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The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator is particularly appealing

for fault-tolerant quantum computing with bosons because Gaussian operations on encoded Pauli

eigenstates enable Clifford quantum computing with error correction. We show that applying GKP error

correction to Gaussian input states, such as vacuum, produces distillable magic states, achieving

universality without additional non-Gaussian elements. Fault tolerance is possible with sufficient squeezing

and low enough external noise. Thus, Gaussian operations are sufficient for fault-tolerant, universal

quantum computing given a supply of GKP-encoded Pauli eigenstates.
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Introduction.—The promise of a quantum computer lies

in its ability to dramatically outpace classical computers for

certain tasks [1]. Computation using operations restricted to

Pauli-eigenstate preparation, Clifford transformations, and

Pauli measurements—henceforth referred to as Clifford

quantum computing (QC)—cannot outperform classical

computation since it is efficiently simulable on a classical

computer [2]. Universal quantum computation requires

supplementing Clifford QC by a non-Clifford resource—

that is, a preparation, gate, or measurement that is not an

element of Clifford QC.

In the presence of noise, universality is not enough. The

celebrated Threshold Theorem [3] proves that, given low

enough physical noise, quantum error correction can be

used to reduce logical noise to arbitrarily low levels—a

property called fault tolerance [4]. Fortunately, Clifford QC

provides all the necessary tools for quantum error correc-

tion. The question then is how to augment Clifford QC such

that the result is both universal and fault tolerant. One way

is to use a non-Pauli eigenstate, referred to as a magic

state [5].

The continuous-variable (CV) analog of Clifford QC is

Gaussian QC, which includes Gaussian state preparation,

Gaussian operations (i.e., Hamiltonians quadratic in â; â†),
and homodyne detection. CV systems arise naturally

in many quantum architectures, including optical modes

[6–9], microwave-cavity modes [10–13], and vibrational

modes of trapped ions [14]. Gaussian QC lends itself to

optics because the nonlinearities required are limited and

of low order and because homodyne detection is very high

efficiency. However, Gaussian QC is efficiently simulable

by a classical computer [15] and requires any single

non-Gaussian resource (preparation, gate, or measurement)

for universal QC [16–18]. Further, Gaussian QC alone is

insufficient to correct Gaussian noise [19].

Fault tolerance requires discrete quantum information.

Bosonic quantum error-correcting codes (bosonic codes

for short) embed discrete quantum information into CV

systems in a way that maps CV noise into effective

logical noise acting on the encoded qubits [20–23]. Such

codes are promising for fault-tolerant computation

[24,25] due to the built-in redundancy afforded by their

infinite-dimensional Hilbert space. High-precision con-

trollability of optical-cavity [10,12,13] and vibrational

[14] modes further enhances their appeal. With a bosonic

code, one may define “logical-Clifford QC,” compri-

sing encoded Pauli eigenstates and logical-Clifford

operations—allowing error correction at the encoded-

qubit level. This, too, is efficiently simulable and thus

requires additional logical-non-Clifford resources for

fault-tolerant universality.

The Gottesman-Kitaev-Preskill (GKP) encoding of a

qubit into an oscillator [21] is currently experiencing

significant theoretical [26–29] and experimental [14,30]

interest due to its favorable error-correction properties [31],

integration into scalable CV cluster states for measurement-

based QC [32–34], and all-Gaussian Clifford gates and

measurements. That is, the GKP encoding is the only

known bosonic code for which logical-Clifford QC and

error correction require only Gaussian QC along with a

supply of logical-Pauli eigenstates, which are non-Gaussian

[35]. Until now, fault-tolerant universal QC with the GKP

code has required an additional non-Gaussian element—

cubic-phase gate, cubic-phase state, or logical magic state
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[21,36,37]. In this Letter, we show that no such additional

non-Gaussian element is required.

Specifically, we show that high-quality magic states for

both square- and hexagonal-lattice GKP codes [22] can be

produced by applying GKP error correction to vacuum or

low-temperature thermal states. The result is that Gaussian

QC and just one type of non-Gaussian resource—a high-

quality GKP Pauli eigenstate—suffice for both universality

and fault tolerance.

Notation and conventions.—Here we define notation

and conventions to be used throughout this Letter. We

define position q̂ ≔ ð1=
ffiffiffi

2
p

Þðâþ â†Þ and momentum p̂ ≔

ð−i=
ffiffiffi

2
p

Þðâ − â†Þ for any mode â. This means ½q̂; p̂� ¼ i,

with a vacuum variance of 1

2
in each quadrature, and ℏ ¼ 1.

The Weyl-Heisenberg displacement operators X̂ðsÞ ≔
e−isp̂ and ẐðsÞ ≔ eisq̂ displace a state byþs in position and
momentum, respectively. For brevity, we also define a joint

displacement V̂ðsÞ ≔ ẐðspÞX̂ðsqÞ, where s ¼ ðsq; spÞT.
The functions ψðsÞ ≔ qhsjψi and ψ̃ðsÞ ≔ phsjψi denote

position- and momentum-space wave functions for a state

jψi, respectively (the tilde indicates momentum space).

Any function, including wave functions, can be evaluated

with respect to position, φðq̂Þ ≔
R

dsφðsÞjsiqqhsj, to pro-

duce an operator diagonal in the position basis—and

similarly for momentum. Finally, we define ШTðxÞ ≔
P

n∈Z δðx − nTÞ as a Dirac comb with spacing T.
The GKP encoding.—In the original square-lattice GKP

encoding [21], thewave functions for the logical basis states

fj0Li; j1Lig are Dirac combs in position space with state-

dependent offset: ψ j;LðsÞ ¼ Ш2
ffiffi

π
p ðs − j

ffiffiffi

π
p Þ for j ∈ f0; 1g.

Their momentum-space wave functions are also Dirac

combs but with no offset, different spacing, and a relative

phase between the spikes: ψ̃ j;LðsÞ ¼ 1
ffiffi

2
p ð−1Þjs=

ffiffi

π
p

Ш ffiffi

π
p ðsÞ.

Note that the momentum-space spikes for j1Li alternate

sign, and those for j0Li are uniform.

GKP logical operators X̂L and ẐL are implemented by

displacements X̂ð ffiffiffi

π
p Þ and Ẑð ffiffiffi

π
p Þ, respectively, while

displacements by integer multiples of 2
ffiffiffi

π
p

in either

quadrature leave the GKP logical subspace invariant. For

later use, we define the four GKP-encoded logical Paulis

σ̂
μ
L ≔

X

jk

σ
μ

jkjjLihkLj; ð1Þ

where σ
μ

jk is the jkth element of Pauli matrix σ
μ (with

σ
0 ¼ I). Note that σ̂

μ
L have support only on the GKP logical

subspace, while X̂L and ẐL have full support and act both

within and outside of the GKP subspace. We denote the

(rank-2) projector onto the square-lattice GKP logical

subspace [21,38]

Π̂GKP ≔ σ̂0L ¼ ψ̃0;Lðq̂Þψ̃0;Lðp̂Þ ¼ ψ̃0;Lðp̂Þψ̃0;Lðq̂Þ: ð2Þ

We assume that the physical GKP Pauli eigenstates used in

the following analysis are high quality enough to enable

fault-tolerant GKP Clifford QC. This allows us to approxi-

mate them as ideal states with noiseless Cliffords for the

purpose of magic-state preparation [5,39]. We justify this in

the penultimate section.

Kraus operator for GKP error correction.—In its

original formulation [21], GKP error correction is a

quantum operation designed to correct an encoded qubit

that has acquired some noise (leakage of its state outside

of the logical subspace) by projecting it back into the

GKP logical subspace, possibly at the expense of an

unintended logical operation. Standard implementations

of error correction strive to avoid these unintended logical

operations (residual errors). In what follows, we apply the

machinery of GKP error correction to a known Gaussian

state, which means the outcome-dependent final state is

known perfectly.

GKP error correction (EC) [21,40] proceeds in two steps:

First, one quadrature is corrected, then the conjugate

quadrature. We define the Kraus operator that corrects just

the q quadrature K̂
q
ECðtÞ via the circuit (read right to left)

where the controlled operation is ĈZ ¼ eiq̂⊗q̂, and t ∈ R is

the measurement outcome. This circuit differs from the

original [21] in that the correction here is a negative

displacement by t rather than by t rounded to the nearest

integer multiple of
ffiffiffi

π
p

. The outputs may differ by a logical

operation X̂ð� ffiffiffi

π
p Þ, but this is unimportant because the

input state is known.

Direct evaluation shows K̂
q
ECðtÞ ¼ ψ̃0;Lðq̂ÞX̂ð−tÞ. A

similar calculation shows that the Kraus operator for

correcting the p quadrature is K̂
p
ECðtÞ ¼ ψ̃0;Lðp̂ÞẐð−tÞ.

Applying both corrections (in either order, since they

commute up to a phase) performs full GKP error correction,

K̂ECðtÞ ¼ K̂
p
ECðtpÞK̂

q
ECðtqÞ ¼ Π̂GKPV̂ð−tÞ; ð3Þ

with measurement outcomes t ¼ ðtq; tpÞT. This Kraus

operator (i) displaces the state by an outcome-dependent

amount V̂ð−tÞ, and then (ii) projects it back into the GKP

logical subspace with Π̂GKP [41].

Applying K̂ECðtÞ to an input state ρ̂in produces the

unnormalized state ˆ̄ρðtÞ ¼ K̂ECðtÞρ̂inK̂†

ECðtÞ, where the

bar indicates lack of normalization. The joint prob-

ability density function (PDF) for the outcomes PDFðtÞ ¼
Tr½ ˆ̄ρðtÞ� normalizes the output state: ρ̂ðtÞ ¼ ˆ̄ρðtÞ=PDFðtÞ.
Bloch vector for the error-corrected state.—Using

the logical basis in Eq. (1) we represent the output state
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ρ̂ðtÞ ¼ 1

2

P

μ rμðtÞσ̂μL by a four-component Bloch vector

rðtÞ with outcome-dependent coefficients rμðtÞ ≔
Tr½ρ̂ðtÞσ̂μL�. For the unnormalized state r̄0ðtÞ ¼ PDFðtÞ,
and for the normalized state r0ðtÞ ¼ 1. In what follows, we

use the notation r ¼ ðr0; r⃗Þ, where r⃗ is the ordinary (three-

component) Bloch vector within r.

We employ the Wigner functions for the logical basis

states [21], shown in Fig. 1(a), to find the Wigner functions

for the GKP-encoded Pauli operators and the GKP logical

identity, Eq. (1). Their explicit form is

Wσ
μ

L
ðxÞ ¼

X

n∈Z2

ð−1Þn·l̄μ

2
δð2Þ

�

x −

�

nþ lμ

2

�

ffiffiffi

π
p �

; ð4Þ

where x ¼ ðq; pÞT, l0 ¼ ð0; 0ÞT, l1 ¼ ð1; 0ÞT, l2 ¼
ð1; 1ÞT, l3 ¼ ð0; 1ÞT, and l̄μ is just lμ with its entries

swapped. The Wigner functions are shown in Fig. 1(b).

Since Π̂GKPσ̂
μ
LΠ̂GKP ¼ σ̂

μ
L, we skip the projection using

Π̂GKP and directly calculate the unnormalized Bloch-vector

components from the overlap of the unnormalized error-

corrected state ˆ̄ρðtÞ with the logical Paulis. We find the

overlaps in the Wigner representation:

r̄μðtÞ ¼ Tr½ ˆ̄ρðtÞσ̂μL� ¼ Tr½V̂ð−tÞρ̂inV̂†ð−tÞσ̂μL�

¼ 2π

ZZ

d2xWinðxþ tÞWσ
μ

L
ðxÞ; ð5Þ

where WinðxÞ is the Wigner function of the input state ρ̂in.

Note that r̄0ðtÞ ¼ Tr½ ˆ̄ρðtÞ� ¼ PDFðtÞ, which is normalized

over a unit cell of size ð2 ffiffiffi

π
p Þ × ð2 ffiffiffi

π
p Þ (since the full PDF

is periodic). The normalized Bloch four-vector is rðtÞ ≔
r̄ðtÞ=r̄0ðtÞ.
GKP error correction of Gaussian states.—In what

follows, we apply GKP error correction to a general

Gaussian state—i.e., an input state whose Wigner function

isWinðxÞ ¼ Gx0;Σ
ðxÞ, whereGx0;Σ

is a normalizedGaussian

with mean vector x0 and covariance matrix Σ.

Equation (5) can be evaluated analytically when the

input state is Gaussian,

r̄μðtÞ ¼
1

4π
½G0;ð4πΣÞ−1ðvμÞ�−1Θ

�

vμ þ
l̄μ

2
; τ

�

; ð6Þ

where τ ¼ i
2
Σ
−1, vμ ¼ τ½1

2
lμ − ð1= ffiffiffi

π
p Þðx0 þ tÞ�, and the

Riemann (also known as Siegel) theta function is defined as

Θðz; τÞ ≔ P

m∈Zn exp ½2πið1
2
mT

τmþmTzÞ� for τ ∈ Hn.

The set Hn denotes the Siegel upper half-space—i.e., the

set of all complex, symmetric, n × nmatrices with positive-

definite imaginary part (see Ref. [42], for example). The

overall coefficient 1=4π ensures that PDFðtÞ is normalized

over a single unit cell.

GKP magic states from error correction.—GKP error

correction of a Gaussian state yields a known, random state

encoded in the GKP logical subspace. Unless that state

is highly mixed or too close to a logical-Pauli eigenstate,

it can be used as a (noisy) magic state along with

GKP Clifford QC for fault-tolerant universal QC [5].

Reference [38] suggested coupling a vacuum mode to an

external qubit to perform GKP error correction and then

postselecting an outcome close to t ≈ 0 to produce a logical

H-type state [5]. In fact, neither postselection nor inter-

action with a material qubit is required.

With access to a supply of j0Li states, there is no need for
any resources beyond Gaussian QC, since nearly any

outcome t from applying GKP error correction to the

vacuum state produces a distillable H-type magic state

[5,43], as shown in Fig. 2(a). This is because there are

12 H-type magic states (all related by Cliffords to jþHLi),
and any of them will do the job [5]. The relevant quantity

is the fidelity F to the closest H-type state [43]. Without

loss of generality, assume this is jþHLi, whose Bloch

three-vector is r⃗H ¼ ð1=
ffiffiffi

2
p

Þð1; 0; 1Þ. (If not, apply GKP

Cliffords until it is.) Then, F ¼ hþHLjρ̂ðtÞjþHLi ¼
1

2
½1þ r⃗H · r⃗ðtÞ�. States of sufficient fidelity can be twirled

onto the HL axis, depolarized to make them identical, and

then distilled [5,44].

Input-state purity is not required either. Applying GKP

error correction to a thermal state also produces a distillable

mixed state with nonzero probability as long as its mean

occupation number n̄ < 0.366≕ n̄thresh;H; see Fig. 2(c). [A

thermal state is Gaussian with x0 ¼ 0 and Σ ¼ ðn̄þ 1

2
ÞI,

which we plug into Eq. (6) to produce this plot.] Most high-

purity Gaussian states can be GKP error corrected into

a distillable magic state because most states do not

preferentially error correct to a Pauli eigenstate. For the

vacuum, PDFðtÞ is always between 0.066 and 0.094—i.e.,

all outcomes, and thus a wide variety of states, are roughly

equally likely.

Hexagonal-lattice GKP code.—Our results can be

extended to the hexagonal-lattice GKP code [31] by simply

modifying the Gaussian state to be error corrected as follows.

(a) (b)

FIG. 1. Wigner-function representations of the square-lattice

GKP (a) Pauli eigenstates and (b) logical-Pauli operators in a

single unit cell of phase space with dimensions ð2 ffiffiffi

π
p Þ × ð2 ffiffiffi

π
p Þ.

The states are normalized to one over one unit cell, which

determines the coefficients c.
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Define Û as the Gaussian unitary such that Ûjψ square
L i ¼

jψhex
L i, where the logical state is the same although the

encoding differs. Let ρ̂ be a Gaussian state to be GKP error

corrected using the hexagonal lattice, with x0 ¼ 0 and

covariance Σ. Then, the equivalent state to be GKP error

corrected on the square lattice is ρ̂0in ¼ Û†ρ̂inÛ, which is

Gaussian with x0 ¼ 0 and covariance Σ
0 ¼ S−1

ΣS−T [46],

where S ¼ ð2
ffiffiffi

3
p

Þ−1

2ð2
0

−1
ffiffi

3
p Þ. This mapping is shown for

ρ̂in ¼ jvacihvacj in Fig. 2(d).

Using this mapping, we can get results for hexagonal-

lattice GKP error correction by reusing Eq. (6) with the

modified state. Vacuum and thermal states are biased toward

the xz plane of the Bloch sphere in the square-lattice

encoding but unbiased with respect to all three Pauli axes

in the hexagonal-lattice encoding. Thus, in Fig. 2(e), we plot

the fidelity of hexagonal-lattice GKP error correction of a

thermal state with T-type magic states [5] such as jþThex
L i,

which has Bloch three-vector r⃗T ¼ ð1=
ffiffiffi

3
p

Þð1; 1; 1Þ.
Error correction as heterodyne detection.—We note that

an alternate description of what we are proposing is to

perform heterodyne detection (measurement in the coher-

ent-state basis) on half of a GKP-encoded Bell pair. This is

similar to what GKP proposed [21] but with photon counting

replaced by heterodyne detection, which is Gaussian. To see

this, note that a Bell state can be written (ignoring normali-

zation) as
P

μν ημνσ̂
μ
L ⊗ σ̂νL, where η ¼ diagð1;−1;−1;−1Þ.

A coherent-statemeasurement on the firstmodewith outcome

α produces
P

μν ημνTrðjαihαjσ̂μLÞσ̂νL on the second mode,

which agrees with Eq. (5) using ρ̂in as vacuum and t ¼
−

ffiffiffi

2
p

ðRe α; ImαÞT but with the opposite sign of the resulting
r⃗. Intuitively, this is just Knill-type error correction [47],

which involves teleporting the state to be corrected through an

encoded Bell pair and reinterpreting vacuum teleportation as

heterodyne detection.

Noise and imperfections.—We employ ideal GKP

CliffordQC in our analysis because the fidelity requirements

for fault-tolerant Clifford QC (which we have access to

by assumption) are orders of magnitude stricter than those

for magic-state distillation [5], so small additional noisewill

not qualitatively change our main result [39]. Using finite-

precision GKP states for error correction causes uncertainty

in the measurement outcome t [40], which can be modeled

as additive Gaussian noise on the input state—i.e., by

replacing n̄ ↦ n̄þ Δn̄, whereΔn̄ equals the q orp variance

of an individual GKP spike. Δn̄ is between 0.05 and 0.016

(d)

(a)

(b)

(e)

(c)

FIG. 2. (a) GKP error correction of the vacuum: outcome-dependent fidelity F with the nearestH-type magic state. The outcomes that

do not yield a distillable magic state are marked with a white “x” (these yield GKP Pauli eigenstates). Bloch vectors for the

representative outcomes (A–D) are shown on the GKP Bloch sphere in (b). (c) Probability of producing an H-type resource state of at

least fidelity F using a thermal state of mean occupation n̄. Resource states with fidelity higher than the distillation threshold, F > 0.853

(i.e., outside the stabilizer octahedron, or Paulihedron), can be distilled into higher-quality jþHLi states [43,44]. Distillation is possible
for n̄ < n̄thresh;H ¼ 0.366. (d) Û maps logical square-lattice GKP states to equivalent logical states in the hexagonal-lattice GKP

encoding [31]. A vacuum state on the hexagonal lattice (1-σ error ellipse shown in blue) is mapped to a squeezed state on the square

lattice under Û†. (e) Probability of producing a resource state distillable to jþThex
L i of at least fidelity F by performing GKPhex error

correction on a thermal state of mean occupation n̄. Resource states whose Bloch vectors lie on or within the Paulihedron (F ≤ 0.789)

cannot be distilled, which occurs at n̄bound;T ¼ 0.468. For T-type resource states, a distillation threshold has been proven for F > 0.8273

[45], which occurs for n̄thresh;T ¼ 0.391.
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for 10–15 dBGKP states (Δn̄ ¼ 1

2
10−rdB=10, where rdB is the

squeezing measured in dB) [24], and fault tolerance is

unlikely to be possible with lower-quality states than these

[24,48,49]. Since n̄thresh > 0.36, this additional noise is

qualitatively unimportant to our main result. Furthermore,

the resulting magic states will be the same quality as the

GKP ancillas [40], which are sufficient for fault tolerance by

assumption. Having established our result’s robustness to

imperfections, we leave detailed elaboration to further work.

Discussion.—We have deployed GKP error correction in

a nonstandard way to extract the magic from easy-to-

prepare Gaussian states that extend into the “wilderness

space” outside a bosonic code’s logical subspace. The

wilderness space may be rich in other resources, too—e.g.,

providing the means to produce other logical states or

perform logical operations more easily than would be

possible by restricting to the logical subspace. This feature

is likely to extend beyond GKP to other bosonic codes such

as rotation-symmetric codes [23] (including cat [50,51] and

binomial [52] codes), bosonic subsystem codes [53], and

multimode codes [22,31,54].

Our result is an example of the fact that two efficiently

simulable subtheories (GKP Clifford QC and Gaussian QC

here) together can contain all the ingredients for univer-

sality. For qubits, this is straightforward [55,56]: combine

Clifford QC from different Pauli frames since stabilizer

states of one are magic states for the other. In CV systems,

dual-rail photonic qubits [57] also exhibit this feature:

Clifford QC (requiring several non-Gaussian elements) and

Gaussian single-qubit gates together give universality.

The GKP encoding stands out among bosonic codes as

the only known code for which Clifford QC is implemented

entirely with Gaussian operations given a supply of

encoded Pauli eigenstates. We show that once high-quality

GKP Clifford QC is achieved—a challenging task already

in progress [14,29,30]—then fault-tolerant universality is

just a trivial Gaussian state away. This means there is no

longer any need to pursue creating cubic-phase states for

the GKP encoding. Focus on making high-quality GKP

Pauli eigenstates, and the rest is all Gaussian.

We thank Andrew Landahl for discussions. R. N. A. is

supported by National Science Foundation Grant No. PHY-

1630114. A. K. is supported by the Australian Research

Council Centre of Excellence for Engineered Quantum

Systems (Project No. CE170100009). This work is sup-

ported by the Australian Research Council Centre of

Excellence for Quantum Computation and Communi-

cation Technology (Project No. CE170100012).

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,

Cambridge, England, 2000).

[2] D. Gottesman, The Heisenberg representation of quantum

computers, arXiv:quant-ph/9807006.

[3] D. Aharonov and M. Ben-Or, STOC 97 Proceedings of

the Twenty-Ninth Annual ACM Symposium on Theory of

Computing, El Paso, Texas, USA (ACM, New York, 1997),

pp. 176–188.

[4] D. Gottesman, An introduction to quantum error correc-

tion and fault-tolerant quantum computation, arXiv:

0904.2557v1.

[5] S. Bravyi and A. Kitaev, Universal quantum computation

with ideal Clifford gates and noisy ancillas, Phys. Rev. A 71,

022316 (2005).

[6] M. Chen, N. C. Menicucci, and O. Pfister, Experimental

Realization of Multipartite Entanglement of 60 Modes of a

Quantum Optical Frequency Comb, Phys. Rev. Lett. 112,

120505 (2014).

[7] S.Yokoyama,R.Ukai, S. C.Armstrong,C.Sornphiphatphong,

T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C.

Menicucci, and A. Furusawa, Ultra-large-scale continuous-

variable cluster states multiplexed in the time domain, Nat.

Photonics 7, 982 (2013).

[8] J.-i. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong,

Y. Shiozawa, K. Makino, and A. Furusawa, Invited Article:

Generation of one-million-mode continuous-variable cluster

state by unlimited time-domain multiplexing, APL Photonics

1, 060801 (2016).

[9] J. Roslund, R. M. De Araujo, S. Jiang, C. Fabre, and N.

Treps, Wavelength-multiplexed quantum networks with

ultrafast frequency combs, Nat. Photonics 8, 109 (2014).

[10] N. Ofek et al., Extending the lifetime of a quantum bit

with error correction in superconducting circuits, Nature

(London) 536, 441 (2016).

[11] S. Rosenblum et al., A CNOT gate between multiphoton

qubits encoded in two cavities, Nat. Commun. 9, 652

(2018).

[12] L. Hu et al., Quantum error correction and universal gate set

operation on a binomial bosonic logical qubit, Nat. Phys. 15,

503 (2019).

[13] Y. Y. Gao, B. J. Lester, K. S. Chou, L. Frunzio, M. H.

Devoret, L. Jiang, S. M. Girvin, and R. J. Schoelkopf,

Entanglement of bosonic modes through an engineered

exchange interaction, Nature (London) 566, 509 (2019).

[14] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky,

K. Mehta, and J. P. Home, Encoding a qubit in a trapped-ion

mechanical oscillator, Nature (London) 566, 513 (2019).

[15] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K.

Nemoto, Efficient Classical Simulation of Continuous

Variable Quantum Information Processes, Phys. Rev. Lett.

88, 097904 (2002).

[16] S. Lloyd and S. L. Braunstein, Quantum Computation over

Continuous Variables, Phys. Rev. Lett. 82, 1784 (1999).

[17] M. Walschaers, S. Sarkar, V. Parigi, and N. Treps, Tailoring

Non-Gaussian Continuous-Variable Graph States, Phys.

Rev. Lett. 121, 220501 (2018).

[18] Y.-S. Ra, A. Dufour, M. Walschaers, C. Jacquard, T. Michel,

C. Fabre, and N. Treps, Non-Gaussian quantum states of a

multimode light field, arXiv:1901.10939.

[19] J. Niset, J. Fiurášek, and N. J. Cerf, No-Go Theorem for

Gaussian Quantum Error Correction, Phys. Rev. Lett. 102,

120501 (2009).

[20] P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscop-

ically distinct quantum-superposition states as a bosonic

PHYSICAL REVIEW LETTERS 123, 200502 (2019)

200502-5



code for amplitude damping, Phys. Rev. A 59, 2631

(1999).

[21] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in

an oscillator, Phys. Rev. A 64, 012310 (2001).

[22] V. V. Albert et al., Performance and structure of single-mode

bosonic codes, Phys. Rev. A 97, 032346 (2018).

[23] A. L. Grimsmo, J. Combes, and B. Q. Baragiola, Quantum

computing with rotation-symmetric bosonic codes, arXiv:

1901.08071.

[24] N. C. Menicucci, Fault-Tolerant Measurement-Based Quan-

tum Computing with Continuous-Variable Cluster States,

Phys. Rev. Lett. 112, 120504 (2014).

[25] S. Rosenblum, P. Reinhold, M. Mirrahimi, L. Jiang, L.

Frunzio, and R. J. Schoelkopf, Fault-tolerant detection of a

quantum error, Science 361, 266 (2018).

[26] K. R. Motes, B. Q. Baragiola, A. Gilchrist, and N. C.

Menicucci, Encoding qubits into oscillators with atomic

ensembles and squeezed light, Phys. Rev. A 95, 053819

(2017).

[27] K. Fukui, A. Tomita, and A. Okamoto, Analog Quantum

Error Correction with Encoding a Qubit into an Oscillator,

Phys. Rev. Lett. 119, 180507 (2017).

[28] C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and B. M.

Terhal, Quantum error correction with the toric Gottesman-

Kitaev-Preskill code, Phys. Rev. A 99, 032344 (2019).

[29] Y. Shi, C. Chamberland, and A.W. Cross, Fault-tolerant

preparation of approximate GKP states, New J. Phys. 21,

093007 (2019).

[30] P. Campagne-Ibarcq et al., A stabilized logical quantum bit

encoded in grid states of a superconducting cavity, arXiv:

1907.12487.

[31] K. Noh, V. V. Albert, and L. Jiang, Quantum capacity

bounds of gaussian thermal loss channels and achievable

rates with Gottesman-Kitaev-Preskill codes, IEEE Trans.

Inform. Theory 65, 2563 (2019).

[32] W. Asavanant et al., Generation of time-domain-multiplexed

two-dimensional cluster state, Science 366, 373 (2019).

[33] O. Pfister, Continuous-variable quantum computing in the

quantum optical frequency comb, arXiv:1907.09832.

[34] S. Takeda and A. Furusawa, Toward large-scale fault-

tolerant universal photonic quantum computing, APL

Photonics 4, 060902 (2019).

[35] Note: These states cannot be prepared using the Gaussian

measurements that correspond to logical-Pauli measure-

ments because these measurements are destructive. A.

Karanjai, J. J. Wallman, and S. D. Bartlett, Contextuality

bounds the efficiency of classical simulation of quantum

processes, arXiv:1802.07744.

[36] K. Marshall, R. Pooser, G. Siopsis, and C. Weedbrook,

Repeat-until-success cubic phase gate for universal con-

tinuous-variable quantum computation, Phys. Rev. A 91,

032321 (2015).

[37] F. Arzani, N. Treps, and G. Ferrini, Polynomial approxi-

mation of non-Gaussian unitaries by counting one photon at

a time, Phys. Rev. A 95, 052352 (2017).

[38] B. M. Terhal and D. Weigand, Encoding a qubit into a cavity

mode in circuit QED using phase estimation, Phys. Rev. A

93, 012315 (2016).

[39] P. Brooks, Quantum error correction with biased noise,

Ph.D. thesis, California Institute of Technology, 2013.

[40] S. Glancy and E. Knill, Error analysis for encoding a qubit

in an oscillator, Phys. Rev. A 73, 012325 (2006).

[41] A. Ketterer, A. Keller, S. P. Walborn, T. Coudreau, and P.

Milman, Quantum information processing in phase space:

A modular variables approach, Phys. Rev. A 94, 022325

(2016).

[42] B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, and

M. Schmies, Computing Riemann theta functions, Math.

Comput. 73, 1417 (2004).

[43] B. W. Reichardt, Quantum universality from magic states

distillation applied to CSS codes, Quantum Inf. Process. 4,

251 (2005).

[44] E. T. Campbell and D. E. Browne, Bound States for Magic

State Distillation in Fault-Tolerant Quantum Computation,

Phys. Rev. Lett. 104, 030503 (2010).

[45] T. Jochym-O’Connor, Y. Yu, B. Helou, and R. Laflamme,

The robustness of magic state distillation against errors in

Clifford gates, Quantum Inf. Comput. 13, 361 (2013).

[46] N. C. Menicucci, S. T. Flammia, and P. van Loock, Graphi-

cal calculus for Gaussian pure states, Phys. Rev. A 83,

042335 (2011).

[47] E. Knill, Quantum computing with realistically noisy

devices, Nature (London) 434, 39 (2005).

[48] K. Fukui, A. Tomita, A. Okamoto, and K. Fujii, High-

Threshold Fault-Tolerant Quantum Computation with

Analog Quantum Error Correction, Phys. Rev. X 8, 021054

(2018).

[49] B. W. Walshe, L. J. Mensen, B. Q. Baragiola, and N. C.

Menicucci, Robust fault tolerance for continuous-variable

cluster states with excess antisqueezing, Phys. Rev. A 100,

010301(R) (2019).

[50] A. P. Lund, T. C. Ralph, and H. L. Haselgrove, Fault-

Tolerant Linear Optical Quantum Computing with Small-

Amplitude Coherent States, Phys. Rev. Lett. 100, 030503

(2008).

[51] M. Mirrahimi, Z. Leghtas, V. V Albert, S. Touzard, R. J.

Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically

protected cat-qubits: a new paradigm for universal quantum

computation, New J. Phys. 16, 045014 (2014).

[52] M. H. Michael, M. Silveri, R. T. Brierley, V. V. Albert, J.

Salmilehto, L. Jiang, and S. M. Girvin, New Class of

Quantum Error-Correcting Codes for a Bosonic Mode,

Phys. Rev. X 6, 031006 (2016).

[53] G. Pantaleoni, B. Q. Baragiola, and N. C. Menicucci,

Modular bosonic subsystem codes, arXiv:1907.08210.

[54] V. V. Albert, S. O. Mundhada, A. Grimm, S. Touzard,

M. H. Devoret, and L. Jiang, Pair-cat codes: autonomous

error-correction with low-order nonlinearity, Quantum Sci.

Technol. 4, 035007 (2019).

[55] C. D. Hill, A. G. Fowler, D. S. Wang, and L. C. L.

Hollenberg, Fault-tolerant quantum error correction code

conversion, Quantum Inf. Comput. 13, 439 (2013).

[56] A. Paetznick and B.W. Reichardt, Universal Fault-

Tolerant Quantum Computation with Only Transversal

Gates and Error Correction, Phys. Rev. Lett. 111, 090505

(2013).

[57] E. Knill, R. Laflamme, and G. J. Milburn, A scheme for

efficient quantum computation with linear optics, Nature

(London) 409, 46 (2001).

PHYSICAL REVIEW LETTERS 123, 200502 (2019)

200502-6


