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Exact rainbow tensor networks for the colorful Motzkin and Fredkin spin chains
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We present bulk tensor networks that exactly represent the ground states of a continuous family of one-
dimensional frustration-free Hamiltonians. These states, which are known as area-deformed Motzkin and
Fredkin states, exhibit a novel quantum phase transition. By tuning a single parameter, they go from a phase
obeying an area law to a highly entangled “rainbow” phase, where the half-chain entropy scales with the volume.
Using the representation of these ground states as superpositions of random walks, we introduce tensor networks
for these ground states where local and global rules of the walker are baked into bulk tensors, thereby providing
an efficient description of the ground states (some of which satisfy a volume law scaling of entanglement

entropy).
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I. INTRODUCTION

Tensor networks can offer efficient descriptions of quan-
tum states of interest. They have been used to numerically
study the behavior of correlations, entropy, and many other
properties of quantum phases of matter (for a review see, e.g.,
[1]). Beyond their utility for numerical studies, they offer a
convenient framework for classifying the complex structure
of correlations of wave functions [2] and foster connections
with coarse-graining methods, such as renormalization, and
related topics in field theory, such as gauge-gravity duality [3].
Matrix product states (MPS) are a particularly simple class
of one-dimensional (1D) networks used in the density matrix
renormalization group (DMRG) procedure [4], successfully
used in the numerical investigation of quantum phases in one
dimension.

Another class of network states, specially tailored to de-
scribe scale-invariant systems, are represented by the mul-
tiscale entanglement renormalization ansatz (MERA) [5,6].
MERA is used to represent approximate ground states of
ID quantum spin chains at criticality described by two-
dimensional (2D) conformal field theory (CFT) [7]. The scale
invariance of the MERA network turned out to also play a
special role in connecting it to holographic duals in the sense
of the AdS/CFT correspondence [3]. Here, the bulk of a
MERA network can be understood as a discrete realization
of three-dimensional (3D) anti—de Sitter space (AdS3), identi-
fying the extra holographic direction with the renormalization
group (RG) flow in the MERA [3].

We stress that the above treatments look for approximate
solutions of the actual ground states. Moreover, away from
ID gapped or conformal critical points, where the MPS
and MERA have been extensively studied, relatively little
is known. In particular, the interpretation and use of gauge-
gravity dualities beyond CFTs is not very well understood and
still under intense investigation. Thus, it is of great interest
to find insightful examples for networks that describe exactly
ground states of Hamiltonians beyond MPS and MERA.
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In this article, we present a first example of an exact
continuous family of networks that describe ground states
of short-range local Hamiltonians across a phase transition
from area law to volume entanglement scaling. These allow
us to observe regimes associated with entanglement entropy
ranging from bounded and logarithmic all the way to exten-
sive. Our result is a complimentary construction to a recent
example [8] of a scale-invariant network for the colorless
version of the models described here, with a critical point
featuring a transition between area law states through a critical
point with a logarithmic entropy scaling.

We note that an explicit construction of a type of exact
holography was recently achieved by mapping the Hamilto-
nian of free fermions on a circle onto a “bulk” free fermion
Hamiltonian inside the disk with a hyperbolic metric [9],
however, here we are interested in exact tensor network
descriptions. We note that a related series of approximate
constructions of a MERA for free fermions was shown in
Refs. [10,11].

Our tensor network describes the ground states of the
colorful and area-deformed Motzkin and Fredkin models.
Motzkin models have been introduced as a new class of ex-
actly solvable ground states of frustration-free quantum spin
chain Hamiltonians [12,13]. A model with a similar behavior
based on Fredkin gates has been introduced in Refs. [14,15].
The Motzkin model represents an example of systems not
described by a CFT and thus, present a playground where new
ideas that go beyond the MERA can be explored. Moreover,
they admit a class of solvable deformations, the area deformed
Motzkin model, discovered in Ref. [16], with a new phase
transition and simple geometric interpretation. Further studies
of Motzkin and Fredkin models have explored their possible
relation to non-CFT field theories [17], the framework of sym-
metric inverse semigroups [18], and approximate quantum
error-correcting codes [19].

Figure 1 describes schematically the remarkable quantum
phase diagram of this model: As a function of the parameter
t, the area-deformed Motzkin model may be tuned all the way
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FIG. 1. Phase diagram for the area deformed Motzkin model.

between a gapless critical phase with volume law entropy scal-
ing, to a gapped phase obeying an area law, passing through
critical points obeying logarithmic or square root entangle-
ment scaling depending on the size of the local Hilbert space.
The model at hand has a geometrically appealing description
that relates 1D wave function amplitudes to objects in a
2D space.

Of particular interest is the high “half-chain” entropy
phase, the “rainbow” phase, where the state approximates a
superposition of concentric entangled pairs about the middle
of the system. The highly nonlocal nature of the rainbow
phase precludes its local efficient description in terms of either
MPS or MERA, and necessitated developing the new network
that we present here. Apart from the deformed Motzkin
and Fredkin models, which are translationally invariant in
the bulk, a rainbow type ground state may also appear in
spatially inhomogeneous models. Indeed, such a phase was
first demonstrated by Vitagliano et al. in [20] for a spin chain
with an explicitly broken bulk transitional invariance via ex-
ponentially varying coupling constants. The concentric singlet
phase was shown in the strong coupling limit [20], where
the model was analyzed using a Dasgupta-Ma real-space
renormalization group technique, and also studied in [21-23]
and via mapping to free fermions and exact diagonalization.

II. THE MOTZKIN MODEL

The Motzkin model is a one-dimensional spin-j chain
(j integer). For j =1, identifying each local spin basis
state {|1),]0),|—1)} with a line segment {,/,—,\}, re-
spectively, allows us to represent states as a superposition
of walks. Higher dimensional spins can be analogously de-
fined using colored walks. For example, for j = 3, the ba-
sis states {|3), |2),[1),1]0), |—1),|—2), |—3)} are identified
with { /, /, /,—,\, \ .}, respectively.

The Motzkin model has a unique, zero-energy frustration
free ground state. For the spin j > 1 (j = 1) case, this ground
state is a superposition of walks called “colored (uncolored)
Motzkin walks.” A Motzkin walk w is a walk on the Z? lattice
using the line segments { , —, \ } that starts at (0,0), goes to
(2n, 0), and never goes below the y = 0 line. In the colored
walks, all upwards steps have an arbitrary color. However, the

color of a downward step (k, m) — (k+ 1,m — 1) € w must
match the color of the most recent upwards step occurring
at the same height; i.e., color((k,m) - (k+1,m — 1)) =
color((I,m — 1) — (I + 1, m)) where [ = max(!') s.t. I’ <k
and (I',m — 1) — (I' + 1, m) € w. Denoting the set of col-
ored Motzkin walks with ¢ colors on 27 steps M?2", the ground
state can be written as

1
o) =5 >0 w). ()

we M

Here A(w) denotes the area below the Motzkin walk w, and
N is a normalization factor. A similar type of ground state
occurs in the Fredkin models, which are half-integer spin
models that have essentially the same structure, but without
the “flat” move [14,24-26]. The half-chain entropy is easily
understood from observing the dominant Motzkin walks in
the limits of t — oo andr — 0 and is described in Fig. 1. The
deformed Motzkin and Fredkin walks can naturally be viewed
as constrained trajectories of a random walker in the presence
of drift, with the “x” axis playing the role of time.

The area deformed colorful Motzkin state is the ground
state of a local frustration-free Hamiltonian. It is defined on
a spin chain with 2n sites as follows:

2n—1 2n—1
H= 1_[boundzu’y + Z l_[j + Z Hj'mss’ )
j=1 j=1
where I1;, IT$* act on the pair of spins j, j 4+ 1 with

N

M=) (PEN@r] o + (WL + [O0NOF ),

k=1
3)
I—[jross — Z |ukdk’) (ukdk’ |’ (4)
k#k'
.
Mooundary = Y _ (1d*)(d* [y + [u) (" |20), (5)
k=1

where ®F, Uk, @F are the following states on pairs of neigh-
boring spins,

|®F) oc [uk0) — 1]0u*) ;

W) oc |0d*) —t]d*0);  (6)

|©F) o |u*d*) — 1]00). (7

III. EXACT REPRESENTATION VIA THE
RAINBOW TENSOR NETWORK

A. Walks as tiles

Motivated by the correspondence by the state and walks,
we introduce a network representation where the rules of the
walk are built into the fundamental tensors. To do so, we first
represent the possible walks as a collection of possible tilings
showing colored arcs or “rainbows.” Consider the set of tiles
shown in Fig. 2(a). These can be used to tile a square lattice.
We say that a tiling is valid if the edges of each tile match, and
if the following boundary conditions are satisfied: all northern,
eastern, and western boundary edges must take the value w,

214430-2



EXACT RAINBOW TENSOR NETWORKS FOR THE ...

PHYSICAL REVIEW B 100, 214430 (2019)

A0 40 A0 A4©  A© | 4 |

—— s

1 @ @ w -1 @
i
B . S i A i I
1 1 w -1 -1 0

AP N AN

|
’ - = = 2 0 1 b
Pl 2% 44
=2|w w W 2 2 2 2 w W @ w T
: b
2 2 @ 2 2 |
;

0
A

(a) (b)

() (d) (e)

FIG. 2. (a) Twelve tiles for the spin-2 case. In the spin-j case, there will be j differently colored copies of each arrowed tile (there are five
distinct arrowed configurations). (b)—(e) Examples of the mapping between colored walks (top) and full packing of paths in the bulk of the
network (bottom). The sequence of paired line segments along a vertical cut in the walk (top) mirrors the pairing of walk segments across the

same in the grid (bottom). This is shown explicitly in (a).

and all southern boundary edges are prohibited from taking
the value w.

The set of length 2n-colored Motzkin walks is isomor-
phic to the set of valid tilings of an inverted step pyramid.
Examples are shown in Figs. 2(b)-2(e). Each valid tiling
corresponds to a full packing of the interior of the square grid
by nonintersecting arrowed and arrowless paths. The arrowed
paths begin traveling straight upwards from the bottom of
the grid, take two right turns (following a IT-shaped path),
and return to the bottom of the grid. The arrowless lines
form straight vertical paths from the bottom of the grid and
terminate in the interior. Each colored walk is isomorphic to
a configuration of colored nonintersecting chords that join
2n points that lie on a circle. See Fig. 3(a) for an example.
Flattening the circle—as shown in Fig. 3(b)—results in a
configuration of nested colored arcs. These are “smoothed”
counterparts of configurations of I1-shaped paths that pack the
square grid, as shown in Fig. 3(c). Each tiling is uniquely spec-
ified by the numerical values on the southernmost horizontal
edge of each column (recall that the value w is prohibited). For
the tiling to be valid, each path seeks to maximize the height
it reaches in the interior.

B. Tiles as tensors

We introduce a network that is designed to sum over all
valid tilings. Thus, it represents a sum over all Motzkin walks,
and hence, the ground state of the Motzkin model.

The network is shown in Fig. 4. Physical indices are
arranged along the bottom edge. The basic building block is

(a) (b) (c)

FIG. 3. Length 2n Motzkin walks are one-to-one with noninter-
secting chords between 2n points on a circle. These, in turn, are
one-to-one with full packings of the interior of an inverted step
pyramid by paths of arrowed and arrowless lines.

the four-index tensor B, defined as

J
B(t): =) Ai(e) + ViAy(e) +1A3(0) + ViAs(c) + As(c)

c=1

+As + A7, ®)

where the A; are four index tensors with north, east, south,
and west facing indices denoted as ki, k», k3, and k4, respec-
tively. The entries of A; equal one when all k; values match
the corresponding tile in Fig. 2(a), and are zero otherwise.
Contracting a single index between two B tensors corresponds
to summing over tile configurations that match on the joining
edge. To ensure that the boundary conditions of a valid tiling
are met, we contract the indices on the north, east, and west
boundaries of the network with the vector |w), and the legs on
the south boundary with the projector I[1 = I — |w)w].

Similarly, the ground state of the Fredkin model can be
represented by walks that do not include any horizontal seg-
ments. The network shown in Fig. 4 can be re-purposed for
such models if all tiles containing solid lines without arrows
are removed from B. The new tensor is defined as

j 5
B(t):= Z ZAl(r, 1). 9)

L=l
2

In addition, we map nonzero integer spin values j to half-

integer values j — %(j). The correspondence between walks

and arrowed paths in the network is otherwise identical to the

Motzkin case [see, e.g., Figs. 2(c) and 2(d)].

The rainbow network is an exact representation for any
member of the family of colored and area-weighted Motzkin.
The network provides an efficient description of any such state
[only O(n?) many identical tensors are required to specify
it]. Note that if each column of square tensors is viewed as

Legend

;

Vi, = Oy | 1 — |w)w]

FIG. 4. Rainbow tensor network.
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a single matrix, it yields an MPS with bond dimension that
grows exponentially with the system size. Thus, this network
does not readily provide an efficient means for computing
expectation values of local observables.

C. Encoding of correlations in the tensor
network and dependence on t.

The horizontal virtual bonds across a cut between two
columns of B tensors store an ordered list of colors corre-
sponding to unpaired walk segments across that cut in the
walk. To see this, consider cutting a given walk between sites
zand z + 1 at a height 4,. Then, exactly A, pairs of locations
split by this cut are perfectly correlated in the color degree of
freedom. Denote these pairs of sites by (xi, yi)... (X, yn,),
where x; <z <yj;, Vj. Assume these are ordered so that
X1 <X <...xp, (and therefore, y; < yn_1 <...y1), and
denote the colors of these pairs by ¢y, ¢z, ... cp,. Correlations
across the cut are encoded within these color configurations.
This type of data structure is known as a stack; the upwards
steps to the left of the cut are “undone” by a downwards step to
the right of the cut in reverse order. In the network, the colors
are stored in order (cy, ¢, ...) from top to bottom moving
downwards along the cut. See Fig. 2(b) for an example.

The B tensor in Eq. (8) explicitly includes the ¢ parameter.
The tiles {A;} have a factor of /¢ for every horizontal arrow
segment that appears. As discussed above, the height/color
information of each walk is stored in the horizontal virtual
bonds between two columns of B tensors. Therefore, for a
given tiling, each horizontal arrow segment contributes half
a unit of area. Scaling the tiles by the number of horizontal
arrows, therefore, corresponds to scaling the walks by the
number of area units they cover.

Beyond tensor networks for 1D quantum spin chains, such
a geometric approach has been useful in many problems of
statistical mechanics including quasicrystal spin glasses [27],
dimer models, and spin jams [28] where the building blocks,
the tiles, correspond to allowed local physical configurations
and offer a convenient, graphical approach to tensor networks
where a geometrical picture of the state is involved.

IV. DISCUSSION

The construction of a homogeneous MERA tensor network
is special in ways that do not always extend to systems with-
out scale invariance or logarithmic scaling of entanglement
entropy. In a MERA, tensor elements obtained numerically
are generic, therefore, generic correlations between a pair of
operators acting at positions x; and x;, are carried through the
bonds/links of the network [29], giving

G(x1, xy) & e~@P0w) (10)

for some correlation function G(xi, x,), where D(x{, x,) is
the graph distance (i.e., minimal number of edges) between
x; and x, within the tensor network, and o is a positive
constant that depends on the operators in question. Since in
a MERA, D(x;, x5) = log(|x; — x3]), it follows from Eq. (10)
that D(x, x,) dictates a power law scaling of G(x, x,) as

expected for a CFT. From the point of view of the net-
work structure, MERA may be naturally seen as a type of
holographic description. In particular, it clearly demonstrates
features such as consistency with the Ryu-Takayanagi (RT)
formula [30], relating entanglement entropy of a region with
its minimal bounding surface in the holographic direction. For
nonconformal field theories, a holographic gravity dual may
not, in general, be able to simultaneously satisfy an RT-like
formula for entanglement entropy and a semiclassical descrip-
tion of correlation functions given in terms of geodesics. Note
that, as mentioned before, the gap scaling behavior shows that
even the colorless Motzkin system, where entropy behaves
logarithmically, is not a CFT [12,31]. Indeed, a corresponding
field theory has yet to be properly described. Interestingly,
Chen et al. [17] found two gapless modes with different
dynamical scaling exponents, z = 2.7 and z = 3.16, respec-
tively, which they argue is evidence for multiple dynamics.
They also constructed a continuum limit of the colorless
Motzkin ground state as a ground state of a z = 2 Lifshitz
scalar field theory with orbifold boundary (note that due to the
mismatch in dynamical scaling, this z = 2 Lifshitz field theory
is insufficient to fully describe the spectrum of the Motzkin
spin chain).

What about the tensor network we presented here? Viewed
as a graph, it is defined on a square grid, that seems to
correspond to a “flat” holographic metric. However, if we
compute correlation functions, they are strongly dependent
on position. In particular, in the ¢+ — oo limit, correlation
functions represent concentric pairs of maximally entangled
pairs. The corresponding holographic geometry is perhaps
more appropriately represented as an array of concentric
“wormholes” [32,33], i.e., a rainbow. Another possibility is to
start from a CFT in an appropriate curved background metric
when looking for a holographic dual. Such a metric comes out
naturally in the fermionic rainbow chain, where the couplings
are strongly spatially in-homogenous; see, e.g., [22].

For example, consider the correlations between color de-
grees of freedom. We concentrate on the t — oo limit, where
the Motzkin walk is characterized by a tall triangular moun-
tain with small corrections. In this case the “up-down” degree
of freedom of the spins is almost frozen, however, colors are
widely fluctuating via completely correlated pairs symmetric
about the middle of the chain. To quantify the correlations,
we will assume two colors, say red and blue. Here the local
Hilbert space is five dimensional, consisting of the local states

1 : 73 T
T 1 T /iz, R o T

_Jo Le /f' 2_\ | =
L/

FIG. 5. This path contributes to the color correlation of spins x;
and x, with maximal area.
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FIG. 6. (a) For fixed n, and + — 0, the ground state can be
approximated by discarding walks that have area >2, i.e., keeping
only the flat walk plus all colorings of area 1 walks. (b) Such walks
are contained within the tensor network shown, which can be viewed
as a truncated rainbow tensor network. The geometry of this network
is the same as an MPS. (c) For fixed n, and ¢t — o0, the ground state
can be approximated by discarding walks that have area < (n* — 2).
(d) Such walks are contained within the tensor network shown,
similar to an alternately truncated rainbow network.

1y 1, 4, 1, — We can define a color operator C, by its action:
C|s) = color(s)|s), (11)

where color(], 1) = —1, color({, 1) = 1, and color(—) =0
for the horizontal step. In the ground state |\W(¢)), consider the
color-color correlation function:

GX],XZ = <CX1CX2) - (C)q)(CXz) = <CX1CX2)‘ (12)
Note that since the state has no particular color preference
(W(@)|Cx|¥(t)) = 0 for any point x and any value of ¢. If a
holographic metric allows for a semiclassical description of
the state we should expect

Gy, ™ D ,xz)’ (13)

where D is the geodesic distance between x; and x, when
going through the holographic geometry and / is a parameter
related to the scaling of our “color” operator.

In the + — oo limit, the asymptotically leading contribu-
tions to the area weighted Motzkin walks are determined by
maximal area walks that contribute to the correlation. Assum-
ing x, —x; is even, a maximal area walk with mandatory
color(xy) = color(x;) is illustrated in Fig. 5. Choosing our
coordinate system such that x = O corresponds to the middle

of the spin chain, we get

2”[2Amax(w)

—h|x2—x2
Gy ™~ g ~ e Mi—al (14)
with 4 = logz. In the continuum limit we have
Gy xy X (8(x1 — x2) + 8(x1 + X2)). (15)

Thus, in a holographic metric describing this state, points
that are symmetrical around the middle should be connected
by short geodesics. On the other hand, in the limit + — 0,
the situation is reversed—there are only correlations between
very close points. Appropriate approximate tensor networks
are described in Fig. 6.

One interesting question in this regard is what the nature
of a bulk Hamiltonian generating such superpositions is. It is
quite clear that the rainbow network, for example, represents
a bulk state that is unlikely to be generated by an exact
local bulk Hamiltonian: It consists of a superposition of bulk
rainbows that cannot be deformed to each other by local bulk
moves. Is this a feature of the particular representation we
found, or is it a general expectation that high entanglement
ground states have to be associated with nonlocal bulk Hamil-
tonians?
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APPENDIX

Color correlation functions

The color correlations in the colorful Motzkin model can
be described via

2A 2A
ZweC+ 1A — Zwec_ A
le,)Q = ’

Y, 124w

(AD)

where we defined the sets:
Cilxi,x):={we Mf" : color(xy)color(xy) = £1}.

Consider a particular Motzkin walk in C;(x;, x2). If in this
walk the color in x; is independent of that of x; (for example,
if in x, the step is upwards) then there will be a correspond-
ing Motzkin walk in C_(x;, x,) with the same area, and no
contribution to Gy, ,,. Thus, walks where the colors of x, x;
are not correlated will not contribute to the sum. We therefore
write G as

Z tZA(w)
w: s.t. color(x;) = color(xy)

Y, 124

GX[ s X2 = (Az)
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