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We study a method to simulate quantum many-body dynamics of spin ensembles using measurement-

based feedback. By performing a weak collective measurement on a large ensemble of two-level quantum

systems and applying global rotations conditioned on the measurement outcome, one can simulate the

dynamics of a mean-field quantum kicked top, a standard paradigm of quantum chaos. We analytically

show that there exists a regime in which individual quantum trajectories adequately recover the classical

limit, and show the transition between noisy quantum dynamics to full deterministic chaos described by

classical Lyapunov exponents. We also analyze the effects of decoherence, and show that the proposed

scheme represents a robust method to explore the emergence of chaos from complex quantum dynamics in

a realistic experimental platform based on an atom-light interface.
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The increasing level of precision achieved in both control

and measurement of microscopic systems over the past

decades is paving the way for using quantum systems as

powerful simulators. In this paradigm, precise manipulation

of a quantum system leads to the effective engineering of

a particular physical model from which, in principle, one

could extract quantities of interest that might not be

accessible from a simulation on a classical device. In

recent years prototypes of quantum simulators have been

demonstrated in a variety of platforms, including trapped

ions [1–3], cold atoms [4–9], superconducting qubits [10],

and photonic systems [11]. Although it is unclear whether

current devices can reliably simulate complex dynamics

beyond the capabilities of classical computers [12], recent

explorations of small scale quantum simulations have

proven to be interesting by themselves. For instance,

simulations of interacting models that are native to cold

atom implementations have led to new theoretical insights

for weak ergodicity breaking [6,13,14]. Quantum simula-

tors can also be used to explore fundamental questions such

as the emergence of classical behavior from quantum

mechanics, typically referred to as the quantum-to-classical

transition. This topic has motivated a vast amount of

theoretical studies on different aspects of the problem,

including the origin of quantum interference damping

[15,16], the emergence of classical reality [17,18], and

the role of the observer [19,20], alongside some exper-

imental realizations [21–24].

A long-standing question is how the quantum-to-

classical transition occurs for chaotic systems [25–27],

given that unitary dynamics of closed quantum systems do

not display exponential sensitivity to initial conditions

[28,29], and in the chaotic regime, quantum dynamics

follows classical motion only up to a time that is loga-

rithmic in the system size (i.e., the Ehrenfest time) [30].

Chaos in quantum dynamics has been understood from a

variety of perspectives [31–35]. One compelling approach

is the emergence of classical chaos in the macroscopic limit

of quantum systems as seen in the quantum trajectories

associated with a continuous measurement [36–40].

Particularly, Bhattacharya et al. [36] showed that when

the measurement is strong enough to keep a quantum wave

packet localized along the classical trajectory, but weak

enough that measurement backaction does not dominate

over Hamiltonian dynamics, the quantum trajectories dis-

play the correct Lyapunov exponents. Here, the effect of

(nonprojective) measurements prevents the emergence of

interference between spatially distant regions of phase

space, thus effectively extending the Ehrenfest time to

arbitrarily long timescales. A practical path to direct

experimental observation of quantum trajectories charac-

terized by a positive Lyapunov exponents, however,

remains an open challenge [41].

In this Letter we propose a method to implement

quantum simulations that are especially suited for exploring

the emergence of chaos in quantum trajectories [41–43].

More generally, this proposal allows for the simulation

of nonlinear dynamics in quantum systems described by

collective spin variables, and thus constitutes a platform to

explore complex phenomena such as phase transitions and

criticality, [44,45]. The method is based on performing a

series of weak (nonprojective) measurements followed by
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global unitary control maps conditioned on the measure-

ment outcome, see Fig. 1. Our method is similar in spirit to

the one originally proposed by Lloyd and Slotine [46], who

studied how measurement-based feedback could be used

to simulate a novel form of chaos. Here we apply this

procedure to study the simulation of mean-field dynamics

that are chaotic in the thermodynamic limit. In particular,

we simulate the kicked top (KT), a paradigmatic example

of both classical and quantum chaos [47–50]. We prove

that the unconditioned dynamics generated by our protocol

is a dephased version of the quantum KT (QKT), while the

conditioned quantum trajectories continuously approach

the classical KT (CKT) dynamics as the size of the

ensemble grows, and display the correct, positive largest

Lyapunov exponent. Finally, we explore a potential exper-

imental implementation based on an atom-light interface

[51,52] and show that our results can be robust to the effects

of decoherence.

Consider an ensemble of N noninteracting two-

level systems described by collective spin operators

Ĵ ¼ 1
2

P

N
i¼1 σ̂i, where σ̂i is a vector of Pauli matrices acting

on the ith particle. We take the system initially prepared in a

spin coherent state (SCS), i.e., a product state of the form

j↑e⃗n
i⊗N , where e⃗n ↔ ðθ;ϕÞ is an arbitrary direction on the

unit sphere. Each step of our protocol consists of two

consecutive operations: (i) a nonprojective measurement of

the Ĵz component of the collective spin and (ii) a unitary

map conditioned on the measurement outcome. We con-

sider measurements with Gaussian noise [53], yielding

Kraus operators of the form

K̂m ¼ 1

ð2πσ2Þ1=4 e
− 1

4σ2
ðĴz−mÞ2

; ð1Þ

where σ is the measurement resolution and m is the

measurement outcome, sampled with probability Pm ¼
ihψ jK̂†

mK̂mjψii. In each evolution step, the state is updated

following quantum Bayes rule [54],

jψiiþ1 ¼
K̂

ðmÞ
mapjψii
ffiffiffiffiffiffi

Pm

p ; where K̂
ðmÞ
map ¼ Û½fðmÞ�K̂m: ð2Þ

Here Û½fðmÞ� is an unitary operator conditioned, via a

feedback policy fðmÞ, on the measurement outcome. fðmÞ

can be chosen with complete freedom, allowing the

protocol to simulate different kinds of nonlinear dynamics

in the collective spin variables. We will consider only

global SU(2) rotations for our fðmÞ, since they can be

implemented in state of the art experiments with relative

ease [50,55].

The dynamics of the QKT is governed by the Floquet

operator [47]

ÛQKT ¼ eipĴyei
k
2J
Ĵ2z ; ð3Þ

describing the collective spin J ¼ N=2 periodically under-

going a “twist” around the z axis characterized by strength

k, followed by a rotation by angle p about the y axis. The

classical limit of the Floquet map is obtained by consid-

ering the Heisenberg equations of motion in the limit

J → ∞, yielding a map for the vector n≡ hĴi=J [47]. The

dynamics of the CKT is known to change from completely

regular to fully chaotic as k increases [47]. Quantum

signatures of this transition have been extensively studied

in terms of hypersensitivity to perturbations [33,48] and

generation of entanglement [56,57]. For the remainder of

this work, unless otherwise stated, we will use p ¼ π=2.
To simulate the dynamics of the KT with our protocol,

we note that the classical limit is equivalent to mean-field

theory, where operators are replaced by their expected

value, and correlations are neglected so that kĴ2z →

2khĴziĴz. We thus propose the feedback policy,

Û½fðmÞ� ¼ ÛpÛk;m ¼ eipĴyei
k
J
mĴz ; ð4Þ

which preserves the form of the free rotation and replaces

the twisting unitary by a rotation conditioned on m. When

m ¼ hĴzi we exactly recover the CKT.

To see the connection of our feedback-based map to

the QKT, we consider the evolution obtained by averaging

over all possible outcomes [53]. The state is now mixed,

and the stroboscopic evolution of the density operator can

be exactly obtained [58]. The resulting map reads

ρ̂iþ1 ¼
X

m

K̂
ðmÞ
mapρ̂iK̂

ðmÞ†
map ¼ ÛQKTðeΓLD ½ρ̂i�ÞÛ†

QKT: ð5Þ

From Eq. (5) we see how the exact Floquet operator of

the QKTemerges from our proposed scheme, in addition to

dephasing generated by

LD½ρ̂i� ¼ −½Ĵz; ½Ĵz; ρ̂i��; and Γ ¼ k2σ2

2J2
þ 1

8σ2
: ð6Þ

The dephasing rate Γ arises from two effects: randomness

in the measurement outcome and measurement backaction.

The first leads to randomness in the applied feedback,

which increases with σ2. The second decreases as σ−2, as

weaker measurement implies weaker backaction. The

FIG. 1. Schematic for a measurement-and-feedback-based

quantum simulator. A quantum system undergoes weak mea-

surements, yielding an outcome m. This is then fed back to the

system via a quantum control operation ÛðmÞ.
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combination of both terms then has a minimum [58],

yielding a regime of optimal tradeoff between information

extraction and decoherence.

We now turn our attention to the conditioned dynamics

of individual quantum trajectories. In this case, the state of

the system depends on a series of measurement outcomes

m1; m2;…; mn where n is the number of time evolution

steps. We will show that the simulated complex dynamics

can be characterized via positive Lyapunov exponents

[63,64], a signature of chaos and unpredictability [65].

These exponents are associated with quantum trajectories,

in the limit where the measurement acts to keep the state of

the system sufficiently localized in phase space, and the

effect of measurement backaction is negligible when

compared to the applied unitary rotation [36,37].

We are interested in working close to the classical limit,

which is achieved for large spin ensembles with N ≫ 1, and

for an optimal value of measurement resolution σ allowing

us to maximally extract an estimate of the mean field with

minimal quantum backaction. In this limit, we can make the

Holstein-Primakoff (H-P) approximation [66], and treat the

state at all times as a Gaussian bosonic mode on a plane

comoving with the rotating Bloch vector. As shown in the

Supplemental Material [58], this is an excellent approxima-

tion for the large ensembles under consideration here. In this

approximation, the state is completely determined by the

vector of mean values n ¼ hĴi=J and a 3 × 3 symmetric

covariance matrix V defined as

Vαβ ¼
1

2J
ðhfĴα; Ĵβgi − 2hĴαihĴβiÞ; ð7Þ

with α; β ¼ x, y, z. At each time step, a different H-P

plane is defined perpendicular to the direction of n. The

state is expressed in the local basis on the plane, n0 and
V
0, via a rotation matrix, A, taking ðe⃗x; e⃗y; e⃗zÞ to

ðe⃗n1
; e⃗n2

; e⃗nÞ. In this local basis the action of the

Kraus operator only updates the subblocks of n
0 and

V
0 corresponding to the two directions on the plane,

while leaving the perpendicular one unchanged. The

result is the familiar measurement-induced spin squeez-

ing along the P quadrature [67]. The unitary feedback

operation is trivially represented as a rotation of the H-P

plane conditioned on the measurement outcome. A

particular example is shown in Fig. 2(a) where we

compare the results for hĴzi=J obtained with the full

evolution of the state vector and the H-P approximation

for N ¼ 103.

Using the H-P approximation, we can write down an

analytic expression for the stroboscopic map evolving the

normalized expectation values of the Cartesian components

of n, which reads

Xiþ1 ¼ −Zi þ η1V
ðiÞ
22ð1 − ZiÞ2; ð8aÞ

Yiþ1 ¼ ð1 − η1V
ðiÞ
22ZiÞ½Yi cos ðkZi þ η2Þ − X sin ðkZ þ η2Þ�

þ η1V
ðiÞ
12 ½Xi cos ðkZi þ η2Þ þ Y sin ðkZi þ η2Þ�;

ð8bÞ

Ziþ1 ¼ ð1 − η1V
ðiÞ
22ZiÞ½X cos ðkZi þ η2Þ þ Y sin ðkZi þ η2Þ�

− η2V
ðiÞ
12 ½Y cos ðkZi þ η2Þ − X sin ðkZi þ η2Þ�:

ð8cÞ

The covariance matrix evolves similarly by a stochastic

map. The stochastic parts of these maps are characterized

by η1 and η2, which are normally distributed random

variables with zero mean and variances given by

σ21 ¼
σ2 þ ΔJ2z

σ4
; and σ22 ¼ k2

σ2 þ ΔJ2z

J2
; ð9Þ

where ΔJ2z is the spin uncertainty (“projection noise").

From these expressions it is easy to see that these random

corrections η1 and η2 vanish as J → ∞, and thus the map

limits to the exact CKT dynamics.

For a finite-sized system, the stochastic corrections η1
and η2 quantify the effects of noise introduced due to

the measurement backaction and an imperfect feedback

operation, respectively. As in the case of the average map,

one can find the value of measurement resolution which

minimizes these effects [58]. We get a good estimate of the

mean value of Jz when the shot noise resolution of the

meter is on the order of the projection noise of the SCS.

For the large ensembles of interest here, this corresponds

roughly to σ=
ffiffiffi

J
p

∼ 1. To illustrate this point, we computed

the largest distance to the respective classical trajectory

Dmax
c ¼ maxijjXðiÞ

CKT − n
ðiÞjj and calculated its average over

FIG. 2. (a) Time evolution of hĴzi=J for regular dynamics.

Dashed blue: full quantum evolution, dashed red: H-P approxi-

mation, black: classical KT. (b) Maximum distance to the

corresponding classical trajectory averaged over several initial

conditions D̄max
c as a function of the measurement resolution. An

optimal value of σ exists around σ ∼
ffiffiffi

J
p

. For both cases,

parameters are: k ¼ 1.5, N ¼ 103, σ ¼ 0.9
ffiffiffi

J
p

.
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100 initial conditions for a regular phase space (k ¼ 1.5).

The results are shown in Fig. 2(b) as a function of σ=
ffiffiffi

J
p

.

There, we observe the existence of an optimum regime

which becomes less and less restrictive as the system

size N increases.

Using the comoving H-P approximation we can model

arbitrary ensemble sizes, and thus study extensively the

phase spaces generated by our protocol with optimal

measurement strength. Figure 3 shows the phase portraits

for different strengths of the chaoticity parameter, k, and
ensemble sizes. For small ensembles, quantum noise

washes out the classical features. Regular, mixed, and

chaotic features of the CKT emerge in the large N limit,

becoming essentially indistinguishable from the classical

phase portrait for N ≥ 107.

We quantify the quantum-to-classical transition in both

the chaotic and regular regime. For the regular case, as N
increases the maximum distance between the simulated

trajectory and the classical trajectory approaches zero, see

Fig. 2(b). For the chaotic case, we study the convergence of

the largest Lyapunov exponent, ΛLargest, and its statistical

variance as a function ofN [see inset in Fig. 4(c)].ΛLargest is

calculated as the average over the local exponents asso-

ciated with initial conditions over the whole sphere. Each of

the local exponents is calculated as the average divergence

rate between the fiducial initial condition and a set of

nearby shadow initial conditions [36,58]. For values of N
for which our protocol agrees with the CKT, Figure 4(c)

shows ΛLargest obtained with our protocol as a function of

the twisting strength k. Taken together, the results dem-

onstrate that, in the classical limit, our protocol simulates to

a very good approximation both the regular and the chaotic

dynamics of the CKT.

Finally, we consider a possible realization of our pro-

tocol based on an atom-light interface. A QND measure-

ment of a projection of Ĵ can be implemented through the

dispersive interaction between a laser probe and an ensem-

ble of trapped laser-cooled atoms [51]. An example is the

Faraday interaction, in which the polarization of an off-

resonance laser probe rotates by an angle proportional to

the collective spin magnetization along the direction of

propagation. A subsequent measurement of the probe in a

polarimeter provides a weak, continuous-time QND meas-

urement mðtÞ of the collective spin projection Ĵz [68,69].
Such QND measurements have been employed to create

spin-squeezed states in a variety of experiments [69–76].

Here we consider processing the measurement record in a

classical controller, which can apply real-time feedback to

the spin trough a set of magnetic coils to drive spin

rotations around different axes, conditioned on mðtÞ as

desired.

For this scheme, we study how decoherence during the

course of measurement affects our ability to observe the

quantum-to-classical transition. Measurement occurs at a

FIG. 3. Phase space portraits constructed using the H-P

approximation with σ ¼ 0.9
ffiffiffi

J
p

. From top to bottom we show

k ¼ 1.5, 2.5, 4.0, respectively. The first two columns correspond

to N ¼ 104; 107, the third column are the CKT portraits. The

emergence of the classical regular, mixed, and chaotic features

can be seen as N increases.

FIG. 4. Robustness of simulated classical dynamics in the

presence of the probe-induced decoherence characterized

by the optical depth on resonance (OD), which determines

the cooperativity, i.e., the measurement rate compared to

the decoherence rate. (a) Point like comparison between the

CKT phase portrait and the phase portrait of our model

using SðOD; σ; k; nÞ in Eq. (12). With, k ¼ 1.5, OD ¼ 300,

σ ¼ 4.0
ffiffiffi

J
p

, and n ¼ 30. (b) SðOD; σ; k; nÞ averaged over initial

conditions as a function of OD. Vertical lines signal OD ¼ 30

and OD ¼ 300, respectively. Notice the large drop in similarity

below OD ∼ 100. Parameters are as in (a). (c) Largest Lyapunov

exponent as a function of k. For the CKT (black continuous)

and the H-P approximation (red dots). The inset shows the

crossover from quantum to classical as seen in ΛLargest, as a

function of N and for k ¼ 8. (d) Largest Lyapunov exponent in

the presence of decoherence (blue dots). In (c) and (d) the

dashed black line is an analytical expression known to work for

k > 10 [49].
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rate at which photons are forward scattered into the probe,

κ ¼ ðσ0=AÞγs where σ0 is the resonant scattering cross

section, A is the effective beam area, and γs is the photon

scattering rate into 4π [51]. The measurement resolution

variance σ2 ¼ 1=κT, where T is the duration of the

measurement. During this time, photons will be diffusively

scattered, leading to optical pumping and concomitant

decoherence. The duration of measurement is chosen so

that σ2 ≈ ΔJ2z ∼ N, which implies γsT ∼ 1=OD, where

OD ¼ Nσ0=A is the optical density, which plays the role

of the cooperativity in the atom-light interface [52]. Thus,

for sufficiently large OD, we expect to be able to extract

significant information with minimal decoherence as illus-

trated in Fig. 4(b).

We study this by simulating the measurement record in a

simplified model of the atom-light interface. The meas-

urement outcome is given by the time average of the

continuous measurement record, m ¼
R

T
0
dtMðtÞ, where

MðtÞdt ¼ Tr½ρðtÞĴz�dtþ
1
ffiffiffi

κ
p dW; ð10Þ

and dW is a Wiener increment [54]. The state of the

atomic ensemble evolves according to a stochastic master

equation [53,77]

dρ ¼
ffiffiffi

κ
p

2
H½ρ�dW þ κ

8
LD½ρ�dtþ γs

X

i

Di½ρ�dt; ð11Þ

where the map H½ρA� ¼ fρA; Ĵzg − 2hĴziρA represents

stochastic kicks and LD represents dephasing, as in

Eq. (6). The additional map, D½ρA�, accounts for optical

pumping on individual atoms in the ensemble [58].

Given the measurement record with decoherence, we

calculate the similarity between phase spaces of the

simulation and the CKT in the regular regime as follows.

Let

SðOD; σ; k; nÞ ¼ corðθCKT; θÞcorðϕCKT;ϕÞjnj2min; ð12Þ

where corðA;BÞ is the Pearson correlation coefficient of the
vectors A and B, j · j2min is the minimum norm squared

among all of the vectors n which compose our simulated

trajectory, and ðθCKT;ϕCKTÞ, and ðθ;ϕÞ are the CKT and

our model trajectories, respectively. With this measure,

using several initial conditions, we construct a point to

point similarity map between the CKT and our model with

decoherence. In Fig. 4(a) we show results for k ¼ 1.5,

n ¼ 30, and OD ¼ 300. We see a large portion of phase

space which can be reproduced to a very high degree of

accuracy. Interestingly, the regions of phase space which

are harder to simulate correspond to fixed points and

separatrix lines.

To study how decoherence affects our ability to observe

the chaotic behavior we calculatedΛLargest as a function of k

for N ∼ 106, which fixes the value of OD ¼ 300 (smaller

OD values are analyzed in the Supplemental Material [58]).

In Fig. 4(d) we observe good agreement with the CKT

result, demonstrating that the protocol with modest

decoherence is a robust scheme to explore the emergence

of quantum trajectories characterized by the appropriate

positive Lyapunov exponent.

In summary, we proposed a measurement-based feed-

back protocol to simulate complex nonlinear dynamics in

collective spin systems. For a well-chosen feedback policy,

we showed that the average evolution gives rise to the one-

axis twisting Floquet map of the QKT. In the limit of large

ensembles, individual quantum trajectories recover chaotic

classical dynamics, characterized by the positive Lyapunov

exponent of the CKT. Under a model implementation

based on QND measurement in an atom-light interface

and in the presence of decoherence, we explored conditions

for which we can observe the quantum-to-classical tran-

sition. Our protocol opens the door to explorations of

chaotic many-body dynamics [78] and their implications

for quantum simulations.
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