable feedback on the manuscript. This work was
437 funded by an AFRI-NIFA Fellowship (Grant # 2014-02074) awarded to JLO and BMC, as well
438 as a Vilas Associates Fellowship awarded to JLO. PWG was supported by a National Science
439 Foundation IGERT award (Grant # DGE-1144752) while writing this manuscript as well as
440 Doctoral Dissertation Improvement Grant funding from NSF (Grant # DEB-1701506).

441 **Author contributions:** PWG, BMC, and JLO contributed to experimental design; PWG and
442 BMC collected data; PWG performed all analyses and led preparation of the manuscript; BMC
443 and JLO helped revise the manuscript.

444 **Data accessibility:** If this manuscript is accepted for publication, relevant data supporting the
445 results will be archived in a publicly accessible database (e.g., Figshare).

446 **Literature Cited**

447 Agrawal, A. A. 2011. Current trends in the evolutionary ecology of plant defence. – Func. Ecol.
448 25:420–432.

449 Anderson, P. K. 1986. Foraging range in mice and voles: the role of risk. – Can. J. Zoo.
450 64:2645–2653.

451 Bates, D. et al. 2015. Fitting linear mixed-effects models using lme4. – J. of Stat. Softw. 67:1–
452 48.

453 Blume-Werry, G., et al. 2016. Short-term climate change manipulation effects do not scale up to

454 long-term legacies: effects of an absent snow cover on boreal forest plants. – *J. Ecol.*
455 104:1638–1648.

456 Boege, K., and Marquis, R. J. 2005. Facing herbivory as you grow up: the ontogeny of resistance
457 in plants. – *Trends Ecol. Evo.* 20:441–448.

458 Bokhorst, S., et al. 2011. Impacts of multiple extreme winter warming events on sub-Arctic
459 heathland: phenology, reproduction, growth, and CO₂ flux responses. – *Global Change*
460 *Biol.* 17:2817–2830.

461 Brown, C. D., and M. Vellend. 2014. Non-climatic constraints on upper elevational plant range
462 expansion under climate change. – *Proc. Roy. Soc. B: Biol. Sci.* 281:20141779.

463 Brown, R. D., and Robinson, D. A. 2011. Northern hemisphere spring snow cover variability and
464 change over 1922–2010 including an assessment of uncertainty. – *Cryosphere* 5:219–229.

465 Bryant, J.P. 2003. Winter browsing on Alaska feltleaf willow twigs improves leaf nutritional
466 value for snowshoe hares in summer. – *Oikos* 102:25–32.

467 Burns, R. M., and Honkala, B. H. 1990. *Silvics of North America*. Second edition. U.S.
468 Department of Agriculture, Forest Service.

469 Chmura, D. J., et al. 2011. Forest responses to climate change in the northwestern United States:
470 ecophysiological foundations for adaptive management. – *For. Ecol. Manage.* 261:1121–
471 1142.

472 Christenson, L. M., et al. 2014. Cascading effects of climate change on forest ecosystems:
473 biogeochemical links between trees and moose in the northeast USA. – *Ecosystems*
474 17:442–457.

475 Cleavitt, N.L., et al. (2014). Determinants of survival over 7 years for a natural cohort of sugar
476 maple seedlings in a northern hardwood forest. – *J. For. Res.* 44:1112–1121.

477 Connolly, B. M., et al. 2017. Past freeze – thaw events on *Pinus* seeds increase seedling
478 herbivory. – *Ecosphere* 8:e01748.

479 Curtis, J. T. 1959. The vegetation of Wisconsin: an ordination of plant communities. Second
480 edition. University of Wisconsin Press.

481 Drescher, M. 2014. Snow cover manipulations and passive warming affect post-winter seed
482 germination: a case study of three cold-temperate tree species. – *Clim. Res.* 60:175–186.

483 Drescher, M., and Thomas, S. C. 2013. Snow cover manipulations alter survival of early life
484 stages of cold-temperate tree species. – *Oikos* 122:541–554.

485 Dye, D. G. 2002. Variability and trends in the annual snow-cover cycle in Northern Hemisphere
486 land areas, 1972-2000. – *Hydrol. Proc.* 16:3065–3077.

487 Fisichelli, N., et al. 2012. Sapling growth responses to warmer temperatures “cooled” by browse
488 pressure. – *Global Change Biol.* 18:3455–3463.

489 Fisichelli, N., et al. 2014. First-year seedlings and climate change: species-specific responses of
490 15 North American tree species. – *Oikos* 123:1331–1340.

491 Friesner, R. C., and Potzger, J. E. 1944. Survival of hemlock seedlings in a relict colony under
492 forest conditions. – *Butler Univ. Bot. Studies* 6:102–115.

493 Gibson, D. 2002. Methods in comparative plant population ecology. Oxford University Press.

494 Gill, R. M. A. 1992. A review of damage by mammals in North temperate forests. – *Forestry*
495 65:145–169.

496 Groffman, P. M., et al. 2001. Effects of mild winter freezing on soil nitrogen and carbon
497 dynamics in a northern hardwood forest. – *Biogeochem.* 56:191–213.

498 Haken, A. E., and Batzli, G. O. 1996. Effects of availability of food and interspecific competition
499 on diets of prairie voles. – *J. Mamm.* 77:315–324.

500 Hardy, J. P., et al. 2001. Snow depth manipulation and its influence on soil frost and water
501 dynamics in a northern hardwood forest. – *Biogeochem.* 56:151–174.

502 Henne, P. D., et al. 2007. Lake-effect snow as the dominant control of mesic-forest distribution
503 in Michigan, USA. – *J. Ecol.* 95:517–529.

504 Henry, H.A.L. 2008. Climate change and soil freezing dynamics: historical trends and projected
505 changes. – *Clim. Change* 87: 421–434.

506 Herder, M., et al. (2009). Effects of natural winter browsing and simulated summer browsing by
507 moose on growth and shoot biomass of birch and its associated invertebrate fauna. – *Ann.*
508 *Zoo. Fen.*, 46:63–74.

509 Hershfield, D. M. 1974. The frequency of freeze-thaw cycles. – *J. Appl. Met.* 13:348–354.

510 Howe, H. F., and Brown, J. S. 2000. Early effects of rodent granivory on experimental forb
511 communities. – *Ecol. Appl.* 10:917–924.

512 Inouye, D.W. 2008. Effects of climate change on phenology, frost damage, and floral abundance
513 of montane wildflowers. – *Ecology* 89: 353–62.

514 Iverson, L. R., et al. 2008. Estimating potential habitat for 134 eastern US tree species under six
515 climate scenarios. – *For. Ecol. Manage.* 254:390–406.

516 Kausrud, K. L., et al. 2008. Linking climate change to lemming cycles. – *Nature* 456:93–7.

517 Korslund, L., and Steen, H. 2006. Small rodent winter survival: snow conditions limit access to
518 food resources. – *J. Anim. Ecol.* 75:156–166.

519 Kreyling 2010. Winter climate change: a critical factor for temperate vegetation performance. –
520 *Ecology*. 91:1939-1948.

521 Kreyling, J., et al. 2010. Effects of soil freeze-thaw cycles differ between experimental plant
522 communities. – *Basic Appl. Ecol.* 11:65–75.

523 Lenth, R. (2016). Least-squares means: the R package *lsmeans*. *J. Stat. Softw.*, 69, 1–33.

524 Manson, R. H. et al. 1998. The effects of tree seed and seedling density on predation rates by
525 rodents in old fields. – *Ecoscience* 5:183–190.

526 Manson, R. H., et al. 2001. Long-term effects of rodent herbivores on tree invasion dynamics
527 along forest-field edges. – *Ecology* 82:3320–3329.

528 Maron, J. L., et al. 2014. Disentangling the drivers of context-dependent plant-animal
529 interactions. – *J. Ecol.* 102:1485–1496.

530 Martin, T. E., and Maron, J. L. 2012. Climate impacts on bird and plant communities from
531 altered animal–plant interactions. – *Nat. Clim. Change* 2:195–200.

532 Merritt, J. F. and Merritt, J.M. 1978. Seasonal home ranges and activity of small mammals of a
533 Colorado subalpine forest. – *Acta Theri.* 23: 195–202.

534 Murray, B. D., et al. 2014. A migratory ungulate facilitates cross-boundary nitrogen transport in
535 forested landscapes. – *Ecosystems* 17:1002–1013.

536 Myers, P., et al. 2009. Climate-induced changes in the small mammal communities of the
537 northern Great Lakes region. – *Global Change Biol.* 15:1434–1454.

538 Notaro, M., et al. 2011. 21st century Wisconsin snow projections based on an operational snow
539 model driven by statistically downscaled climate data. – *Inter. J. Clim.* 31:1615–1633.

540 Ordonez, A., and Williams, J. W. 2013. Projected climate reshuffling based on multivariate
541 climate-availability, climate-analog, and climate-velocity analyses: implications for
542 community disaggregation. – *Clim. Change* 119:659–675.

543 Ostfeld, R. S., et al. 1997. Effects of rodents on survival of tree seeds and seedlings invading old
544 fields. – *Ecology* 78:1531–1542.

545 Parmesan, C., et al. 1999. Poleward shifts in geographical ranges of butterfly species associated

546 with regional warming. – *Nature* 399:579–583.

547 Patankar, R., et al. Permafrost-driven differences in habitat quality determine plant response to

548 gall-inducing mite herbivory. – *J. Ecol.* 101:1042–1052.

549 Pauli, J. N., et al. 2013. The subnivium: a deteriorating seasonal refugium. – *Front. Ecol. Env.*

550 11:260–267.

551 Penczykowski, et al. 2017. Winter is changing: Trophic interactions under altered snow regimes.

552 – *Food Webs* 13:80-91.

553 Petty, S. K., et al. 2015. Winter conditions and land cover structure the subnivium, a seasonal

554 refuge beneath the snow. – *PLOS One* 10:e0127613.

555 Radtke, T. M., and Wilson, S. D. 2015. A limited role for apparent competition via granivory in

556 the persistence of a grassland invader. – *J. Veg. Sci.* 26:995–1004.

557 Raffa, K. F., et al. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic

558 amplification: the dynamics of bark beetle eruptions. – *BioSci.* 58:501.

559 Raulier, F., and Bernier, P. Y. 2000. Predicting the date of leaf emergence for sugar maple across

560 its native range. – *Can. J. For. Res.* 30:1429–1435.

561 Roy, B. A., et al. 2004. Response of plant pathogens and herbivores to a warming experiment. –

562 *Ecology* 85:2570–2581.

563 Rubert-Nason, K.F., et al. 2017. Vernal freeze damage and genetic variation alter tree growth,

564 chemistry, and insect interactions. – *Plant Cell Env.*, 40, 2743–2753.

565 Salk, T. T., et al. 2011. Poor recruitment is changing the structure and species composition of an

566 old-growth hemlock-hardwood forest. – *For. Ecol. Manage.* 261:1998–2006.

567 Sanders-DeMott, et al. (*in press*). Snow depth, soil temperature, and plant-herbivore interactions

568 mediate plant response to climate change. – *J. Ecol.*

569 Schaberg, P. G., et al. 2008. Influence of simulated snow cover on the cold tolerance and
570 freezing injury of yellow-cedar seedlings. – *Global Change Biol.* 14:1282–1293.

571 Schielzeth, H., and Nakagawa, S. 2013. Nested by design: model fitting and interpretation in a
572 mixed model era. – *Meth. Ecol. Evo.* 4:14–24.

573 Schnurr, J., et al. 2004. Neighborhood analyses of small-mammal dynamics: impacts on seed
574 predation and seedling establishment. – *Ecology* 85:741–755.

575 Sherwood, J.A., et al. 2017. Effects of experimentally reduced snowpack and passive warming
576 on montane meadow plant phenology and floral resources. – *Ecosphere* 8, e01745.

577 Shimano, K., and Masuzawa, T. 1998. Effects of snow accumulation on survival of beech (*Fagus*
578 *crenata*) seed. – *Plant Ecol.* 134:235–241.

579 St. Clair, S.B., et al. 2009. Altered leaf morphology, leaf resource dilution and defense chemistry
580 induction in frost-defoliated aspen (*Populus tremuloides*). – *Tree Phys.* 29:1259–1268.

581 Stephens, R. B., and Anderson, E. M. 2014. Habitat associations and assemblages of small
582 mammals in natural plant communities of Wisconsin. – *J. Mamm.* 95:404–420.

583 Sullivan, T. P., and Sullivan, D. S. 2008. Vole-feeding damage and forest plantation protection:
584 large-scale application of diversionary food to reduce damage to newly planted trees. –
585 *Crop Prot.* 27:775–784.

586 Sultaire, S. M., et al. 2016. Climate change surpasses land-use change in the contracting range
587 boundary of a winter-adapted mammal. – *Proc. Roy. Soc. B: Biol. Sci.* 283:20153104.

588 Swihart, R. K., and Bryant, J. P. 2001. Importance of biogeography and ontogeny of woody
589 plants in winter herbivory by mammals. – *J. Mamm.* 82:1–21.

590 Tessier, J. T. 2017. Importance of depth in soil to corm survival in *Erythronium americanum*
591 (Liliaceae). – *Rhodora* 119:33–43.

592 Therneau, T. M., and Grambsch, P. M. 2000. Modeling survival data: extending the cox model.
593 Springer.

594 Tierney, G. L., et al. 2001. Soil freezing alters fine root dynamics in a northern hardwood forest.
595 – *Biogeochem.* 56:175–190.

596 Tylianakis, J. M., et al. 2008. Global change and species interactions in terrestrial ecosystems. –
597 *Ecol. Letters* 11:1351–1363.

598 Urban, M. C., et al. 2016. Improving the forecast for biodiversity under climate change. –
599 *Science* 353:aad8466.

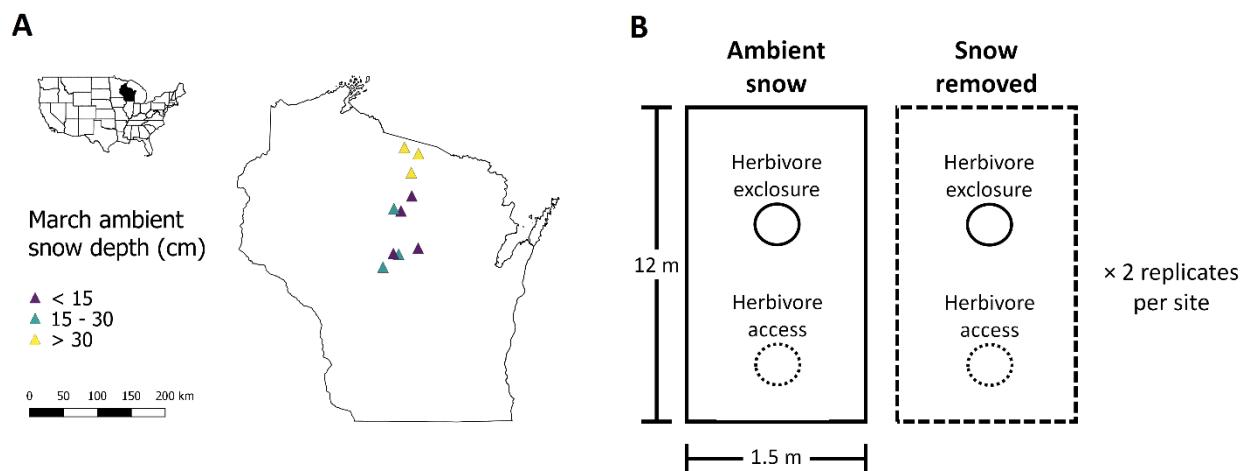
600 Wesołowski, T., and Rowiński, P. 2006. Timing of bud burst and tree-leaf development in a
601 multispecies temperate forest. – *For. Ecol. Manage.* 237:387–393.

602 Zhu, K., et al. Failure to migrate: lack of tree range expansion in response to climate change. –
603 *Global Change Biol.* 18:1042–1052.

604

605 **Figure legends**

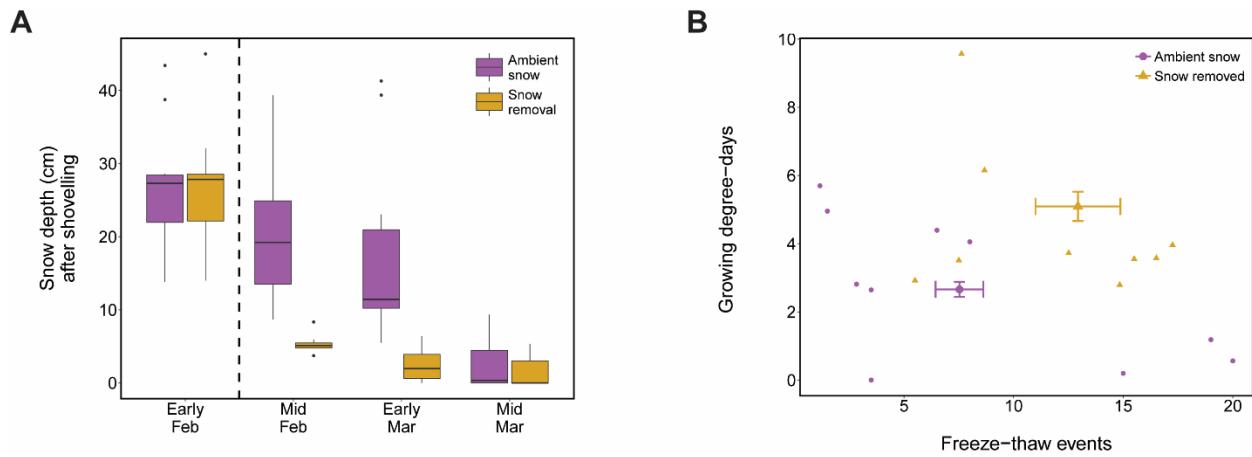
606 **Figure 1:** A) Map of study area. Triangles represent the 10 sites used in this study and are color-coded to show variation in ambient snow depth. B) Experimental design used at each site to manipulate snow depth and winter herbivory.

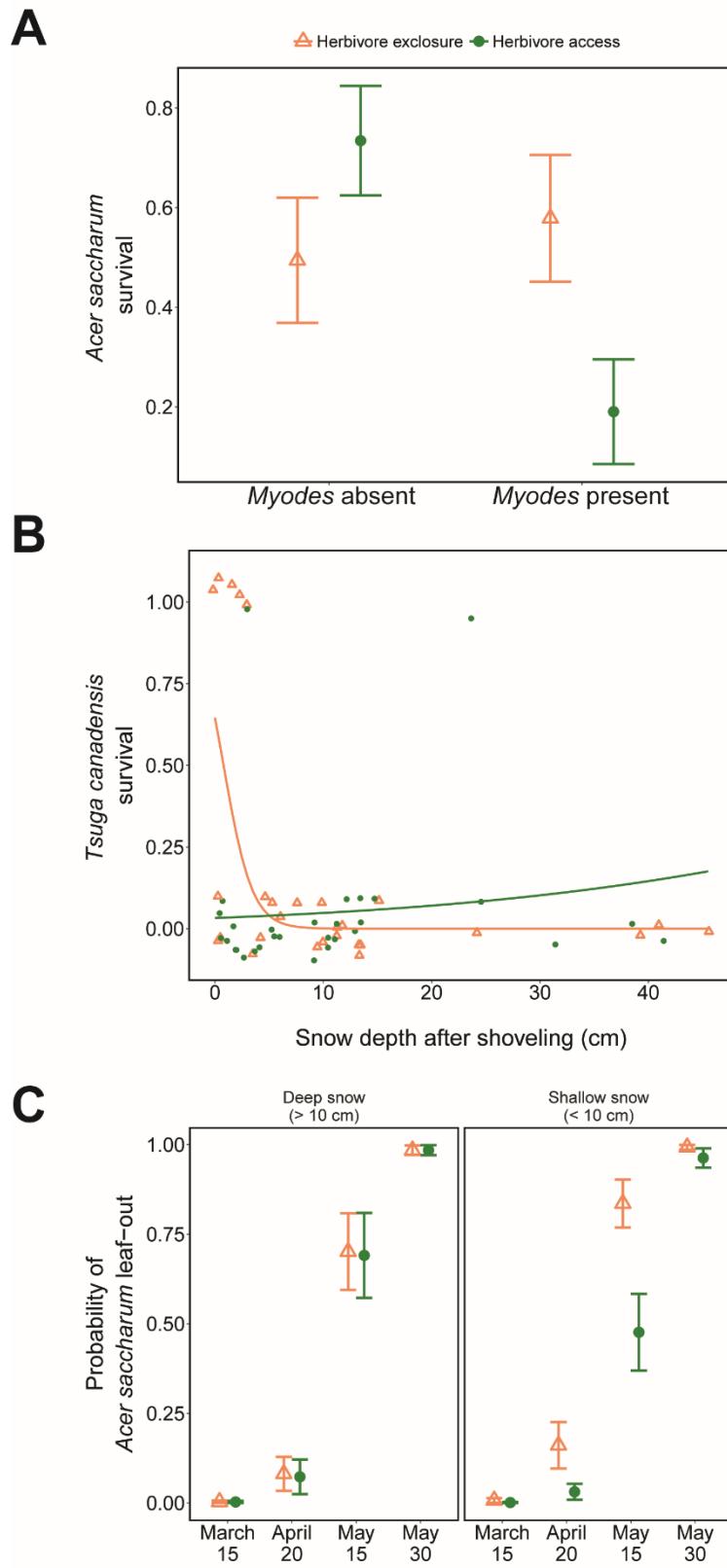

609 **Figure 2:** A) Changes in snow depth over time in snow-removal plots (gold) and unmanipulated 610 control plots (purple). Snow removal began 17 February 2016 (dashed line). B) Biplot of 611 cumulative soil growing degree-days (10°C threshold) and freeze-thaw frequency in snow- 612 removal plots (gold triangles) and unmanipulated control plots (purple circles). Large points with 613 error bars represent least-squares means \pm one standard error for each snow removal treatment.

614 **Figure 3:** Winter herbivory by small mammals influenced seedling survival and phenology. A) 615 *Acer saccharum* seedling survival decreased at sites with *Myodes gapperi* (southern red-backed 616 vole), but only in plots that allowed herbivore access (green circles). Points represent least- 617 square means \pm one standard error. B) *Tsuga canadensis* seedling survival increased in plots with 618 shallow snow, but only in small-mammal herbivore exclosures (orange triangles). Curves 619 represent estimated response variable values for herbivore access (green lines) and herbivore 620 exclosures (orange lines). Points represent raw data spread out to reduce point overlap.

621 C) *Acer saccharum* leaf-out occurred earlier in shallow snow, but only where herbivores were 622 excluded. Points represent least-square means \pm one standard error.

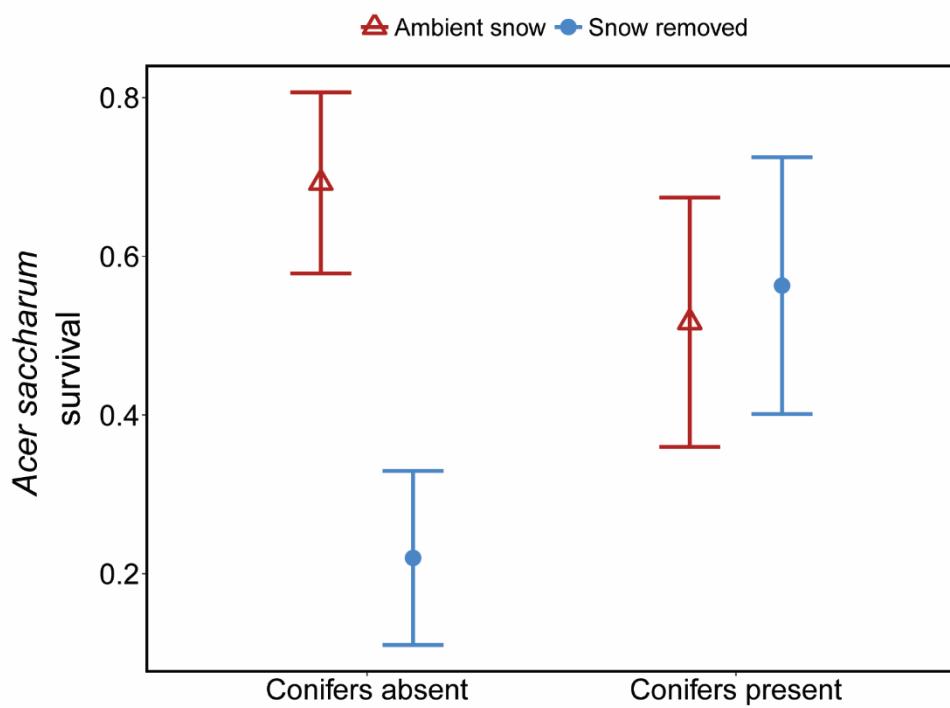
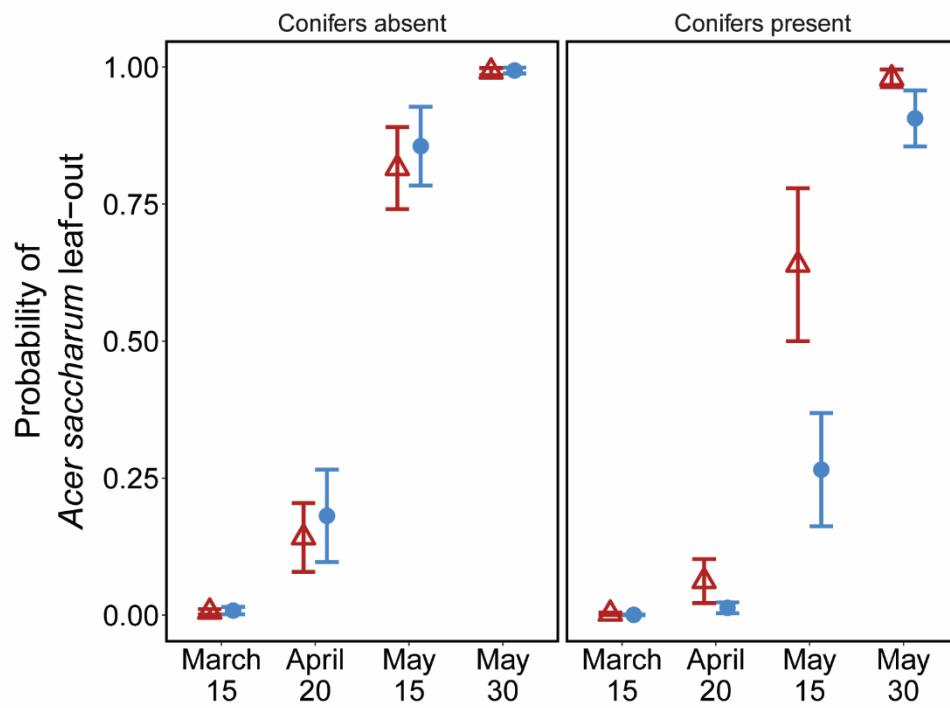
623 **Figure 4:** Winter microclimate had strong effects on *Acer saccharum* survival and phenology. A) 624 Seedling survival decreased in plots with snow removed, but only at sites where conifers were 625 absent. Points represent least-square means \pm one standard error. B) Seedling leaf-out occurred 626 later in plots with snow removed, but only at sites with conifers.


627



628

629 Figure 1



630

634

635 Figure 3

A**B**

636

637 Figure 4