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ABSTRACT: We report the encapsulation of free-base and zinc
porphyrins by a tricyclic cyclophane receptor with subnanomolar
binding affinities in water. The high affinities are sustained by the
hydrophobic effect and multiple [CH---x] interactions covering
large [7---x] stacking surfaces between the substrate porphyrins
and the receptor. We discovered two co-conformational isomers of
the 1:1 complex, where the porphyrin is orientated differently
inside the binding cavity of the receptor on account of its tricyclic
nature. The photophysical properties and chemical reactivities of
the encapsulated porphyrins are modulated to a considerable
extent by the receptor. Improved fluorescence quantum yields, red-
shifted absorptions and emissions, and nearly quantitative energy
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650 nm

transfer processes highlight the emergent photophysical enhancements. The encapsulated porphyrins enjoy unprecedented chemical
stabilities, where their D/H exchange, protonation, and solvolysis under extremely acidic conditions are completely blocked. We
anticipate that the ultrahigh stabilities and improved optical properties of these encapsulated porphyrins will find applications in
single-molecule materials, artificial photodevices, and biomedical appliances.

B INTRODUCTION

Molecular recognition is utilized comprehensively by nature for
the regulation of biological processes.”” One of the goals in the
supramolecular chemistry community is to make™” synthetic
receptors that can hold a candle to the binding affinities and
functionalities of bioreceptors. In recent years, several wholly
synthetic receptors have been reported™° with substrate-binding
affinities exceeding the performance of naturally occurring
receptors. These high-affinity synthetic receptors have shown
promising applications in drug delivery, membrane functional-
ization, and protein purification. Advances in these biotechnol-
ogies create new and demanding requirements for synthetic
receptors with not only high binding affinities but also integrated
functionalities.” "> Tt is desirable to develop high-affinity
receptors for functional substrates such as dye molecules.'™"”
Although there have been numerous reports”~>* on dye
encapsulations by several well-known receptors such as
cyclodextrins, calixarenes, cucurbiturils, and pillararenes, most
of them fail to encapsulate dyes at nanomolar concentrations on
account of their low binding affinities. Examples of high-affinity
receptors for functional dye molecules” >’ are rare and are
urgently needed”® to meet the demanding requirement of
biotechnologists and scientists working in related fields.
Porphyrins are indispensable dyes in biology and fulfill many
crucial biological functions, such as oxygen transport, photo-
synthesis, and metabolism.”” Most porphyrins in nature exist as
noncovalent complexes and are buried deep inside the
superstructures of porphyrin-binding proteins, where their
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microenvironments not only govern the versatile functions of
porphyrins but also protect them from direct interactions with
solvents and solutes.”® Much effort has been devoted to makin
synthetic mimics of these porphyrin-containing devices’*™>
and engineerin§ them to express functions in artificial
photodevices,”””* model enzymes,”™* and biotechnolo-
gies."' ™ To this end, one of our goals is to develop artificial
receptors that bind strongly with porphyrins in confined
microenvironments, in which we can modulate the photo-
electrical properties and chemical reactivities of the encapsu-
lated porphyrins.****

Binding of porphyrins has been explored using chemically
modified proteins and peptides,®”*"* nucleotides,**’ and
other naturally derived compounds.**** Porphyrins have also
been substrates for intense tar%eting in the supramolecular
community, where cyclodextrins,” 0752 calixarenes,”” cucurbitur-
ils, "% ¢ (:lophelnes.,56‘57 foldamers,*® and coordination metal
cages’ " have all been developed in order to interact with
porphyrins with various functions in mind. Despite all these
advances in mimicking porphyrin-binding proteins, the
challenge remains to design a monomeric high-affinity receptor
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that can fully encapsulate porphyrins on account of their large
sizes which exceed the cavity sizes of current synthetic
receptors.57

Recently, we designed”” an X-shaped octacationic cyclo-
phane, XCage®", which features a large and rigid binding cavity.
The constitution of XCage®" exhibits high stereoelectronic
complementarity toward perylene diimide (PDI) dyes with
picomolar binding affinities in water. Low-level molecular
modeling suggests that the porphyrin core is a good fit with
the binding cavity of XCage®*, where multiple [z-z] and
[CH--x] interactions come into play upon binding. This
stereoelectronic complementarity has motivated us to explore
the possibility of using XCage®" as a porphyrin receptor in water.
Herein, we report the encapsulation of free-base porphyrin and
Zn-porphyrin using XCage®" as a receptor with subnanomolar
binding affinities. These ultrahigh affinities can be attributed to
multiple [CH--7] interactions in addition to large [7---7]
stacking surfaces between the substrate porphyrins and the
receptor XCage®*. Two types of co-conformational isomers, in
which the porphyrin substrates are orientated differently inside
the binding cavity of XCage®’, were uncovered by 'H NMR
spectroscopy in D,0O. The photophysical properties of the
encapsulated porphyrins turn out to be modulated by XCage®".
Improved fluorescence quantum yields, red-shifted absorptions
and emissions, and a nearly quantitative energy transfer process
are all observed. In addition to these physical attributes, the
encapsulated porphyrins show remarkable chemical stabilities,
reflected in the fact that their protonation, D/H exchange, and
solvolysis under extremely acidic conditions are blocked.

B RESULTS AND DISCUSSION

X-ray Crystallographic Analysis. X-ray crystallography
was used to perform a preliminary evaluation of the porphyrin
binding capability using XCage®". A mixture of the model
compounds mPorp-2H(Zn) with XCage®* results (Figure 1) in
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Figure 1. Structural formulas of the compounds relevant to the physical
organic investigation discussed in this paper.

the solubilization of these porphyrins in water—a good
indication of complex formation. Single crystals were obtained
by slow diffusion of iPr,O into Me,CO solutions of these
complexes. In the superstructures of mPorp-2H(Zn) CXCage8+,
both mPorp-2H and mPorp-Zn are positioned (Figure 2)
horizontally with respect to the binding cavity of XCage®". The
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Figure 2. Stick representation of the solid-sate superstructures obtained
from single-crystal X-ray crystallography. (a) Top-down view, (b) side-
on view, and (c) [CH--x] binding surfaces of mPorp-2HCXCage®".
(d) Top-down view, (e) side-on view, and (f) [CH--x] binding
surfaces of mPorp-ZnCXCage®'.

diphenyl roof and floor of XCage®* show large areas of [7-+7]
stacking with the porphyrin cores. Furthermore, there are
multiple [CH--x] interactions between the four p-xylylene
pillars of XCage®" and the porphyrin. These [CH:-z] distances
range from 2.9 to 4.4 A. The noncovalent bonding interactions
were visualized (Flgure S$23) by using the independent gradient
model (IGM) analysis. 60

NMR Spectroscopy in Solution. Both mPorp-2H and
mPorp-Zn are insoluble in water, preventing our ability to carry
out quantitative binding studies. In order to evaluate the
receptor substrate binding in solution, two water-soluble
porphyrins (Porp-2H and Porp-Zn), flanked by polydispersed
PEG chains, were synthesized using standard protocols. Upon
mixing XCage®" with Porp-2H(Zn) in D,O, the complexes
formed quantitatively, as indicated by the "H NMR spectra.
Surprisingly, two sets of proton signals for the encapsulated
porphyrins are observed (Figure 3), indicating the presence of
two co-conformational isomers. One set of "H NMR signals
corresponds to co-conformer H as defined by X-ray crystallog-
raphy. The other set of '"H NMR signals most likely originates
from co-conformer V in which the porphyrin substrate is located
vertically in relation to the binding cavity of XCage®". The meso
protons (1) of the porphyrin are obscured by XCage®* in co-
conformer H, and their chemical shift appears at 8.8 ppm as a
result of the shielding effects by the diphenyl units. In contrast,
the meso protons (1) in co-conformer V are beyond the
coverage of XCage®'; thus, their chemical shift shows up at 10.1
ppm. By comparing integrations, we found that the ratios of co-
conformer V to co-conformer H are 6:4 and 4:6, respectively, for
Porp-2HCXCage®* and Porp-ZnCXCage®". Co-conformer V
represents a kinetically trapped metastable state, which is
gradually transformed into co-conformer H over time. It takes
72 h at room temperature to complete the transformation in the
case of Porp-ZnCXCage®". The transformation of Porp-2HC
XCage®" is more difficult to achieve and requires additional
heating at 70 °C for 24 h to form co-conformer H. This
observation differs from the previously reported”’ PDI C
XCage®" complex, where the substrate PDI is only observed as
being positioned vertically with respect to the binding cavity of
XCage®". The co-existence of co-conformers H and V can be
attributed to the square-shaped porphyrin core, which presents a
similar overlapping surface area with XCage®" in both co-
conformers. The phenyl groups in the porphyrin are expected to
experience unfavorable steric strain in co-conformer V, making it
a less stable species when compared with co-conformer H,
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Figure 3. Co-conformational isomer transformation in D,0O solution
tracked by dynamic 'H NMR spectroscopy. (a) Molecular models
illustrating the transformation of co-conformer V to H. (b) '"H NMR
(500 MHz, D,0, 25 °C) spectra of Porp-2HCXCage®* collected at 0,
48, and 72 h at room temperature, along with additional heating at 70
°C for 5 and 24 h. The asterisks (*) identify "H NMR signals at 0 h for
the co-conformer V of Porp-2HCXCage®*.

where the phenyl groups actually contribute to the overall
stability of the complex by supporting several [CH--7]
interactions with XCage®". While controlling the transformation
of these two co-conformers is beyond the scope of this
investigation, it is worth noting that this type of co-conforma-
tional isomerization could lead to new opportunities to
manipulate multiple binding states within a multicyclic receptor.

The 'H NMR spectrum of the equilibrated Porp-2HC
XCage® in D,0 reveals (Figure 3) distinctive peaks for
porphyrin units as co-conformer H.%" Protons D, E, and F on
XCage®" experience the deshielding effect of the aromatic
porphyrin ring and are downfield shifted. Protons A and C,
which are positioned within the porphyrin shielding region,
experience upfield shifts. Protons B, facing the shielding center
of the porphyrin ring, experience the most dramatic upfield shift
(AS = —3.6 ppm). A NOESY experiment confirmed (Figure 4)
the encapsulated structure by showing®” the expected through-
space correlation peaks between Porp-2H and XCage®*. It is
worthy of note that the triazole rings are also likely to participate
in binding with XCage®’, as revealed by the through-space
correlations between the triazole ring protons 7 and protons F.
Such a 6guest-backfolding phenomenon has been attrib-
uted”***** to stabilization of the complex by noncovalent
bonding interactions. The corresponding 'H NMR spectro-
scopic analysis of Porp-ZnCXCage® is described in the
Supporting Information.

Photophysical Properties. The association between Porp-
2H(Zn) and XCage®" induces characteristic changes in the
optical properties of the porphyrin moiety. Red-shifted
absorption and emission (Figure Sa,b) of the encapsulated
Porp-2H were observed, and its fluorescence quantum yield was
enhanced from 16 to 25%, benefiting from the porphyrin being
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Figure 4. "H NMR spectroscopic investigation of the formation of the
Porp-2HCXCage®* complex. (a) '"H NMR (500 MHz, D,0, 25 °C)
spectra of (top) the equilibrated Porp-2HCXCage®" and (bottom)
XCage®. (b) '"H-'"H NOESY (500 MHz, D,0, 25 °C, 0.2 s mixing
time) of the equilibrated Porp-2HCXCage®". Proton labels are defined
on the relevant structural formulas in Figure 1.
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Figure S. Steady-state absorption and emission spectra. (a) Absorption
and (b) emission (ex: 440 nm) spectra of Porp-2H (blue, 10 M) and
Porp-2HCXCage®* (red, 10 uM). (c) Emission spectra (ex: 290 nm) of
Porp-2H (blue, 1 M) and Porp-2HCXCage®* (red, 1 uM). (d)
Emission spectra (ex: 330 nm) of XCage®* (black, 1 uM) and Porp-
2HCXCage® (red, 1 uM). All spectra were collected in H,O at 25 °C.

isolated in the hydrophobic binding pocket of XCage®*. In
comparison, previously reported porphyrin receptors either
quench®” the fluorescence or fail to induce any photophysical
response.”” The encapsulation of Porp-Zn by XCage®*
decreases the fluorescence quantum yield from S to 0.6%.

https://dx.doi.org/10.1021/jacs.0c02311
J. Am. Chem. Soc. 2020, 142, 8938—8945


http://pubs.acs.org/doi/suppl/10.1021/jacs.0c02311/suppl_file/ja0c02311_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02311?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02311?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02311?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02311?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02311?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02311?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02311?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02311?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02311?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02311?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02311?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02311?fig=fig5&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c02311?ref=pdf

Journal of the American Chemical Society pubs.acs.org/JACS
5 l’ll I’l’ 5 Ill' I’l’
(a) (b)
W W-..._.__\
) 7t N .
o O 3 0-
o Delay/ ps ©
A -1.0 ~
X ——0.40 1)
<C ——3.0 <
g° 15 1
wn
— 130 n—p=41% 0.4 ps A
——1000 —8B
7000 g—c =84 £5ps c
-10 L——1—V¢ T —T/F T T -10 L———¥1 . —— . T
330360 500 600700 1000 1200 330360 500 600700 1000 1200
/ nm / nm
10 Za 7F 10 7F 7F
(€) (d)
5
) 5
2 9 ~ - S
= Delay/ps © 2\%“:%
1.0 ~ 0 v
X 5] ' ——0.30 n
é ——19 %
8.0 -5 - -
10 260 p—p=2.3+0.4ps g\
——1000 B—c=39x3ns c
'1 5 T T Illl T T T Il 71000 T '1 O T T l'l' T T T I'l' T T
330360 500 600700 1000 1200 330360 500 600700 1000 1200

A/nm

A/ nm

Figure 6. Femtosecond transient absorption spectroscopy. Femtosecond TA spectra of (a) Porp-2H and (c) Porp-2HCXCage®" in H,O excited at
414 nm. Species-associated spectra of (b) Porp-2H and (d) Porp-2HCXCage®" obtained by wavelength global fitting to an A — B — C kinetic model.
State A represents the higher singlet excited state S, '*Porp-2H, state B is the lowest singlet excited state S; '*Porp-2H, and state C is the triplet state
T, >*Porp-2H. State C in (d) is not fully resolved on account of the slow ISC rate.

Table 1. Binding Constants and Thermodynamic Data at 25 °C“

entry host guest K /M™!
1 ExBox** Porp-2H 1.4 x 10
2 ExBox* Porp-Zn 5.1 x 10°
3 XCage®* Porp-2H 1.7 x 10"
4 XCage®* Porp-Zn 6.2 % 10°

AG/kcal mol™* AH?/kcal mol™ TAS/kcal mol™
—-9.7 =77 +2.0
-9.1 —-54 +3.7
—139 —16.1 22
—134 —12.8 +0.6

“The standard errors are presented in the Supporting Information. ’Determined by fluorescence titration. “Estimated from fluorescence titration.

“Measured by ITC.

There is an efficient energy transfer process from XCage8+ to
Porp-2H. When excited at 290 nm, the complex exhibits (Figure
5c) strong emission peaks for the Porp-2HCXCage®* complex
at 650 nm. The energy transfer efficiency was estimated by
comparing (Figure Sd) the fluorescence emission spectra of
XCage®" and Porp-2HCXCage®" excited at 330 nm. The close-
to-complete fluorescence quenching of XCage®" in the complex
of Porp-2HCXCage®" is a compelling sign of the efficient energy
transfer, which is calculated to be >96%. Time-dependent DFT
calculations carried out on Porp-2HCXCage®" reveal that the
HOMO is localized on Porp-2H and the LUMO on XCage®".
The calculated UV—vis absorption spectrum of Porp-2HC
XCage®" is red-shifted compared with that of Porp-2H, which is
in agreement with experimental observations.

In order to gain a better understanding of the influence of
molecular encapsulation on photophysical properties, transient
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absorption (TA) experiments were performed at femtosecond
and nanosecond resolutions. Femtosecond TA studies, exciting
the Soret band at 414 nm, reveal (Figure 6) a significant
enhancement of the lifetime of intersystem crossing when Porp-
2H is encapsulated in the cavity of XCage®'. This result
corroborates the enhanced fluorescence quantum yield of Porp-
2HCXCage®". Compared to Porp-2H, Porp-2HCXCage®"
shows improved stability of the triplet state as revealed by the
nanosecond TA spectra (see Figures S34 and S38). The energy
transfer within Porp-2HCXCage®" was investigated by femto-
second TA spectroscopy using an excitation wavelength of 330
nm. Under these conditions, we only observed (Figure $43) the
excited state of Porp-2H, and no excited state of XCage®* could
be detected (Figure S41) within 0.4 ps, suggesting an ultrafast
rate of energy transfer, which corroborate the efficient energy
transfer process observed by the fluorescence emission spec-
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troscopy. In contrast to Porp-2HCXCage®’, femtosecond TA
spectra (Figure S39) of Porp-ZnCXCage®" shows a charge-
separated state, accounting for the decreased fluorescence of this
complex.

Binding Thermodynamics and Kinetics. The changes in
optical properties upon porphyrin encapsulation enable a facile
study of the binding events. Fluorescence titrations of Porp-2H
and Porp-Zn with ExBox*" yielded directly their binding
constants in water. Since the binding affinities for XCage®" with
Porp-2H and Porp-Zn are too high to be determined directly,
competitive titrations were performed by displacing ExBox*"
with XCage®" from the complex Porp-2H(Zn)CExBox*". The
binding affinities (Table 1) between ExBox*" and the two
porphyrins are on the order of 107 M™'. Compared with
ExBox**, XCage8+ shows around a 1000-fold enhancement in
the binding affinities, which are around 10'° M~ (K; = 0.1 nM).
The highest affinity (K, = 1.7 X 10'© M™") was achieved in the
binding between XCage®* and Porp-2H. It should be noted that
these K, values are interpreted as a lower limit to the stability
constant, as the measurement was performed under conditions
where co-conformers V and H coexist®® in solution. The
equilibrated co-conformer H is expected to have a higher
stability with the absence of the metastable species.

Since the high binding affinity and aggregation of the two
porphyrins prevent the accurate measurement of binding
constants by isothermal titration calorimetry (ITC), a single
injection experiment was performed in order to determine the
binding enthalpy. The Gibbs free energy of the receptor—
substrate complexation was estimated directly from the
corresponding fluorescent titrations, providing a value for
TAS. Compared with ExBox*', the binding enthalpies of
XCage®" are in the range of 7—8 kcal mol™" larger, a major
contributing factor to the enhanced affinity. Surface area overlap
analysis reveals*® that XCage®* provides 1.5 times more binding
surface area for the porphyrin core compared with that of
ExBox**: 80% of the porphyrin core overlaps with XCage®”,
whereas only 50% of the porphyrin core overlaps in the case of
ExBox*". Compared with Porp-2H, Porp-Zn shows a significant
drop in binding enthalpy toward both XCage®" and ExBox**, an
observation that agrees well with the titration results which show
that the binding of Porp-Zn is generally 3 times weaker
compared with that of Porp-2H. This result implies that the
dehydration of the Zn ion upon binding is an energy-demanding
process.

The kinetics of porphyrin encapsulation by XCage®* can be
tracked by the change in fluorescence over time. The resulting
kinetic profiles were fitted (Figures SS3 and S54) using a
second-order kinetics equation. The threading rate constants of
XCage®* with Porp-2H and Porp-Zn were determined’” to be
7.2 X 10* and 4.6 X 10* M™' 57!, respectively. The remarkably
rapid threading kinetics agrees well with previously reported”*
results where threading a long polymer chain through a
macrocyclic receptor is a rapid process. It is necessary to note
that the rapid threading kinetics measured here represent the
formation of the Porp-2H(Zn) CXCage8+ complexes, in which
co-conformers V and H coexist as a mixture. The transformation
of co-conformer V into H is a slow process and requires days to
reach completion. Furthermore, the slower threading kinetics of
Porp-Zn matches well with the observed co-conformer
distribution, where a lesser amount of the metastable co-
conformer V is formed when compared with Porp-2H. The
dissociation rate constants (k,) for the Porp-2H(Zn)C
XCage®" complexes can be calculated using the equation kg =
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k,./K,, which reveals extremely slow dissociation processes with
the rate constants and half-lives (t/,) calculated at 4.2 X 107
(ti, =46 h) and 7.4 X 107° s™" (t,, = 26 h) for Porp-2HC
XCage® and Porp-ZnCXCage®, respectively. The slow
dissociations of Porp-2H(Zn)CXCage®* endow the complexes
with kinetic stabilities, wherein considerable amounts of the 1:1
complexes can still exist for days, even in the presence of a
competitor that has a stronger binding affinity with XCage®*.
Chemical Stability. It is well known that porphyrins and
metalloporphyrin are susceptible to acidic environments.
Protonation occurs at the pyrrole subunits and leads to changes
in photophysical properties which limit their performance in
certain technical scenarios. When added to a solution of HCI (1
M), Porp-2H is protonated instantly, as judged from the change
of its color from brown to green and a red-shifted absorption in
the UV—vis spectrum (Figure 7a). In contrast, Porp-2HC
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Figure 7. Stability test of Porp-2H and Porp-2HCXCage®".
Absorption spectra of (a) Porp-2H and (b) Porp-2HCXCage® in
H,O (blue) and 1 M HCI (red). Insets show the corresponding
solutions in H,O (left) and HCI (right). (c) "H NMR (500 MHz, D,0,
25 °C) spectrum of the pre-assembled Porp-2HCXCage®" in D,0.

XCage®" resists protonation, and no change is observed (Figure
7b) under the same conditions; i.e., the high charge density of
XCage®" plus its strong affinity with Porp-2H provide
protection from H* attack in aqueous solution. Encapsulation-
facilitated Brotonation (positive pK, shifts) is well docu-
mented,®®™"" whereas examples of frustrated protonation
(negative pK, shifts), induced by synthetic receptors, are
rare.”> There is no example, to our knowledge, where
protonation can be totally shut down by molecular encapsula-
tion, a property which would require a high binding affinity and
the protection of the protonation site deep inside the binding
cavity. As a comparison, the Porp-2HCExBox*" complex, with
four positive charges and a micromolar binding affinity, fails to
provide these kinds of protection and instantly dissociates
(Figure S60) into the corresponding protonated species, namely
Porp-4H>* and ExBox**, under the same conditions. On the
other hand, Porp-Zn suffers (Figure S59) from solvolysis in the
presence of HCI (1 M) as judged by the appearance of Porp-
4H in its absorption spectrum. Porp-ZnCXCage8+ remains
stable in HCI solution.

Considering the excellent performance of XCage®" which
prevents H* from attacking the porphyrin core, we envisioned
that D/H exchanges, involving the pyrrole subunits in
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deuterated solvents, should also be blocked. In order to test this
hypothesis, Porp-ZHCXCage8+ was prepared, first of all in H,O,
and subsequently redissolved in D,0. The "H NMR spectrum of
Porp-2HCXCage®* shows (Figure 7c) clearly NH signals at
—5.6 ppm, resulting from the shielding effect provided by both
the porphyrin core and the biphenyl units in XCage®". A
comparison of the NH integration, with respect to other
porphyrin proton signals, indicates”® no sign of D/H exchange.

B CONCLUSIONS

The tricyclic cyclophane serves as an excellent receptor for both
the free-base and Zn-porphyrins with subnanomolar affinity in
water. The tricyclic nature of XCage®" permits the formation of
two co-conformationally isomeric complexes with both
porphyrins, as revealed by "H NMR spectroscopy. XCage®" is
able to modulate both the photophysical properties and
chemical reactivities of the encapsulated porphyrins. The
isolation of both porphyrins by XCage®" with ultrahigh
stabilities provides us with a new platform to investigate
porphyrins at the single-molecule level.”*~’® We speculate that
the encapsulation characterizing the Porp-ZnCXCage®" com-
plex could be quite general for a library of metalloporphyrins
with a wide range of properties, leading to applications in
nanotechnology,‘k 77 artificial photodevice fabrication,”®” and
biomedical science.*"*
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