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The Rydberg blockade mechanism is now routinely considered for entangling qubits encoded in clock states

of neutral atoms. Challenges towards implementing entangling gates with high fidelity include errors due to

thermal motion of atoms, laser amplitude inhomogeneities, and imperfect Rydberg blockade. We show that

adiabatic rapid passage by Rydberg dressing provides a mechanism for implementing two-qubit entangling gates

by accumulating phases that are robust to these imperfections. We find that the typical error in implementing a

two-qubit gate, such as the controlled phase gate, is dominated by errors in the single-atom light shift, and that

this can be easily corrected using adiabatic dressing interleaved with a simple spin echo sequence. This results in

a two-qubit Mølmer-Sørensen gate. A gate fidelity ∼0.995 is achievable with modest experimental parameters

and a path to higher fidelities is possible for Rydberg states in atoms with a stronger blockade, longer lifetimes,

and larger Rabi frequencies.
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Arrays of trapped neutral atoms interacting via the electric
dipole-dipole interaction (EDDI) have emerged as a potential
scalable platform for quantum computing [1–3]. Near term
applications include simulation of Ising models [4,5] and op-
timization [6–8]. In the longer term, this system is a promising
platform for universal fault-tolerant quantum computing given
long-lived qubits at the heart of ultraprecise atomic clocks
[9] and flexible trapping geometries [10–13]. High fidelity,
on demand one-qubit gates have been demonstrated [14,15]
but the implementation of two-qubit gates with the fidelities
required for fault tolerance remains a critical challenge.

Entangling gates based on the EDDI Rydberg-blockade
mechanism [16–19] were first demonstrated in seminal exper-
iments [20,21]. In recent developments, high-fidelity entan-
gling interactions of qubits encoded in ground and Rydberg
states [22] have been applied in a variety of applications
[23–25], and the controlled-Z (CZ) gate on clock-state qubits
have been demonstrated with a fidelity ∼0.97 in 1D [26] and
∼0.89 in 2D [27] arrays.

To achieve higher fidelity two-qubit entangling gates, we
consider dressing clock states with Rydberg states via adia-
batic rapid passage, a powerful tool for robust control [28].
Rydberg dressing has been studied for application in simu-
lation [29–31] and metrology [6,32–36]. We have employed
strong Rydberg dressing to create two-qubit entangled states
[37], measured the light shifts of the adiabatically dressed
entangled states [38], and showed how adiabatic dressing can
be employed to implement a CZ gate with the potential for
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Doppler-free excitation [39]. Adiabatic passage has also been
studied in a variety of protocols as a mechanism for achiev-
ing entangling gates with the Rydberg blockade mechanism
[40–45].

In the current work we extend our analysis and show how
adiabatic passage to implement Rydberg dressing facilitates a
method for realizing a Mølmer-Sørensen (MS) gate [46,47],
with intrinsic robustness to a wide variety of imperfections.
These include inhomogeneities in intensity and in detuning,
such as those arising from Doppler shifts at finite tempera-
ture and Stark shifts from stray electric fields. As we will
show, the dominant effect of such inhomogeneities is the
errors incurred by the single-atom light shifts, which can be
removed using a simple spin echo. Moreover, we can achieve
adiabatic rapid passage such that the integrated time spent
in the Rydberg state is on the same order as that for the
standard pulsed protocol of Jaksch et al. [48] with equivalent
Rabi frequencies, thereby maintaining a similar budget in the
error due to finite Rydberg radiative lifetime. Gate fidelities
∼0.995 are compatible with the typical inhomogeneities in
current experiments and Rydberg state lifetimes t ∼ 100 μs.
Longer-lived Rydberg states can facilitate better control of
adiabatic passage to push fidelities even higher.

For generality, we consider an atom with two long-lived
clock states to serve as the qubit states |0〉 and |1〉. These could
be the hyperfine clock states of alkali atoms separated by a
microwave frequency (e.g., Cs or Rb) [19], or the optical clock
states of alkaline-earth-like atoms (e.g., Sr or Yb) [33,49,50].
The clock state |1〉 is optically coupled to a high-lying Ry-
dberg state |r〉. The fundamental Hamiltonian governing the
Rydberg gate between two atoms is Ĥ2 atom = Ĥα + Ĥβ +
VDD|rr〉〈rr| where VDD is the electric dipole interaction. Ĥα
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(Ĥβ) is the Hamiltonian for the atom α (β) coupled to the
Rydberg laser,

Ĥα =
1

2m
p̂2

α − �1r |r〉α〈r|α +
1

2
�1r

(
eikr ẑα |r〉α〈1|α + H.c.

)
,

(1)

where �1r and �1r are the Rydberg laser Rabi frequency and
detuning, respectively (here and throughout we set h̄ = 1),
p̂α is the atomic momentum operator, and ẑα is the atomic
position operator in the direction of the Rydberg laser. Ideally,
the atoms are illuminated uniformly and see the same Rydberg
laser intensity and detuning. Under those conditions it is
natural to consider the basis of “bright” |b〉 = (eik1r zβ |1r〉 +
eik1r zα |r1〉)/

√
2 and “dark” |d〉 = (eikr zβ |1r〉 − eikr zα |r1〉)/

√
2

states (here and throughout we use the abbreviated notation,
|xy〉 = |x〉α|y〉β). We consider Rydberg interactions for atoms
released from a trap, as is typically done in experiments, and
treat the motion as that of a free particle, and the strong
blockade regime VDD � �1r and neglect to zeroth order any
population in the doubly excited Rydberg state |rr〉; correc-
tions will be considered below. In the case of “frozen” atoms
with zero momentum, the two-atom Hamiltonian takes the
form [30,39]

Ĥ2 atom = −�1r (|b〉〈b| + |d〉〈d| +
√

2�1r

2
(|b〉〈11| + H.c.).

(2)

A π rotation on the |11〉 → |b〉 transition yields an entangled
state, recently achieved with fidelity 97% [22]. When there is
thermal motion, the relative phase eik1r (zβ−zα ) will vary, leading
to coupling between bright and dark states, which limits the
transfer of the entanglement from the bright state to the long-
lived ground state qubits [20,27].

The dressed states of the zero-momentum two-atom
Hamiltonian are [39]

|1̃1〉 = cos
θ2

2
|11〉 + sin

θ2

2
|b〉, (3)

|̃b〉 = cos
θ2

2
|b〉 − sin

θ2

2
|11〉, (4)

where tan θ2 = −
√

2�1r/�1r . In the dressed states, some
character of the entangled bright state |b〉 is admixed with
the ground state |11〉. The two-atom light shift of the ground
state, mediated by the Rydberg blockade, is a shift in the
energy eigenvalues of the dressed states with respect to the
bare states, which under the perfect blockade approximation is

E
(2)
LS = 1

2
( − �1r ±

√
2�2

1r + �2
1r ) [30,37–39]. In the absence

of the EDDI the light shift of this state is equal to twice
the single-atom shift, 2E

(1)
LS . The difference between the in-

teracting and noninteracting shifts is the entangling energy κ

[37–39],

κ = E
(2)
LS − 2E

(1)
LS

= 1
2

[
�1r ±

(√
2�2

1r + �2
1r − 2

√
�2

1r + �2
1r

)]
. (5)

On resonance κ ≈ ±0.29�1r , where �1r/2π can be as
large as a few MHz. For weak dressing, |�1r | � �1r , κ ≈
−�4

1r/8�3
1r , which will generally be smaller than the rate of

(c)(a)

(b)

FIG. 1. (a) Qubit encoded into atomic clock states with the

upper clock state, |1〉, coupled to a Rydberg state |r〉 with a Rabi

frequency �1r and detuning �1r . (b) The two-atom state |11〉 is

coupled to the entangled bright state |b〉 = (|1r〉 + eiϕ |r1〉)/
√

2 with

Rabi frequency
√

2�1r . (c) Light shift of the state |11〉 as a function

detuning. The dashed lines show the light shift in the absence of

EDDI (top: starting from blue detuning; bottom: starting from red

detuning), in an adiabatic passage to the doubly excited Rydberg

state |rr〉. The solid lines show the light shift in the presence of EDDI

under the perfect blockade approximation (top: starting from blue

detuning; bottom: starting from red detuning). The shaded region

shows the value of κ [Eq. (5)]. The dotted lines with arrows show

examples of adiabatic passages used in our ramps (Fig. 2) to obtain

entanglement in the ground state.

photon scattering, which scales as 1/�2
1r . Thus weak dressing

will not yield high-fidelity entangling gates in our protocol.
The dressed energy levels provide an adiabatic passage

from the one-atom ground state |1〉 to the one-atom Rydberg
state |r〉 and from the two-atom ground state |11〉 to the
two-atom entangled bright state |b〉, as shown in Fig. 1(c).
Assuming adiabatic evolution, we consider sweeping the de-
tuning from |11〉 toward |b〉 and then back to |11〉, yielding
an entangling phase given by ϑ2 =

∫
κ dt . While κ grows

monotonically as we pass adiabatically from |11〉 to |b〉, the
simultaneous restrictions of maintaining adiabaticity and lim-
iting the phase ϑ2 to the target value puts a constraint on the
value of the final detuning. Operationally this final detuning
is near resonance in our protocol, yielding the minimum gate
time such that we simultaneously remain adiabatic but act fast
compared to the decoherence rates.

To understand the general class of gates enabled by the
phases accumulated in adiabatic evolution and their sensitivity
to errors, we consider the Hamiltonian in the dressed qubit
(DQ) ground subspace {|00〉, |01̃〉, |1̃0〉, |1̃1〉}, where |1̃〉 is
the one-atom dressed ground state that is a superposition of
|1〉 and |r〉 with dressing angle given by tan θ1 = −�1r/�1r .
Let σ̂z = |1̃〉〈1̃| − |0〉〈0| be the adiabatic Pauli operator on
one atom and Ŝz = 1 ⊗ σ̂z/2 + σ̂z/2 ⊗ 1 be the collective
angular momentum operator. In the dressed atomic basis, the
Hamiltonian in the ground subspace can be written as

ĤDQ = −
(

E
(1)
LS +

κ

2

)
Ŝz + κ

Ŝ2
z

2
. (6)
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This Hamiltonian generates symmetric, one-axis, two-qubit
unitary transformations. The Ŝz term generates SU (2) rota-
tions on the collective spin, while the Ŝ2

z term “twists” the
collective spin and also generates two-qubit entanglement.
The quantization axis can be changed to any axis μ using
additional global SU (2) rotations.

Consider, thus, the unitary transformation of the dressed
qubits generated by adiabatic evolution with this Hamiltonian,

Ûκ = exp

(
−iϑ1Ŝμ − iϑ2

Ŝ2
μ

2

)
, (7)

where ϑ1 = −
∫

(E (1)
LS + κ

2
)dt is the rotation angle generated

by the linear term, and ϑ2 =
∫

κ dt is the twist angle gen-
erated by the quadratic term in the Hamiltonian. When the
twist angle ϑ2 = ±π , these gates are perfect entanglers [51],
meaning that the gates can take a product state to a maximally
entangled state. Examples of perfect entanglers of this kind
are the CZ gate (μ = z, ϑ1 = ∓π/2, ϑ2 = ±π ) and the MS
gate (μ = x, ϑ1 = 0, ϑ2 = π ). A CZ gate is achieved by
removing the phases accumulated due to the independent
one-atom light shifts E

(1)
LS [39]. In contrast, the MS gate is

achieved by removing all single-qubit phases contributing to
ϑ1. While theoretically this difference is trivial, the dominant
source of gate infidelity is errors in ϑ1, making the MS gate
more robust than the CZ gate, as we will see below.

To implement a two-qubit gate of the form Eq. (7) we
consider an adiabatic ramp in which we sweep both the Rabi
frequency �1r and detuning �1r to dress ground states with
Rydberg character and then undress them. This implements a
rapid adiabatic passage of the logical |11〉 state to a near equal
superposition of |11〉 and the entangled bright state |b〉. For a
short time we hold the system in this superposition and then
perform rapid adiabatic passage back to |11〉. All other logical
states involve only single-atom dressing or no dressing. As
an example, we consider an adiabatic schedule of dressing
through a Gaussian ramp of �1r and a linear ramp of the
detuning �1r according to

|�1r (t )| = �max +
(�max − �min )

(t2 − t1)
(t − t1), (8)

�1r (t ) = �min + (�max − �min ) exp

(
−

(t − t2)2

2t2
w

)
. (9)

After a constant period, we reverse the ramp as shown in
Fig. 2. The ramp is optimized to achieve a particular value
of ϑ2.

To implement the MS gate, we consider two adiabatic
ramps, each achieving an entangling phase of ϑ2 = ±π/2,
with an echo pulse on the qubit transition, exp ( − iπ Ŝx ), be-
tween them [52]. The echo pulse cancels the ϑ1 accumulated
in the two adiabatic ramps, thus implementing a MS gate
about the z axis. We convert this to a MS gate about the
y axis using π/2 rotations about the x axis. An advantage
of using these adiabatic ramps is they can be designed for
any value of ϑ2, not just integer multiples of π as in the
pulse sequence πc − 2πt − πc on control (c) and target (t )
qubits, proposed in the seminal work of Jaksch et al. [48].
The duration of this ramp, implementing ϑ2 = π/2, shown
in Fig. 2 is ≈8.4 × 2π/�max. We calculate the time spent in
Rydberg states as the integrated time weighted by the Rydberg

FIG. 2. Adiabatic ramp to implement a unitary transformation in

Eq. (7) with ϑ2 = π/2, involving dressing from time t1 to t2, holding

the parameters constant for a short interval t2 to t3, and undressing

from t3 to t4. Left: Rabi frequency (blue, square); detuning (orange,

circle), with a minimum value of �min/�max ≈ 0.1; and entangling

energy (green, triangle) as functions of time during the ramp, with

a maximum value of κmax/�max ≈ 0.25. Right top: Population of

|01〉 and |10〉 (P1, blue); population of |0r〉 and |r0〉 (Pr orange,

dotted); population of |11〉 (P11, green); and population of |b〉 (Pb,

red, dotted). Right bottom: Population of |rr〉 (Prr) in a logarithmic

scale.

population, tr =
∫

dt ′Pr (t ′). We find tr ≈ 0.7 × 2π/�max for
initial states |01〉 and |10〉 and tr ≈ 0.9 × 2π/�max for initial
state |11〉. As long as the Rabi period 2π/�max is much larger
than the radiative lifetime of the Rydberg states, these ramps
are rapid and have small loss due to Rydberg state decay.
Starting in |11〉 leads to time spent in the doubly excited
Rydberg state |rr〉 of 0.0029 × 2π/�max when the EDDI is
modest, e.g., VDD = 10 �max for �max of a few MHz. The
population dynamics, during the ramp are shown in Fig. 2.

We assess the performance of the gate by considering
the fidelity between the implemented two-qubit gate Û and
the target ideal unitary transformation V̂ defined using a
normalized Hilbert Schmidt inner product between them,
F = |tr(ÛV̂ †)|2/16, which estimates how well any input basis
is mapped to the corresponding target output basis, by the
implemented unitary [53]. In particular, we consider errors
that can arise from inhomogeneities or coherent errors in the
accumulated phases. The fidelity depends on the difference
between twist angles δϑ2 and the difference between rotation
angles δϑ1 of the implemented and target unitary maps ac-
cording to

F =
1

4

[
1 + cos2(δϑ1) + 2 cos(δϑ1) cos

(
δϑ2

2

)]
. (10)

Importantly, the fidelity is much more sensitive to δϑ1 than it
is to δϑ2. The twist angle ϑ2 depends solely on the entangling
energy κ . As this is the difference of two light shifts, it has
some common mode cancellation of errors in the light shifts,
while ϑ1 has a contribution from independent single-atom
light shifts with no such cancellation. This effect is seen
in Fig. 3 which shows the fidelity plotted as a function of
δϑ1 when δϑ2 = 0, that is, F = 1

2
[1 + cos(δϑ2/2)] and as a

function of δϑ2 when δϑ1 = 0, that is, F = 1
4
[1 + cos(δϑ1)]2.

Note, the CZ gate studied in [39] required knowledge of E
(1)
LS

to remove the single-atom contribution to the phase, and
errors will contribute substantially to infidelity through δϑ1.
In contrast, the MS gate is substantially less sensitive to such
errors, as δϑ1 can be made zero by using a spin echo [52].
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FIG. 3. Fidelity between a target and implemented unitary trans-

formation, each of the forms given in Eq. (7), as a function of the

error in the single-qubit rotation angle δϑ1 (blue, solid line) and as a

function of the error in the two-qubit twist angle δϑ2 (orange, dotted

line). The implementation of the CZ gate is very sensitive to errors

caused by inhomogeneities, as it is dominated by δϑ1 (orange, dotted

line). In contrast, the MS gate is more robust, as it is prone to only

errors in δϑ2 (blue, solid line).

Let us consider the error channels and the intrinsic
robustness of using adiabatic Rydberg dressing to implement
the MS gate. Deleterious effects include thermal Doppler
shifts and atomic motion in a spatially inhomogeneous
exciting laser, imperfect blockade, and finite radiative
lifetime of the Rydberg state. To see how this effect
arises, let us revisit the dressed states, including the
quantized motion. For generality we include quantized
atomic momenta pα and pβ of the two atoms in their
Rydberg dressing interaction in addition to the electronic
ground state and the bright and dark states. The bare
states are the ground state |G〉 = |1, pα; 1, pβ〉, bright state

|B〉 = 1√
2
(|r, pα + k1r ; 1, pβ〉 + |1, pα; r, pβ + k1r〉), and dark

state |D〉 = 1√
2
(|r, pα + k1r ; 1, pβ〉 − |1, pα; r, pβ + k1r〉).

The two-atom Rydberg Hamiltonian now generalizes to [39]

Ĥ2 atom(pα, pβ ) = −
(

�1r −
k1rPCM

M

)
(|B〉〈B| + |D〉〈D|)

+
[
VDD − 2

(
�1r −

k1rPCM

M

)]
|rr〉〈rr|

+
k1r prel

m
(|B〉〈D| + H.c.) +

1

2

(
�α + �β√

2

)

× (|B〉〈G| + |rr〉〈B| + H.c.)

+
1

2

(
�α − �β√

2

)
(|D〉〈G|+|rr〉〈D|+H.c.),

(11)

where �α = �1r (zα ) and �β = �1r (zβ ) are the Rabi fre-
quencies at the positions of atoms α and β; PCM = pα + pβ

and prel = (pα − pβ )/2 are the center-of-mass and relative
momenta of the atoms [39].

The standard protocol of Jaksch et al. [48] involves a pulse
sequence on the control (c) and target (t) qubits, πc − 2πt −
πc, ideally yielding a CZ gate. In the presence of thermal
atomic velocity vc for the control atom, the transformation
on the logical states is |00〉 → |00〉, |01〉 → −|01〉, |10〉 →
−e−ik1rvcδt |10〉, |11〉 → −e−ik1rvcδt |11〉. Relative to the ideal
CZ gate, there are additional phases due to the random Doppler
shift acquired when the control atom stays in the Rydberg
state for a time δt . For a thermal distribution of momenta, the

random distribution of phases cannot be compensated, which
causes gate errors [20,22,26,27,39]. In contrast to the direct
excitation to Rydberg states, for adiabatic Rydberg dressing,
there are no random phases imparted to the qubits. Instead, the
center-of-mass motion leads to a detuning error [39]. The rel-
ative motion leads to coupling between bright and dark states.
However, while using an adiabatic ramp, this is suppressed
due to the energy gap between the light-shifted bright state and
unshifted dark state. The residual off-resonance |B̃〉 ↔ |D〉
coupling leads to a small second order perturbative shift on the
dressed ground state [39]. Moreover, a nonuniform intensity
in which atoms see different Rabi frequencies can introduce
a coupling between the ground |11〉 and the dark state |D〉,
which gives a small perturbative shift on the dressed ground
state.

Finally there is the effect of imperfect blockade. Whereas
in the standard pulsed protocol this can be a major source of
error, gates based on adiabatic dressing are more resilient to
this effect. As long as the evolution is adiabatic, the dressed
ground states will contain a small admixture of doubly excited
Rydberg states in the superposition as shown in Fig. 2. This
will affect the value of κ , but this can be measured, and the
adiabatic ramp can be adjusted accordingly. If we are close
to the blockade radius, the gradient of dressed ground state
energy as a function of separation between the atoms will
be small, and there will be negligible force on the atoms
due to the EDDI. Of course nonadiabatic effects such as
resonant excitation to other doubly excited Rydberg states
can add additional errors, but these effects are not studied
here.

As an example we consider 133Cs as used in our ex-
periment, with qubit states |1〉 = |6S1/2, F = 4, mF = 0〉
and |0〉 = |6S1/2, F = 3, mF = 0〉 [37,38], with |1〉 coupled
through a one-photon transition at 319 nm (the “Rydberg
laser”) to state |r〉 = |64P3/2, mJ = 3/2〉. The qubit states can
be connected with a microwave field or Raman laser fields.
A maximum Rydberg Rabi frequency of �max/2π = 4 MHz,
gives an entangling strength at our final detuning near reso-
nance (�min ≈ 0.1�max) of κ/2π ≈ 1 MHz under the perfect
blockade approximation. A contribution to detuning inhomo-
geneities arises from the width of atomic velocity distribution,
∝

√
kBT/m [20,27,54–56]. The width of the distribution of κ

due to a thermal Doppler width of the atomic momenta distri-

bution can be estimated as δκth = k1r

√
kBT
m

√
( ∂κ
∂�α

)
2 + ( ∂κ

∂�β
)
2
,

where �α = �1r − k1r pα/m and similarly for �β . For our
experiment, an atomic temperature of 10 μK [38] corresponds
to k1r

√
kBT/m ≈ 0.02�max, therefore δκ ∼ 10−2�max, lead-

ing to δϑ2/ϑ2 ≈ 4 × 10−2 for the example parameters used
here. The Rydberg laser uses a Gaussian beam with a
waist of about 15 μm, the transverse atomic position spread
is about 1.45 μm, and the atomic separation is about
2 μm. This gives us a Rabi frequency inhomogeneity of
δ�1r ≈ 0.01�1r .

We model the experimental scenario by considering the
detuning �1r and Rabi frequency �1r for each atom to be sam-
pled from a normal distribution with mean equal to the fiducial
value and standard deviation determined by the level of imper-
fections in the experiment. We simulate the implementation
of the CZ gate using the protocol proposed earlier [39] and
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(a) (b)

FIG. 4. (a) Top: Implementing the CZ gate as proposed in [39] using an adiabatic ramp, followed by removal of phases accumulated due to

one-atom light shifts using a single-qubit rotation R̂z(ϕ), where ϕ =
∫

dt ′E
(1)
LS (t ′). Bottom: Simulated infidelities of implementing the CZ gate

with different levels of inhomogeneities in �1r and �1r . (b) Top: Implementing the MS gate as done in [52] using two adiabatic ramps, with a

spin echo in between. Bottom: Simulated infidelities of implementing the MS gate with different levels of inhomogeneities in �1r and �1r .

the implementation of the MS gate using two adiabatic ramps
and a spin echo, over a range of inhomogeneities δ�1r and
δ�1r . The gate fidelity including inhomogeneities, imperfect
blockade, and Rydberg state decay [Rydberg lifetime τr ∼
103(2π/�max)] for an EDDI strength of 10�max and the target
gate is shown in Fig. 4(a) for the CZ gate and Fig. 4(b) for the
MS gate. As expected from Fig. 3, we see that implementing
the MS gate using two adiabatic ramps and a spin echo is
much more robust to inhomogeneities in �1r and �1r than
implementing the CZ gate using an adiabatic ramp (Fig. 4).
For example, when we increase the level of imperfections
from 0 to about 10% of the maximum Rabi frequency �max

in the Rabi frequency and detuning, the MS gate fidelity falls
from about 0.997 to about 0.995, while the CZ gate fidelity
falls from about 0.997 to about 0.986. Therefore, high-fidelity
gates are possible at room temperature with modest radiative
lifetimes, consistent with the demands of adiabatic evolution.

Ultimately, the best achievable adiabaticity is limited by
the finite radiative lifetime of the Rydberg states, which is the
fundamental source of error [18,19] and limits the adiabaticity
of the adiabatic ramp. The effective lifetime τr is due to
contributions of different decay channels including ionization,
spontaneous emission, and stimulated emission via coupling
to blackbody radiation. The effect of finite radiative lifetime
of the Rydberg state can be estimated by the quantity π/(κτr )
which compares how quickly atoms decay versus how quickly
they accumulate entangling phase. The entangling phase is
accumulated faster with a larger Rabi frequency, �1r . More
precisely, the time spent by atoms in the Rydberg state is
quantified by the integrated Rydberg population, described
above. Optimizing the parameters of the adiabatic ramp, we
can satisfy tr/τr � 1 as long as �maxτr � 1. For example,
for a lifetime of τr = 140 μs [22,57] and given κ/2π ≈
1 MHz, π/(κτr ) ∼ 10−3. Lifetimes of a few milliseconds,

achievable by choosing higher lying Rydberg states and for
cryogenic environments of a few kelvin [19] would give
π/(κτr ) ∼ 10−4.

In summary, adiabatic Rydberg dressing provides a robust
method for harnessing the EDDI between Rydberg excited
atoms to generate entanglement between qubits encoded in
atomic clock states. We have shown that with current exper-
imental capabilities, a two-qubit MS entangling gate with a
fidelity of ∼0.995 is within reach by interleaving of adiabatic
Rydberg dressing and undressing with a spin echo on the qubit
transition. Even higher fidelity gates are possible at cryogenic
temperatures which substantially increases the Rydberg state
lifetime. Such longer coherence times allow for improved
adiabatic ramps and the potential use of more sophisticated
robust control [58] to correct residual inhomogeneities not
canceled in simple spin echo.
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