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Analog quantum simulation is widely considered a step on the path to fault tolerant quantum
computation. With current noisy hardware, the accuracy of an analog simulator will degrade after just
a few time steps, especially when simulating complex systems likely to exhibit quantum chaos. Here we
describe a quantum simulator based on the combined electron-nuclear spins of individual Cs atoms, and its
use to run high fidelity simulations of three different model Hamiltonians for > 100 time steps. While not
scalable to exponentially large Hilbert spaces, it provides the accuracy and programmability required to
explore the interplay between dynamics, imperfections, and accuracy in quantum simulation.
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Absent errors, machines that process information accord-
ing to quantum mechanics can in principle solve problems
beyond the computational power of any classical computer.
In practice, a scalable, general purpose quantum computer
must include error correction and fault tolerance as an
integral part of its operation, leading to requirements on the
underlying quantum hardware that could be out of reach
for years to come [1]. Thus, in the current era of noisy,
intermediate-scale quantum (NISQ) devices [2], much of
the effort in the field has focused on seemingly less
ambitious challenges. High on the list is the development
of analog quantum simulators, defined here as devices that
operate without error correction but still have the potential
to surpass classical computers for tasks such as modeling
complex quantum systems [3,4]. Recent examples include
work using trapped ions [5-7], Rydberg atoms [8,9], and
superconducting qubits [10,11] to simulate phase transi-
tions and other phenomena in large (> 50) spin systems.
This is roughly the scale at which numerical modeling on
classical computers is currently infeasible.

Quantum simulation generally requires access to highly
entangled states of interacting many body systems. It has
long been known that such systems also tend to support
quantum chaos, in the sense that their time evolution is
hypersensitive to perturbation [12—14]. This suggests two
separate notions of complexity relevant for quantum
simulation, one related to the nature of the quantum state,
and another related to the nature of the system dynamics.
Entangled states are complex because the information
required to predict interparticle correlations grows expo-
nentially with system size, while chaotic dynamics are
complex because the information required to predict the
quantum trajectory grows exponentially with time [15].
Both will contribute to the overall complexity and fragility
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of analog quantum simulation and related NISQ-era objec-
tives such as quantum annealing [16,17]. Indeed, one can
expect an inverse relationship between the accessible
Hilbert space and the length of time one can meaningfully
simulate, with those properties playing a role analogous to
the width and depth in quantifying the complexity of a
quantum circuit. So far, experiments have focused mostly
on the width of a simulation (after all, this is the crucial
resource when looking for a quantum advantage), with
limited attention paid to the fidelity of the output state as
one seeks to increase its depth in terms of simulated time.
Yet, to fully understand the computational power of an
analog quantum simulation, it is necessary to look carefully
at the accessible simulation depth and how it depends
on the nature of the dynamics, before one can trust its
outcome [18].

In this Letter we present a new platform for analog
quantum simulation (AQS) with tradeoffs that are comple-
mentary to NISQ devices: it is modest in terms of
accessible Hilbert space, but highly accurate and therefore
uniquely suited to the study of dynamical complexity in
time. Our small, highly accurate quantum (SHAQ) simu-
lator is based on the combined electron-nuclear spins of
individual Cs atoms in the electronic ground state, driven
by phase modulated radio frequency (rf) and microwave
(uw) magnetic fields, and provides access to a fixed
16-dimensional Hilbert space formally equivalent to four
qubits. In place of the quantum circuit model where control
is predicated on access to a universal gate set, we rely on a
universal control Hamiltonian and quantum optimal control
[19,20] to ensure that our simulator is fully programmable,
in the sense that we can implement arbitrary unitary maps
with average fidelities > 0.98 [21]. We show that optimal
control can be further adapted for AQS, allowing us to set
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FIG. 1. Analog quantum simulation. Top: the system evolves
continuously from the initial state |X(0)) to the final state
|Z(K6t)) according to the system Hamiltonian. Bottom: the
simulator evolves from the initial state |y(0)) to the final state
l¥(K)), coinciding with the system state at intervals k =0,
1,2,....K.

up coarse-grained simulations of the dynamics driven by
arbitrary model Hamiltonians. Thus, while optimal control
does not scale to exponentially large Hilbert spaces, it
delivers a combination of flexibility and accuracy that is
uniquely suited for AQS on SHAQ hardware. We demon-
strate experimental AQS of three different spin
Hamiltonians on the same device, for > 100 time steps
with average fidelity > 0.99 per step. Our work stands out
by directly measuring the fidelity of the evolving quantum
state as a simulation proceeds. This is the ultimate metric
for accuracy, yet quantum state fidelity is rarely reported in
contemporary AQS experiments with NISQ hardware,
perhaps because indirect measures based on quantum state
tomography involve complex protocols that are prone to
their own errors [22]. For examples of other ways to
estimate fidelity without resorting to full quantum state
tomography, see [23-26]. More conventionally, we dem-
onstrate experimental AQS of the time evolution of a bulk
observable (magnetization), with a simulation depth and
accuracy that lies well beyond the capabilities of universal
simulators based on current NISQ hardware (see, for
example, Refs. [27-30]). These are key elements required
for future exploration of the interplay between dynamics,
hardware imperfections, and accuracy in AQS.

AQS falls into two broad -categories sometimes
referred to as “emulation” and ‘“‘simulation.” A quantum
emulator is a special-purpose device governed by the same
Hamiltonian and having the same Hilbert space structure as
the system of interest. Emulators have been realized on a
variety of physical platforms and used to study a range of
phenomena with considerable success [5,31-33]. A quan-
tum simulator, by contrast, is a universal device that is
controllable, in the sense that one can “program” it to
implement any SU(d) map of Hilbert space onto itself.
Given an arbitrary system Hamiltonian and a mapping of
the system Hilbert space Hy, onto the simulator Hilbert
space Hg,, one can then implement unitary time steps on
the simulator and iterate to perform stroboscopic simula-
tions of the system dynamics (Fig. 1).

Our Cs-atom-based “device” is a quantum simulator in
the second sense, and requires unitary control over the
entire accessible Hilbert space. As shown in [19], the spin

degrees of freedom of a Cs atom in its electronic ground
state are controllable with a combination of phase modu-
lated rf and yw magnetic fields whose piecewise constant
phases {qblrfx,qﬁ?y,qﬁé’w} = {qZ,} 1 <i <Ny, serve as con-
trol variables (“‘controls” for short). We can then apply the
generic toolbox of quantum optimal control to find (non-
unique) controls that accomplish the control task at hand. In
this Letter, we focus on the adaptation of optimal control to
AQS, and refer the reader to past work [19-22] and [34] for
details of the laboratory implementation.

To set up an AQS we first choose orthonormal bases in
Hgys and Hgp,. Having done so, a straightforward way of
mapping from system to simulator is to represent states and
operators by identical vectors and matrices in the two bases.
Next, given a unitary time propagator W acting on the

system, we seek controls {QZ,} for which the transformation

U ({g?ﬁ,}) acting on the simulator is a good approximation to
W. Note that W can be chosen as the exact propagator for a
time step of any length; there will be no Trotter errors [3,4]
unless deliberately introduced as part of the simulation.
Given W, we then use one of two versions of optimal
control to find high-performing controls.

Conventional control: This version uses an objective
function F({¢;}) = |Te[WU({¢);})]|*/d* (the fidelity).
Numerical optimization of F({¢;}) as a function of
{q?)l} will find controls for which the matrices W and

U({¢;}) are near identical in the chosen bases. That is,
within a global phase, they have the same eigenvalues and
eigenstates. In prior work we have found that N, = 150
phase steps (450 phase values) is sufficient to consistently
achieve a theoretical F({g;}) > 0.99999 for any W. In the
laboratory where control errors and decoherence are
present, the corresponding controls achieve F > 0.98 on
average, as measured by randomized benchmarking [21].

Eigenvalue only (EVO) control: In AQS there are in
principle no restrictions on the map from system to
simulator. To take advantage of this, we note that it suffices
for W and U({¢;}) to have near identical eigenvalues, in
which case W and VU ({(Zi})VT will be nearly identical for
some V. Accordingly, the EVO approach uses an objective
function

Fovol{@i} (o)) = s WVUBNVIE, (1)

where V = ¢4, A = Zj“i_ll viA;, {A;} is a set of gener-
alized Gell-Mann matrices forming a basis of traceless
Hermitian d x d matrices, and {v;} is a set of d* — 1 real-
valued variables, sufficient to generate all V € SU(16).
Simultaneous optimization of Fyyo({d:}.{v ;1) with

respect to {¢;} and {v ;} will then find co-optimal controls
and system-simulator maps.
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FIG. 2. AQS of two popular model systems corresponding to the Hamiltonians in Eqs. (2a) and (2b). (a) Measured F 5o (k) for two
versions of the TI model with 6 = 0.4, s/h = 1.25 (squares) and 67 = 0.4, s/h = 0.63 (diamonds). (b) Simulation results for (¢3) at
6t =04,s5/h =125 (top) and 6t = 0.4,5/h = 0.63 (bottom). (c) Measured F5qs(k) for two versions of the LMG model with
5t=0.8,5 = 0.4 (squares) and 6t = 1.6, s = 0.7 (diamonds). (d) Simulation results for (J,) at 5t = 0.8, s = 0.4 (top), and (Jy> at
ot = 0.8, s = 0.7 (bottom). Thin lines connect the data points to guide the eye. Thick solid lines in (b) and (d) shows predictions of the
exact model. Error bars are the standard error of the mean for the chosen sample of initial states.

Our experience suggests the search complexity and
computational effort is comparable for conventional and
EVO control. Furthermore, we find that optimizing for
EVO rather than the entire W can reduce the number of
phase steps from Ny = 150 to something in the range
from N, = 10 to Ny = 60, depending on the nature of W.
This brings a significant advantage in terms of the possible
number of time steps and overall fidelity in an AQS. On the
downside we have found that EVO control performs poorly
when W is close to the identity. This is generally not an
issue for AQS where one typically chooses time steps that
change the state appreciably. A second issue arises if the
system Hamiltonian is time dependent and the propagators
W (k) are different for different time steps k. One must then

do separate EVO searches for solutions VkUk({g;ﬁ,-})VI,
where inevitably V; # V.. The resulting basis mismatch

means one cannot simply concatenate the U, ({¢;}), and
any attempt to restrict the Vs negates the original advan-
tage. Therefore, when necessary, we revert to conventional
control, which works in every scenario we have explored.
See [34] for details.

To establish the baseline performance of our quantum
simulator we have tested it on three popular model systems
described by the Hamiltonians

N N—-1
Hn=-) hoi-) solof,. N=4 (2a)
i—1 i=1
Hiyvg = —(1=5)J, —sJ2, J=15/2, (2b)
— . K 2 =
HQKT——sz;(S(T—nT>_2J—TJx’ J_15/2
(2¢)

The nearest-neighbor transverse Ising (TT) [41] and Lipkin-
Meshkov-Glick (LMG) [42,43] models are common
paradigms for the study of phase transitions, and while
integrable they nevertheless feature nontrivial dynamics.
The quantum kicked top (QKT) is a time-discrete version of
the LMG model whose classical phase space can be regular,
mixed or globally chaotic depending on the parameters p, k
[40,44]. For each model we choose the system size N or J
to use the entire 16-dimensional Hilbert space available on
our simulator.

In the laboratory each AQS follows the same basic
template. Given a model Hamiltonian, we use conventional
or EVO control to find controls {¢;} and a corresponding

propagator U ({(,7),}) that simulates the system evolution
during a time step 6z. Knowing the system-simulator map,
we then prepare the simulator in the chosen initial state
l¥(0)), take k time steps, measure the observable M of
interest, and repeat for 1 < k < K to build up a strobo-
scopic record of the expectation value (M (k)). In AQS of
systems such as the TI and LMG models, M might be a
spin observable. As a measure of the accuracy of the
simulation we can also look at the fidelity of the quantum
state itself, Foqs(k) = Tr[p,(k)|x(k)) (¢ (k)|], where |y(k))
and p, (k) are the predicted and actual states after k steps.
To access this quantity we measure the projector M (k) =
Ly (k)Y {y(k)|, i.e., the probability of finding the simulator
in the predicted state after k steps. In practice, using laser
cooling to prepare a large sample of noninteracting Cs
atoms allows us to run as many as 107 identical quantum
simulators in parallel. This leads to small variations in the
control fields from atom to atom, but ensures excellent
averaging over noise in the controls and the measurement.
In our setup the time per phase step is 4 us and the
maximum overall duration of a quantum simulation is
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FIG. 3.

AQS of the quantum kicked top, Eq. (2c). (a) Measured F s (k), averaged over 10 initial coherent states, in the globally

chaotic regime (p = 1,k = 7). Insert: classical phase space map for the hemispheres J. > 0 and J, < 0 showing global chaos.
(b) Measured F 5qs (k) in a mixed regime (p = 0.99, x = 2.3), averaged over five initial coherent states in the large regular island in the
J, > 0 hemisphere (triangles), over five initial coherent states in the sea of chaos in the J, < 0 hemisphere (diamonds), and over all 10
initial states (circles). Insert: classical phase space map. (c) Measured F zqs (k) (p = 1,x = 7), averaged over 10 initial coherent states,
for different control strategies: conventional control with N, = 150, K = 20 (circles), EVO control with Ny = 60, K = 50 (squares)
and Ny = 20, K = 150 (diamonds), and finally randomized EVO control with N, = 20, K = 150 where coherent errors are scrambled
(triangles). Thin lines connect the data points to guide the eye. Error bars are the standard error of the mean for the chosen sample of

initial states.

12 ms, limited by the time a free-falling atom spends in the
region of uniform control fields.

Figures 2(a) and 2(c) show F s (k) for two versions of a
four-site TI model and a J = 15/2 LMG model, each for
0 < k <100 time steps. The simulations use EVO control
with N, = 20 phase steps, the fidelities are averages over
10 randomly chosen initial states, and the cutoff at K = 100
is to ensure the fidelity of the time steps does not vary
with k. The TI data corresponds to ferromagnetic and
paramagnetic regimes respectively, while the LMG data
correspond to regimes below and just above the critical
point. In all cases the simulation fidelity declines smoothly
with time but remains well above that of a mixed state,
Fags(k)>1/16=0.0625, even after k = 100 time steps.
As examples of AQS of dynamical observables, Figures 2(b)
and 2(d) show simulations of (¢3) for the TI model, and
collective spin components (J,) and (J,) for the LMG
model; these examples were chosen because of their varied
and nontrivial behavior. Each AQS extends over 1 < k <40
time steps, enough to densely sample for long enough that
the nature of the dynamics becomes apparent. Overall,
quantum simulation of the TI model appears somewhat
more challenging than the LMG model, but both track the
spin dynamics with good accuracy. Notably, 40 time steps is
enough for a considerable loss of fidelity, F 5qs(k) ~ 0.5,
showing that useful simulation of physical observables can
be achieved even when accuracy at the level of the quantum
state is fairly poor.

As a third test we apply our simulator to the quantum
kicked top. An AQS of the QKT consists of repeated
applications of the Floquet operator, and the only mean-
ingful time step is one period of Hggr. This assures that

the propagator W is far from the identity for all but a small
subset of parameters, and thus ideally suited for EVO
control. Figures 3(a) and 3(b) show fidelities F 5qs(k) for
two versions of the QKT with globally chaotic (p =1,
k =7) and mixed (p = 0.99,x = 2.3) phase spaces, aver-
aged over 10 initial coherent states of the collective spin.
Based on general arguments relating quantum chaos to
hypersensitivity [12], one might expect that AQS will be
more challenging for the globally chaotic case than for the
mixed case, and this may explain the lower fidelity seen for
the former. For the mixed case we can separate out initial
states in regular versus chaotic regions, with the former
achieving significantly higher fidelity than the latter.
Somewhat counter to expectations, however, every AQS
of the QKT shown here does at least as well, and in some
case significantly better in terms of fidelity per step, than
AQS of the integrable TI and LMG models.

Finally, we use the QKT in the globally chaotic regime
to explore how the fidelity of an AQS depends on the
control strategy and the errors present in the experiment.
Figure 3(c) shows simulation fidelities for three scenarios:
EVO control with N, = 20 and N, = 60 phase steps, and
conventional control with Ny = 150; the corresponding
maximum number of QKT steps are K = 150, K = 50,
and K =20, and the fidelities decline smoothly to
fAQS(k) NO.Z, ]:AQS(k) "'03, and fAQS(k)NOSS at
the end points. To our knowledge, this demonstrates an
accessible simulation depth that compares favorably with
current state of the art for AQS on NISQ hardware.

It is worth recalling that every AQS discussed here
involves repeated application of the time propagator over
and over again, a scenario in which coherent control errors
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have the potential to compound much faster than random
noise. We can explore the role of coherent errors versus
noise by comparing to a scenario akin to randomized
benchmarking [45]. To do so, we use EVO optimization
with N, =20 to find a number of time propagators

U ({q?z,}), all with identical eigenvalues but different and

effectively random controls {g?),} and maps V. These are
put together in random sequences of various lengths, at the
end of which we measure the fidelity of the output state
relative to the output predicted in the absence of errors.
As seen in Fig. 3(c), the resulting decline in fidelity is
significantly slower than for each of the three quantum
simulations, with an end point fidelity of Fqs(k) ~ 0.6 at
k = 150, and an average fidelity per step of 0.997. We take
this as evidence that quantum simulations such as those
studied here are more strongly affected by coherent errors
than random noise, and that efforts to improve the simu-
lation fidelity should focus on the former.

In conclusion, we have demonstrated a small, universal
and highly accurate analog quantum simulator based on the
spin-degrees of freedom in the ground state of individual Cs
atoms. We have further shown how optimal control can be
adapted to program such a simulator, and we have
established its baseline performance by applying it to both
integrable and chaotic model systems. Notably, the idea of
looking for co-optimal controls and system-simulator maps
is not restricted to quantum simulation, and could lead to
similar gains in other contexts where a generic control task
is mapped onto a specific piece of hardware. Going
forward, we plan to use our Cs atom quantum simulator
to develop and test a general model of the interplay between
the native errors of a generic quantum simulator and the
types of observables one might use it to access. Ultimately,
we hope testbeds such as ours can help better understand
the computational power of analog quantum devices and
their use in lieu of error corrected and fault tolerant
quantum computers.
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