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All-Gaussian Universality and Fault Tolerance with the Gottesman-Kitaev-Preskill Code
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The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator is particularly appealing
for fault-tolerant quantum computing with bosons because Gaussian operations on encoded Pauli
eigenstates enable Clifford quantum computing with error correction. We show that applying GKP error
correction to Gaussian input states, such as vacuum, produces distillable magic states, achieving
universality without additional non-Gaussian elements. Fault tolerance is possible with sufficient squeezing
and low enough external noise. Thus, Gaussian operations are sufficient for fault-tolerant, universal
quantum computing given a supply of GKP-encoded Pauli eigenstates.
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Introduction.—The promise of a quantum computer lies
in its ability to dramatically outpace classical computers for
certain tasks [1]. Computation using operations restricted to
Pauli-eigenstate preparation, Clifford transformations, and
Pauli measurements—henceforth referred to as Clifford
quantum computing (QC)—cannot outperform classical
computation since it is efficiently simulable on a classical
computer [2]. Universal quantum computation requires
supplementing Clifford QC by a non-Clifford resource—
that is, a preparation, gate, or measurement that is not an
element of Clifford QC.

In the presence of noise, universality is not enough. The
celebrated Threshold Theorem [3] proves that, given low
enough physical noise, quantum error correction can be
used to reduce logical noise to arbitrarily low levels—a
property called fault tolerance [4]. Fortunately, Clifford QC
provides all the necessary tools for quantum error correc-
tion. The question then is how to augment Clifford QC such
that the result is both universal and fault tolerant. One way
is to use a non-Pauli eigenstate, referred to as a magic
state [5].

The continuous-variable (CV) analog of Clifford QC is
Gaussian QC, which includes Gaussian state preparation,
Gaussian operations (i.e., Hamiltonians quadratic in &, a"),
and homodyne detection. CV systems arise naturally
in many quantum architectures, including optical modes
[6-9], microwave-cavity modes [10-13], and vibrational
modes of trapped ions [14]. Gaussian QC lends itself to
optics because the nonlinearities required are limited and
of low order and because homodyne detection is very high
efficiency. However, Gaussian QC is efficiently simulable
by a classical computer [15] and requires any single
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non-Gaussian resource (preparation, gate, or measurement)
for universal QC [16—-18]. Further, Gaussian QC alone is
insufficient to correct Gaussian noise [19].

Fault tolerance requires discrete quantum information.
Bosonic quantum error-correcting codes (bosonic codes
for short) embed discrete quantum information into CV
systems in a way that maps CV noise into effective
logical noise acting on the encoded qubits [20-23]. Such
codes are promising for fault-tolerant computation
[24,25] due to the built-in redundancy afforded by their
infinite-dimensional Hilbert space. High-precision con-
trollability of optical-cavity [10,12,13] and vibrational
[14] modes further enhances their appeal. With a bosonic
code, one may define “logical-Clifford QC,” compri-
sing encoded Pauli eigenstates and logical-Clifford
operations—allowing error correction at the encoded-
qubit level. This, too, is efficiently simulable and thus
requires additional logical-non-Clifford resources for
fault-tolerant universality.

The Gottesman-Kitaev-Preskill (GKP) encoding of a
qubit into an oscillator [21] is currently experiencing
significant theoretical [26-29] and experimental [14,30]
interest due to its favorable error-correction properties [31],
integration into scalable CV cluster states for measurement-
based QC [32-34], and all-Gaussian Clifford gates and
measurements. That is, the GKP encoding is the only
known bosonic code for which logical-Clifford QC and
error correction require only Gaussian QC along with a
supply of logical-Pauli eigenstates, which are non-Gaussian
[35]. Until now, fault-tolerant universal QC with the GKP
code has required an additional non-Gaussian element—
cubic-phase gate, cubic-phase state, or logical magic state
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[21,36,37]. In this Letter, we show that no such additional

non-Gaussian element is required.

Specifically, we show that high-quality magic states for
both square- and hexagonal-lattice GKP codes [22] can be
produced by applying GKP error correction to vacuum or
low-temperature thermal states. The result is that Gaussian
QC and just one type of non-Gaussian resource—a high-
quality GKP Pauli eigenstate—suffice for both universality
and fault tolerance.

Notation and conventions.—Here we define notation
and conventions to be used throughout this Letter. We
define position § := (1/v/2)(a + a') and momentum p :=
(=i/\/2)(a — a") for any mode @. This means [, p] = i,
with a vacuum variance of% in each quadrature, and 72 = 1.

The Weyl-Heisenberg displacement operators X(s) :=
e~P and Z(s) := "% displace a state by +s in position and
momentum, respectively. For brevity, we also define a joint
displacement V(s) := Z(s,,)f((sq), where s = (s,,5,)T.

The functions y/(s) = ,(s|y) and §(s) := ,(s|y) denote
position- and momentum-space wave functions for a state
lw), respectively (the tilde indicates momentum space).
Any function, including wave functions, can be evaluated
with respect to position, () := [ dsq(s)]s),,(s|, to pro-
duce an operator diagonal in the position basis—and
similarly for momentum. Finally, we define I (x):=
> nez 6(x —nT) as a Dirac comb with spacing 7.

The GKP encoding.—In the original square-lattice GKP
encoding [21], the wave functions for the logical basis states
{|0.),|1.)} are Dirac combs in position space with state-
dependent offset: y; ; (s) = I, (s — j/7) for j € {0, 1}.
Their momentum-space wave functions are also Dirac
combs but with no offset, different spacing, and a relative

phase between the spikes: i, (s) = \/ii(—l)js/\/’_’m\/,—,(s).

Note that the momentum-space spikes for |1;) alternate
sign, and those for |0;) are uniform.

GKP logical operators X; and Z; are implemented by
displacements X(y/z) and Z(y/z), respectively, while
displacements by integer multiples of 2/7 in either
quadrature leave the GKP logical subspace invariant. For
later use, we define the four GKP-encoded logical Paulis

&y = Zo-l;kle> (kr
jk

, (1)

where o’]‘.k is the jkth element of Pauli matrix ¢* (with
6" = I). Note that 8/ have support only on the GKP logical

subspace, while X; and Z; have full support and act both
within and outside of the GKP subspace. We denote the
(rank-2) projector onto the square-lattice GKP logical
subspace [21,38]

ke = 69 = 0. (@)WoL(P) = Wor (P)For(d). (2)

We assume that the physical GKP Pauli eigenstates used in
the following analysis are high quality enough to enable
fault-tolerant GKP Clifford QC. This allows us to approxi-
mate them as ideal states with noiseless Cliffords for the
purpose of magic-state preparation [5,39]. We justify this in
the penultimate section.

Kraus operator for GKP error correction.—In its
original formulation [21], GKP error correction is a
quantum operation designed to correct an encoded qubit
that has acquired some noise (leakage of its state outside
of the logical subspace) by projecting it back into the
GKP logical subspace, possibly at the expense of an
unintended logical operation. Standard implementations
of error correction strive to avoid these unintended logical
operations (residual errors). In what follows, we apply the
machinery of GKP error correction to a known Gaussian
state, which means the outcome-dependent final state is
known perfectly.

GKP error correction (EC) [21,40] proceeds in two steps:
First, one quadrature is corrected, then the conjugate
quadrature. We define the Kraus operator that corrects just
the ¢ quadrature K{(¢) via the circuit (read right to left)

_ in | X(—t) _ in
£p<t|i|0ﬁ

t t 5

where the controlled operation is C; = ¢®%, and r € R is
the measurement outcome. This circuit differs from the
original [21] in that the correction here is a negative
displacement by ¢ rather than by ¢ rounded to the nearest
integer multiple of /7. The outputs may differ by a logical
operation X(=4/z), but this is unimportant because the
input state is known.

Direct evaluation shows Kf.(t) = o, (9)X(=1). A
similar calculation shows that the Kraus operator for
correcting the p quadrature is K5 (7) = o (P)Z(~1).
Applying both corrections (in either order, since they
commute up to a phase) performs full GKP error correction,

Kgc(t) = kéc(%)&%c(%) = TgkpV (-t). 3)

with measurement outcomes t = (7,,7,)". This Kraus
operator (i) displaces the state by an outcome-dependent
amount V(—t), and then (ii) projects it back into the GKP
logical subspace with Mgkp [41].

Applying Kpc(t) to an input state p;, produces the
unnormalized state p(t) = Kgc(t)pnKpe(t), where the
bar indicates lack of normalization. The joint prob-
ability density function (PDF) for the outcomes PDF(t) =
Tr[p(t)] normalizes the output state: p(t) = p(t)/PDF(t).

Bloch vector for the error-corrected state.—Using
the logical basis in Eq. (1) we represent the output state
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pt) = %Zﬂ r,(t)8} by a four-component Bloch vector
r(t) with outcome-dependent coefficients r,(t) :=
Tr[p(t)67]. For the unnormalized state 7y(t) = PDF(t),
and for the normalized state ry(t) = 1. In what follows, we
use the notation r = (r(, 7), where 7 is the ordinary (three-
component) Bloch vector within r.

We employ the Wigner functions for the logical basis
states [21], shown in Fig. 1(a), to find the Wigner functions
for the GKP-encoded Pauli operators and the GKP logical
identity, Eq. (1). Their explicit form is

nez?

where x = (¢q,p)T, ¢, =(0,0)T, ¢, =(1,0)1, ¢, =
(LT, #3=(0,1)7, and #, is just £, with its entries
swapped. The Wigner functions are shown in Fig. 1(b).

Since Mgkpé, [gxp = &4, we skip the projection using
fIGKp and directly calculate the unnormalized Bloch-vector
components from the overlap of the unnormalized error-
corrected state p(t) with the logical Paulis. We find the
overlaps in the Wigner representation:

Fu(t) = Trlp(t)87] = Te[V (=t)pin V' ()57 ]

= 271/ PxXWin(x + )W (x), (5)

where Wi, (x) is the Wigner function of the input state p;,.
Note that 7y(t) = Tr[p(t)] = PDF(t), which is normalized
over a unit cell of size (24/7) x (2/7) (since the full PDF
is periodic). The normalized Bloch four-vector is r(t) :=
t(t)/7o(t).

GKP error correction of Gaussian states.—In what
follows, we apply GKP error correction to a general
Gaussian state—i.e., an input state whose Wigner function
is Wi, (x) = Gy, £(x), where G 5 is anormalized Gaussian
with mean vector X, and covariance matrix X.

@ o) ) iy ® & ok

[1z) |-z) |—iL) &y o1

(;:.1./4.> ! L (021/2) ——
FIG. 1. Wigner-function representations of the square-lattice

GKP (a) Pauli eigenstates and (b) logical-Pauli operators in a
single unit cell of phase space with dimensions (2/7) x (21/7).
The states are normalized to one over one unit cell, which
determines the coefficients c.

Equation (5) can be evaluated analytically when the
input state is Gaussian,

) = - Goaes 0+ Z ). (6)

where T =427 v, =212, — (1//7)(xo + t)], and the
Riemann (also known as Siegel) theta function is defined as
O(z.7) := Y ez eXp 2zi(3mTtm + m'z)] for z € H,.
The set H,, denotes the Siegel upper half-space—i.e., the
set of all complex, symmetric, n X n matrices with positive-
definite imaginary part (see Ref. [42], for example). The
overall coefficient 1/4z ensures that PDF(t) is normalized
over a single unit cell.

GKP magic states from error correction.—GKP error
correction of a Gaussian state yields a known, random state
encoded in the GKP logical subspace. Unless that state
is highly mixed or too close to a logical-Pauli eigenstate,
it can be used as a (noisy) magic state along with
GKP Clifford QC for fault-tolerant universal QC [5].
Reference [38] suggested coupling a vacuum mode to an
external qubit to perform GKP error correction and then
postselecting an outcome close to t = 0 to produce a logical
H-type state [5]. In fact, neither postselection nor inter-
action with a material qubit is required.

With access to a supply of |0, ) states, there is no need for
any resources beyond Gaussian QC, since nearly any
outcome t from applying GKP error correction to the
vacuum state produces a distillable H-type magic state
[5.,43], as shown in Fig. 2(a). This is because there are
12 H-type magic states (all related by Cliffords to |[+H; )),
and any of them will do the job [5]. The relevant quantity
is the fidelity F to the closest H-type state [43]. Without
loss of generality, assume this is |+H;), whose Bloch
three-vector is 7y = (1/ \/5)(1,0, 1). (If not, apply GKP
Cliffords until it is.) Then, F = (+H|p(t)|+H.) =
11+ Py - F(t)]. States of sufficient fidelity can be twirled
onto the H; axis, depolarized to make them identical, and
then distilled [5,44].

Input-state purity is not required either. Applying GKP
error correction to a thermal state also produces a distillable
mixed state with nonzero probability as long as its mean
occupation number 7i < 0.366 =: fiy, 5 5 S€€ Fig. 2(c). [A
thermal state is Gaussian with xo = 0 and £ = (7 +J)I,
which we plug into Eq. (6) to produce this plot.] Most high-
purity Gaussian states can be GKP error corrected into
a distillable magic state because most states do not
preferentially error correct to a Pauli eigenstate. For the
vacuum, PDF(t) is always between 0.066 and 0.094—i.e.,
all outcomes, and thus a wide variety of states, are roughly
equally likely.

Hexagonal-lattice  GKP code.—Our results can be
extended to the hexagonal-lattice GKP code [31] by simply
modifying the Gaussian state to be error corrected as follows.
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FIG. 2. (a) GKP error correction of the vacuum: outcome-dependent fidelity F with the nearest H-type magic state. The outcomes that

et

do not yield a distillable magic state are marked with a white “x” (these yield GKP Pauli eigenstates). Bloch vectors for the
representative outcomes (A—D) are shown on the GKP Bloch sphere in (b). (c) Probability of producing an H-type resource state of at
least fidelity F using a thermal state of mean occupation 7. Resource states with fidelity higher than the distillation threshold, F' > 0.853
(i.e., outside the stabilizer octahedron, or Paulihedron), can be distilled into higher-quality |[+H ) states [43,44]. Distillation is possible
for 7 < Ayyesn.y = 0.366. (d) U maps logical square-lattice GKP states to equivalent logical states in the hexagonal-lattice GKP
encoding [31]. A vacuum state on the hexagonal lattice (1-o error ellipse shown in blue) is mapped to a squeezed state on the square
lattice under U". (e) Probability of producing a resource state distillable to |[+75*) of at least fidelity F by performing GKP"* error
correction on a thermal state of mean occupation 7. Resource states whose Bloch vectors lie on or within the Paulihedron (F < 0.789)
cannot be distilled, which occurs at #1,,,q.7 = 0.468. For T-type resource states, a distillation threshold has been proven for ' > 0.8273

[45], which occurs for g eqnr = 0.391.

square> _

Define U as the Gaussian unitary such that U/ lw)
lyhex), where the logical state is the same although the
encoding differs. Let p be a Gaussian state to be GKP error
corrected using the hexagonal lattice, with x, =0 and
covariance X. Then, the equivalent state to be GKP error
corrected on the square lattice is p = U'p;, U, which is
Gaussian with x, = 0 and covariance ¥’ = S™!ZS~T [46],
where S = (2v/3)73(2 ~)- This mapping is shown for
Pin = |vac)(vac| in Fig. 2(d).

Using this mapping, we can get results for hexagonal-
lattice GKP error correction by reusing Eq. (6) with the
modified state. Vacuum and thermal states are biased toward
the xz plane of the Bloch sphere in the square-lattice
encoding but unbiased with respect to all three Pauli axes
in the hexagonal-lattice encoding. Thus, in Fig. 2(e), we plot
the fidelity of hexagonal-lattice GKP error correction of a
thermal state with T-type magic states [5] such as |+7h),
which has Bloch three-vector 77 = (1/+/3)(1,1,1).

Error correction as heterodyne detection.—We note that
an alternate description of what we are proposing is to
perform heterodyne detection (measurement in the coher-
ent-state basis) on half of a GKP-encoded Bell pair. This is

similar to what GKP proposed [21] but with photon counting
replaced by heterodyne detection, which is Gaussian. To see
this, note that a Bell state can be written (ignoring normali-
zation) as ZW N,067 ® 65, wheren = diag(1,—-1,-1,-1).
A coherent-state measurement on the first mode with outcome
a produces 1, Tr(|a)(al67 )67 on the second mode,

which agrees with Eq. (5) using p;, as vacuum and t =
—V2(Re a, Ima)" but with the opposite sign of the resulting
7. Intuitively, this is just Knill-type error correction [47],
which involves teleporting the state to be corrected through an
encoded Bell pair and reinterpreting vacuum teleportation as
heterodyne detection.

Noise and imperfections.—We employ ideal GKP
Clifford QC in our analysis because the fidelity requirements
for fault-tolerant Clifford QC (which we have access to
by assumption) are orders of magnitude stricter than those
for magic-state distillation [5], so small additional noise will
not qualitatively change our main result [39]. Using finite-
precision GKP states for error correction causes uncertainty
in the measurement outcome t [40], which can be modeled
as additive Gaussian noise on the input state—i.e., by
replacing 1 — 71 + An, where A7 equals the g or p variance
of an individual GKP spike. A7 is between 0.05 and 0.016
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for 10-15 dB GKP states (Afi = 1 10~"®/10 where rgp is the
squeezing measured in dB) [24], and fault tolerance is
unlikely to be possible with lower-quality states than these
[24,48,49]. Since fges, > 0.36, this additional noise is
qualitatively unimportant to our main result. Furthermore,
the resulting magic states will be the same quality as the
GKP ancillas [40], which are sufficient for fault tolerance by
assumption. Having established our result’s robustness to
imperfections, we leave detailed elaboration to further work.

Discussion.—We have deployed GKP error correction in
a nonstandard way to extract the magic from easy-to-
prepare Gaussian states that extend into the “wilderness
space” outside a bosonic code’s logical subspace. The
wilderness space may be rich in other resources, too—e.g.,
providing the means to produce other logical states or
perform logical operations more easily than would be
possible by restricting to the logical subspace. This feature
is likely to extend beyond GKP to other bosonic codes such
as rotation-symmetric codes [23] (including cat [50,51] and
binomial [52] codes), bosonic subsystem codes [53], and
multimode codes [22,31,54].

Our result is an example of the fact that two efficiently
simulable subtheories (GKP Clifford QC and Gaussian QC
here) together can contain all the ingredients for univer-
sality. For qubits, this is straightforward [55,56]: combine
Clifford QC from different Pauli frames since stabilizer
states of one are magic states for the other. In CV systems,
dual-rail photonic qubits [57] also exhibit this feature:
Clifford QC (requiring several non-Gaussian elements) and
Gaussian single-qubit gates together give universality.

The GKP encoding stands out among bosonic codes as
the only known code for which Clifford QC is implemented
entirely with Gaussian operations given a supply of
encoded Pauli eigenstates. We show that once high-quality
GKP Clifford QC is achieved—a challenging task already
in progress [14,29,30]—then fault-tolerant universality is
just a trivial Gaussian state away. This means there is no
longer any need to pursue creating cubic-phase states for
the GKP encoding. Focus on making high-quality GKP
Pauli eigenstates, and the rest is all Gaussian.
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