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Abstract: We introduce a flexible optimization model for maximum
likelihood-type estimation (M-estimation) that encompasses and general-
izes a large class of existing statistical models, including Huber’s concomi-
tant M-estimator, Owen’s Huber/Berhu concomitant estimator, the scaled
lasso, support vector machine regression, and penalized estimation with
structured sparsity. The model, termed perspective M-estimation, lever-
ages the observation that convex M-estimators with concomitant scale as
well as various regularizers are instances of perspective functions, a con-
struction that extends a convex function to a jointly convex one in terms
of an additional scale variable. These nonsmooth functions are shown to
be amenable to proximal analysis, which leads to principled and provably
convergent optimization algorithms via proximal splitting. We derive novel
proximity operators for several perspective functions of interest via a geo-
metrical approach based on duality. We then devise a new proximal split-
ting algorithm to solve the proposed M-estimation problem and establish
the convergence of both the scale and regression iterates it produces to a
solution. Numerical experiments on synthetic and real-world data illustrate
the broad applicability of the proposed framework.
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1. Introduction

High-dimensional regression methods play a pivotal role in modern data analy-
sis. A large body of statistical work has focused on estimating regression coef-
ficients under various structural assumptions, such as sparsity of the regression
vector [36]. In the standard linear framework, regression coefficients constitute,
however, only one aspect of the model. A more fundamental objective in statis-
tical inference is the estimation of both location (i.e., the regression coefficients)
and scale (e.g., the standard deviation of the noise) of the statistical model
from the data. A common approach is to decouple this estimation process by
designing and analyzing individual estimators for scale and location parameters
(see, e.g., [21, pp. 140], [41]) because joint estimation often leads to non-convex
formulations [14, 34]. One important exception has been proposed in robust
statistics in the form of a maximum likelihood-type estimator (M-estimator)
for location with concomitant scale [21, pp. 179], which couples both parame-
ters via a convex objective function. To discuss this approach more precisely,
we introduce the linear heteroscedastic mean shift regression model. This data
formation model will be used throughout the paper.

Model 1.1. The vector y = (7;)1<i<n € R™ of observations is
y=Xb+0+Ce, (1.1)

where X € R™ P is a known design matrix with rows (z;)1<i<n, b € R? is the
unknown regression vector (location), o € R™ is the unknown mean shift vector
containing outliers, e € R™ is a vector of realizations of i.i.d. zero mean random
variables, and C € [0, +oo["*" is a diagonal matrix the diagonal of which are
the (unknown) standard deviations. One obtains the homoscedastic mean shift
model when the diagonal entries of C' are identical.

The concomitant M-estimator proposed in [21, pp. 179] is based on the ob-

jective function
n Tb_ ;
(0,b) > % (hm (%) + 5)7 (1.2)
=1
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where h,, is the Huber function [20] with parameter p; € ]0,+oo[, § € [0, +o0],
and the scalar o is a scale. The objective function, which we also refer to as the
homoscedastic Huber M-estimator function, is jointly convex in both b and scalar
o, and hence, amenable to global optimization. Under suitable assumptions, this
estimator can identify outliers o and can estimate a scale that is proportional
to the diagonal entries of C' in the homoscedastic case. In [2], it was proposed
that joint convex optimization of regression vector and standard deviation may
also be advantageous in sparse linear regression. There, the objective function
is

2
n T
o x, b—mn;
(0,0) = Z < et BuLLY 5) + ay||b]|1, (1.3)
i=1
where the term || - ||; promotes sparsity of the regression estimate, a; € |0, +00]

is a tuning parameter, and o is an estimate of the standard deviation. This
objective function is at the heart of the scaled lasso estimator [35]. The resulting
estimator is not robust to outliers but is equivariant, which makes the tuning
parameter a; independent of the noise level. In [29], an extension of (1.2) was
introduced that includes a new penalization function as well as concomitant
scale estimation for the regression vector. The objective function is

(0,7,b) s %an (hpl (@) +51> + % zpj <b,,2 (%) +52>, (1.4)

i=1 i=1

where b,, is the reverse Huber (Berhu) function [29] with parameter ps €
10, +00], constants §; € 0,400 and dy € ]0,4o0[, and tuning parameter
a1 € ]0,4+00[. This objective function is jointly convex in b and the scalar
parameters ¢ and 7. The estimator inherits the equivariance and robustness of
the previous estimators. In addition, the Berhu penalty is advantageous when
the design matrix comprises correlated rows [23]. In [10], it was observed that
these objective functions, turn out to be instances of the class of composite
“perspective functions” [8], a powerful construct that extends a convex func-
tion of a single variable to a jointly convex one in terms of an additional scale
variable (see Section 2.2 for a formal definition). Let us add that perspective
functions are also implicitly present in many data analysis models in the form
of regularization penalties for structured sparsity [3, 25, 26].

In the present paper, we bring to light the ubiquity of perspective functions
in statistical M-estimation and introduce a new statistical optimization model,
perspective M-estimation. The proposed perspective M-estimation model, put
forward in detail in Section 3, uses perspective functions as fundamental build-
ing blocks to couple scale and regression variables in a jointly convex fashion.
It includes in particular the formulations discussed in [10] as well as the M-
estimators discussed above as special cases, and it will be seen to cover a wide
range of models beyond those. In [10] an algorithm was proposed to solve a
specific formulation involving perspective functions in the context of general-
ized TREX estimation. To date, however, there exists no provably convergent
algorithm to solve composite convex optimization problems involving general
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perspective functions. To fill this gap, we construct in Section 4 a new proximal
splitting algorithm tailored to the perspective M-estimation problem and rigor-
ously establish the convergence of its iterates. Since the proximity operators of
perspective functions are known only in limited cases [10], another important
contribution of our work is to derive new ones to broaden the effective scope of
the proposed perspective M-estimation framework. Using geometrical insights
revealed by the dual problem, we derive in Section 2 new proximity operators
for several perspective functions, including the generalized scaled lasso, the gen-
eralized Huber, the abstract Vapnik, and the generalized Berhu function. These
developments lead to a unifying algorithmic framework for global optimization
of the proposed model using modern splitting techniques. The model also allows
for the seamless integration of a large class of regularizers for structured spar-
sity and novel robust heteroscedastic estimators of location and scale. Numerical
experiments on synthetic and real-world data illustrate the applicability of the
proposed framework in Section 5.

2. Proximity operators of perspective functions

The general perspective M-estimation model to be proposed in Problem 3.1
will hinge on the notion of a perspective function (see (2.15) below). Since
perspective functions are nonsmooth, to solve Problem 3.1 we need to bring
into play the machinery of proximal methods [4] and must therefore be able
to compute the proximity operators of these functions. A few examples of such
computations were presented in [10]. In this section, using a novel geometric
approach, we derive a number of important new instances. Since these results
are of general interest beyond statistical analysis, throughout, H is a real Hilbert
space with scalar product (- | -) and associated norm || - ||.

2.1. Notation and background on convex analysis

The closed ball with center x € H and radius p € |0, +o0[ is denoted by B(z; p).
Let C be a subset of H. Then

te: H—{0,400}: z+— {:):oo, ii z;g’ (2.1)
is the indicator function of C,
de:H — [0,400] : x> leelg ly — || (2.2)
is the distance function to C', and
oc: H — [—00,+00] : u— sup (x | u) (2.3)

zeC

is the support function of C. If C' is nonempty, closed, and convex then, for
every x € H, there exists a unique point proj-x € C, called the projection of x
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onto C, such that ||z — projoz| = do(x). We have

. pelC
(Vz € H)(Vp € H) p=projor & (2.4)
¢ (VyeC) (y—plz—p) <O0.
The normal cone to C' is
— < ; .
Nc:”HHQH:xH{{UEHhuP(C x\u>\0}, lfCEE'C, (2.5)
, otherwise.

A function ¢: H — ]—00, +00] is proper if domy = {z € H } o(z) < +oo} # @
and coercive if lim| |5 4.0 @(7) = +00. We denote by I'g(#) the class of proper
lower semicontinuous convex functions from H to |—oo, +00]. Let ¢ € To(H).
The conjugate of ¢ is

0" H — |—00,+00] : u > jg_)t ((z | u) — p(x)). (2.6)

It also belongs to I'g(H) and ¢** = ¢. The Moreau subdifferential of ¢ is the
set-valued operator

dp:H —2"a s {ueH | (Vyedomy) (y—a|u)+e) <el)}. (2.7)

We have
MreH)VueH) uedp(zr) < x€dp*(u). (2.8)
Moreover,
(Ve e H)(VueH) o)+ o'W > (@ | u) (29)
and
Ve eH)VueH) uwedp(x) < o)+ ¢*(u)=(z|u). (2.10)

If p is Gateaux differentiable at « € dom ¢, with gradient V(x), then

dp(x) = {Vep(x)}. (2.11)
The infimal convolution of ¢ and ¢ € T'o(H) is

O H— [—00,4+00] : z yléqu{ (e(y) +v(z —y)). (2.12)

Given any z € dom ¢, the recession function of ¢ is

(reH) (ecg)@)= swp (p(e+y)—p) = lim LT oy
yEdom ¢ a—+oo «
Finally, the proximity operator of ¢ is [27]
1
prox,: H — H: x> argergin <90(y) + §||x - y||2> (2.14)
y

For detailed accounts of convex analysis, see [4, 31].
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2.2. The geometlry of proximity operators of perspective functions
Let ¢ € T'o(H). The perspective of ¢ is

op(xz/o), if o> 0;
¢:RXH —]—00,400]: (0,2) — ¢ (recp)(z), if o= 0; (2.15)

400, otherwise.

We have ¢ € To(R® G) [8, Proposition 2.3]. The following property is useful to
establish existence results for problems involving perspective functions.

Proposition 2.1. Let ¢ € T'o(H) be such that inf o(H) > 0 and 0 € int dom p*.
Then @ is coercive.

Proof. We have ¢*(0) = —inf p(H) < 0 and 0 € intdom ¢*. Hence, (0,0) €
int epi p*. In turn, we derive from [8, Proposition 2.3(iv)] that

(0,0) € int {(p,u) ER®H | p+ ¢*(u) <0} = int dom (B)*. (2.16)

It therefore follows from [4, Proposition 14.16] that ¢ is coercive. O
Let us now turn to the proximity operator of @.

Lemma 2.2 ([10, Theorem 3.1]). Let ¢ € T'o(H), let v € 10, +o0|, let 0 € R,
and let x € H. Then the following hold:

(i) Suppose that o + yp*(x/v) < 0. Then prox, (o, x) = (0,0).
(ii) Suppose that dom ¢* is open and that o + vye*(z/v) > 0. Then

prox, z(o,z) = (0 +v¢*(p),z — p), (2.17)

where p is the unique solution to the inclusion x € yp+(o+vy¢*(p))dp* (p).
If ©* is differentiable at p, then p is characterized by © = vp + (o +

19*(p)) V™ (p)-

When dom ¢* is not open, Lemma 2.2 is not applicable. To deal with such
cases, we propose a geometric construction that computes Prox. s via the pro-
jection onto a certain convex set. It is based on the following property, which
reduces the problem of evaluating the proximity operator of ¢ to a projection
problem in R? if ¢ is radially symmetric.

Proposition 2.3. Let ¢ € To(R) be an even function, set ¢ = ¢o|-|: H —
|—00,+0], let v €]0,400[, let 0 € R, and let x € H. Set

R={(x.v) eR? | x +¢"(v) <0} (2.18)
Then R is a nonempty closed convex set, and the following hold:

(i) Suppose that o +~v¢*(||z]|/v) < 0. Then prox, (o, z) = (0,0).
(ii) Suppose that o > v$(0) and x = 0. Then prox, (o, z) = (0 — v9(0), z).
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(iii) Suppose that o + v¢*(||x]|/y) > 0 and x # 0, and set
(x,v) = projx(a/7, l|zl[/7). (2.19)

prox. (0, ) = (a . (1 -~ %) a:) (2.20)

Proof. The properties of R follow from the fact that ¢* € I'x(R). Now, let us
recall from [10, Remark 3.2] that, if

Then

€={(p,u) eROH | p+ ¢*(u) <0}, (2.21)
then
prox.;(o,z) = (o, ) —'yproje(o/%x/'y). (2.22)
In addition, [4, Example 13.8] states that
pr=9¢"of | (2.23)

(i): This follows from (2.23) and Lemma 2.2(i).
(ii): Let us show that proje(c/7,0) = (¢(0), 0), which will establish the claim
by virtue of (2.22). Since ¢ is an even function in T'o(R), ¢(0) = inf ¢(R)

"6°(0). Hence 6(0) +*(0) = 6(0)+6"(0) = 0 and (6(0),0) € €. Now fix (1. 1)
C. Then, since ¢ is an even function in T'g(H), n < —p*(y) < —inf p*(H)

—p*(0) = —¢*(0) = ¢(0) and, since o > v¢p(0), we get
((n.9) = (6(0),0) | (¢/7,0) = (6(0),0)) = (n — 6(0)) (¢/7 — ¢(0)) < 0. (2.24)
Altogether, (2.4) asserts that proje(c/v,0) = (¢(0),0).

(iii): In view of (2.22), it is enough to show that proje(c/v,z/v) =
(x, va/|x|]). Since (x,v) € R, (2.23) yields x+¢*(vz/|[z]]) = x+¢"(v) < 0 and,
therefore, (x,vz/||z|) € €. On the other hand, we infer from (2.23) that € C
R @& H is radially symmetric in the H-direction. As a result, proje (a/'y, x/'y) €

V = R x span{z} and therefore proje(c/v,z/v) = projyne(o/v.z/v) [4,
Proposition 29.5]. Now fix (n,y) € V N €. Then (n, £||y||) € R and (2.4) yields
(n=x)(a/v =) + (Elyll = v)(zll/~ —v) =
((n=x £yl =v) | (o/v = x: lzll/y = v))g= < 0. (2.25)
Hence, since y = % ||y||«/| =],

m

() = O va/lzl) | (o/v,2/7) = (6 v/ l|2])) ra

= =x)(0/v =)+ (y —va/l|lzll | z/v — va/|z[])

= =x)(0/v =) + &Elylz/llzll = va/l| [ lzlz/llel) = vae/|z])
= (n=x)(o/v=x) + Elyl =)zl /y = v){z | 2)/l|l=]*

= =2(0/v =) + (£llyll = v)([[zll/y - v)

<0. (2.26)

Altogether, we derive from (2.4) that (x,va/|z|) = projyne(c/v,2/v) =
broje (/7). 0
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Fic 1. Geometry of the computation of proxg in (2.22). Top: original function ¢. Center:
congugate of ¢. Bottom: action of the projection operator proje onto the set C of (2.21). The
proximity operator of ¢ is Id —proje. In the specific example depicted here, H =R and ¢ is
the Berhu function of (2.58).

2.3. Examples
We provide several examples that are relevant to the statistical problems we
have in sight.

Example 2.4 (generalized scaled lasso function). [10, Example 3.7] Let o €
10,400, v € 10,400, K € ]0,+0[, ¢ € ]1,+0], 0 € R, and = € H. Set
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p=a+]||9k: H— R and ¢* = ¢/(q —1). Then

[=]? . .
U+naq*1’ if o> 0;
D! = 2.2
Plor) =9, if =0 and o = 0; (2.27)
400, otherwise.

Now set p = (1/q)7 ~L. If ¢y ~lo + p||z]|7 > ¢*v* a and x # 0, let ¢ be the
unique solution in ]0, +oo] to the equation

T W

vp p vp
Set p =tx/||z| if z # 0, and p =0 if x = 0. Then (note that [10, Eq. (3.47)] is
incorrect when a # 0)

2y 0. (2.28)

prox.s(o,z) =

%
(0 +(pt" /g — ).z —7p). i ¢'y" "ot plall” > e, o)
(0,0), if ¢y o+ pllzl|f” < gy

Given p € ]0,400[, the classical Huber function is defined as [20]

2
.
plEl = S0 3 [E> p;
hy): R=>R: (2.30)

£ :
%7 if €] <p.

Below, we study the perspective of a generalization of it.

Example 2.5 (generalized Huber function). Let a, v, and p be in ]0, +-00[, let
q €]1,4+00[, and set ¢* = ¢/(q — 1). Define

*

P4

a——+pllzll, if [zl > p?/%
o H >Rz 9 (2.31)
q *
o+ M7 if ||z|| < p? /q.
q

Let 0 € R and x € H. Then

*

a
(a -2 >0+p||x||, if 0>0 and |jz] > op?/%;
q
p(o,x) = ¢ ao + J]* if 0>0 and |z|| < op? /9 (2.32)
<)0 ’ - qa_q,17 ~ ) .
ollxl, if 0 =0;
+o0, if o <0.

In addition, the following hold:
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(i) Suppose that ||| < vp and ||z

(0,0).
(ii) Suppose that o < (o — p? /q*) and ||| > vp. Then

prox. (o, ) = (07 (1 - ﬁ)x) (2.33)

(iii) Suppose that o > y(a—p? /¢*) and |[z]| = yp" ~Ho/v+p>~ +p7 /¢ —
a). Then

prox. (o, 7) = <a + 7<’;q: - a>, (1 - %)x) (2.34)

(iv) Suppose that a7 > 17" (@ — 0/7) and [la]] < 77 (o) + 71" +
07" /q* —a). If x # 0, let t be the unique solution in ]0, +o0 to the equation

7 <49 ¢*(a—0/v). Then prox.;(o, ) =

Y g (0 =)t T gt = 7|z = 0. (2.35)

Set p =tz /||z| if  # 0, and p =0 if z = 0. Then

prox, (o, z) =
(0 +(7 Jq* —a),x —p), if ¢ o+ |z[|7T > ¢ o (2.36)
(0,0), if ¢y o+ al|” <gy e

Proof. We derive (2.32) from (2.31), (2.15), and the property that recy =
vec (o]l - ) = pl - I Now set

*

q *
o= tplgl, it Jgl > pr/e;
p:R=>R: E— (2.37)
q *
a+@, if |€] < pa7/e.
q

Then ¢ = (p|- )3 (] - |?/q) + « is convex and even, and ¢ = ¢ o | - ||. We derive
from [4, Proposition 13.24(i) and Example 13.2(i)] that

*

¢ = ((P| -)o (%)) —a= gt 'q—*q —a. (2.38)

In turn, (2.38) and (2.18) yield

Ri =R x [=p,p]

Ro = {(X,l/) € R? ‘ W7 < g (a — X)} (2.39)

R =R NRy, where {

Now set (x,v) = projg(a/v,||z|/7)-
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(i): This follows from Proposition 2.3(i) and (2.38).
(ii): Since o/y < o — p? /q*, we have

(x,v) = projg, (o/7, zll/7) = (o/7, proji_, (Il /7))- (2.40)
Thus, since ||z||/y > p, (x,v) = (0/7,p) and (2.33) follows from Proposi-
tion 2.3(iii).

(iii): The point IT = (o — p? /q*,p) is in the intersection of the boundaries
of Ry and R,. Therefore, the normal cone to R at Il is generated by outer
normals nq to Ry and ng to Re at II. A tangent vector to Re at IT is ¢(II) =
(—=(I-17" /q*)'(p),1) = (—p? ~1,1). We can take n; = (0,1) and no = (1,p7 ~') L
t(II). Thus, the set of points which have projection II onto R is
II + NgII

= II + cone (n1,n2)

:(a—p Ja,p) + {(7,€) ERXR|T 0 and & > p? “ir}

:{7'75 6R><]R|7'2 /q and & — p > p? 71(Tfa+pq"/q*)}
2

={(r ) ERxXR|T>a—p" /q" and &> p+p? L1 —a)+p* /q")},
(2.41)

and therefore

) = (a— q" / x 027(047#1*/(1*)
bor) =lomptiahe) o {||x|>v(p+pq*1<a/v—a>+p2q*l/q*>)-

(2.42)
In view of Proposition 2.3(iii), this yields (2.34).
(iv): Here (0/7, [[z[|/7) ¢ Rz and (x,v) = projg,(o/7, [|#[|/7). Since
R ={(x,v) ER® | x+ (a+]- /)" (v) < 0}, (2.43)
the expression of proxw(a x) is computed exactly as though we were dealing
with the generalized scaled lasso function ac+ || - ||2/¢ of Example 2.4 with k = ¢
and the result is given in (2.29). O

Example 2.6 (generalized Berhu function). Let «, 7, p, and & be in ]0, +00],
let ¢ € ]1,400], and set C = B(0; p). Define ¢: H — R by

d¢; .4
Y =« + K/H . || + qqu, where q = ——7 (244)

and let ¢ € R and = € H. Then

o (=l T
ao + kllz|| + — —p), if 0>0 and |z| > po;
qp

g*—1 o
P(o,x) = { ao + kllz, it 0>0 and |z| < po
0, if c=0 and xz =0;
400, otherwise.

(2.45)
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Furthermore, set A: R — R: p +— max(|u| — &,0) + max? (|u| — ,0)/¢*. Then
the following hold:

(i) Suppose that A(||z[|/v) < (a —o/7)/p. Then prox,;(o,z) = (0,0).
(ii) Suppose that A(||z]|/y) > (e — g /v)/p and that ||z| > v& + p(o — ya). If
x # 0, let ¢ be the unique solution in |k, +oo[ to the polynomial equation

p(a*yoz+’yp<t/<;+(t_qf)q*>) (1+(t71€)q*71) fyt—|z] = 0. (2.46)

Set p = ta/||z| if ¢ # 0, and set t = 0 and p = 0 if x = 0. Then

prox. (o, z) = (o —ya + ypA(t),x — 'yp)
(iii) Suppose that v& < ||z]| < v& + p(U — ~vya). Then

prox. z(o,z) = (0 — o, (1 —ys/||z])z). (2.47)

(iv) Suppose that o > ya and ||z|| < k. Then prox,;(o,r) = (0 — va,0).
Proof. The geometry underlying the proof is that depicted in Fig. 1, where
q=2.Set R=[-p,p|, D=[—kK|, p =a+k|-] +d‘[17p’p]/(qpq/q ), 0: R —
R:t — |t]7/(qp?/9"), and ¢: R — R: ¢ = p(|t| + [t|9" /¢*). Then ¢: R — R is
convex and even, and it follows from (2.44) and [4, Example 13.8] that

p=¢oll-[| and " =¢"of-]|. (2.48)
Furthermore, op = k|-| and we derive from [4, Examples 13.26 and 13.2(i)] that

qi)*:(aD—I—GOdR)*—oz
:UED(QOdR)*—OZ
or+0" 0] |) -

LDD(
o0 48701 ) -
(

%
= p(dD + qu > — o (2.49)
In turn, [4, Example 17.33] yields

14+d% 7 (v) . . |
(Vv eR) 9o*(v) = {P(W) (V — pTOJDV)} , if v ¢ D;
(NDV) n [_pu p]7 if veD.

(2.50)

However, since D = [—k, k], we have dp: v — max(|v| — k,0). Therefore, (2.49)
implies that

(v eR) ¢'(v) = pAl) —a
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ol (e =) ) = i
—a, if v <k
and
{p(1+(\1/| —K)Q*’l)sign(u)}, if |v| > k;
(Vv eR) 9¢*(v) = < [0,0], if v=r;  (2.52)
[_p70]7 if v=—rx;
{0}7 if ‘l/| < K.
On the other hand, (2.51) and (2.18) yield
R={(x,v) € R? | pPA(v) < o —x}. (2.53)

Now set II = (a, k) and (x,v) = projg(c/7,||z|/v7). In view of (2.52), the
normal cone to epi ¢* at (k, —a) is generated by the vectors (p, —1) and (0, —1).
Hence, the normal cone to R at II is generated by n; = (1, p) and ny = (1,0),
that is

NIl ={(1,§) eRxR | 0< < pT) (2.54)

In turn,
projx {11} = I + NxIl = {(r,¢) € R? ’ k<ESKk+p(T—a)l. (2.55)

(i): Tt follows from the assumptions and (2.51) that o + v¢*(||z||/v) < 0. In
turn, Proposition 2.3(i) implies that prox, (o, z) = (0,0).

(i): We have (o7, 2]} /7) € R S |—00, &] X [, ] and 2]l /7 > s+ plo /4~
«). Hence |v| > k. Now set (m,p) = proje(c/v,2/7v). Then |p|| = |v| > k.
Therefore, since it results from (2.48) and (2.49) that dom ¢* = dom (¢p*o||-||) =

‘H, Lemma 2.2(ii), (2.48), and (2.52) yield

z=9p+ (0 +7¢"(p)) Ve*(p)
=yp+ (0 +v¢*(Ipl))V(e* o || - [)(p)

_ (7 + p(a — ya +w<llp — R+ (”qu_*ﬁ)q* )) (1 : (lepﬂ K)q*_1>>p'

(2.56)

Hence,

1

’Y+p<07a+7p<t,€+ (t—qf)q*)>(1+(t—t,<;)f >

where ¢ = ||p|| is the unique solution in |k, +o0o[ to (2.46), which is obtained by
taking the norm of both sides of (2.56). We then get the conclusion by invoking
(2.17).

z,  (2.57)

p:
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(iii): In view of (2.55), the assumptions imply that (o/7,||z||/v) € I + NxII
and therefore that (x,v) = (a, k). Consequently, Proposition 2.3(iii) yields
prox, (0, z) = (¢ —ya, (1 = vk/l|z[)z).

(iv): Set H = ]—o00,a] x R. Then R = RN H and (a/v, ||z||/7) € |a, +oo] X
[—k, k]. Hence, (x,v) = projy(a/v,|lz|l/v) = (a,||z||/7). In turn, we derive
from Proposition 2.3(iii) that prox,;(o,z) = (¢ —va,0). O
Example 2.7 (standard Berhu function). Let «, 7, and p be in ]0, +oo[. The
standard Berhu function of [29] with shift « is obtained by setting X =R, k = 1,
and ¢ = 2 in (2.44), that is

|z[* +p* .
Ll L O Y .
b, R—R:zw— ot 20 if Jo] > pi (2.58)
ot ol it [o] < p
Now let ¢ € R and z € R. Then we derive from Example 2.6 that
2 2.2
oo + M, it 0>0 and |z| > op;
2p0
b(o,z) = { @0 + [z, if 0>0 and |z| <op; (2.59)
0, if c=0 and x =0;
400, otherwise,
and that Prox i (o, ) is given by
(0,0) if max(|z|? —+2,0) < 2’y(’ya —0a)/p;
(0 —v,0) if 0>~a and |z| <
(0 =y, (1 —~/|z])z) if 0 > ~vya and 7<|x| v+ plo — ya);
(0 —ya+3p(p)* = 1)/2,2 —vp) if |z] >+ p(o —ya) and
2| > /A2 + 29(ya = 0) /p,
(2.60)
with i
p= (2.61)

x
’y+p(07’ya+72p( 1))
where ¢ is the unique solution in ]1,400[ to the reduced third degree equation
2(y + ploc —ya 2
2+ ( (42l 7 ) —1)75— ”“TQH —0, (2.62)
vp p

which can be solved explicitly via Cardano’s formula.

Example 2.8 (abstract Vapnik function). Let «, €, and « be in ]0, +o00[, and
define ¢: H — R by ¢ = a + max(]| - || — €,0). Then

ao + max(||z|| — e0,0), if o> 0;

i (2.63)
400, if 0 <O.

@: H — ]—o00, 4] : (U,x)»—){

Now let 0 € R and = € H. Then the following hold:
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(i) Suppose that o + ¢||z|| < ya and ||z|| < . Then prox, (o, z) = (0,0).
(ii) Suppose that o < y(a —€) and ||z|| > 7. Then

prox. (0, ) = (o, (1 = ”%>ac> (2.64)

(iii) Suppose that o > y(a —¢) and ||z|| = €0 + (1 + e(¢ — «)). Then

prox,;(o, ) = (a + (e — a), (1 - ”%>x> . (2.65)

(iv) Suppose that o +¢||z|| > v and e(0 —ya) < ||z]| < o+ (1 + (e — a)).

Then Il
o+ el|lx|| — Yo £
=— (1, —2x ). 2.66

(v) Suppose that o > ya and |[z]| < e(0 — ya). Then prox, (o, 7) = (0 —
Yo, ).

Proof. We derive (2.63) at once from (2.15). Set ¢ = v+ max(|-| —&,0). Then
p=¢ol-[and ¢ =a +d_.q =+t 0| | Therefore

o =¢l-|+ U-1,1] — Q. (2.67)

Thus, (2.18) yields

Ry =]—00,a] x [—1,1]

fR2 = {(ny) c R2 | E|U| <a— X} (268)

R=R;NRy, where {

Now set. (x,v) = projg(c/7, |z[l/7)-
(i): This follows from (2.67) and Proposition 2.3(i).

(ii): Since /7 < a — € and ||z/v|| > 1, it follows from (2.68) that

(x,v) = projg, (¢/7, llzll/7) = (¢/7,1). (2.69)

In turn, we derive (2.64) from Proposition 2.3(iii).

(iii): The point IT = (o — ¢,1) lies in the intersection of the boundaries of
Ry and Ro, which are line segments. Therefore, the normal cone to R at II is
generated by outer normals n; to Ry and ns to Ry at II. A tangent vector to
Ro at I is t(II) = (—e&, 1). Therefore we take ny = (0,1) and ny = (1,¢) L ¢(II).
Consequently, the set of points which have projection II onto R is

proj {IT} = I + NxII
= II + cone (n1,n2)
= (« —51)+{(T,§ ER?| 720 and § > e7}
= {(, R2‘72a—5 and &> 1+e(t—a+e)}
> >

:{756R2|7 a—cand{>er+1l+ee—a)}, (2.70)
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and it contains (o /7, ||z||/v). Hence

oz y(a—e¢)

||| > eo + 'y(l +e(e — a)) (2.71)

(X,I/):(Ozfé‘,].) & {

We then use Proposition 2.3(iii) to get (2.65).

(iv): In this case, (x,v) = projg,(c/v, ||z||/v). More precisely, (x,v) is the
projection of (¢/v, |z|/v) onto the half-space {(7,£) €R? | eé <a—7} =
{(7,6) e R? | ((7,€) | n2) < o}, where ny = (1,¢). Thus,

o= {(ollzl) [n2)/y -

[m2]|?
o a=(o+elzl)/y M+EO‘_(U+E||‘”||)/’V>7 (2.72)

o~ —~

Ov) = Z (o lzfl) +

)

v 14¢? o 1+4¢2

I
N2

and (2.66) follows from Proposition 2.3(iii).
(v): Set IT = («,0), na = (1,¢), and ng = (1, —¢). The set of points which
have projection II onto R is

I+ NIl = I + N, II
= II + cone (n2,n3)
= (04,0) +{(T,£) € R? | 720 and & SET}
{9 eR? |r>a and ¢ <e(r - @)}, (2.73)

and it therefore contains (o /7, ||z]| /7). In turn, (x, ) = («, 0) and the conclusion
follows from Proposition 2.3(iii). O

3. Optimization model and examples

Let us first recall that our data formation model is Model 1.1. We now in-
troduce our perspective M-estimation model, which enables the simultaneous
estimation of the regression vector b = (B,)1<k<p € RP as well as scale vectors
5= (Gi)1<icy € RY and = (7;)1<i<p € RP. If robust data fitting functions
are used, the outlier vector in Model 1.1 can be identified from the solution of
(3.2) below. For instance, if the Huber function is used for data fitting, one can
estimate the mean shift vector o in (1.1) [1, 33].
The proposed perspective M-estimation optimization problem is as follows.

Problem 3.1. Let N and P be strictly positive integers, let ¢ € I'o(RY), let
w € [o(RY), let 0 € To(RP), let (n;)1<i<ny be strictly positive integers such
that Zil n; = n, and let (p;)1<icp be strictly positive integers. For every
i€{l,...,N}, let p; € To(R™), let X; € R™*P and let y; € R™ be such that
X1 (7
X=1": and y=|:|. (3.1)
XN YN
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Finally, for every i € {1,..., P}, let ¢; € To(RP%), and let L; € RPi*P. The
objective of perspective M-estimation is to

N P
sﬂggﬁ%a?q@+w@+ww+gg@@%xmfyg+Z;m@%@m.@z

Remark 3.2. Let us make a few observations about Problem 3.1.

(i) In (3.2), N+ P perspective functions (@;)1<ign and (Ji)1gigp are used to
penalize affine transformations (X;b — y;)1<i<n and (L;b)1<icp of b. The
operators (L;)1<icp can, for instance, select a single coordinate, or blocks
of coordinates (as in the group lasso penalty), or can model finite difference
operators. Constraints on the scale variables (0;)1<i<n and (7;)1<i<p of
the perspective functions can be enforced via the functions ¢ and w.

(ii) Tt is also possible to use “scaleless” non-perspective functions of the vari-
ables (X;b—y;)1<icn and (L;b)1<icp. For instance, given ¢ € {1,..., N},
the term ;(X;b — y;) is obtained by using @;(o;, X;b — y;) and imposing
o; =1 viag.

(iii) We attach individual scale variables to each of the functions (¢;)1<i<n and
(Jihgig p for flexibility in the case of heteroscedastic models, but also for
computational reasons. Indeed, the proximal tools we are proposing in
Sections 4 and 5 can handle separable functions better. For instance, it is
hard to process the function

(0,21, 22) — P1(0,21) + Pa(0, x2) (3.3)

via proximal tools, whereas the equivalent separable function with cou-
pling of the scales

(01,02, 21, 22) = s(01,02) + @1(01, 1) + P2(02, T2),

0, if o1 = o9;

where ¢(o1,09) = 3.4

( ! 2) {+OO, if oy 75 o9, ( )
will be much easier.

We now present some important instantiations of Problem 3.1.
Example 3.3. Consider the optimization problem

minimize [[Xb— yl[[§ + on[|blly + az|b]7, (3.5)

beR?

where ay € [0, +00[, as € [0,+00, ¢ € {1,2}, and r € [1,2]. For ¢ = r = 2,
ay >0, and ay > 0, (3.5) is the elastic-net model of [42]; in addition, if a3 =0
and ay > 0, we obtain the ridge regression model [19] and, if a; > 0 and ay = 0,
we obtain the lasso model [36]. On the other hand, taking ¢ = 1, ay > 0, and
ag = 0, leads to the least absolute deviation lasso model of [39]. Finally, taking
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q=2,a; =0, and ag > 0 yields to the bridge model [16]. The formulation (3.5)
corresponds to the special case of Problem 3.1 in which

N:17 ny =n, SD].:HHZ
P=1p=p ¢1=0, L1 =0 (3.6)
=ty w=0, 0=au][l1 +azf [

Note that our choice of ¢ imposes that o1 = 1 and therefore that g1 (o1, ) = |-/
The proximity operator of ¢; is derived in [7] and that of € in [11].

Example 3.4. Given ay and as in [0, +o00[ and ¢ € {1, 2}, consider the model

P p—1
inimi Xb— yl2 ; i1 — Bi] 2. 3.7
minimize I ylls + a1 ; |Bi] + a ; |Biv1 — Bil (3.7)

It derives from Problem 3.1 by setting

N =1, ny =mn, 901:“”3
P:p_L (VZG {]-77P}) pz:17 wi:a2|'|q7 L’L bHﬁiJrl _ﬂi
S =1}, W=, 1)} 0= a1
(3.8)
For ¢ = 1, we obtain the fused lasso model [38], while ¢ = 2 yields the smooth
lasso formulation of [18]. Let us note that one obtains alternative formulations
such that of [37] by suitably redefining the operators (L;)1<i<p in (3.8).

Example 3.5. Given p; and p3 in 0, +oo[, the formulation proposed in [29] is

minimize azn:h (m> —|—na—|—a17’zp:b (&) + pT
0€]0,+00[, 7€]0,+00[, bERP P} p1 g P P2 T ’
(3.9)
where h,, and b,, are the Huber and Berhu functions of (2.30) and (2.59),

respectively. From a convex optimization viewpoint, we reformulate this problem
more formally in terms of the lower semicontinuous function of (2.15) to obtain

n

p
Uerﬂr{}’i?é%{ibzgw i:Zl[hp1 +n] (o, 2] b—n;) + o Z':Zl[bp2 +p~(7,8).  (3.10)

This is a special case of Problem 3.1 with

N=mn and (Vie{l,....N}) n;=1, ¢, =h,, +n, X; =z

P=pand (Vie{l,...,P}) p; =1, ¥ =aiby, +p, Li: b— S;

¢ =tp, where D={(0,...,0) €R" | 0 € R} (3.11)
w =g, where E:{(T,...J)GRP}TGR}

6=0.
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If one omits the right-most summation in (3.10) one recovers Huber’s concomi-
tant model [21]. Note that

1< 1 &
prox, = projp: (0i)i<i<n — (5 ; Tiyevrs - ; O’Z'> . (3.12)

The operator prox_ is computed likewise. On the other hand, the proximity
operators of h, and b,, are provided in Examples 2.5 and 2.6, respectively.

Example 3.6. The scaled square-root elastic net formulation of [30] is

o | Xb—yl3 no
_— =+ — b b4 3.13
Lopinimize 5+ g ToulblhtealPl, (8.13)
where ay € [0, +00[, as € [0, +o0], and ¢ € {1,2}. Reformulated more formally
in terms of lower semicontinuous functions, this model becomes

. . . ||'H% n -
Iz +n Xb—1) 4+ aq||blly + al|b]|4. 14
%ﬁ}?&%ﬁ |: 9 (07 y) 1” Hl 2” Hz (3 )

We thus obtain the special case of Problem 3.1 in which

N=1mni=n, 1= (-13+n)/2
P:p and (VZE {1,7P}) pi:L wi:al\-|, LZ‘Z bl—),@’z (315)
=0, w=0, 0=azb]5.

The proximity operator of  is given in [13], while that of ¢; is provided in Ex-
ample 2.4. Note that, when ¢ = 2, we could also take the functions (¢;)1<i<p to
be zero and § = o ||b||1 + a2 ||b]|3 since the proximity operator of @ is computable
explicitly in this case [11]. When as = 0 in (3.14), we obtain the scaled lasso
model [2, 35]. On the other hand, if we use az = 0 and ¢ = [ [ for some
€ €0, 4o00[ in (3.14), we recover the formulation of [28].

Example 3.7. Given «, p1, p2, and (w;)1<igp in ]0, +00[, the formulation pro-
posed in [23] is

n Tb_ )
O'thl(%> +no, if o> 0;

1=1
aerﬂrkl,lilgél,lbzgﬂv 01 Z |a:sz — m|, if o =0;
i=1
400, if <0
P
Bi 1 .
047'2 (wibp2 (? + o) if 7>0;
+ i=1 (3.16)
0, if b=0and 7 = 0;

400, otherwise,
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where h,, and b,, are the Huber and Berhu functions of (2.30) and (2.59),
respectively. In view of (2.15), we can rewrite (3.16) as

n

L - - 1
, Jninimize ‘Z[hp1 +n]~ (o2 b—n;) + az {wibpz + w—z] (1,B:). (3.17)

~

=1 =1

This is a special case of Problem 3.1 with

N=nand (Vie{l,...,N}) n;=1, p; =h,, +n, X; =z
P=p and (Vie{l,...,P}) pi=1, ¢ = a(wibp,z + 1/wi), Li:b— f;
¢ =1tp, where D = {(a,...7o) e R™ ‘ UGR}
@ =1p, where E={(r,...,7) €R? ’ T € R}
6 =0.
(3.18)
In the variant studied in [22], the functions (¢;)1<i<p of (3.18) are replaced by

(Vi€ {1,...,p}) i = awi|Bil.
Example 3.8. Let o € ]0, +00[. The formulation

L Int lyll37 | [IXbl3 y' Xb
_ 2T BT OB ey - 22 3.19
Ter]g}fg[l,lggﬂzp 2 2n + 2nT +afblly n ' ( )

was proposed in [40] under the name “natural lasso.” It can be cast in the
framework of Problem 3.1 with

N=1n=n,p1=0
P=1,pi=p, 1 =|-13/2n), L1 = X (3.20)
¢=0,0=a |1 —(XTy|)/n

and
(1 2 2r/(2 if ;
ooy [ /@0, i >0 (3.21)
—i—OO, lf T § 0.

The proximity operators of § and w are given in [13].

Example 3.9. Given « and € in |0, +00[, define v;: R — R: 1 — a+ max(|n| —
g,0). Using the perspective function derived in Example 2.8, we can rewrite the
linear v-support vector regression problem of [32] as

n

1
e e . ~ T 2
(o, b—mn;) + =b]|3. 3.22
oER, beR? Z_Zl"(“ zib—m) + 50l (3:22)

We identify this problem as a special case of Problem 3.1 with
N =n and (V’LG {1,,N}) i =V, X; :.Z‘;r
lea b1 =D, 1/’1:07 L1:O

¢ =1tp, where D:{(a,...,J)GR"}JGR}
w=0,0=]-[3/2

(3.23)
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The proximity operator of V; is given in Example 2.8 and that of ¢ in (3.12).
The concomitant parameter ¢ scales the width of the “tube” in the v-support
vector regression and trades off model complexity and slack variables [32].

The next two examples are novel M-estimators that will be employed in
Section 5.

Example 3.10. In connection with (3.1), we introduce a generalized het-
eroscedastic scaled lasso with N data blocks, which employs the perspective
derived in Example 2.4. Recall that n; is the number of data points in the ith
block, let «y € [0, +00], and set

1
Mie{l,....,N}) ci¢:R"™ >Rz ||x|\g—|—§ (3.24)

The objective is to

N
Sl’élﬂlg]blilé%% ; Cirq(0i, Xib — ;) + aq||b]1. (3.25)

This is a special case of Problem 3.1 with

(VzG{l,,N}) Sai:Ci,q
P=1p=p ¢1=0, L1 =0 (3.26)
w=0,¢=00=aq| |-

The choice of the exponent g € ]1,+oo] reflects prior distributional assump-
tions on the noise. This model can handle generalized normal distributions. The
proximity operator of ¢; 4 is provided in Example 2.4.

Example 3.11. In connection with (3.1), we introduce a generalized het-
eroscedastic Huber M-estimator, with J scale variables (¢;)1<;j<.7, which em-
ploys the perspective derived in Example 2.5. Each scale o; is attached to a
group of m; data points, hence ijl m; = n. Let a; and as be in [0, +o00], let
d, p1, and p2 be in |0, 400, and denote by h,, 4 the function in (2.31), where
H = R. The objective is to

J M P
minimize Z Z[hphq—&—(ﬂw (0, 2] b—mn;)+au|bll1+az Z[bp2 +p]™ (7, Bs).-
sER, TER,bER? T T P

(3.27)
This statistical model is rewritten in the format of the computational model
described in Problem 3.1 by choosing

N=n and (Vie{l,....N}) n;=1, p;=h,, ,+6, X; =z
P=pand (Vie{l,...,P}) p; =1, ¥ =asb,, +p, Li: b— f;

¢ =up, where D= {(o1,...,01,...,04,...,05) €ER" | (oj)igj<s ER7}
w = Lg, where E:{(T,...,T)ER;D’TE]R}
0 =anll - |lx

(3.28)
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The choice of the exponent g € ]1,+oo] reflects prior distributional assump-
tions on the noise. This model handles generalized normal distributions and can
identify outliers. Note that

1 & 1 &

prox, = projp: (0i)igi<n — | — g Ciyenny— Ciyerns
miy “© 1 miy “© 7
1= 1=

m% > ami > a> (3.29)

i=n—my+1 J i=n—mj+1

mj terms

Remark 3.12. Particular instances of perspective M-estimation models come
with statistical guarantees. For the scaled lasso, initial theoretical guarantees
are given in [35]. In [22, 23] results are provided for the homoscedastic Hu-
ber M-estimator with adaptive ¢! penalty and the adaptive Berhu penalty. In
[17], explicit bounds for estimation and prediction error for “convex loss lasso”
problems are given which cover scaled homoscedastic lasso, the least absolute
deviation model, and the homoscedastic Huber model. For the heteroscedastic
Me-estimators we have presented above, statistical guarantees are, to the best of
our knowledge, elusive.

4. Algorithm
Recall from (3.2) that the problem of perspective M-estimation is to

N P

seRI‘\r’l}?elg}‘},Zl?eRP c(s)—&—w(t)—&—@(b)—i—; Gioi, Xib—y;) + ;wz (7i, Lib). (4.1)
This minimization problem is quite complex, as it involves the sum of several
terms, compositions with linear operators, as well as perspective functions. In
addition, none of the functions present in the model is assumed to have any full
domain or smoothness property. In this section, we reformulate (4.1) in a suit-
able higher dimensional product space through a series of reparametrizations.
The resulting reformulation is shown to be solvable by the Douglas-Rachford
splitting algorithm. Once reformulated in the original scale/regression space,
this algorithm yields a new proximal splitting method which requires only to
use separately the proximity operators of the functions ¢, @, 8, (;)1<i<n, and
(Ql}vi)lgig p, as well as application of simple linear transformations. It will be
shown to produce sequences (sk)ken, (tk)ken, and (bg)reny which converge re-

spectively to vectors s, ¢, and b that solve (4.1).
Let us set o: RY x RP — ]—00, +00] : (s,t) = s(s) +@(t), M = N+ P, and

¥ = p; U =i_N
Vie{l,...,Np ™™™ and (Vie{N+1,.. M}y PN

w; = Y; w; =0

Ai = X,L A’L = Li*N'

(4.2)
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Then, upon introducing the variable v = (s,t) = (v;)1<i<m € RM, we can
rewrite (4.1) as

M
minimize v) +6(b) + % (v, Asb — w;). 4.3
veRM  beRP Q< ) ( ) ; ( ) ( )

Now let us set m = n + p and define

Ay
A= : (4.4)
Am
and
f: RMxRP — ]-o00,+00)
(v,;0) = o(v)+0(b)
g: RMxR™ — ]—o0,+00]

M
(v,z) — Z{?vl(l/“zl — w;)
i=1

L: RM xR — RMxR™

(v,b) — (v, Ab).

Then, upon introducing the variable a = (v,b) € RM xRP, (4.3) can be rewritten
as
minimize f(a)+ g(La), (4.6)
acRM+?
which we can solve by various algorithms [5, 9]. Following an approach used
in [10] and [12], we reformulate (4.6) as a problem involving the sum of two
functions F' and G, and then solve it via the Douglas-Rachford algorithm [4,
15, 24]. To this end, define

F:RM¥P 5 RMF™ ] 00, +o0] : (a,c¢) — f(a) + g(c) (4.7
and
G =1y, where V =/{(z,h) e RM? xR"*" | Lz =nh} (4.8)

is the graph of L. Then, in terms of the variable u = (a, c¢), (4.6) is equivalent
to

urgﬂg;}lvmgfp F(u) + G(u). (4.9)
Let v € ]0, +oo[, let vy € RZM+P+™ and let (ux)ren be a sequence in |0, 2[ such
that ), .y #r(2—pr) = +oo. The Douglas-Rachford algorithm for solving (4.9)
is [4, Section 28.3]

fork=0,1,...

ur = pI“OX,,{G’UJ€

wy, = prox, p(2uy — vi)

Vg1 = U + pip(wy — ug).

(4.10)
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Under the qualification condition
V Nridom F # @, (4.11)

the sequence (uy)ren is guaranteed to converge to a solution u to (4.9) [4,
Corollary 27.4]. To make this algorithm more explicit, we first use (4.7) and [4,
Proposition 24.11] to obtain

proxg: (a,c) — (proxga,prox,c). (4.12)

Next, we derive from (4.8) that prox is the projection operator onto V', that
is [4, Example 29.19(i)],

proxg: (x,h) — (a,La), where a =x—L" (Id +LLT)_1(Lx —h). (4.13)
Therefore, using the notation

uy, = (ag,cy)
R=L"(Id +LL")™* and (VkeN) < vy = (zx hi) (4.14)
wy = (2g, dy),

we see that, given some initial points ®y € RM*?P and hy € R™TM  (4.10)
amounts to iterating

fork=0,1,...
q, = Lz}, — hy
a, =z, — Rq,
ck:Lak

4.15
Zp = p1roxwe(2a;C — xy) ( )

dk = pI"OX,Yg(QCk — hk)
Tpr1 = T + pr(zr — ag)
hit1 = hy + pp(di — ci).

In addition, it generates a sequence (ar)ren that converges to a solution a to
(4.6). Now set

ap = (sg,tr,by) € RV x R x RP

ek = (Skytr,cpp) € RY x RP x RHP

T, = (Ts ks Tt o, Tok) € RY x R x RP

(Vk € N) hi = (hs g, hi g, ho i) € RY x RE x R+ (4.16)
2k = (2s.ks 2.k 20,) € RN X RP x RP

di, = (ds ., d g, dp i) € RN x RP x RHP

a, = (s,ks @tk Do k) € RY x RP x R**P,

and observe that (4.5) and (4.14) yield

(Vk eN) Rgq;, = (qS,k/2;Qt,}c/27QQb,k)7 where Q= AT(Id +4AT)~L.
(4.17)



Perspective M-estimation via prox decomposition

Let us further decompose the above vectors as

Sk = (O-l,ka' . ';UN,k) e RN
tr = (Tl,kw . .,Tp}k) S RP
hoi = (Mks---,nne) €RY
hie = (MN41ks-- - IN+Pk) € RY
hoe = (higs- s ANk ANt1 K-  AN4PR)
e€R™ x--- xR" xRPI x ... x RPP
Coke = (Cliks -+ -+ CN k> CN41ks - - - » CN+P,k)

cR™ x ... x R"™ x RPt x ... x RPP
ds,k = (51,k7 ceey 5N,k) e RN
di = (ON+1,ks-- - ON+PKk) € RP

dye = (di ks AN, AN 18> - - - AN PE)
cR™ x ... x R"™ x RP1 x ... x RPP,

231

(4.18)

Then, given x50 € RN, 2,0 € RY, 2,9 € RP, hyp € RN, hyy € RF, and

hyo € R™, (4.15) consists in iterating

fork=0,1,...

s,k = Tsk — hs,k

Gtk = Ttk — he g

ok = Axp ) — hp

Sk =Tk — qs,i/2

b = Te ke — Qek/2

b = xpr — Qap i

Zs ke = proxvg(2sk — Ts k)
Zik = prowi(th — Tek)
Zbk = pI‘OX,Ye(Qbk — zb,k)

Ts k1 = Tok + Lr(2s,k — Sk)
T k1 = Te o + k(2o — i)
T k41 = Tk + k(206 — bk)
fori=1,...,N

cik = Xibg
(6ik dik) = (0,y3) + prox, s, (2045 — Mk, 2¢i & — hik — Vi)
fori=1,...,P

cN+ik = Liby

(ON+ik, AN+ik) = Prox_ 5 (2Tik — NN+iks 2CN ik — INik)
hsi+1 = hsk + prp(ds i — Sk)
hig+1 = heg + pr(de i — tr)
ho 1 = ho g + pk(dp ke — Cok)-

(4.19)

Using the above mentioned results for the convergence of the sequence (uy)ren
produced by (4.10), we obtain in the setting of Problem 3.1 the convergence of
the sequences (sk)ken, (tk)ken, and (bg)ren generated by (4.19) to vectors s, t,

and b, respectively, that solve (4.1).
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F1G 2. Generalized heteroscedastic lasso solutions for b (top panel) and s (bottom panel) across
the a1-path. The left panels show the results of fully non-smooth perspective M-estimation.
The right panels show the results for a smoothed version with o; € [e,+oo[ for € = 0.05. The
dashed lines mark the ground truth entries of b and 3.

5. Numerical experiments

We illustrate the versatility of perspective M-estimation for sparse robust re-
gression in a number of numerical experiments. The proposed algorithm (4.19)
has been implemented for several important instances in MATLAB and is avail-
able at https://github.com/muellsen/PCM. We set n = 1.9 and v =1 for all
model instances. We declare that the algorithm has converged at iteration k if
|bk+1 — bill2 < €, for some € € |0, +00[ to be specified.

5.1. Numerical tllustrations on low-dimensional data

Our algorithmic approach to perspective M-estimation can effortlessly handle
non-smooth data fitting terms. To illustrate this property, we consider a partially
noiseless data formation model in low dimensions. We instantiate the data model
(1.1) as follows. We consider the design matrix X € R™ P with p = 3 and
sample size n = 18. Entries in the design matrix and the noise vector e € R™ are
sampled from a standard normal distribution A(0,1). The matrix C' € R"*" is
a diagonal matrix with N = 2 groups. We set 5 = [71,72] " = [3,0]". The ith
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diagonal entry of C is set to 7y for i € {1,...,8} and to 72 for ¢ € {10,...,18},
resulting in noise-free observations for the second group. The mean shift (or

outlier) vector is 0 = [0,...,0]". The regression vector is b = [0.25,-0.25,0] .
The goal is to estimate the regression vector b € R3 as well as the concomitant
(or scale) vector § = [71,09] . We consider the generalized heteroscedastic

lasso of Example 3.10 with N = 2 and ¢ = 2. To demonstrate the advantage
of our non-smooth approach in this partially noiseless setting, we consider two
variations of the model, the standard non-smooth case and a smoothed version
with D = [e, —|—oo[2 for € = 0.05. The convergence accuracy for the algorithm is
set to € = 1078, Figure 2 shows the estimates b = |31, B2,33] " and s = [0, 02] |
across the regularization path, where oy € {0.089,...,8.95}, with 200 values
equally spaced on a log-linear grid for both settings. The results indicate that
only the heteroscedastic lasso in the non-smooth setting can recover the ground
truth regression vector b (top left panel) and G = 0 (bottom left panel). In
both settings the estimate oy is slightly overestimated (due to the finite sample
size). The “smoothed” version of the heteroscedastic lasso cannot achieve exact
recovery of b across the regularization path (top right panel).

5.2. Numerical illustrations for correlated designs and outliers

To illustrate the efficacy of the different M-estimators we instantiate the full data
formation model (1.1) as follows. We consider the design matrix X € R"*P with
p = 64 and sample size n = 75 where each row X is sampled from a correlated
normal distribution A(0,Y) with off-diagonal entries 0.3 and diagonal entries
1. The entries of e € R™ are realizations of i.i.d. zero mean normal variables
N(0,1). The matrix C € R"*™ is a diagonal matrix with three groups. We set
5 = [61,09,03] " = [5,0.5,0.05]". The ith diagonal element of C is set to 7,
for i € {1,...,25}, to @9 for i € {26,...,50}, and to &3 for i € {51,...,75}.
The mean shift vector o € R™ contains [0.1n] = 8 non-zero entries, sampled
from N(0,5). The entries of the regression vector b € RP are set to 3, = —1 for
i€{1,3,5} and B, = 1 for i € {2,4,6}.

The presence of outliers, correlation in the design, and heteroscedasticity
provides a considerable challenge for regression estimation and support recovery
with standard models such as the lasso. We consider instances of the perspective
M-estimation model of increasing complexity that can cope with various aspects
of the data formation model. Specifically, we use the models described in Exam-
ples 3.10 and 3.11 (with o = 0) in homoscedastic and heteroscedastic mode. For
all models, we compute the minimally achievable mean absolute error (MAE)
| Xb— Xb||;/n across the a;-regularization path, where oy € {0.254,...,25.42},
with 50 values equally spaced on a log-linear grid. The convergence criterion is
e=5-10"%

Homoscedastic models We first consider homoscedastic instances of Exam-
ples 3.10 and 3.11, in which we jointly estimate a regression vector and a single
concomitant parameter in the data fitting part. We consider the generalized
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Fic 3. Generalized homoscedastic lasso and Huber solutions for b when q¢ = 2 (top panel)
and g = 3/2 (bottom panel) across the relevant ai-path. The minimally achievable mean
absolute error (MAE) is shown for all models. The six highlighted B; trajectories mark the
true non-zeros entries of b. The dashed black lines show the values of the true b entries.

scaled lasso of Example 3.10 and the generalized Huber of Example 3.11 with
exponents g € {3/2,2}. Figure 3 presents the estimation results of b over the
relevant a-path.

Heteroscedastic models We consider the same model instances as previ-
ously described but in the heteroscedastic setting. We jointly estimate regression
vectors and concomitant scale parameters for each of the three groups. Figure 4
presents the results for heteroscedastic lasso and Huber estimations of b across
the relevant a-path. The convergence criterion is e = 1074,

The numerical experiments indicate that only heteroscedastic M-estimators
are able to produce convincing b estimates (as captured by lower MAE). The
heteroscedastic Huber model with ¢ = 3/2 (see Figure 3 lower right panel)
achieves the best performance in terms of MAE among all tested models.

5.3. Robust regression for gene expression data

We consider a high-dimensional linear regression problem from genomics [6].
The design matrix X consists of p = 4088 highly correlated gene expression
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Fic 4. Generalized heteroscedastic lasso and Huber solutions for b when q = 2 (top panel)
and g = 3/2 (bottom panel) across the relevant ai-path. The minimally achievable mean
absolute error (MAE) is shown for all models. The six highlighted B; trajectories mark the
true non-zeros entries of b. The dashed black lines show the values of the true b entries.
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Fic 5. Standard lasso, homoscedastic lasso, and homoscedastic Huber log-production rate
predictions with identical model complexity (every vector b comprises twelve non-zero compo-
nents) and associated MAE (computed across all samples). The Huber M-estimator identifies
26 outliers (marked in red).

profiles for n = 71 different strains of Bacillus subtilis (B. subtilis). The response
y € R™ comprises standardized riboflavin (Vitamin B) log-production rates for
each strain. The statistical task is to identify a small set of genes that is highly
predictive of the riboflavin production rate. No grouping of the different strain
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measurements is available. We thus consider the homoscedastic models from
Example 3.6 with s = 0 and Example 3.11 with oy = 0. We optimize the
corresponding perspective M-estimation models over the ap-path where oy =
[0.623,...,6.23] with 20 values equally spaced on a log-linear grid. We compare
the resulting models with the standard lasso in terms of in-sample prediction
performance. Figure 5 summarizes the results for the in-sample prediction of
the three different models with identical model complexity (twelve non-zero
entries in b). To assess model quality, we compute the minimally achievable
mean absolute error (MAE) || Xb — yl||1/n for these three models. The Huber
model achieves significantly improved MAE (0.24) compared to lasso (0.32).
The Huber models also identifies 26 non-zero components in the outlier vector
o (shown in red in the rightmost panel of Figure 5).
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