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Analog quantum simulation is widely considered a step on the path to fault tolerant quantum

computation. With current noisy hardware, the accuracy of an analog simulator will degrade after just

a few time steps, especially when simulating complex systems likely to exhibit quantum chaos. Here we

describe a quantum simulator based on the combined electron-nuclear spins of individual Cs atoms, and its

use to run high fidelity simulations of three different model Hamiltonians for > 100 time steps. While not

scalable to exponentially large Hilbert spaces, it provides the accuracy and programmability required to

explore the interplay between dynamics, imperfections, and accuracy in quantum simulation.
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Absent errors, machines that process information accord-

ing to quantum mechanics can in principle solve problems

beyond the computational power of any classical computer.

In practice, a scalable, general purpose quantum computer

must include error correction and fault tolerance as an

integral part of its operation, leading to requirements on the

underlying quantum hardware that could be out of reach

for years to come [1]. Thus, in the current era of noisy,

intermediate-scale quantum (NISQ) devices [2], much of

the effort in the field has focused on seemingly less

ambitious challenges. High on the list is the development

of analog quantum simulators, defined here as devices that

operate without error correction but still have the potential

to surpass classical computers for tasks such as modeling

complex quantum systems [3,4]. Recent examples include

work using trapped ions [5–7], Rydberg atoms [8,9], and

superconducting qubits [10,11] to simulate phase transi-

tions and other phenomena in large (> 50) spin systems.

This is roughly the scale at which numerical modeling on

classical computers is currently infeasible.

Quantum simulation generally requires access to highly

entangled states of interacting many body systems. It has

long been known that such systems also tend to support

quantum chaos, in the sense that their time evolution is

hypersensitive to perturbation [12–14]. This suggests two

separate notions of complexity relevant for quantum

simulation, one related to the nature of the quantum state,

and another related to the nature of the system dynamics.

Entangled states are complex because the information

required to predict interparticle correlations grows expo-

nentially with system size, while chaotic dynamics are

complex because the information required to predict the

quantum trajectory grows exponentially with time [15].

Both will contribute to the overall complexity and fragility

of analog quantum simulation and related NISQ-era objec-

tives such as quantum annealing [16,17]. Indeed, one can

expect an inverse relationship between the accessible

Hilbert space and the length of time one can meaningfully

simulate, with those properties playing a role analogous to

the width and depth in quantifying the complexity of a

quantum circuit. So far, experiments have focused mostly

on the width of a simulation (after all, this is the crucial

resource when looking for a quantum advantage), with

limited attention paid to the fidelity of the output state as

one seeks to increase its depth in terms of simulated time.

Yet, to fully understand the computational power of an

analog quantum simulation, it is necessary to look carefully

at the accessible simulation depth and how it depends

on the nature of the dynamics, before one can trust its

outcome [18].

In this Letter we present a new platform for analog

quantum simulation (AQS) with tradeoffs that are comple-

mentary to NISQ devices: it is modest in terms of

accessible Hilbert space, but highly accurate and therefore

uniquely suited to the study of dynamical complexity in

time. Our small, highly accurate quantum (SHAQ) simu-

lator is based on the combined electron-nuclear spins of

individual Cs atoms in the electronic ground state, driven

by phase modulated radio frequency (rf) and microwave

(μw) magnetic fields, and provides access to a fixed

16-dimensional Hilbert space formally equivalent to four

qubits. In place of the quantum circuit model where control

is predicated on access to a universal gate set, we rely on a

universal control Hamiltonian and quantum optimal control

[19,20] to ensure that our simulator is fully programmable,

in the sense that we can implement arbitrary unitary maps

with average fidelities > 0.98 [21]. We show that optimal

control can be further adapted for AQS, allowing us to set
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up coarse-grained simulations of the dynamics driven by

arbitrary model Hamiltonians. Thus, while optimal control

does not scale to exponentially large Hilbert spaces, it

delivers a combination of flexibility and accuracy that is

uniquely suited for AQS on SHAQ hardware. We demon-

strate experimental AQS of three different spin

Hamiltonians on the same device, for > 100 time steps

with average fidelity > 0.99 per step. Our work stands out

by directly measuring the fidelity of the evolving quantum

state as a simulation proceeds. This is the ultimate metric

for accuracy, yet quantum state fidelity is rarely reported in

contemporary AQS experiments with NISQ hardware,

perhaps because indirect measures based on quantum state

tomography involve complex protocols that are prone to

their own errors [22]. For examples of other ways to

estimate fidelity without resorting to full quantum state

tomography, see [23–26]. More conventionally, we dem-

onstrate experimental AQS of the time evolution of a bulk

observable (magnetization), with a simulation depth and

accuracy that lies well beyond the capabilities of universal

simulators based on current NISQ hardware (see, for

example, Refs. [27–30]). These are key elements required

for future exploration of the interplay between dynamics,

hardware imperfections, and accuracy in AQS.

AQS falls into two broad categories sometimes

referred to as “emulation” and “simulation.” A quantum

emulator is a special-purpose device governed by the same

Hamiltonian and having the same Hilbert space structure as

the system of interest. Emulators have been realized on a

variety of physical platforms and used to study a range of

phenomena with considerable success [5,31–33]. A quan-

tum simulator, by contrast, is a universal device that is

controllable, in the sense that one can “program” it to

implement any SUðdÞ map of Hilbert space onto itself.

Given an arbitrary system Hamiltonian and a mapping of

the system Hilbert space Hsys onto the simulator Hilbert

space Hsim, one can then implement unitary time steps on

the simulator and iterate to perform stroboscopic simula-

tions of the system dynamics (Fig. 1).

Our Cs-atom-based “device” is a quantum simulator in

the second sense, and requires unitary control over the

entire accessible Hilbert space. As shown in [19], the spin

degrees of freedom of a Cs atom in its electronic ground

state are controllable with a combination of phase modu-

lated rf and μw magnetic fields whose piecewise constant

phases fϕrfx
i ;ϕ

rfy
i ;ϕ

μw
i g ¼ fϕ⃗ig, 1 ≤ i ≤ Nϕ, serve as con-

trol variables (“controls” for short). We can then apply the

generic toolbox of quantum optimal control to find (non-

unique) controls that accomplish the control task at hand. In

this Letter, we focus on the adaptation of optimal control to

AQS, and refer the reader to past work [19–22] and [34] for

details of the laboratory implementation.

To set up an AQS we first choose orthonormal bases in

Hsys and Hsim. Having done so, a straightforward way of

mapping from system to simulator is to represent states and

operators by identical vectors and matrices in the two bases.

Next, given a unitary time propagator W acting on the

system, we seek controls fϕ⃗ig for which the transformation

Uðfϕ⃗igÞ acting on the simulator is a good approximation to

W. Note thatW can be chosen as the exact propagator for a

time step of any length; there will be no Trotter errors [3,4]

unless deliberately introduced as part of the simulation.

Given W, we then use one of two versions of optimal

control to find high-performing controls.

Conventional control: This version uses an objective

function F ðfϕ⃗igÞ ¼ jTr½W†Uðfϕ⃗igÞ�j
2=d2 (the fidelity).

Numerical optimization of F ðfϕ⃗igÞ as a function of

fϕ⃗ig will find controls for which the matrices W and

Uðfϕ⃗igÞ are near identical in the chosen bases. That is,

within a global phase, they have the same eigenvalues and

eigenstates. In prior work we have found that Nϕ ¼ 150

phase steps (450 phase values) is sufficient to consistently

achieve a theoretical F ðfϕ⃗igÞ ≥ 0.99999 for any W. In the

laboratory where control errors and decoherence are

present, the corresponding controls achieve F ≥ 0.98 on

average, as measured by randomized benchmarking [21].

Eigenvalue only (EVO) control: In AQS there are in

principle no restrictions on the map from system to

simulator. To take advantage of this, we note that it suffices

for W and Uðfϕ⃗igÞ to have near identical eigenvalues, in

which caseW and VUðfϕ⃗igÞV
† will be nearly identical for

some V. Accordingly, the EVO approach uses an objective

function

FEVOðfϕ⃗ig; fvjgÞ ¼
1

d2
jTr½W†VUðfϕ⃗igÞV

†�j2; ð1Þ

where V ¼ eiA, A ¼
P

d2−1
j¼1

vjΛj, fΛjg is a set of gener-

alized Gell-Mann matrices forming a basis of traceless

Hermitian d × d matrices, and fvjg is a set of d2 − 1 real-

valued variables, sufficient to generate all V ∈ SUð16Þ.

Simultaneous optimization of FEVOðfϕ⃗ig; fvjgÞ with

respect to fϕ⃗ig and fvjg will then find co-optimal controls

and system-simulator maps.

FIG. 1. Analog quantum simulation. Top: the system evolves

continuously from the initial state jΣð0Þi to the final state

jΣðKδtÞi according to the system Hamiltonian. Bottom: the

simulator evolves from the initial state jχð0Þi to the final state

jχðKÞi, coinciding with the system state at intervals k ¼ 0;
1; 2;…; K.
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Our experience suggests the search complexity and

computational effort is comparable for conventional and

EVO control. Furthermore, we find that optimizing for

EVO rather than the entire W can reduce the number of

phase steps from Nϕ ¼ 150 to something in the range

from Nϕ ¼ 10 to Nϕ ¼ 60, depending on the nature of W.

This brings a significant advantage in terms of the possible

number of time steps and overall fidelity in an AQS. On the

downside we have found that EVO control performs poorly

when W is close to the identity. This is generally not an

issue for AQS where one typically chooses time steps that

change the state appreciably. A second issue arises if the

system Hamiltonian is time dependent and the propagators

WðkÞ are different for different time steps k. One must then

do separate EVO searches for solutions VkUkðfϕ⃗igÞV
†

k,

where inevitably Vk ≠ Vkþ1. The resulting basis mismatch

means one cannot simply concatenate the Ukðfϕ⃗igÞ, and
any attempt to restrict the Vks negates the original advan-

tage. Therefore, when necessary, we revert to conventional

control, which works in every scenario we have explored.

See [34] for details.

To establish the baseline performance of our quantum

simulator we have tested it on three popular model systems

described by the Hamiltonians

HTI ¼ −
XN

i¼1

hσzi −
XN−1

i¼1

sσxi σ
x
iþ1

; N ¼ 4; ð2aÞ

HLMG ¼ −ð1 − sÞJz − sJ2x; J ¼ 15=2; ð2bÞ

HQKT ¼ −pJz
X∞

n¼0

δðτ − nTÞ −
κ

2JT
J2x; J ¼ 15=2:

ð2cÞ

The nearest-neighbor transverse Ising (TI) [41] and Lipkin-

Meshkov-Glick (LMG) [42,43] models are common

paradigms for the study of phase transitions, and while

integrable they nevertheless feature nontrivial dynamics.

The quantum kicked top (QKT) is a time-discrete version of

the LMGmodel whose classical phase space can be regular,

mixed or globally chaotic depending on the parameters p, κ

[40,44]. For each model we choose the system size N or J

to use the entire 16-dimensional Hilbert space available on

our simulator.

In the laboratory each AQS follows the same basic

template. Given a model Hamiltonian, we use conventional

or EVO control to find controls fϕ⃗ig and a corresponding

propagator Uðfϕ⃗igÞ that simulates the system evolution

during a time step δt. Knowing the system-simulator map,

we then prepare the simulator in the chosen initial state

jχð0Þi, take k time steps, measure the observable M of

interest, and repeat for 1 ≤ k ≤ K to build up a strobo-

scopic record of the expectation value hMðkÞi. In AQS of

systems such as the TI and LMG models, M might be a

spin observable. As a measure of the accuracy of the

simulation we can also look at the fidelity of the quantum

state itself, FAQSðkÞ ¼ Tr½ρaðkÞjχðkÞihχðkÞj�, where jχðkÞi
and ρaðkÞ are the predicted and actual states after k steps.

To access this quantity we measure the projector MðkÞ ¼
jχðkÞihχðkÞj, i.e., the probability of finding the simulator

in the predicted state after k steps. In practice, using laser

cooling to prepare a large sample of noninteracting Cs

atoms allows us to run as many as 107 identical quantum

simulators in parallel. This leads to small variations in the

control fields from atom to atom, but ensures excellent

averaging over noise in the controls and the measurement.

In our setup the time per phase step is 4 μs and the

maximum overall duration of a quantum simulation is
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FIG. 2. AQS of two popular model systems corresponding to the Hamiltonians in Eqs. (2a) and (2b). (a) Measured FAQSðkÞ for two
versions of the TI model with δt ¼ 0.4; s=h ¼ 1.25 (squares) and δt ¼ 0.4; s=h ¼ 0.63 (diamonds). (b) Simulation results for hσz

2
i at

δt ¼ 0.4; s=h ¼ 1.25 (top) and δt ¼ 0.4; s=h ¼ 0.63 (bottom). (c) Measured FAQSðkÞ for two versions of the LMG model with

δt ¼ 0.8; s ¼ 0.4 (squares) and δt ¼ 1.6; s ¼ 0.7 (diamonds). (d) Simulation results for hJxi at δt ¼ 0.8; s ¼ 0.4 (top), and hJyi at

δt ¼ 0.8; s ¼ 0.7 (bottom). Thin lines connect the data points to guide the eye. Thick solid lines in (b) and (d) shows predictions of the

exact model. Error bars are the standard error of the mean for the chosen sample of initial states.
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12 ms, limited by the time a free-falling atom spends in the

region of uniform control fields.

Figures 2(a) and 2(c) showFAQSðkÞ for two versions of a
four-site TI model and a J ¼ 15=2 LMG model, each for

0 ≤ k ≤ 100 time steps. The simulations use EVO control

with Nϕ ¼ 20 phase steps, the fidelities are averages over

10 randomly chosen initial states, and the cutoff atK ¼ 100

is to ensure the fidelity of the time steps does not vary

with k. The TI data corresponds to ferromagnetic and

paramagnetic regimes respectively, while the LMG data

correspond to regimes below and just above the critical

point. In all cases the simulation fidelity declines smoothly

with time but remains well above that of a mixed state,

FAQSðkÞ>1=16¼0.0625, even after k ¼ 100 time steps.

As examples of AQS of dynamical observables, Figures 2(b)

and 2(d) show simulations of hσz
2
i for the TI model, and

collective spin components hJxi and hJyi for the LMG

model; these examples were chosen because of their varied

and nontrivial behavior. Each AQS extends over 1 ≤ k ≤ 40

time steps, enough to densely sample for long enough that

the nature of the dynamics becomes apparent. Overall,

quantum simulation of the TI model appears somewhat

more challenging than the LMG model, but both track the

spin dynamics with good accuracy. Notably, 40 time steps is

enough for a considerable loss of fidelity, FAQSðkÞ ∼ 0.5,

showing that useful simulation of physical observables can

be achieved even when accuracy at the level of the quantum

state is fairly poor.

As a third test we apply our simulator to the quantum

kicked top. An AQS of the QKT consists of repeated

applications of the Floquet operator, and the only mean-

ingful time step is one period of HQKT. This assures that

the propagator W is far from the identity for all but a small

subset of parameters, and thus ideally suited for EVO

control. Figures 3(a) and 3(b) show fidelities FAQSðkÞ for
two versions of the QKT with globally chaotic ðp ¼ 1;
κ ¼ 7Þ and mixed ðp ¼ 0.99; κ ¼ 2.3Þ phase spaces, aver-
aged over 10 initial coherent states of the collective spin.

Based on general arguments relating quantum chaos to

hypersensitivity [12], one might expect that AQS will be

more challenging for the globally chaotic case than for the

mixed case, and this may explain the lower fidelity seen for

the former. For the mixed case we can separate out initial

states in regular versus chaotic regions, with the former

achieving significantly higher fidelity than the latter.

Somewhat counter to expectations, however, every AQS

of the QKT shown here does at least as well, and in some

case significantly better in terms of fidelity per step, than

AQS of the integrable TI and LMG models.

Finally, we use the QKT in the globally chaotic regime

to explore how the fidelity of an AQS depends on the

control strategy and the errors present in the experiment.

Figure 3(c) shows simulation fidelities for three scenarios:

EVO control with Nϕ ¼ 20 and Nϕ ¼ 60 phase steps, and

conventional control with Nϕ ¼ 150; the corresponding

maximum number of QKT steps are K ¼ 150, K ¼ 50,

and K ¼ 20, and the fidelities decline smoothly to

FAQSðkÞ ∼ 0.2, FAQSðkÞ ∼ 0.3, and FAQSðkÞ ∼ 0.58 at

the end points. To our knowledge, this demonstrates an

accessible simulation depth that compares favorably with

current state of the art for AQS on NISQ hardware.

It is worth recalling that every AQS discussed here

involves repeated application of the time propagator over

and over again, a scenario in which coherent control errors
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FIG. 3. AQS of the quantum kicked top, Eq. (2c). (a) Measured FAQSðkÞ, averaged over 10 initial coherent states, in the globally

chaotic regime ðp ¼ 1; κ ¼ 7Þ. Insert: classical phase space map for the hemispheres Jz > 0 and Jz < 0 showing global chaos.

(b) Measured FAQSðkÞ in a mixed regime ðp ¼ 0.99; κ ¼ 2.3Þ, averaged over five initial coherent states in the large regular island in the
Jz > 0 hemisphere (triangles), over five initial coherent states in the sea of chaos in the Jz < 0 hemisphere (diamonds), and over all 10

initial states (circles). Insert: classical phase space map. (c) Measured FAQSðkÞ (p ¼ 1; κ ¼ 7), averaged over 10 initial coherent states,

for different control strategies: conventional control with Nϕ ¼ 150; K ¼ 20 (circles), EVO control with Nϕ ¼ 60; K ¼ 50 (squares)

and Nϕ ¼ 20; K ¼ 150 (diamonds), and finally randomized EVO control with Nϕ ¼ 20; K ¼ 150 where coherent errors are scrambled

(triangles). Thin lines connect the data points to guide the eye. Error bars are the standard error of the mean for the chosen sample of

initial states.
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have the potential to compound much faster than random

noise. We can explore the role of coherent errors versus

noise by comparing to a scenario akin to randomized

benchmarking [45]. To do so, we use EVO optimization

with Nϕ ¼ 20 to find a number of time propagators

Uðfϕ⃗igÞ, all with identical eigenvalues but different and

effectively random controls fϕ⃗ig and maps V. These are

put together in random sequences of various lengths, at the

end of which we measure the fidelity of the output state

relative to the output predicted in the absence of errors.

As seen in Fig. 3(c), the resulting decline in fidelity is

significantly slower than for each of the three quantum

simulations, with an end point fidelity of FAQSðkÞ ∼ 0.6 at

k ¼ 150, and an average fidelity per step of 0.997. We take

this as evidence that quantum simulations such as those

studied here are more strongly affected by coherent errors

than random noise, and that efforts to improve the simu-

lation fidelity should focus on the former.

In conclusion, we have demonstrated a small, universal

and highly accurate analog quantum simulator based on the

spin-degrees of freedom in the ground state of individual Cs

atoms. We have further shown how optimal control can be

adapted to program such a simulator, and we have

established its baseline performance by applying it to both

integrable and chaotic model systems. Notably, the idea of

looking for co-optimal controls and system-simulator maps

is not restricted to quantum simulation, and could lead to

similar gains in other contexts where a generic control task

is mapped onto a specific piece of hardware. Going

forward, we plan to use our Cs atom quantum simulator

to develop and test a general model of the interplay between

the native errors of a generic quantum simulator and the

types of observables one might use it to access. Ultimately,

we hope testbeds such as ours can help better understand

the computational power of analog quantum devices and

their use in lieu of error corrected and fault tolerant

quantum computers.
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