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Abstract: We introduce a flexible optimization model for maximum
likelihood-type estimation (M-estimation) that encompasses and general-
izes a large class of existing statistical models, including Huber’s concomi-
tant M-estimator, Owen’s Huber/Berhu concomitant estimator, the scaled
lasso, support vector machine regression, and penalized estimation with
structured sparsity. The model, termed perspective M-estimation, lever-
ages the observation that convex M-estimators with concomitant scale as
well as various regularizers are instances of perspective functions, a con-
struction that extends a convex function to a jointly convex one in terms
of an additional scale variable. These nonsmooth functions are shown to
be amenable to proximal analysis, which leads to principled and provably
convergent optimization algorithms via proximal splitting. We derive novel
proximity operators for several perspective functions of interest via a geo-
metrical approach based on duality. We then devise a new proximal split-
ting algorithm to solve the proposed M-estimation problem and establish
the convergence of both the scale and regression iterates it produces to a
solution. Numerical experiments on synthetic and real-world data illustrate
the broad applicability of the proposed framework.
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1. Introduction

High-dimensional regression methods play a pivotal role in modern data analy-
sis. A large body of statistical work has focused on estimating regression coef-
ficients under various structural assumptions, such as sparsity of the regression
vector [36]. In the standard linear framework, regression coefficients constitute,
however, only one aspect of the model. A more fundamental objective in statis-
tical inference is the estimation of both location (i.e., the regression coefficients)
and scale (e.g., the standard deviation of the noise) of the statistical model
from the data. A common approach is to decouple this estimation process by
designing and analyzing individual estimators for scale and location parameters
(see, e.g., [21, pp. 140], [41]) because joint estimation often leads to non-convex
formulations [14, 34]. One important exception has been proposed in robust
statistics in the form of a maximum likelihood-type estimator (M-estimator)
for location with concomitant scale [21, pp. 179], which couples both parame-
ters via a convex objective function. To discuss this approach more precisely,
we introduce the linear heteroscedastic mean shift regression model. This data
formation model will be used throughout the paper.

Model 1.1. The vector y = (ηi)1�i�n ∈ R
n of observations is

y = Xb+ o+ Ce, (1.1)

where X ∈ R
n×p is a known design matrix with rows (xi)1�i�n, b ∈ R

p is the
unknown regression vector (location), o ∈ R

n is the unknown mean shift vector
containing outliers, e ∈ R

n is a vector of realizations of i.i.d. zero mean random
variables, and C ∈ [0,+∞[

n×n
is a diagonal matrix the diagonal of which are

the (unknown) standard deviations. One obtains the homoscedastic mean shift
model when the diagonal entries of C are identical.

The concomitant M-estimator proposed in [21, pp. 179] is based on the ob-
jective function

(σ, b) �→
σ

n

n∑

i=1

(
hρ1

(
x�
i b− ηi
σ

)
+ δ

)
, (1.2)
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where hρ1
is the Huber function [20] with parameter ρ1 ∈ ]0,+∞[, δ ∈ [0,+∞[,

and the scalar σ is a scale. The objective function, which we also refer to as the
homoscedastic Huber M-estimator function, is jointly convex in both b and scalar
σ, and hence, amenable to global optimization. Under suitable assumptions, this
estimator can identify outliers o and can estimate a scale that is proportional
to the diagonal entries of C in the homoscedastic case. In [2], it was proposed
that joint convex optimization of regression vector and standard deviation may
also be advantageous in sparse linear regression. There, the objective function
is

(σ, b) �→
σ

n

n∑

i=1

(∣∣∣∣∣
x�
i b− ηi
σ

∣∣∣∣∣

2

+ δ

)
+ α1‖b‖1, (1.3)

where the term ‖ · ‖1 promotes sparsity of the regression estimate, α1 ∈ ]0,+∞[
is a tuning parameter, and σ is an estimate of the standard deviation. This
objective function is at the heart of the scaled lasso estimator [35]. The resulting
estimator is not robust to outliers but is equivariant, which makes the tuning
parameter α1 independent of the noise level. In [29], an extension of (1.2) was
introduced that includes a new penalization function as well as concomitant
scale estimation for the regression vector. The objective function is

(σ, τ, b) �→
σ

n

n∑

i=1

(
hρ1

(
x�
i b− ηi
σ

)
+ δ1

)
+

α1τ

p

p∑

i=1

(
bρ2

(
βi

τ

)
+ δ2

)
, (1.4)

where bρ2
is the reverse Huber (Berhu) function [29] with parameter ρ2 ∈

]0,+∞[, constants δ1 ∈ ]0,+∞[ and δ2 ∈ ]0,+∞[, and tuning parameter
α1 ∈ ]0,+∞[. This objective function is jointly convex in b and the scalar
parameters σ and τ . The estimator inherits the equivariance and robustness of
the previous estimators. In addition, the Berhu penalty is advantageous when
the design matrix comprises correlated rows [23]. In [10], it was observed that
these objective functions, turn out to be instances of the class of composite
“perspective functions” [8], a powerful construct that extends a convex func-
tion of a single variable to a jointly convex one in terms of an additional scale
variable (see Section 2.2 for a formal definition). Let us add that perspective
functions are also implicitly present in many data analysis models in the form
of regularization penalties for structured sparsity [3, 25, 26].

In the present paper, we bring to light the ubiquity of perspective functions
in statistical M-estimation and introduce a new statistical optimization model,
perspective M-estimation. The proposed perspective M-estimation model, put
forward in detail in Section 3, uses perspective functions as fundamental build-
ing blocks to couple scale and regression variables in a jointly convex fashion.
It includes in particular the formulations discussed in [10] as well as the M-
estimators discussed above as special cases, and it will be seen to cover a wide
range of models beyond those. In [10] an algorithm was proposed to solve a
specific formulation involving perspective functions in the context of general-
ized TREX estimation. To date, however, there exists no provably convergent
algorithm to solve composite convex optimization problems involving general
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perspective functions. To fill this gap, we construct in Section 4 a new proximal
splitting algorithm tailored to the perspective M-estimation problem and rigor-
ously establish the convergence of its iterates. Since the proximity operators of
perspective functions are known only in limited cases [10], another important
contribution of our work is to derive new ones to broaden the effective scope of
the proposed perspective M-estimation framework. Using geometrical insights
revealed by the dual problem, we derive in Section 2 new proximity operators
for several perspective functions, including the generalized scaled lasso, the gen-
eralized Huber, the abstract Vapnik, and the generalized Berhu function. These
developments lead to a unifying algorithmic framework for global optimization
of the proposed model using modern splitting techniques. The model also allows
for the seamless integration of a large class of regularizers for structured spar-
sity and novel robust heteroscedastic estimators of location and scale. Numerical
experiments on synthetic and real-world data illustrate the applicability of the
proposed framework in Section 5.

2. Proximity operators of perspective functions

The general perspective M-estimation model to be proposed in Problem 3.1
will hinge on the notion of a perspective function (see (2.15) below). Since
perspective functions are nonsmooth, to solve Problem 3.1 we need to bring
into play the machinery of proximal methods [4] and must therefore be able
to compute the proximity operators of these functions. A few examples of such
computations were presented in [10]. In this section, using a novel geometric
approach, we derive a number of important new instances. Since these results
are of general interest beyond statistical analysis, throughout,H is a real Hilbert
space with scalar product 〈· | ·〉 and associated norm ‖ · ‖.

2.1. Notation and background on convex analysis

The closed ball with center x ∈ H and radius ρ ∈ ]0,+∞[ is denoted by B(x; ρ).
Let C be a subset of H. Then

ιC : H → {0,+∞} : x �→

{
0, if x ∈ C;

+∞, if x /∈ C
(2.1)

is the indicator function of C,

dC : H → [0,+∞] : x �→ inf
y∈C

‖y − x‖ (2.2)

is the distance function to C, and

σC : H → [−∞,+∞] : u �→ sup
x∈C

〈x | u〉 (2.3)

is the support function of C. If C is nonempty, closed, and convex then, for
every x ∈ H, there exists a unique point projCx ∈ C, called the projection of x
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onto C, such that ‖x− projCx‖ = dC(x). We have

(∀x ∈ H)(∀p ∈ H) p = projCx ⇔

{
p ∈ C

(∀y ∈ C) 〈y − p | x− p〉 � 0.
(2.4)

The normal cone to C is

NC : H → 2H : x �→

{{
u ∈ H

∣∣ sup 〈C − x | u〉 � 0
}
, if x ∈ C;

∅, otherwise.
(2.5)

A function ϕ : H → ]−∞,+∞] is proper if domϕ =
{
x ∈ H

∣∣ ϕ(x) < +∞
}
�= ∅

and coercive if lim‖x‖→+∞ ϕ(x) = +∞. We denote by Γ0(H) the class of proper
lower semicontinuous convex functions from H to ]−∞,+∞]. Let ϕ ∈ Γ0(H).
The conjugate of ϕ is

ϕ∗ : H → ]−∞,+∞] : u �→ sup
x∈H

(
〈x | u〉 − ϕ(x)

)
. (2.6)

It also belongs to Γ0(H) and ϕ∗∗ = ϕ. The Moreau subdifferential of ϕ is the
set-valued operator

∂ϕ : H → 2H : x �→
{
u ∈ H

∣∣ (∀y ∈ domϕ) 〈y − x | u〉+ ϕ(x) � ϕ(y)
}
. (2.7)

We have
(∀x ∈ H)(∀u ∈ H) u ∈ ∂ϕ(x) ⇔ x ∈ ∂ϕ∗(u). (2.8)

Moreover,
(∀x ∈ H)(∀u ∈ H) ϕ(x) + ϕ∗(u) � 〈x | u〉 (2.9)

and

(∀x ∈ H)(∀u ∈ H) u ∈ ∂ϕ(x) ⇔ ϕ(x) + ϕ∗(u) = 〈x | u〉. (2.10)

If ϕ is Gâteaux differentiable at x ∈ domϕ, with gradient ∇ϕ(x), then

∂ϕ(x) = {∇ϕ(x)}. (2.11)

The infimal convolution of ϕ and ψ ∈ Γ0(H) is

ϕ�ψ : H → [−∞,+∞] : x �→ inf
y∈H

(
ϕ(y) + ψ(x− y)

)
. (2.12)

Given any z ∈ domϕ, the recession function of ϕ is

(∀x ∈ H) (recϕ)(x) = sup
y∈domϕ

(
ϕ(x+ y)− ϕ(y)

)
= lim

α→+∞

ϕ(z + αx)

α
. (2.13)

Finally, the proximity operator of ϕ is [27]

proxϕ : H → H : x �→ argmin
y∈H

(
ϕ(y) +

1

2
‖x− y‖2

)
. (2.14)

For detailed accounts of convex analysis, see [4, 31].
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2.2. The geometry of proximity operators of perspective functions

Let ϕ ∈ Γ0(H). The perspective of ϕ is

ϕ̃ : R×H → ]−∞,+∞] : (σ, x) �→

⎧
⎪⎨
⎪⎩

σϕ(x/σ), if σ > 0;

(recϕ)(x), if σ = 0;

+∞, otherwise.

(2.15)

We have ϕ̃ ∈ Γ0(R⊕G) [8, Proposition 2.3]. The following property is useful to
establish existence results for problems involving perspective functions.

Proposition 2.1. Let ϕ ∈ Γ0(H) be such that inf ϕ(H) > 0 and 0 ∈ int domϕ∗.

Then ϕ̃ is coercive.

Proof. We have ϕ∗(0) = − inf ϕ(H) < 0 and 0 ∈ int domϕ∗. Hence, (0, 0) ∈
int epiϕ∗. In turn, we derive from [8, Proposition 2.3(iv)] that

(0, 0) ∈ int
{
(μ, u) ∈ R⊕H

∣∣ μ+ ϕ∗(u) � 0
}
= int dom (ϕ̃)∗. (2.16)

It therefore follows from [4, Proposition 14.16] that ϕ̃ is coercive.

Let us now turn to the proximity operator of ϕ̃.

Lemma 2.2 ([10, Theorem 3.1]). Let ϕ ∈ Γ0(H), let γ ∈ ]0,+∞[, let σ ∈ R,

and let x ∈ H. Then the following hold:

(i) Suppose that σ + γϕ∗(x/γ) � 0. Then proxγϕ̃(σ, x) = (0, 0).
(ii) Suppose that domϕ∗ is open and that σ + γϕ∗(x/γ) > 0. Then

proxγϕ̃(σ, x) =
(
σ + γϕ∗(p), x− γp

)
, (2.17)

where p is the unique solution to the inclusion x ∈ γp+(σ+γϕ∗(p))∂ϕ∗(p).
If ϕ∗ is differentiable at p, then p is characterized by x = γp + (σ +
γϕ∗(p))∇ϕ∗(p).

When domϕ∗ is not open, Lemma 2.2 is not applicable. To deal with such
cases, we propose a geometric construction that computes proxγϕ̃ via the pro-
jection onto a certain convex set. It is based on the following property, which
reduces the problem of evaluating the proximity operator of ϕ̃ to a projection
problem in R

2 if ϕ is radially symmetric.

Proposition 2.3. Let φ ∈ Γ0(R) be an even function, set ϕ = φ ◦ ‖ · ‖ : H →
]−∞,+∞], let γ ∈ ]0,+∞[, let σ ∈ R, and let x ∈ H. Set

R =
{
(χ, ν) ∈ R

2
∣∣ χ+ φ∗(ν) � 0

}
. (2.18)

Then R is a nonempty closed convex set, and the following hold:

(i) Suppose that σ + γφ∗(‖x‖/γ) � 0. Then proxγϕ̃(σ, x) = (0, 0).
(ii) Suppose that σ > γφ(0) and x = 0. Then proxγϕ̃(σ, x) = (σ − γφ(0), x).
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(iii) Suppose that σ + γφ∗(‖x‖/γ) > 0 and x �= 0, and set

(χ, ν) = projR(σ/γ, ‖x‖/γ). (2.19)

Then

proxγϕ̃(σ, x) =

(
σ − γχ,

(
1−

γν

‖x‖

)
x

)
. (2.20)

Proof. The properties of R follow from the fact that φ∗ ∈ Γ0(R). Now, let us
recall from [10, Remark 3.2] that, if

C =
{
(μ, u) ∈ R⊕H

∣∣ μ+ ϕ∗(u) � 0
}
, (2.21)

then
proxγϕ̃(σ, x) = (σ, x)− γprojC

(
σ/γ, x/γ

)
. (2.22)

In addition, [4, Example 13.8] states that

ϕ∗ = φ∗ ◦ ‖ · ‖. (2.23)

(i): This follows from (2.23) and Lemma 2.2(i).
(ii): Let us show that projC(σ/γ, 0) = (φ(0), 0), which will establish the claim

by virtue of (2.22). Since φ is an even function in Γ0(R), φ(0) = inf φ(R) =
−φ∗(0). Hence φ(0)+ϕ∗(0) = φ(0)+φ∗(0) = 0 and (φ(0), 0) ∈ C. Now fix (η, y) ∈
C. Then, since ϕ is an even function in Γ0(H), η � −ϕ∗(y) � − inf ϕ∗(H) =
−ϕ∗(0) = −φ∗(0) = φ(0) and, since σ > γφ(0), we get

〈(η, y)− (φ(0), 0) | (σ/γ, 0)− (φ(0), 0)〉 =
(
η − φ(0)

)(
σ/γ − φ(0)

)
� 0. (2.24)

Altogether, (2.4) asserts that projC(σ/γ, 0) = (φ(0), 0).
(iii): In view of (2.22), it is enough to show that projC(σ/γ, x/γ) =

(χ, νx/‖x‖). Since (χ, ν) ∈ R, (2.23) yields χ+ϕ∗(νx/‖x‖) = χ+φ∗(ν) � 0 and,
therefore, (χ, νx/‖x‖) ∈ C. On the other hand, we infer from (2.23) that C ⊂
R⊕H is radially symmetric in the H-direction. As a result, projC

(
σ/γ, x/γ

)
∈

V = R × span {x} and therefore projC
(
σ/γ, x/γ

)
= projV ∩C

(
σ/γ, x/γ

)
[4,

Proposition 29.5]. Now fix (η, y) ∈ V ∩ C. Then (η,±‖y‖) ∈ R and (2.4) yields

(η − χ)(σ/γ − χ) + (±‖y‖ − ν)(‖x‖/γ − ν) =

〈(η − χ,±‖y‖ − ν) | (σ/γ − χ, ‖x‖/γ − ν)〉
R2 � 0. (2.25)

Hence, since y = ±‖y‖x/‖x‖,

〈(η, y)− (χ, νx/‖x‖) | (σ/γ, x/γ)− (χ, νx/‖x‖)〉
R⊕H

= (η − χ)(σ/γ − χ) + 〈y − νx/‖x‖ | x/γ − νx/‖x‖〉

= (η − χ)(σ/γ − χ) + 〈±‖y‖x/‖x‖ − νx/‖x‖ | ‖x‖x/(γ‖x‖)− νx/‖x‖〉

= (η − χ)(σ/γ − χ) + (±‖y‖ − ν)(‖x‖/γ − ν)〈x | x〉/‖x‖2

= (η − χ)(σ/γ − χ) + (±‖y‖ − ν)(‖x‖/γ − ν)

� 0. (2.26)

Altogether, we derive from (2.4) that (χ, νx/‖x‖) = projV ∩C

(
σ/γ, x/γ

)
=

projC
(
σ/γ, x/γ

)
.
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Fig 1. Geometry of the computation of proxϕ̃ in (2.22). Top: original function ϕ. Center:
conjugate of ϕ. Bottom: action of the projection operator projC onto the set C of (2.21). The
proximity operator of ϕ̃ is Id −projC. In the specific example depicted here, H = R and ϕ is
the Berhu function of (2.58).

2.3. Examples

We provide several examples that are relevant to the statistical problems we
have in sight.

Example 2.4 (generalized scaled lasso function). [10, Example 3.7] Let α ∈
]0,+∞[, γ ∈ ]0,+∞[, κ ∈ ]0,+∞[, q ∈ ]1,+∞[, σ ∈ R, and x ∈ H. Set
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ϕ = α+ ‖ · ‖q/κ : H → R and q∗ = q/(q − 1). Then

ϕ̃(σ, x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ασ +
‖x‖q

κσq−1
, if σ > 0;

0, if x = 0 and σ = 0;

+∞, otherwise.

(2.27)

Now set ρ = (κ/q)q
∗−1. If q∗γq∗−1σ + ρ‖x‖q

∗

> q∗γq∗α and x �= 0, let t be the
unique solution in ]0,+∞[ to the equation

t2q
∗−1 +

q∗(σ − γα)

γρ
tq

∗−1 +
q∗

ρ2
t−

q∗‖x‖

γρ2
= 0. (2.28)

Set p = tx/‖x‖ if x �= 0, and p = 0 if x = 0. Then (note that [10, Eq. (3.47)] is
incorrect when α �= 0)

proxγϕ̃(σ, x) ={(
σ + γ

(
ρtq

∗

/q∗ − α
)
, x− γp

)
, if q∗γq∗−1σ + ρ‖x‖q

∗

> q∗γq∗α;(
0, 0

)
, if q∗γq∗−1σ + ρ‖x‖q

∗

� q∗γq∗α.
(2.29)

Given ρ ∈ ]0,+∞[, the classical Huber function is defined as [20]

hρ : R → R : ξ �→

⎧
⎪⎪⎨
⎪⎪⎩

ρ|ξ| −
ρ2

2
, if |ξ| > ρ;

|ξ|2

2
, if |ξ| � ρ.

(2.30)

Below, we study the perspective of a generalization of it.

Example 2.5 (generalized Huber function). Let α, γ, and ρ be in ]0,+∞[, let
q ∈ ]1,+∞[, and set q∗ = q/(q − 1). Define

ϕ : H → R : x �→

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

α−
ρq

∗

q∗
+ ρ‖x‖, if ‖x‖ > ρq

∗/q;

α+
‖x‖q

q
, if ‖x‖ � ρq

∗/q.

(2.31)

Let σ ∈ R and x ∈ H. Then

ϕ̃(σ, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
α−

ρq
∗

q∗

)
σ + ρ‖x‖, if σ > 0 and ‖x‖ > σρq

∗/q;

ασ +
‖x‖q

qσq−1
, if σ > 0 and ‖x‖ � σρq

∗/q;

ρ‖x‖, if σ = 0;

+∞, if σ < 0.

(2.32)

In addition, the following hold:
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(i) Suppose that ‖x‖ � γρ and ‖x‖q
∗

� γq∗q∗(α−σ/γ). Then proxγϕ̃(σ, x) =
(0, 0).

(ii) Suppose that σ � γ(α− ρq
∗

/q∗) and ‖x‖ > γρ. Then

proxγϕ̃(σ, x) =

(
0,

(
1−

γρ

‖x‖

)
x

)
. (2.33)

(iii) Suppose that σ > γ(α−ρq
∗

/q∗) and ‖x‖ � γρq
∗−1(σ/γ+ρ2−q∗ +ρq

∗

/q∗−
α). Then

proxγϕ̃(σ, x) =

(
σ + γ

(
ρq

∗

q∗
− α

)
,

(
1−

γρ

‖x‖

)
x

)
. (2.34)

(iv) Suppose that ‖x‖q
∗

> q∗γq∗(α − σ/γ) and ‖x‖ < γρq
∗−1(σ/γ + ρ2−q∗ +

ρq
∗

/q∗−α). If x �= 0, let t be the unique solution in ]0,+∞[ to the equation

γt2q
∗−1 + q∗(σ − γα)tq

∗−1 + γq∗t− q∗‖x‖ = 0. (2.35)

Set p = tx/‖x‖ if x �= 0, and p = 0 if x = 0. Then

proxγϕ̃(σ, x) ={(
σ + γ(tq

∗

/q∗ − α), x− γp
)
, if q∗γq∗−1σ + ‖x‖q

∗

> q∗γq∗α;(
0, 0

)
, if q∗γq∗−1σ + ‖x‖q

∗

� q∗γq∗α.
(2.36)

Proof. We derive (2.32) from (2.31), (2.15), and the property that recϕ =
rec (ρ‖ · ‖) = ρ‖ · ‖. Now set

φ : R → R : ξ �→

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

α−
ρq

∗

q∗
+ ρ|ξ|, if |ξ| > ρq

∗/q;

α+
|ξ|q

q
, if |ξ| � ρq

∗/q.

(2.37)

Then φ = (ρ| · |)� (| · |q/q) + α is convex and even, and ϕ = φ ◦ ‖ · ‖. We derive
from [4, Proposition 13.24(i) and Example 13.2(i)] that

φ∗ =

(
(
ρ| · |

)
�

(
| · |q

q

))∗

− α = ι[−ρ,ρ] +
| · |q

∗

q∗
− α. (2.38)

In turn, (2.38) and (2.18) yield

R = R1 ∩ R2, where

{
R1 = R× [−ρ, ρ]

R2 =
{
(χ, ν) ∈ R

2
∣∣ |ν|q∗ � q∗(α− χ)

}
.

(2.39)

Now set (χ, ν) = projR(σ/γ, ‖x‖/γ).
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(i): This follows from Proposition 2.3(i) and (2.38).
(ii): Since σ/γ � α− ρq

∗

/q∗, we have

(χ, ν) = projR1

(
σ/γ, ‖x‖/γ

)
=

(
σ/γ, proj[−ρ,ρ](‖x‖/γ)

)
. (2.40)

Thus, since ‖x‖/γ > ρ, (χ, ν) = (σ/γ, ρ) and (2.33) follows from Proposi-
tion 2.3(iii).

(iii): The point Π = (α − ρq
∗

/q∗, ρ) is in the intersection of the boundaries
of R1 and R2. Therefore, the normal cone to R at Π is generated by outer
normals n1 to R1 and n2 to R2 at Π. A tangent vector to R2 at Π is t(Π) =
(−(|·|q

∗

/q∗)′(ρ), 1) = (−ρq
∗−1, 1). We can take n1 = (0, 1) and n2 = (1, ρq

∗−1) ⊥
t(Π). Thus, the set of points which have projection Π onto R is

Π +NRΠ

= Π+ cone (n1, n2)

=
(
α− ρq

∗

/q∗, ρ
)
+
{
(τ, ξ) ∈ R× R

∣∣ τ � 0 and ξ � ρq
∗−1τ

}

=
{
(τ, ξ) ∈ R× R

∣∣ τ � α− ρq
∗

/q∗ and ξ − ρ � ρq
∗−1(τ − α+ ρq

∗

/q∗)
}

=
{
(τ, ξ) ∈ R× R

∣∣ τ � α− ρq
∗

/q∗ and ξ � ρ+ ρq
∗−1(τ − α) + ρ2q

∗−1/q∗)
}
,

(2.41)

and therefore

(χ, ν) =
(
α−ρq

∗

/q∗, ρ
)

⇔

{
σ � γ

(
α− ρq

∗

/q∗
)

‖x‖ � γ
(
ρ+ ρq

∗−1(σ/γ − α) + ρ2q
∗−1/q∗)

)
.

(2.42)
In view of Proposition 2.3(iii), this yields (2.34).

(iv): Here (σ/γ, ‖x‖/γ) /∈ R2 and (χ, ν) = projR2
(σ/γ, ‖x‖/γ). Since

R2 =
{
(χ, ν) ∈ R

2
∣∣ χ+

(
α+ | · |q/q

)∗
(ν) � 0

}
, (2.43)

the expression of proxγϕ̃(σ, x) is computed exactly as though we were dealing
with the generalized scaled lasso function α+‖ ·‖q/q of Example 2.4 with κ = q
and the result is given in (2.29).

Example 2.6 (generalized Berhu function). Let α, γ, ρ, and κ be in ]0,+∞[,
let q ∈ ]1,+∞[, and set C = B(0; ρ). Define ϕ : H → R by

ϕ = α+ κ‖ · ‖+
dqC

qρq∗−1
, where q∗ =

q

q − 1
, (2.44)

and let σ ∈ R and x ∈ H. Then

ϕ̃(σ, x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ασ + κ‖x‖+
σ

qρq∗−1

(
‖x‖

σ
− ρ

)q

, if σ > 0 and ‖x‖ > ρσ;

ασ + κ‖x‖, if σ > 0 and ‖x‖ � ρσ;

0, if σ = 0 and x = 0;

+∞, otherwise.

(2.45)
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Furthermore, set Δ: R → R : μ �→ max(|μ| − κ, 0) +maxq
∗

(|μ| − κ, 0)/q∗. Then
the following hold:

(i) Suppose that Δ(‖x‖/γ) � (α− σ/γ)/ρ. Then proxγϕ̃(σ, x) = (0, 0).
(ii) Suppose that Δ(‖x‖/γ) > (α− σ/γ)/ρ and that ‖x‖ > γκ+ ρ(σ− γα). If

x �= 0, let t be the unique solution in ]κ,+∞[ to the polynomial equation

ρ

(
σ−γα+γρ

(
t−κ+

(t− κ)q
∗

q∗

))(
1+(t−κ)q

∗−1
)
+γt−‖x‖ = 0. (2.46)

Set p = tx/‖x‖ if x �= 0, and set t = 0 and p = 0 if x = 0. Then
proxγϕ̃(σ, x) =

(
σ − γα+ γρΔ(t), x− γp

)
.

(iii) Suppose that γκ � ‖x‖ � γκ+ ρ(σ − γα). Then

proxγϕ̃(σ, x) =
(
σ − γα, (1− γκ/‖x‖)x

)
. (2.47)

(iv) Suppose that σ > γα and ‖x‖ < γκ. Then proxγϕ̃(σ, x) = (σ − γα, 0).

Proof. The geometry underlying the proof is that depicted in Fig. 1, where
q = 2. Set R = [−ρ, ρ], D = [−κ, κ], φ = α + κ| · | + dq[−ρ,ρ]/(qρ

q/q∗), θ : R →

R : t �→ |t|q/(qρq/q
∗

), and ψ : R → R : t �→ ρ(|t| + |t|q
∗

/q∗). Then φ : R → R is
convex and even, and it follows from (2.44) and [4, Example 13.8] that

ϕ = φ ◦ ‖ · ‖ and ϕ∗ = φ∗ ◦ ‖ · ‖. (2.48)

Furthermore, σD = κ| · | and we derive from [4, Examples 13.26 and 13.2(i)] that

φ∗ =
(
σD + θ ◦ dR

)∗
− α

= σ∗
D �

(
θ ◦ dR

)∗
− α

= ιD �
(
σR + θ∗ ◦ | · |

)
− α

= ιD �
(
ρ| · |+ θ∗ ◦ | · |

)
− α

= ιD �
(
ψ ◦ | · |

)
− α

=
(
ψ ◦ dD

)
− α

= ρ

(
dD +

dq
∗

D

q∗

)
− α. (2.49)

In turn, [4, Example 17.33] yields

(∀ν ∈ R) ∂φ∗(ν) =

⎧
⎪⎨
⎪⎩

{
ρ

(
1 + dq

∗−1
D (ν)

dD(ν)

)
(ν − projDν)

}
, if ν /∈ D;

(
NDν

)
∩ [−ρ, ρ], if ν ∈ D.

(2.50)

However, since D = [−κ, κ], we have dD : ν �→ max(|ν| −κ, 0). Therefore, (2.49)
implies that

(∀ν ∈ R) φ∗(ν) = ρΔ(ν)− α
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=

{
ρ
(
|ν| − κ+ (|ν| − κ)q

∗

/q∗
)
− α, if |ν| > κ;

−α, if |ν| � κ
(2.51)

and

(∀ν ∈ R) ∂φ∗(ν) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
ρ
(
1 + (|ν| − κ)q

∗−1
)
sign(ν)

}
, if |ν| > κ;

[0, ρ], if ν = κ;

[−ρ, 0], if ν = −κ;

{0}, if |ν| < κ.

(2.52)

On the other hand, (2.51) and (2.18) yield

R =
{
(χ, ν) ∈ R

2
∣∣ ρΔ(ν) � α− χ

}
. (2.53)

Now set Π = (α, κ) and (χ, ν) = projR(σ/γ, ‖x‖/γ). In view of (2.52), the
normal cone to epiφ∗ at (κ,−α) is generated by the vectors (ρ,−1) and (0,−1).
Hence, the normal cone to R at Π is generated by n1 = (1, ρ) and n2 = (1, 0),
that is

NRΠ =
{
(τ, ξ) ∈ R× R

∣∣ 0 � ξ � ρτ
}
. (2.54)

In turn,

proj−1
R

{Π} = Π+NRΠ =
{
(τ, ξ) ∈ R

2
∣∣ κ � ξ � κ+ ρ(τ − α)

}
. (2.55)

(i): It follows from the assumptions and (2.51) that σ + γφ∗(‖x‖/γ) � 0. In
turn, Proposition 2.3(i) implies that proxγϕ̃(σ, x) = (0, 0).

(ii): We have (σ/γ, ‖x‖/γ) /∈ R ⊃ ]−∞, α]× [−κ, κ] and ‖x‖/γ > κ+ρ(σ/γ−
α). Hence |ν| > κ. Now set (π, p) = projC(σ/γ, x/γ). Then ‖p‖ = |ν| > κ.
Therefore, since it results from (2.48) and (2.49) that domϕ∗ = dom (φ∗◦‖·‖) =
H, Lemma 2.2(ii), (2.48), and (2.52) yield

x = γp+
(
σ + γϕ∗(p)

)
∇ϕ∗(p)

= γp+
(
σ + γφ∗(‖p‖)

)
∇(φ∗ ◦ ‖ · ‖)(p)

=

(
γ + ρ

(
σ − γα+ γρ

(
‖p‖ − κ+

(‖p‖ − κ)q
∗

q∗

))(
1 + (‖p‖ − κ)q

∗−1

‖p‖

))
p.

(2.56)

Hence,

p =
1

γ + ρ

(
σ − γα+ γρ

(
t− κ+

(t− κ)q
∗

q∗

))(
1 + (t− κ)q

∗−1

t

)x, (2.57)

where t = ‖p‖ is the unique solution in ]κ,+∞[ to (2.46), which is obtained by
taking the norm of both sides of (2.56). We then get the conclusion by invoking
(2.17).
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(iii): In view of (2.55), the assumptions imply that (σ/γ, ‖x‖/γ) ∈ Π+NRΠ
and therefore that (χ, ν) = (α, κ). Consequently, Proposition 2.3(iii) yields
proxγϕ̃(σ, x) =

(
σ − γα, (1− γκ/‖x‖)x

)
.

(iv): Set H = ]−∞, α]× R. Then R = R ∩H and (σ/γ, ‖x‖/γ) ∈ ]α,+∞[ ×
[−κ, κ]. Hence, (χ, ν) = projH(σ/γ, ‖x‖/γ) = (α, ‖x‖/γ). In turn, we derive
from Proposition 2.3(iii) that proxγϕ̃(σ, x) = (σ − γα, 0).

Example 2.7 (standard Berhu function). Let α, γ, and ρ be in ]0,+∞[. The
standard Berhu function of [29] with shift α is obtained by setting H = R, κ = 1,
and q = 2 in (2.44), that is

bρ : R → R : x �→

⎧
⎨
⎩
α+

|x|2 + ρ2

2ρ
, if |x| > ρ;

α+ |x|, if |x| � ρ.
(2.58)

Now let σ ∈ R and x ∈ R. Then we derive from Example 2.6 that

b̃ρ(σ, x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ασ +
|x|2 + σ2ρ2

2ρσ
, if σ > 0 and |x| > σρ;

ασ + |x|, if σ > 0 and |x| � σρ;

0, if σ = 0 and x = 0;

+∞, otherwise,

(2.59)

and that proxγb̃ρ(σ, x) is given by

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(0, 0) if max(|x|2 − γ2, 0) � 2γ(γα− σ)/ρ;

(σ − γα, 0) if σ > γα and |x| � γ;(
σ − γα, (1− γ/|x|)x

)
if σ > γα and γ < |x| � γ + ρ(σ − γα);(

σ − γα+ γρ(|p|2 − 1)/2, x− γp
)

if |x| > γ + ρ(σ − γα) and

|x| >
√
γ2 + 2γ(γα− σ)/ρ,

(2.60)
with

p =
1

γ + ρ
(
σ − γα+

γρ

2

(
t2 − 1

)) x, (2.61)

where t is the unique solution in ]1,+∞[ to the reduced third degree equation

t3 +

(
2
(
γ + ρ(σ − γα)

)

γρ2
− 1

)
t−

2‖x‖

γρ2
= 0, (2.62)

which can be solved explicitly via Cardano’s formula.

Example 2.8 (abstract Vapnik function). Let α, ε, and γ be in ]0,+∞[, and
define ϕ : H → R by ϕ = α+max(‖ · ‖ − ε, 0). Then

ϕ̃ : H → ]−∞,+∞] : (σ, x) �→

{
ασ +max(‖x‖ − εσ, 0), if σ � 0;

+∞, if σ < 0.
(2.63)

Now let σ ∈ R and x ∈ H. Then the following hold:
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(i) Suppose that σ + ε‖x‖ � γα and ‖x‖ � γ. Then proxγϕ̃(σ, x) = (0, 0).
(ii) Suppose that σ � γ(α− ε) and ‖x‖ > γ. Then

proxγϕ̃(σ, x) =

(
0,

(
1−

γ

‖x‖

)
x

)
. (2.64)

(iii) Suppose that σ > γ(α− ε) and ‖x‖ � εσ + γ(1 + ε(ε− α)). Then

proxγϕ̃(σ, x) =

(
σ + γ(ε− α),

(
1−

γ

‖x‖

)
x

)
. (2.65)

(iv) Suppose that σ+ ε‖x‖ > γα and ε(σ− γα) < ‖x‖ < εσ+ γ(1+ ε(ε−α)).
Then

proxγϕ̃(σ, x) =
σ + ε‖x‖ − γα

1 + ε2

(
1,

ε

‖x‖
x

)
. (2.66)

(v) Suppose that σ � γα and ‖x‖ � ε(σ − γα). Then proxγϕ̃(σ, x) = (σ −
γα, x).

Proof. We derive (2.63) at once from (2.15). Set φ = α+max(| · | − ε, 0). Then
ϕ = φ ◦ ‖ · ‖ and φ = α+ d[−ε,ε] = α+ ι[−ε,ε] � | · |. Therefore

φ∗ = ε| · |+ ι[−1,1] − α. (2.67)

Thus, (2.18) yields

R = R1 ∩ R2, where

{
R1 = ]−∞, α]× [−1, 1]

R2 =
{
(χ, ν) ∈ R

2
∣∣ ε|ν| � α− χ

}
.

(2.68)

Now set (χ, ν) = projR(σ/γ, ‖x‖/γ).
(i): This follows from (2.67) and Proposition 2.3(i).
(ii): Since σ/γ � α− ε and ‖x/γ‖ > 1, it follows from (2.68) that

(χ, ν) = projR1

(
σ/γ, ‖x‖/γ

)
=

(
σ/γ, 1

)
. (2.69)

In turn, we derive (2.64) from Proposition 2.3(iii).
(iii): The point Π = (α − ε, 1) lies in the intersection of the boundaries of

R1 and R2, which are line segments. Therefore, the normal cone to R at Π is
generated by outer normals n1 to R1 and n2 to R2 at Π. A tangent vector to
R2 at Π is t(Π) = (−ε, 1). Therefore we take n1 = (0, 1) and n2 = (1, ε) ⊥ t(Π).
Consequently, the set of points which have projection Π onto R is

proj−1
R

{Π} = Π+NRΠ

= Π+ cone (n1, n2)

=
(
α− ε, 1

)
+
{
(τ, ξ) ∈ R

2
∣∣ τ � 0 and ξ � ετ

}

=
{
(τ, ξ) ∈ R

2
∣∣ τ � α− ε and ξ � 1 + ε(τ − α+ ε)

}

=
{
(τ, ξ) ∈ R

2
∣∣ τ � α− ε and ξ � ετ + 1 + ε(ε− α)

}
, (2.70)
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and it contains (σ/γ, ‖x‖/γ). Hence

(χ, ν) =
(
α− ε, 1

)
⇔

{
σ � γ(α− ε)

‖x‖ � εσ + γ
(
1 + ε(ε− α)

)
.

(2.71)

We then use Proposition 2.3(iii) to get (2.65).
(iv): In this case, (χ, ν) = projR2

(σ/γ, ‖x‖/γ). More precisely, (χ, ν) is the
projection of (σ/γ, ‖x‖/γ) onto the half-space

{
(τ, ξ) ∈ R

2
∣∣ εξ � α− τ

}
={

(τ, ξ) ∈ R
2
∣∣ 〈(τ, ξ) | n2〉 � α

}
, where n2 = (1, ε). Thus,

(χ, ν) =
1

γ
(σ, ‖x‖) +

α− 〈(σ, ‖x‖) | n2〉/γ

‖n2‖2
n2

=

(
σ

γ
+

α− (σ + ε‖x‖)/γ

1 + ε2
,
‖x‖

γ
+ ε

α− (σ + ε‖x‖)/γ

1 + ε2

)
, (2.72)

and (2.66) follows from Proposition 2.3(iii).
(v): Set Π = (α, 0), n2 = (1, ε), and n3 = (1,−ε). The set of points which

have projection Π onto R is

Π +NRΠ = Π+NR2
Π

= Π+ cone (n2, n3)

=
(
α, 0

)
+
{
(τ, ξ) ∈ R

2
∣∣ τ � 0 and ξ � ετ

}

=
{
(τ, ξ) ∈ R

2
∣∣ τ � α and ξ � ε(τ − α)

}
, (2.73)

and it therefore contains (σ/γ, ‖x‖/γ). In turn, (χ, ν) = (α, 0) and the conclusion
follows from Proposition 2.3(iii).

3. Optimization model and examples

Let us first recall that our data formation model is Model 1.1. We now in-
troduce our perspective M-estimation model, which enables the simultaneous
estimation of the regression vector b = (βk)1�k�p ∈ R

p as well as scale vectors
s = (σi)1�i�N ∈ R

N and t = (τ i)1�i�P ∈ R
P . If robust data fitting functions

are used, the outlier vector in Model 1.1 can be identified from the solution of
(3.2) below. For instance, if the Huber function is used for data fitting, one can
estimate the mean shift vector o in (1.1) [1, 33].

The proposed perspective M-estimation optimization problem is as follows.

Problem 3.1. Let N and P be strictly positive integers, let ς ∈ Γ0(R
N ), let

� ∈ Γ0(R
P ), let θ ∈ Γ0(R

p), let (ni)1�i�N be strictly positive integers such

that
∑N

i=1 ni = n, and let (pi)1�i�P be strictly positive integers. For every
i ∈ {1, . . . , N}, let ϕi ∈ Γ0(R

ni), let Xi ∈ R
ni×p, and let yi ∈ R

ni be such that

X =

⎡
⎢⎣
X1

...
XN

⎤
⎥⎦ and y =

⎡
⎢⎣
y1
...
yN

⎤
⎥⎦ . (3.1)
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Finally, for every i ∈ {1, . . . , P}, let ψi ∈ Γ0(R
pi), and let Li ∈ R

pi×p. The
objective of perspective M-estimation is to

minimize
s∈R

N , t∈R
P , b∈R

p
ς(s)+�(t)+θ(b)+

N∑

i=1

ϕ̃i

(
σi, Xib− yi

)
+

P∑

i=1

ψ̃i

(
τi, Lib

)
. (3.2)

Remark 3.2. Let us make a few observations about Problem 3.1.

(i) In (3.2), N+P perspective functions (ϕ̃i)1�i�N and (ψ̃i)1�i�P are used to
penalize affine transformations (Xib− yi)1�i�N and (Lib)1�i�P of b. The
operators (Li)1�i�P can, for instance, select a single coordinate, or blocks
of coordinates (as in the group lasso penalty), or can model finite difference
operators. Constraints on the scale variables (σi)1�i�N and (τi)1�i�P of
the perspective functions can be enforced via the functions ς and �.

(ii) It is also possible to use “scaleless” non-perspective functions of the vari-
ables (Xib− yi)1�i�N and (Lib)1�i�P . For instance, given i ∈ {1, . . . , N},
the term ϕi(Xib− yi) is obtained by using ϕ̃i(σi, Xib− yi) and imposing
σi = 1 via ς.

(iii) We attach individual scale variables to each of the functions (ϕ̃i)1�i�N and

(ψ̃i)1�i�P for flexibility in the case of heteroscedastic models, but also for
computational reasons. Indeed, the proximal tools we are proposing in
Sections 4 and 5 can handle separable functions better. For instance, it is
hard to process the function

(σ, x1, x2) �→ ϕ̃1(σ, x1) + ϕ̃2(σ, x2) (3.3)

via proximal tools, whereas the equivalent separable function with cou-
pling of the scales

(σ1, σ2, x1, x2) �→ ς(σ1, σ2) + ϕ̃1(σ1, x1) + ϕ̃2(σ2, x2),

where ς(σ1, σ2) =

{
0, if σ1 = σ2;

+∞, if σ1 �= σ2,
(3.4)

will be much easier.

We now present some important instantiations of Problem 3.1.

Example 3.3. Consider the optimization problem

minimize
b∈R

p
‖Xb− y‖qq + α1‖b‖1 + α2‖b‖

r
r, (3.5)

where α1 ∈ [0,+∞[, α2 ∈ [0,+∞[, q ∈ {1, 2}, and r ∈ [1, 2]. For q = r = 2,
α1 > 0, and α2 > 0, (3.5) is the elastic-net model of [42]; in addition, if α1 = 0
and α2 > 0, we obtain the ridge regression model [19] and, if α1 > 0 and α2 = 0,
we obtain the lasso model [36]. On the other hand, taking q = 1, α1 > 0, and
α2 = 0, leads to the least absolute deviation lasso model of [39]. Finally, taking
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q = 2, α1 = 0, and α2 > 0 yields to the bridge model [16]. The formulation (3.5)
corresponds to the special case of Problem 3.1 in which

⎧
⎪⎨
⎪⎩

N = 1, n1 = n, ϕ1 = ‖ · ‖qq
P = 1, p1 = p, ψ1 = 0, L1 = 0

ς = ι{1}, � = 0, θ = α1‖ · ‖1 + α2‖ · ‖
r
r.

(3.6)

Note that our choice of ς imposes that σ1 = 1 and therefore that ϕ̃1(σ1, ·) = ‖·‖qq.
The proximity operator of ϕ1 is derived in [7] and that of θ in [11].

Example 3.4. Given α1 and α2 in [0,+∞[ and q ∈ {1, 2}, consider the model

minimize
b∈R

p
‖Xb− y‖22 + α1

p∑

i=1

|βi|+ α2

p−1∑

i=1

|βi+1 − βi|
q. (3.7)

It derives from Problem 3.1 by setting

⎧
⎪⎨
⎪⎩

N = 1, n1 = n, ϕ1 = ‖ · ‖22
P = p− 1, (∀i ∈ {1, . . . , P}) pi = 1, ψi = α2| · |

q, Li : b �→ βi+1 − βi

ς = ι{1}, � = ι{(1,...,1)}, θ = α1‖ · ‖1.
(3.8)

For q = 1, we obtain the fused lasso model [38], while q = 2 yields the smooth
lasso formulation of [18]. Let us note that one obtains alternative formulations
such that of [37] by suitably redefining the operators (Li)1�i�P in (3.8).

Example 3.5. Given ρ1 and ρ2 in ]0,+∞[, the formulation proposed in [29] is

minimize
σ∈]0,+∞[, τ∈]0,+∞[, b∈R

p
σ

n∑

i=1

hρ1

(
x�
i b− ηi
σ

)
+ nσ + α1τ

p∑

i=1

bρ2

(
βi

τ

)
+ pτ,

(3.9)
where hρ1

and bρ2
are the Huber and Berhu functions of (2.30) and (2.59),

respectively. From a convex optimization viewpoint, we reformulate this problem
more formally in terms of the lower semicontinuous function of (2.15) to obtain

minimize
σ∈R, τ∈R, b∈R

p

n∑

i=1

[hρ1
+ n]∼

(
σ, x�

i b− ηi
)
+ α1

p∑

i=1

[bρ2
+ p]∼

(
τ, βi

)
. (3.10)

This is a special case of Problem 3.1 with

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N = n and (∀i ∈ {1, . . . , N}) ni = 1, ϕi = hρ1
+ n, Xi = x�

i

P = p and (∀i ∈ {1, . . . , P}) pi = 1, ψi = α1bρ2
+ p, Li : b �→ βi

ς = ιD, where D =
{
(σ, . . . , σ) ∈ R

n
∣∣ σ ∈ R

}

� = ιE , where E =
{
(τ, . . . , τ) ∈ R

p
∣∣ τ ∈ R

}

θ = 0.

(3.11)
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If one omits the right-most summation in (3.10) one recovers Huber’s concomi-
tant model [21]. Note that

proxς = projD : (σi)1�i�n �→

(
1

n

n∑

i=1

σi, . . . ,
1

n

n∑

i=1

σi

)
. (3.12)

The operator prox
 is computed likewise. On the other hand, the proximity
operators of hρ1

and bρ2
are provided in Examples 2.5 and 2.6, respectively.

Example 3.6. The scaled square-root elastic net formulation of [30] is

minimize
σ∈]0,+∞[, b∈R

p

‖Xb− y‖22
2σ

+
nσ

2
+ α1‖b‖1 + α2‖b‖

q
2, (3.13)

where α1 ∈ [0,+∞[, α2 ∈ [0,+∞[, and q ∈ {1, 2}. Reformulated more formally
in terms of lower semicontinuous functions, this model becomes

minimize
σ∈R, b∈R

p

[
‖ · ‖22 + n

2

]∼(
σ,Xb− y

)
+ α1‖b‖1 + α2‖b‖

q
2. (3.14)

We thus obtain the special case of Problem 3.1 in which

⎧
⎪⎨
⎪⎩

N = 1, n1 = n, ϕ1 =
(
‖ · ‖22 + n

)
/2

P = p and (∀i ∈ {1, . . . , P}) pi = 1, ψi = α1| · |, Li : b �→ βi

ς = 0, � = 0, θ = α2‖b‖
q
2.

(3.15)

The proximity operator of θ is given in [13], while that of ϕ̃1 is provided in Ex-
ample 2.4. Note that, when q = 2, we could also take the functions (ψi)1�i�P to
be zero and θ = α1‖b‖1+α2‖b‖

2
2 since the proximity operator of θ is computable

explicitly in this case [11]. When α2 = 0 in (3.14), we obtain the scaled lasso
model [2, 35]. On the other hand, if we use α2 = 0 and ς = ι[ε,+∞[ for some
ε ∈ ]0,+∞[ in (3.14), we recover the formulation of [28].

Example 3.7. Given α, ρ1, ρ2, and (ωi)1�i�p in ]0,+∞[, the formulation pro-
posed in [23] is

minimize
σ∈R, τ∈R, b∈R

p

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ

n∑

i=1

hρ1

(
x�
i b− ηi
σ

)
+ nσ, if σ > 0;

ρ1

n∑

i=1

∣∣x�
i b− ηi

∣∣, if σ = 0;

+∞, if σ < 0

+

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ατ

p∑

i=1

(
ωibρ2

(
βi

τ

)
+

1

ωi

)
, if τ > 0;

0, if b = 0 and τ = 0;

+∞, otherwise,

(3.16)
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where hρ1
and bρ2

are the Huber and Berhu functions of (2.30) and (2.59),
respectively. In view of (2.15), we can rewrite (3.16) as

minimize
σ∈R, τ∈R, b∈R

p

n∑

i=1

[hρ1
+ n]∼

(
σ, x�

i b− ηi
)
+ α

p∑

i=1

[
ωibρ2

+
1

ωi

]∼(
τ, βi

)
. (3.17)

This is a special case of Problem 3.1 with
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N = n and (∀i ∈ {1, . . . , N}) ni = 1, ϕi = hρ1
+ n, Xi = x�

i

P = p and (∀i ∈ {1, . . . , P}) pi = 1, ψi = α
(
ωibρ2

+ 1/ωi

)
, Li : b �→ βi

ς = ιD, where D =
{
(σ, . . . , σ) ∈ R

n
∣∣ σ ∈ R

}

� = ιE , where E =
{
(τ, . . . , τ) ∈ R

p
∣∣ τ ∈ R

}

θ = 0.

(3.18)
In the variant studied in [22], the functions (ψi)1�i�p of (3.18) are replaced by
(∀i ∈ {1, . . . , p}) ψi = αωi|βi|.

Example 3.8. Let α ∈ ]0,+∞[. The formulation

minimize
τ∈]0,+∞[, b∈R

p
−

ln τ

2
+

‖y‖22 τ

2n
+

‖Xb‖22
2nτ

+ α‖b‖1 −
y�Xb

n
, (3.19)

was proposed in [40] under the name “natural lasso.” It can be cast in the
framework of Problem 3.1 with

⎧
⎪⎨
⎪⎩

N = 1, n1 = n, ϕ1 = 0

P = 1, p1 = p, ψ1 = ‖ · ‖22/(2n), L1 = X

ς = 0, θ = α‖ · ‖1 − 〈X�y | ·〉/n

(3.20)

and

� : τ �→

{
−(ln τ)/2 + ‖y‖22τ/(2n), if τ > 0;

+∞, if τ � 0.
(3.21)

The proximity operators of θ and � are given in [13].

Example 3.9. Given α and ε in ]0,+∞[, define vi : R → R : η �→ α+max(|η|−
ε, 0). Using the perspective function derived in Example 2.8, we can rewrite the
linear ν-support vector regression problem of [32] as

minimize
σ∈R, b∈R

p

n∑

i=1

ṽi

(
σ, x�

i b− ηi
)
+

1

2
‖b‖22. (3.22)

We identify this problem as a special case of Problem 3.1 with

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

N = n and (∀i ∈ {1, . . . , N}) ϕi = vi, Xi = x�
i

P = 1, p1 = p, ψ1 = 0, L1 = 0

ς = ιD, where D =
{
(σ, . . . , σ) ∈ R

n
∣∣ σ ∈ R

}

� = 0, θ = ‖ · ‖22/2.

(3.23)
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The proximity operator of ṽi is given in Example 2.8 and that of ς in (3.12).
The concomitant parameter σ scales the width of the “tube” in the ν-support
vector regression and trades off model complexity and slack variables [32].

The next two examples are novel M-estimators that will be employed in
Section 5.

Example 3.10. In connection with (3.1), we introduce a generalized het-
eroscedastic scaled lasso with N data blocks, which employs the perspective
derived in Example 2.4. Recall that ni is the number of data points in the ith
block, let α1 ∈ [0,+∞[, and set

(∀i ∈ {1, . . . , N}) ci,q : R
ni → R : x �→ ‖x‖q2 +

1

2
. (3.24)

The objective is to

minimize
s∈R

N , b∈R
p

N∑

i=1

c̃i,q

(
σi, Xib− yi

)
+ α1‖b‖1. (3.25)

This is a special case of Problem 3.1 with
⎧
⎪⎨
⎪⎩

(∀i ∈ {1, . . . , N}) ϕi = ci,q

P = 1, p1 = p, ψ1 = 0, L1 = 0

� = 0, ς = 0, θ = α1‖ · ‖1.

(3.26)

The choice of the exponent q ∈ ]1,+∞[ reflects prior distributional assump-
tions on the noise. This model can handle generalized normal distributions. The
proximity operator of c̃i,q is provided in Example 2.4.

Example 3.11. In connection with (3.1), we introduce a generalized het-
eroscedastic Huber M-estimator, with J scale variables (σj)1�j�J , which em-
ploys the perspective derived in Example 2.5. Each scale σj is attached to a

group of mj data points, hence
∑J

j=1 mj = n. Let α1 and α2 be in [0,+∞[, let
δ, ρ1, and ρ2 be in ]0,+∞[, and denote by hρ1,q the function in (2.31), where
H = R. The objective is to

minimize
s∈R

J , τ∈R, b∈R
p

J∑

j=1

mj∑

i=1

[hρ1,q+δ]∼
(
σj , x

�
i b−ηi

)
+α1‖b‖1+α2

p∑

i=1

[bρ2
+p]∼

(
τ, βi

)
.

(3.27)
This statistical model is rewritten in the format of the computational model
described in Problem 3.1 by choosing
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N = n and (∀i ∈ {1, . . . , N}) ni = 1, ϕi = hρ1,q + δ, Xi = x�
i

P = p and (∀i ∈ {1, . . . , P}) pi = 1, ψi = α2bρ2
+ p, Li : b �→ βi

ς = ιD, where D =
{
(σ1, . . . , σ1, . . . , σJ , . . . , σJ) ∈ R

n
∣∣ (σj)1�j�J ∈ R

J
}

� = ιE , where E =
{
(τ, . . . , τ) ∈ R

p
∣∣ τ ∈ R

}

θ = α1‖ · ‖1.

(3.28)
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The choice of the exponent q ∈ ]1,+∞[ reflects prior distributional assump-
tions on the noise. This model handles generalized normal distributions and can
identify outliers. Note that

proxς = projD : (σi)1�i�n �→

(
1

m1

m1∑

i=1

σi, . . . ,
1

m1

m1∑

i=1

σi

︸ ︷︷ ︸
m1 terms

, . . . ,

1

mJ

n∑

i=n−mJ+1

σi, . . . ,
1

mJ

n∑

i=n−mJ+1

σi

︸ ︷︷ ︸
mJ terms

)
. (3.29)

Remark 3.12. Particular instances of perspective M-estimation models come
with statistical guarantees. For the scaled lasso, initial theoretical guarantees
are given in [35]. In [22, 23] results are provided for the homoscedastic Hu-
ber M-estimator with adaptive �1 penalty and the adaptive Berhu penalty. In
[17], explicit bounds for estimation and prediction error for “convex loss lasso”
problems are given which cover scaled homoscedastic lasso, the least absolute
deviation model, and the homoscedastic Huber model. For the heteroscedastic
M-estimators we have presented above, statistical guarantees are, to the best of
our knowledge, elusive.

4. Algorithm

Recall from (3.2) that the problem of perspective M-estimation is to

minimize
s∈R

N , t∈R
P , b∈R

p
ς(s)+�(t)+θ(b)+

N∑

i=1

ϕ̃i

(
σi, Xib− yi

)
+

P∑

i=1

ψ̃i

(
τi, Lib

)
. (4.1)

This minimization problem is quite complex, as it involves the sum of several
terms, compositions with linear operators, as well as perspective functions. In
addition, none of the functions present in the model is assumed to have any full
domain or smoothness property. In this section, we reformulate (4.1) in a suit-
able higher dimensional product space through a series of reparametrizations.
The resulting reformulation is shown to be solvable by the Douglas-Rachford
splitting algorithm. Once reformulated in the original scale/regression space,
this algorithm yields a new proximal splitting method which requires only to
use separately the proximity operators of the functions ς, �, θ, (ϕ̃i)1�i�N , and

(ψ̃i)1�i�P , as well as application of simple linear transformations. It will be
shown to produce sequences (sk)k∈N, (tk)k∈N, and (bk)k∈N which converge re-
spectively to vectors s, t, and b that solve (4.1).

Let us set � : RN ×R
P → ]−∞,+∞] : (s, t) �→ ς(s)+�(t), M = N +P , and

(∀i ∈ {1, . . . , N})

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ϑi = ϕi

mi = ni

wi = yi

Ai = Xi

and (∀i ∈ {N + 1, . . . ,M})

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ϑi = ψi−N

mi = pi−N

wi = 0

Ai = Li−N .

(4.2)
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Then, upon introducing the variable v = (s, t) = (νi)1�i�M ∈ R
M , we can

rewrite (4.1) as

minimize
v∈R

M , b∈R
p
�(v) + θ(b) +

M∑

i=1

ϑ̃i

(
νi, Aib− wi

)
. (4.3)

Now let us set m = n+ p and define

A =

⎡
⎢⎣
A1

...
AM

⎤
⎥⎦ (4.4)

and ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f : R
M × R

p → ]−∞,+∞]

(v, b) �→ �(v) + θ(b)

g : R
M × R

m → ]−∞,+∞]

(
v, z) �→

M∑

i=1

ϑ̃i(νi, zi − wi)

L : R
M × R

p → R
M × R

m

(v, b) �→
(
v,Ab

)
.

(4.5)

Then, upon introducing the variable a = (v, b) ∈ R
M×R

p, (4.3) can be rewritten
as

minimize
a∈R

M+p
f(a) + g(La), (4.6)

which we can solve by various algorithms [5, 9]. Following an approach used
in [10] and [12], we reformulate (4.6) as a problem involving the sum of two
functions F and G, and then solve it via the Douglas-Rachford algorithm [4,
15, 24]. To this end, define

F : RM+p × R
M+m → ]−∞,+∞] : (a, c) �→ f(a) + g(c) (4.7)

and

G = ιV , where V =
{
(x,h) ∈ R

M+p × R
M+m | Lx = h

}
(4.8)

is the graph of L. Then, in terms of the variable u = (a, c), (4.6) is equivalent
to

minimize
u∈R

2M+m+p
F (u) +G(u). (4.9)

Let γ ∈ ]0,+∞[, let v0 ∈ R
2M+p+m, and let (μk)k∈N be a sequence in ]0, 2[ such

that
∑

k∈N
μk(2−μk) = +∞. The Douglas-Rachford algorithm for solving (4.9)

is [4, Section 28.3]
for k = 0, 1, . . .⎢⎢⎢⎣

uk = proxγGvk

wk = proxγF (2uk − vk)
vk+1 = vk + μk(wk − uk).

(4.10)



230 P. L. Combettes and C. L. Müller

Under the qualification condition

V ∩ ri domF �= ∅, (4.11)

the sequence (uk)k∈N is guaranteed to converge to a solution u to (4.9) [4,
Corollary 27.4]. To make this algorithm more explicit, we first use (4.7) and [4,
Proposition 24.11] to obtain

proxF : (a, c) �→
(
proxfa, proxgc

)
. (4.12)

Next, we derive from (4.8) that proxG is the projection operator onto V , that
is [4, Example 29.19(i)],

proxG : (x,h) �→ (a,La), where a = x−L�
(
Id +LL�

)−1
(Lx−h). (4.13)

Therefore, using the notation

R = L�(Id +LL�)−1 and (∀k ∈ N)

⎧
⎪⎨
⎪⎩

uk = (ak, ck)

vk = (xk,hk)

wk = (zk,dk),

(4.14)

we see that, given some initial points x0 ∈ R
M+p and h0 ∈ R

m+M , (4.10)
amounts to iterating

for k = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qk = Lxk − hk

ak = xk −Rqk

ck = Lak

zk = proxγf (2ak − xk)
dk = proxγg(2ck − hk)
xk+1 = xk + μk(zk − ak)
hk+1 = hk + μk(dk − ck).

(4.15)

In addition, it generates a sequence (ak)k∈N that converges to a solution a to
(4.6). Now set

(∀k ∈ N)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ak = (sk, tk, bk) ∈ R
N × R

P × R
p

ck = (sk, tk, cb,k) ∈ R
N × R

P × R
n+p

xk = (xs,k, xt,k, xb,k) ∈ R
N × R

P × R
p

hk = (hs,k, ht,k, hb,k) ∈ R
N × R

P × R
n+p

zk = (zs,k, zt,k, zb,k) ∈ R
N × R

P × R
p

dk = (ds,k, dt,k, db,k) ∈ R
N × R

P × R
n+p

qk = (qs,k, qt,k, qb,k) ∈ R
N × R

P × R
n+p,

(4.16)

and observe that (4.5) and (4.14) yield

(∀k ∈ N) Rqk =
(
qs,k/2, qt,k/2, Qqb,k

)
, where Q = A�(Id +AA�)−1.

(4.17)
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Let us further decompose the above vectors as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sk = (σ1,k, . . . , σN,k) ∈ R
N

tk = (τ1,k, . . . , τP,k) ∈ R
P

hs,k = (η1,k, . . . , ηN,k) ∈ R
N

ht,k = (ηN+1,k, . . . , ηN+P,k) ∈ R
P

hb,k = (h1,k, . . . , hN,k, hN+1,k, . . . , hN+P,k)

∈ R
n1 × · · · × R

nN × R
p1 × · · · × R

pP

cb,k = (c1,k, . . . , cN,k, cN+1,k, . . . , cN+P,k)

∈ R
n1 × · · · × R

nN × R
p1 × · · · × R

pP

ds,k = (δ1,k, . . . , δN,k) ∈ R
N

dt,k = (δN+1,k, . . . , δN+P,k) ∈ R
P

db,k = (d1,k, . . . , dN,k, dN+1,k, . . . , dN+P,k)

∈ R
n1 × · · · × R

nN × R
p1 × · · · × R

pP .

(4.18)

Then, given xs,0 ∈ R
N , xt,0 ∈ R

P , xb,0 ∈ R
p, hs,0 ∈ R

N , ht,0 ∈ R
P , and

hb,0 ∈ R
m, (4.15) consists in iterating

for k = 0, 1, . . .⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qs,k = xs,k − hs,k

qt,k = xt,k − ht,k

qb,k = Axb,k − hb,k

sk = xs,k − qs,k/2
tk = xt,k − qt,k/2
bk = xb,k −Qqb,k
zs,k = proxγς(2sk − xs,k)
zt,k = proxγ
(2tk − xt,k)
zb,k = proxγθ(2bk − xb,k)
xs,k+1 = xs,k + μk(zs,k − sk)
xt,k+1 = xt,k + μk(zt,k − tk)
xb,k+1 = xb,k + μk(zb,k − bk)
for i = 1, . . . , N⌊

ci,k = Xibk
(δi,k, di,k) = (0, yi) + proxγϕ̃i

(2σi,k − ηi,k, 2ci,k − hi,k − yi)
for i = 1, . . . , P⌊

cN+i,k = Libk
(δN+i,k, dN+i,k) = proxγψ̃i

(2τi,k − ηN+i,k, 2cN+i,k − hN+i,k)

hs,k+1 = hs,k + μk(ds,k − sk)
ht,k+1 = ht,k + μk(dt,k − tk)
hb,k+1 = hb,k + μk(db,k − cb,k).

(4.19)

Using the above mentioned results for the convergence of the sequence (uk)k∈N

produced by (4.10), we obtain in the setting of Problem 3.1 the convergence of
the sequences (sk)k∈N, (tk)k∈N, and (bk)k∈N generated by (4.19) to vectors s, t,
and b, respectively, that solve (4.1).
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Fig 2. Generalized heteroscedastic lasso solutions for b (top panel) and s (bottom panel) across
the α1-path. The left panels show the results of fully non-smooth perspective M-estimation.
The right panels show the results for a smoothed version with σi ∈ [ε,+∞[ for ε = 0.05. The
dashed lines mark the ground truth entries of b and s.

5. Numerical experiments

We illustrate the versatility of perspective M-estimation for sparse robust re-
gression in a number of numerical experiments. The proposed algorithm (4.19)
has been implemented for several important instances in MATLAB and is avail-
able at https://github.com/muellsen/PCM. We set μ = 1.9 and γ = 1 for all
model instances. We declare that the algorithm has converged at iteration k if
‖bk+1 − bk‖2 < ε, for some ε ∈ ]0,+∞[ to be specified.

5.1. Numerical illustrations on low-dimensional data

Our algorithmic approach to perspective M-estimation can effortlessly handle
non-smooth data fitting terms. To illustrate this property, we consider a partially
noiseless data formation model in low dimensions. We instantiate the data model
(1.1) as follows. We consider the design matrix X ∈ R

n×p with p = 3 and
sample size n = 18. Entries in the design matrix and the noise vector e ∈ R

n are
sampled from a standard normal distribution N (0, 1). The matrix C ∈ R

n×n is
a diagonal matrix with N = 2 groups. We set s = [σ1, σ2]

� = [3, 0]�. The ith
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diagonal entry of C is set to σ1 for i ∈ {1, . . . , 8} and to σ2 for i ∈ {10, . . . , 18},
resulting in noise-free observations for the second group. The mean shift (or
outlier) vector is o = [0, . . . , 0]�. The regression vector is b = [0.25,−0.25, 0]�.
The goal is to estimate the regression vector b ∈ R

3 as well as the concomitant
(or scale) vector s = [σ1, σ2]

�. We consider the generalized heteroscedastic
lasso of Example 3.10 with N = 2 and q = 2. To demonstrate the advantage
of our non-smooth approach in this partially noiseless setting, we consider two
variations of the model, the standard non-smooth case and a smoothed version
with D = [ε,+∞[

2
for ε = 0.05. The convergence accuracy for the algorithm is

set to ε = 10−8. Figure 2 shows the estimates b = [β1, β2, β3]
� and s = [σ1, σ2]

�

across the regularization path, where α1 ∈ {0.089, . . . , 8.95}, with 200 values
equally spaced on a log-linear grid for both settings. The results indicate that
only the heteroscedastic lasso in the non-smooth setting can recover the ground
truth regression vector b (top left panel) and σ2 = 0 (bottom left panel). In
both settings the estimate σ1 is slightly overestimated (due to the finite sample
size). The “smoothed” version of the heteroscedastic lasso cannot achieve exact
recovery of b across the regularization path (top right panel).

5.2. Numerical illustrations for correlated designs and outliers

To illustrate the efficacy of the different M-estimators we instantiate the full data
formation model (1.1) as follows. We consider the design matrix X ∈ R

n×p with
p = 64 and sample size n = 75 where each row Xi is sampled from a correlated
normal distribution N (0,Σ) with off-diagonal entries 0.3 and diagonal entries
1. The entries of e ∈ R

n are realizations of i.i.d. zero mean normal variables
N (0, 1). The matrix C ∈ R

n×n is a diagonal matrix with three groups. We set
s = [σ1, σ2, σ3]

� = [5, 0.5, 0.05]�. The ith diagonal element of C is set to σ1

for i ∈ {1, . . . , 25}, to σ2 for i ∈ {26, . . . , 50}, and to σ3 for i ∈ {51, . . . , 75}.
The mean shift vector o ∈ R

n contains �0.1n� = 8 non-zero entries, sampled
from N (0, 5). The entries of the regression vector b ∈ R

p are set to βi = −1 for
i ∈ {1, 3, 5} and βi = 1 for i ∈ {2, 4, 6}.

The presence of outliers, correlation in the design, and heteroscedasticity
provides a considerable challenge for regression estimation and support recovery
with standard models such as the lasso. We consider instances of the perspective
M-estimation model of increasing complexity that can cope with various aspects
of the data formation model. Specifically, we use the models described in Exam-
ples 3.10 and 3.11 (with α2 = 0) in homoscedastic and heteroscedastic mode. For
all models, we compute the minimally achievable mean absolute error (MAE)
‖Xb−Xb‖1/n across the α1-regularization path, where α1 ∈ {0.254, . . . , 25.42},
with 50 values equally spaced on a log-linear grid. The convergence criterion is
ε = 5 · 10−4.

Homoscedastic models We first consider homoscedastic instances of Exam-
ples 3.10 and 3.11, in which we jointly estimate a regression vector and a single
concomitant parameter in the data fitting part. We consider the generalized
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Fig 3. Generalized homoscedastic lasso and Huber solutions for b when q = 2 (top panel)
and q = 3/2 (bottom panel) across the relevant α1-path. The minimally achievable mean
absolute error (MAE) is shown for all models. The six highlighted βi trajectories mark the
true non-zeros entries of b. The dashed black lines show the values of the true b entries.

scaled lasso of Example 3.10 and the generalized Huber of Example 3.11 with
exponents q ∈ {3/2, 2}. Figure 3 presents the estimation results of b over the
relevant α1-path.

Heteroscedastic models We consider the same model instances as previ-
ously described but in the heteroscedastic setting. We jointly estimate regression
vectors and concomitant scale parameters for each of the three groups. Figure 4
presents the results for heteroscedastic lasso and Huber estimations of b across
the relevant α1-path. The convergence criterion is ε = 10−4.

The numerical experiments indicate that only heteroscedastic M-estimators
are able to produce convincing b estimates (as captured by lower MAE). The
heteroscedastic Huber model with q = 3/2 (see Figure 3 lower right panel)
achieves the best performance in terms of MAE among all tested models.

5.3. Robust regression for gene expression data

We consider a high-dimensional linear regression problem from genomics [6].
The design matrix X consists of p = 4088 highly correlated gene expression
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Fig 4. Generalized heteroscedastic lasso and Huber solutions for b when q = 2 (top panel)
and q = 3/2 (bottom panel) across the relevant α1-path. The minimally achievable mean
absolute error (MAE) is shown for all models. The six highlighted βi trajectories mark the
true non-zeros entries of b. The dashed black lines show the values of the true b entries.

Fig 5. Standard lasso, homoscedastic lasso, and homoscedastic Huber log-production rate
predictions with identical model complexity (every vector b comprises twelve non-zero compo-
nents) and associated MAE (computed across all samples). The Huber M-estimator identifies
26 outliers (marked in red).

profiles for n = 71 different strains of Bacillus subtilis (B. subtilis). The response
y ∈ R

71 comprises standardized riboflavin (Vitamin B) log-production rates for
each strain. The statistical task is to identify a small set of genes that is highly
predictive of the riboflavin production rate. No grouping of the different strain
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measurements is available. We thus consider the homoscedastic models from
Example 3.6 with α2 = 0 and Example 3.11 with α2 = 0. We optimize the
corresponding perspective M-estimation models over the α1-path where α1 =
[0.623, . . . , 6.23] with 20 values equally spaced on a log-linear grid. We compare
the resulting models with the standard lasso in terms of in-sample prediction
performance. Figure 5 summarizes the results for the in-sample prediction of
the three different models with identical model complexity (twelve non-zero
entries in b). To assess model quality, we compute the minimally achievable
mean absolute error (MAE) ‖Xb − y‖1/n for these three models. The Huber
model achieves significantly improved MAE (0.24) compared to lasso (0.32).
The Huber models also identifies 26 non-zero components in the outlier vector
o (shown in red in the rightmost panel of Figure 5).
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