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We study a method to simulate quantum many-body dynamics of spin ensembles using measurement-
based feedback. By performing a weak collective measurement on a large ensemble of two-level quantum
systems and applying global rotations conditioned on the measurement outcome, one can simulate the
dynamics of a mean-field quantum kicked top, a standard paradigm of quantum chaos. We analytically
show that there exists a regime in which individual quantum trajectories adequately recover the classical
limit, and show the transition between noisy quantum dynamics to full deterministic chaos described by
classical Lyapunov exponents. We also analyze the effects of decoherence, and show that the proposed
scheme represents a robust method to explore the emergence of chaos from complex quantum dynamics in
a realistic experimental platform based on an atom-light interface.

DOI: 10.1103/PhysRevLett.124.110503

The increasing level of precision achieved in both control
and measurement of microscopic systems over the past
decades is paving the way for using quantum systems as
powerful simulators. In this paradigm, precise manipulation
of a quantum system leads to the effective engineering of
a particular physical model from which, in principle, one
could extract quantities of interest that might not be
accessible from a simulation on a classical device. In
recent years prototypes of quantum simulators have been
demonstrated in a variety of platforms, including trapped
ions [1-3], cold atoms [4-9], superconducting qubits [10],
and photonic systems [11]. Although it is unclear whether
current devices can reliably simulate complex dynamics
beyond the capabilities of classical computers [12], recent
explorations of small scale quantum simulations have
proven to be interesting by themselves. For instance,
simulations of interacting models that are native to cold
atom implementations have led to new theoretical insights
for weak ergodicity breaking [6,13,14]. Quantum simula-
tors can also be used to explore fundamental questions such
as the emergence of classical behavior from quantum
mechanics, typically referred to as the quantum-to-classical
transition. This topic has motivated a vast amount of
theoretical studies on different aspects of the problem,
including the origin of quantum interference damping
[15,16], the emergence of classical reality [17,18], and
the role of the observer [19,20], alongside some exper-
imental realizations [21-24].

A long-standing question is how the quantum-to-
classical transition occurs for chaotic systems [25-27],
given that unitary dynamics of closed quantum systems do
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not display exponential sensitivity to initial conditions
[28,29], and in the chaotic regime, quantum dynamics
follows classical motion only up to a time that is loga-
rithmic in the system size (i.e., the Ehrenfest time) [30].

Chaos in quantum dynamics has been understood from a
variety of perspectives [31-35]. One compelling approach
is the emergence of classical chaos in the macroscopic limit
of quantum systems as seen in the quantum trajectories
associated with a continuous measurement [36—40].
Particularly, Bhattacharya et al. [36] showed that when
the measurement is strong enough to keep a quantum wave
packet localized along the classical trajectory, but weak
enough that measurement backaction does not dominate
over Hamiltonian dynamics, the quantum trajectories dis-
play the correct Lyapunov exponents. Here, the effect of
(nonprojective) measurements prevents the emergence of
interference between spatially distant regions of phase
space, thus effectively extending the Ehrenfest time to
arbitrarily long timescales. A practical path to direct
experimental observation of quantum trajectories charac-
terized by a positive Lyapunov exponents, however,
remains an open challenge [41].

In this Letter we propose a method to implement
quantum simulations that are especially suited for exploring
the emergence of chaos in quantum trajectories [41-43].
More generally, this proposal allows for the simulation
of nonlinear dynamics in quantum systems described by
collective spin variables, and thus constitutes a platform to
explore complex phenomena such as phase transitions and
criticality, [44,45]. The method is based on performing a
series of weak (nonprojective) measurements followed by
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FIG. 1. Schematic for a measurement-and-feedback-based

quantum simulator. A quantum system undergoes weak mea-
surements, yielding an outcome m. This is then fed back to the
system via a quantum control operation U(m).

global unitary control maps conditioned on the measure-
ment outcome, see Fig. 1. Our method is similar in spirit to
the one originally proposed by Lloyd and Slotine [46], who
studied how measurement-based feedback could be used
to simulate a novel form of chaos. Here we apply this
procedure to study the simulation of mean-field dynamics
that are chaotic in the thermodynamic limit. In particular,
we simulate the kicked top (KT), a paradigmatic example
of both classical and quantum chaos [47-50]. We prove
that the unconditioned dynamics generated by our protocol
is a dephased version of the quantum KT (QKT), while the
conditioned quantum trajectories continuously approach
the classical KT (CKT) dynamics as the size of the
ensemble grows, and display the correct, positive largest
Lyapunov exponent. Finally, we explore a potential exper-
imental implementation based on an atom-light interface
[51,52] and show that our results can be robust to the effects
of decoherence.

Consider an ensemble of N noninteracting two-
level systems described by collective spin operators
j= %Zf\’: | 6;, where 6; is a vector of Pauli matrices acting
on the ith particle. We take the system initially prepared in a
spin coherent state (SCS), i.e., a product state of the form
|12, )®Y, where €, <> (0, ¢) is an arbitrary direction on the
unit sphere. Each step of our protocol consists of two
consecutive operations: (i) a nonprojective measurement of
the J . component of the collective spin and (ii) a unitary
map conditioned on the measurement outcome. We con-
sider measurements with Gaussian noise [53], yielding
Kraus operators of the form

£ 1 —L(J.—m)?
" Gy AT (1)

where o is the measurement resolution and m is the
measurement outcome, sampled with probability P,, =
Aw|K},K,,[w),;. In each evolution step, the state is updated
following quantum Bayes rule [54],

Kiiply ),

VP
Here U[f(m)] is an unitary operator conditioned, via a
feedback policy f(m), on the measurement outcome. f(m)

)iy = where Ky = U[f(m)]K,,.  (2)

can be chosen with complete freedom, allowing the
protocol to simulate different kinds of nonlinear dynamics
in the collective spin variables. We will consider only
global SU(2) rotations for our f(m), since they can be
implemented in state of the art experiments with relative
ease [50,55].

The dynamics of the QKT is governed by the Floquet
operator [47]

UQKT = elPhe! ”J (3)

describing the collective spin J = N/2 periodically under-
going a “twist” around the z axis characterized by strength
k, followed by a rotation by angle p about the y axis. The
classical limit of the Floquet map is obtained by consid-
ering the Heisenberg equations of motion in the limit
J — o, yielding a map for the vector n = (J)/J [47]. The
dynamics of the CKT is known to change from completely
regular to fully chaotic as k increases [47]. Quantum
signatures of this transition have been extensively studied
in terms of hypersensitivity to perturbations [33,48] and
generation of entanglement [56,57]. For the remainder of
this work, unless otherwise stated, we will use p = z/2.

To simulate the dynamics of the KT with our protocol,
we note that the classical limit is equivalent to mean-field
theory, where operators are replaced by their expected
value, and correlations are neglected so that kj? —
2k(J.)J.. We thus propose the feedback policy,

A~

Ulf(m)] =

which preserves the form of the free rotation and replaces
the twisting unitary by a rotation conditioned on m. When
m = (J,) we exactly recover the CKT.

To see the connection of our feedback-based map to
the QKT, we consider the evolution obtained by averaging
over all possible outcomes [53]. The state is now mixed,
and the stroboscopic evolution of the density operator can
be exactly obtained [58]. The resulting map reads

A N LA koA
0,01 = b et 4)

ﬁ,’.»,.] ZKmap Pi map - UQ ( Fﬁu[p])UQKT (5)

From Eq. (5) we see how the exact Floquet operator of
the QKT emerges from our proposed scheme, in addition to
dephasing generated by

Lol -0 1 5 r— k*o? 1
plpil ==l V.. pil],  and =27 T3z (6)
The dephasing rate I" arises from two effects: randomness
in the measurement outcome and measurement backaction.
The first leads to randomness in the applied feedback,
which increases with ¢2. The second decreases as o2, as

weaker measurement implies weaker backaction. The
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combination of both terms then has a minimum [58],
yielding a regime of optimal tradeoff between information
extraction and decoherence.

We now turn our attention to the conditioned dynamics
of individual quantum trajectories. In this case, the state of
the system depends on a series of measurement outcomes
my, My, ..., m, where n is the number of time evolution
steps. We will show that the simulated complex dynamics
can be characterized via positive Lyapunov exponents
[63,64], a signature of chaos and unpredictability [65].
These exponents are associated with quantum trajectories,
in the limit where the measurement acts to keep the state of
the system sufficiently localized in phase space, and the
effect of measurement backaction is negligible when
compared to the applied unitary rotation [36,37].

We are interested in working close to the classical limit,
which is achieved for large spin ensembles with N > 1, and
for an optimal value of measurement resolution ¢ allowing
us to maximally extract an estimate of the mean field with
minimal quantum backaction. In this limit, we can make the
Holstein-Primakoff (H-P) approximation [66], and treat the
state at all times as a Gaussian bosonic mode on a plane
comoving with the rotating Bloch vector. As shown in the
Supplemental Material [58], this is an excellent approxima-
tion for the large ensembles under consideration here. In this
approximation, the state is completely determined by the
vector of mean values n = (J)/J and a 3 x 3 symmetric
covariance matrix V defined as

Vg =5 (W I - 2000, )

with a,f = x, y, z. At each time step, a different H-P
plane is defined perpendicular to the direction of n. The
state is expressed in the local basis on the plane, n’ and
V/, via a rotation matrix, A, taking (e,.é,.¢;) to
(€n,+€n,s€n). In this local basis the action of the
Kraus operator only updates the subblocks of n’' and
V' corresponding to the two directions on the plane,
while leaving the perpendicular one unchanged. The
result is the familiar measurement-induced spin squeez-
ing along the P quadrature [67]. The unitary feedback
operation is trivially represented as a rotation of the H-P
plane conditioned on the measurement outcome. A
particular example is shown in Fig. 2(a) where we
compare the results for (J.)/J obtained with the full
evolution of the state vector and the H-P approximation
for N = 10°.

Using the H-P approximation, we can write down an
analytic expression for the stroboscopic map evolving the
normalized expectation values of the Cartesian components
of n, which reads

Xioy = -Zi+mV(1 - Z,)2, (8a)
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FIG. 2. (a) Time evolution of (J.)/J for regular dynamics.
Dashed blue: full quantum evolution, dashed red: H-P approxi-
mation, black: classical KT. (b) Maximum distance to the
corresponding classical trajectory averaged over several initial
conditions D™ as a function of the measurement resolution. An
optimal value of o exists around 6 ~+/J. For both cases,
parameters are: k = 1.5, N = 10°, 6 = 0.9v/J.

Yig=(1- ﬂl\/giz)zi)[yi cos (kZ; + 1) — X sin (kZ + )]
+mVAY X, cos (kZ; + ) + Y sin (KZ; + 1)),
(8b)

Ziy = (1 =V Z)[X cos (KZ; + 1) + Y sin (kZ; + 1»)]
— ’72\/<1i2) [Y cos (kZ; 4+ n,) — X sin (kZ; 4+ 1)].
(8¢)

The covariance matrix evolves similarly by a stochastic
map. The stochastic parts of these maps are characterized
by #, and #5,, which are normally distributed random
variables with zero mean and variances given by

2+ AJ? 2+ AJ?
0%:76 +4 £, and a%:kzig tz >
o

. 9)
where AJ? is the spin uncertainty (“projection noise").
From these expressions it is easy to see that these random
corrections #; and 7, vanish as J — oo, and thus the map
limits to the exact CKT dynamics.

For a finite-sized system, the stochastic corrections #;
and 7, quantify the effects of noise introduced due to
the measurement backaction and an imperfect feedback
operation, respectively. As in the case of the average map,
one can find the value of measurement resolution which
minimizes these effects [58]. We get a good estimate of the
mean value of J, when the shot noise resolution of the
meter is on the order of the projection noise of the SCS.
For the large ensembles of interest here, this corresponds
roughly to 6/+/J ~ 1. To illustrate this point, we computed
the largest distance to the respective classical trajectory

DM = max;| |Xgl)<T —nl) || and calculated its average over

110503-3



PHYSICAL REVIEW LETTERS 124, 110503 (2020)

FIG. 3. Phase space portraits constructed using the H-P
approximation with ¢ = 0.9v/J. From top to bottom we show
k=1.5,2.5, 4.0, respectively. The first two columns correspond
to N = 10*, 107, the third column are the CKT portraits. The
emergence of the classical regular, mixed, and chaotic features
can be seen as N increases.

100 initial conditions for a regular phase space (k = 1.5).
The results are shown in Fig. 2(b) as a function of 6/+/J.
There, we observe the existence of an optimum regime
which becomes less and less restrictive as the system
size N increases.

Using the comoving H-P approximation we can model
arbitrary ensemble sizes, and thus study extensively the
phase spaces generated by our protocol with optimal
measurement strength. Figure 3 shows the phase portraits
for different strengths of the chaoticity parameter, k, and
ensemble sizes. For small ensembles, quantum noise
washes out the classical features. Regular, mixed, and
chaotic features of the CKT emerge in the large N limit,
becoming essentially indistinguishable from the classical
phase portrait for N > 107,

We quantify the quantum-to-classical transition in both
the chaotic and regular regime. For the regular case, as N
increases the maximum distance between the simulated
trajectory and the classical trajectory approaches zero, see
Fig. 2(b). For the chaotic case, we study the convergence of
the largest Lyapunov exponent, Ay geeq, and its statistical
variance as a function of N [see inset in Fig. 4(¢)]. Aparge 18
calculated as the average over the local exponents asso-
ciated with initial conditions over the whole sphere. Each of
the local exponents is calculated as the average divergence
rate between the fiducial initial condition and a set of
nearby shadow initial conditions [36,58]. For values of N
for which our protocol agrees with the CKT, Figure 4(c)
shows Ay yreeq Obtained with our protocol as a function of
the twisting strength k. Taken together, the results dem-
onstrate that, in the classical limit, our protocol simulates to
a very good approximation both the regular and the chaotic
dynamics of the CKT.
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FIG. 4. Robustness of simulated classical dynamics in the
presence of the probe-induced decoherence characterized
by the optical depth on resonance (OD), which determines
the cooperativity, i.e., the measurement rate compared to
the decoherence rate. (a) Point like comparison between the
CKT phase portrait and the phase portrait of our model
using S(OD; o0, k,n) in Eq. (12). With, kK = 1.5, OD = 300,
6 = 4.0v/J, and n = 30. (b) S(OD; 0, k, n) averaged over initial
conditions as a function of OD. Vertical lines signal OD = 30
and OD = 300, respectively. Notice the large drop in similarity
below OD ~ 100. Parameters are as in (a). (c) Largest Lyapunov
exponent as a function of k. For the CKT (black continuous)
and the H-P approximation (red dots). The inset shows the
crossover from quantum to classical as seen in Apggeq, as @
function of N and for k = 8. (d) Largest Lyapunov exponent in
the presence of decoherence (blue dots). In (c) and (d) the
dashed black line is an analytical expression known to work for
k> 10 [49].

Finally, we consider a possible realization of our pro-
tocol based on an atom-light interface. A QND measure-
ment of a projection of J can be implemented through the
dispersive interaction between a laser probe and an ensem-
ble of trapped laser-cooled atoms [51]. An example is the
Faraday interaction, in which the polarization of an off-
resonance laser probe rotates by an angle proportional to
the collective spin magnetization along the direction of
propagation. A subsequent measurement of the probe in a
polarimeter provides a weak, continuous-time QND meas-
urement m(t) of the collective spin projection J. [68,69].
Such QND measurements have been employed to create
spin-squeezed states in a variety of experiments [69-76].
Here we consider processing the measurement record in a
classical controller, which can apply real-time feedback to
the spin trough a set of magnetic coils to drive spin
rotations around different axes, conditioned on m(z) as
desired.

For this scheme, we study how decoherence during the
course of measurement affects our ability to observe the
quantum-to-classical transition. Measurement occurs at a
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rate at which photons are forward scattered into the probe,
k = (00/A)y, where o, is the resonant scattering cross
section, A is the effective beam area, and y, is the photon
scattering rate into 4z [51]. The measurement resolution
variance ¢® = 1/kT, where T is the duration of the
measurement. During this time, photons will be diffusively
scattered, leading to optical pumping and concomitant
decoherence. The duration of measurement is chosen so
that ¢®> ~ AJ? ~ N, which implies 7,7 ~1/OD, where
OD = No/A is the optical density, which plays the role
of the cooperativity in the atom-light interface [52]. Thus,
for sufficiently large OD, we expect to be able to extract
significant information with minimal decoherence as illus-
trated in Fig. 4(b).

We study this by simulating the measurement record in a
simplified model of the atom-light interface. The meas-
urement outcome is given by the time average of the
continuous measurement record, m = [ drM(t), where

M(t)dt = Tr[p(1)].]dt + %dw, (10)

and dW is a Wiener increment [54]. The state of the
atomic ensemble evolves according to a stochastic master
equation [53,77]

dp = ?HLo]dW + gﬁD[p]dt + ysZDi[p]dt, (11)

where the map H[ps] = {ps.J.} —2(J.)p, represents
stochastic kicks and Lp represents dephasing, as in
Eq. (6). The additional map, D[p,], accounts for optical
pumping on individual atoms in the ensemble [58].

Given the measurement record with decoherence, we
calculate the similarity between phase spaces of the
simulation and the CKT in the regular regime as follows.
Let

S(OD; 0, k, n) = cor(Ocr. O)cor(Pekr. @) n [, (12)
where cor(A, B) is the Pearson correlation coefficient of the
vectors A and B, |- |2, is the minimum norm squared
among all of the vectors »n which compose our simulated
trajectory, and (@ckr, Pckr), and (6, ¢) are the CKT and
our model trajectories, respectively. With this measure,
using several initial conditions, we construct a point to
point similarity map between the CKT and our model with
decoherence. In Fig. 4(a) we show results for & = 1.5,
n = 30, and OD = 300. We see a large portion of phase
space which can be reproduced to a very high degree of
accuracy. Interestingly, the regions of phase space which
are harder to simulate correspond to fixed points and
separatrix lines.

To study how decoherence affects our ability to observe
the chaotic behavior we calculated Ay 4y as a function of

for N ~ 10°, which fixes the value of OD = 300 (smaller
OD values are analyzed in the Supplemental Material [58]).
In Fig. 4(d) we observe good agreement with the CKT
result, demonstrating that the protocol with modest
decoherence is a robust scheme to explore the emergence
of quantum trajectories characterized by the appropriate
positive Lyapunov exponent.

In summary, we proposed a measurement-based feed-
back protocol to simulate complex nonlinear dynamics in
collective spin systems. For a well-chosen feedback policy,
we showed that the average evolution gives rise to the one-
axis twisting Floquet map of the QKT. In the limit of large
ensembles, individual quantum trajectories recover chaotic
classical dynamics, characterized by the positive Lyapunov
exponent of the CKT. Under a model implementation
based on QND measurement in an atom-light interface
and in the presence of decoherence, we explored conditions
for which we can observe the quantum-to-classical tran-
sition. Our protocol opens the door to explorations of
chaotic many-body dynamics [78] and their implications
for quantum simulations.
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