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We present bulk tensor networks that exactly represent the ground states of a continuous family of one-

dimensional frustration-free Hamiltonians. These states, which are known as area-deformed Motzkin and

Fredkin states, exhibit a novel quantum phase transition. By tuning a single parameter, they go from a phase

obeying an area law to a highly entangled “rainbow” phase, where the half-chain entropy scales with the volume.

Using the representation of these ground states as superpositions of random walks, we introduce tensor networks

for these ground states where local and global rules of the walker are baked into bulk tensors, thereby providing

an efficient description of the ground states (some of which satisfy a volume law scaling of entanglement

entropy).
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I. INTRODUCTION

Tensor networks can offer efficient descriptions of quan-

tum states of interest. They have been used to numerically

study the behavior of correlations, entropy, and many other

properties of quantum phases of matter (for a review see, e.g.,

[1]). Beyond their utility for numerical studies, they offer a

convenient framework for classifying the complex structure

of correlations of wave functions [2] and foster connections

with coarse-graining methods, such as renormalization, and

related topics in field theory, such as gauge-gravity duality [3].

Matrix product states (MPS) are a particularly simple class

of one-dimensional (1D) networks used in the density matrix

renormalization group (DMRG) procedure [4], successfully

used in the numerical investigation of quantum phases in one

dimension.

Another class of network states, specially tailored to de-

scribe scale-invariant systems, are represented by the mul-

tiscale entanglement renormalization ansatz (MERA) [5,6].

MERA is used to represent approximate ground states of

1D quantum spin chains at criticality described by two-

dimensional (2D) conformal field theory (CFT) [7]. The scale

invariance of the MERA network turned out to also play a

special role in connecting it to holographic duals in the sense

of the AdS/CFT correspondence [3]. Here, the bulk of a

MERA network can be understood as a discrete realization

of three-dimensional (3D) anti–de Sitter space (AdS3), identi-

fying the extra holographic direction with the renormalization

group (RG) flow in the MERA [3].

We stress that the above treatments look for approximate

solutions of the actual ground states. Moreover, away from

1D gapped or conformal critical points, where the MPS

and MERA have been extensively studied, relatively little

is known. In particular, the interpretation and use of gauge-

gravity dualities beyond CFTs is not very well understood and

still under intense investigation. Thus, it is of great interest

to find insightful examples for networks that describe exactly

ground states of Hamiltonians beyond MPS and MERA.

In this article, we present a first example of an exact

continuous family of networks that describe ground states

of short-range local Hamiltonians across a phase transition

from area law to volume entanglement scaling. These allow

us to observe regimes associated with entanglement entropy

ranging from bounded and logarithmic all the way to exten-

sive. Our result is a complimentary construction to a recent

example [8] of a scale-invariant network for the colorless

version of the models described here, with a critical point

featuring a transition between area law states through a critical

point with a logarithmic entropy scaling.

We note that an explicit construction of a type of exact

holography was recently achieved by mapping the Hamilto-

nian of free fermions on a circle onto a “bulk” free fermion

Hamiltonian inside the disk with a hyperbolic metric [9],

however, here we are interested in exact tensor network

descriptions. We note that a related series of approximate

constructions of a MERA for free fermions was shown in

Refs. [10,11].

Our tensor network describes the ground states of the

colorful and area-deformed Motzkin and Fredkin models.

Motzkin models have been introduced as a new class of ex-

actly solvable ground states of frustration-free quantum spin

chain Hamiltonians [12,13]. A model with a similar behavior

based on Fredkin gates has been introduced in Refs. [14,15].

The Motzkin model represents an example of systems not

described by a CFT and thus, present a playground where new

ideas that go beyond the MERA can be explored. Moreover,

they admit a class of solvable deformations, the area deformed

Motzkin model, discovered in Ref. [16], with a new phase

transition and simple geometric interpretation. Further studies

of Motzkin and Fredkin models have explored their possible

relation to non-CFT field theories [17], the framework of sym-

metric inverse semigroups [18], and approximate quantum

error-correcting codes [19].

Figure 1 describes schematically the remarkable quantum

phase diagram of this model: As a function of the parameter

t , the area-deformed Motzkin model may be tuned all the way
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FIG. 1. Phase diagram for the area deformed Motzkin model.

between a gapless critical phase with volume law entropy scal-

ing, to a gapped phase obeying an area law, passing through

critical points obeying logarithmic or square root entangle-

ment scaling depending on the size of the local Hilbert space.

The model at hand has a geometrically appealing description

that relates 1D wave function amplitudes to objects in a

2D space.

Of particular interest is the high “half-chain” entropy

phase, the “rainbow” phase, where the state approximates a

superposition of concentric entangled pairs about the middle

of the system. The highly nonlocal nature of the rainbow

phase precludes its local efficient description in terms of either

MPS or MERA, and necessitated developing the new network

that we present here. Apart from the deformed Motzkin

and Fredkin models, which are translationally invariant in

the bulk, a rainbow type ground state may also appear in

spatially inhomogeneous models. Indeed, such a phase was

first demonstrated by Vitagliano et al. in [20] for a spin chain

with an explicitly broken bulk transitional invariance via ex-

ponentially varying coupling constants. The concentric singlet

phase was shown in the strong coupling limit [20], where

the model was analyzed using a Dasgupta-Ma real-space

renormalization group technique, and also studied in [21–23]

and via mapping to free fermions and exact diagonalization.

II. THE MOTZKIN MODEL

The Motzkin model is a one-dimensional spin- j chain

( j integer). For j = 1, identifying each local spin basis

state {|1〉 , |0〉 , |−1〉} with a line segment {�, —, �}, re-

spectively, allows us to represent states as a superposition

of walks. Higher dimensional spins can be analogously de-

fined using colored walks. For example, for j = 3, the ba-

sis states {|3〉 , |2〉 , |1〉 , |0〉 , |−1〉 , |−2〉 , |−3〉} are identified

with {�, �, �, —, �, �, �}, respectively.

The Motzkin model has a unique, zero-energy frustration

free ground state. For the spin j > 1 ( j = 1) case, this ground

state is a superposition of walks called “colored (uncolored)

Motzkin walks.” A Motzkin walk w is a walk on the Z
2 lattice

using the line segments {�, —, �} that starts at (0,0), goes to

(2n, 0), and never goes below the y = 0 line. In the colored

walks, all upwards steps have an arbitrary color. However, the

color of a downward step (k, m) → (k + 1, m − 1) ∈ w must

match the color of the most recent upwards step occurring

at the same height; i.e., color((k, m) → (k + 1, m − 1)) =
color((l, m − 1) → (l + 1, m)) where l = max(l ′) s.t. l ′ < k

and (l ′, m − 1) → (l ′ + 1, m) ∈ w. Denoting the set of col-

ored Motzkin walks with c colors on 2n steps M2n
c , the ground

state can be written as

|�(t )〉 =
1

N

∑

w ∈ M2n
c

tA(w)|w〉. (1)

Here A(w) denotes the area below the Motzkin walk w, and

N is a normalization factor. A similar type of ground state

occurs in the Fredkin models, which are half-integer spin

models that have essentially the same structure, but without

the “flat” move [14,24–26]. The half-chain entropy is easily

understood from observing the dominant Motzkin walks in

the limits of t → ∞ and t → 0 and is described in Fig. 1. The

deformed Motzkin and Fredkin walks can naturally be viewed

as constrained trajectories of a random walker in the presence

of drift, with the “x” axis playing the role of time.

The area deformed colorful Motzkin state is the ground

state of a local frustration-free Hamiltonian. It is defined on

a spin chain with 2n sites as follows:

H = �boundary +
2n−1
∑

j=1

� j +
2n−1
∑

j=1

�cross
j , (2)

where � j,�
cross
j act on the pair of spins j, j + 1 with

� j =
s

∑

k=1

(∣

∣�k
t

〉〈

�k
t

∣

∣

j, j+1
+

∣

∣�k
t

〉〈

�k
t

∣

∣

j, j+1
+

∣

∣�k
t

〉〈

�k
t

∣

∣

j, j+1

)

,

(3)

�cross
j =

∑

k �=k′

|ukdk′〉〈ukdk′ |, (4)

�boundary =
s

∑

k=1

(|dk〉〈dk|1 + |uk〉〈uk|2n), (5)

where �k, �k,�k are the following states on pairs of neigh-

boring spins,

∣

∣�k
t

〉

∝ |uk0〉 − t |0uk〉 ;
∣

∣�k
t

〉

∝ |0dk〉 − t |dk0〉; (6)

∣

∣�k
t

〉

∝ |ukdk〉 − t |00〉. (7)

III. EXACT REPRESENTATION VIA THE

RAINBOW TENSOR NETWORK

A. Walks as tiles

Motivated by the correspondence by the state and walks,

we introduce a network representation where the rules of the

walk are built into the fundamental tensors. To do so, we first

represent the possible walks as a collection of possible tilings

showing colored arcs or “rainbows.” Consider the set of tiles

shown in Fig. 2(a). These can be used to tile a square lattice.

We say that a tiling is valid if the edges of each tile match, and

if the following boundary conditions are satisfied: all northern,

eastern, and western boundary edges must take the value ω,
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FIG. 2. (a) Twelve tiles for the spin-2 case. In the spin- j case, there will be j differently colored copies of each arrowed tile (there are five

distinct arrowed configurations). (b)–(e) Examples of the mapping between colored walks (top) and full packing of paths in the bulk of the

network (bottom). The sequence of paired line segments along a vertical cut in the walk (top) mirrors the pairing of walk segments across the

same in the grid (bottom). This is shown explicitly in (a).

and all southern boundary edges are prohibited from taking

the value ω.

The set of length 2n-colored Motzkin walks is isomor-

phic to the set of valid tilings of an inverted step pyramid.

Examples are shown in Figs. 2(b)–2(e). Each valid tiling

corresponds to a full packing of the interior of the square grid

by nonintersecting arrowed and arrowless paths. The arrowed

paths begin traveling straight upwards from the bottom of

the grid, take two right turns (following a �-shaped path),

and return to the bottom of the grid. The arrowless lines

form straight vertical paths from the bottom of the grid and

terminate in the interior. Each colored walk is isomorphic to

a configuration of colored nonintersecting chords that join

2n points that lie on a circle. See Fig. 3(a) for an example.

Flattening the circle—as shown in Fig. 3(b)—results in a

configuration of nested colored arcs. These are “smoothed”

counterparts of configurations of �-shaped paths that pack the

square grid, as shown in Fig. 3(c). Each tiling is uniquely spec-

ified by the numerical values on the southernmost horizontal

edge of each column (recall that the value ω is prohibited). For

the tiling to be valid, each path seeks to maximize the height

it reaches in the interior.

B. Tiles as tensors

We introduce a network that is designed to sum over all

valid tilings. Thus, it represents a sum over all Motzkin walks,

and hence, the ground state of the Motzkin model.

The network is shown in Fig. 4. Physical indices are

arranged along the bottom edge. The basic building block is

FIG. 3. Length 2n Motzkin walks are one-to-one with noninter-

secting chords between 2n points on a circle. These, in turn, are

one-to-one with full packings of the interior of an inverted step

pyramid by paths of arrowed and arrowless lines.

the four-index tensor B, defined as

B(t ) : =
j

∑

c=1

A1(c) +
√

tA2(c) + tA3(c) +
√

tA4(c) + A5(c)

+ A6 + A7, (8)

where the Ai are four index tensors with north, east, south,

and west facing indices denoted as k1, k2, k3, and k4, respec-

tively. The entries of Ai equal one when all ki values match

the corresponding tile in Fig. 2(a), and are zero otherwise.

Contracting a single index between two B tensors corresponds

to summing over tile configurations that match on the joining

edge. To ensure that the boundary conditions of a valid tiling

are met, we contract the indices on the north, east, and west

boundaries of the network with the vector |ω〉, and the legs on

the south boundary with the projector � = I − |ω〉〈ω|.
Similarly, the ground state of the Fredkin model can be

represented by walks that do not include any horizontal seg-

ments. The network shown in Fig. 4 can be re-purposed for

such models if all tiles containing solid lines without arrows

are removed from B. The new tensor is defined as

B′(t ) :=
j

∑

r= 1
2

5
∑

l=1

Al (r, t ). (9)

In addition, we map nonzero integer spin values j to half-

integer values j − sign( j)

2
. The correspondence between walks

and arrowed paths in the network is otherwise identical to the

Motzkin case [see, e.g., Figs. 2(c) and 2(d)].

The rainbow network is an exact representation for any

member of the family of colored and area-weighted Motzkin.

The network provides an efficient description of any such state

[only O(n2) many identical tensors are required to specify

it]. Note that if each column of square tensors is viewed as

FIG. 4. Rainbow tensor network.
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a single matrix, it yields an MPS with bond dimension that

grows exponentially with the system size. Thus, this network

does not readily provide an efficient means for computing

expectation values of local observables.

C. Encoding of correlations in the tensor

network and dependence on t.

The horizontal virtual bonds across a cut between two

columns of B tensors store an ordered list of colors corre-

sponding to unpaired walk segments across that cut in the

walk. To see this, consider cutting a given walk between sites

z and z + 1 at a height hz. Then, exactly hz pairs of locations

split by this cut are perfectly correlated in the color degree of

freedom. Denote these pairs of sites by (x1, y1) . . . (xhz
, yhz

),

where x j � z < y j , ∀ j. Assume these are ordered so that

x1 < x2 < . . . xhz
(and therefore, yhz

< yhz−1 < . . . y1), and

denote the colors of these pairs by c1, c2, . . . chz
. Correlations

across the cut are encoded within these color configurations.

This type of data structure is known as a stack; the upwards

steps to the left of the cut are “undone” by a downwards step to

the right of the cut in reverse order. In the network, the colors

are stored in order (c1, c2, . . . ) from top to bottom moving

downwards along the cut. See Fig. 2(b) for an example.

The B tensor in Eq. (8) explicitly includes the t parameter.

The tiles {Al} have a factor of
√

t for every horizontal arrow

segment that appears. As discussed above, the height/color

information of each walk is stored in the horizontal virtual

bonds between two columns of B tensors. Therefore, for a

given tiling, each horizontal arrow segment contributes half

a unit of area. Scaling the tiles by the number of horizontal

arrows, therefore, corresponds to scaling the walks by the

number of area units they cover.

Beyond tensor networks for 1D quantum spin chains, such

a geometric approach has been useful in many problems of

statistical mechanics including quasicrystal spin glasses [27],

dimer models, and spin jams [28] where the building blocks,

the tiles, correspond to allowed local physical configurations

and offer a convenient, graphical approach to tensor networks

where a geometrical picture of the state is involved.

IV. DISCUSSION

The construction of a homogeneous MERA tensor network

is special in ways that do not always extend to systems with-

out scale invariance or logarithmic scaling of entanglement

entropy. In a MERA, tensor elements obtained numerically

are generic, therefore, generic correlations between a pair of

operators acting at positions x1 and x2 are carried through the

bonds/links of the network [29], giving

G(x1, x2) ≈ e−αD(x1,x2 ) (10)

for some correlation function G(x1, x2), where D(x1, x2) is

the graph distance (i.e., minimal number of edges) between

x1 and x2 within the tensor network, and α is a positive

constant that depends on the operators in question. Since in

a MERA, D(x1, x2) ≈ log(|x1 − x2|), it follows from Eq. (10)

that D(x1, x2) dictates a power law scaling of G(x1, x2) as

expected for a CFT. From the point of view of the net-

work structure, MERA may be naturally seen as a type of

holographic description. In particular, it clearly demonstrates

features such as consistency with the Ryu-Takayanagi (RT)

formula [30], relating entanglement entropy of a region with

its minimal bounding surface in the holographic direction. For

nonconformal field theories, a holographic gravity dual may

not, in general, be able to simultaneously satisfy an RT-like

formula for entanglement entropy and a semiclassical descrip-

tion of correlation functions given in terms of geodesics. Note

that, as mentioned before, the gap scaling behavior shows that

even the colorless Motzkin system, where entropy behaves

logarithmically, is not a CFT [12,31]. Indeed, a corresponding

field theory has yet to be properly described. Interestingly,

Chen et al. [17] found two gapless modes with different

dynamical scaling exponents, z = 2.7 and z = 3.16, respec-

tively, which they argue is evidence for multiple dynamics.

They also constructed a continuum limit of the colorless

Motzkin ground state as a ground state of a z = 2 Lifshitz

scalar field theory with orbifold boundary (note that due to the

mismatch in dynamical scaling, this z = 2 Lifshitz field theory

is insufficient to fully describe the spectrum of the Motzkin

spin chain).

What about the tensor network we presented here? Viewed

as a graph, it is defined on a square grid, that seems to

correspond to a “flat” holographic metric. However, if we

compute correlation functions, they are strongly dependent

on position. In particular, in the t → ∞ limit, correlation

functions represent concentric pairs of maximally entangled

pairs. The corresponding holographic geometry is perhaps

more appropriately represented as an array of concentric

“wormholes” [32,33], i.e., a rainbow. Another possibility is to

start from a CFT in an appropriate curved background metric

when looking for a holographic dual. Such a metric comes out

naturally in the fermionic rainbow chain, where the couplings

are strongly spatially in-homogenous; see, e.g., [22].

For example, consider the correlations between color de-

grees of freedom. We concentrate on the t → ∞ limit, where

the Motzkin walk is characterized by a tall triangular moun-

tain with small corrections. In this case the “up-down” degree

of freedom of the spins is almost frozen, however, colors are

widely fluctuating via completely correlated pairs symmetric

about the middle of the chain. To quantify the correlations,

we will assume two colors, say red and blue. Here the local

Hilbert space is five dimensional, consisting of the local states

FIG. 5. This path contributes to the color correlation of spins x1

and x2 with maximal area.
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FIG. 6. (a) For fixed n, and t → 0, the ground state can be

approximated by discarding walks that have area �2, i.e., keeping

only the flat walk plus all colorings of area 1 walks. (b) Such walks

are contained within the tensor network shown, which can be viewed

as a truncated rainbow tensor network. The geometry of this network

is the same as an MPS. (c) For fixed n, and t → ∞, the ground state

can be approximated by discarding walks that have area � (n2 − 2).

(d) Such walks are contained within the tensor network shown,

similar to an alternately truncated rainbow network.

↓,↑,↓,↑,−. We can define a color operator C, by its action:

C|s〉 = color(s)|s〉, (11)

where color(↓,↑) = −1, color(↓,↑) = 1, and color(−) = 0

for the horizontal step. In the ground state |�(t )〉, consider the

color-color correlation function:

Gx1,x2
≡ 〈Cx1

Cx2
〉 − 〈Cx1

〉〈Cx2
〉 = 〈Cx1

Cx2
〉. (12)

Note that since the state has no particular color preference

〈�(t )|Cx|�(t )〉 = 0 for any point x and any value of t . If a

holographic metric allows for a semiclassical description of

the state we should expect

Gx1,x2
∼ e−hD(x1,x2 ), (13)

where D is the geodesic distance between x1 and x2 when

going through the holographic geometry and h is a parameter

related to the scaling of our “color” operator.

In the t → ∞ limit, the asymptotically leading contribu-

tions to the area weighted Motzkin walks are determined by

maximal area walks that contribute to the correlation. Assum-

ing x2 − x1 is even, a maximal area walk with mandatory

color(x2) = color(x1) is illustrated in Fig. 5. Choosing our

coordinate system such that x = 0 corresponds to the middle

of the spin chain, we get

Gx1,x2
∼

2nt2Amax (w)

2nt4n
∼ e−h|x2

1−x2
2 |, (14)

with h = log t . In the continuum limit we have

Gx1,x2
∝ (δ(x1 − x2) + δ(x1 + x2)). (15)

Thus, in a holographic metric describing this state, points

that are symmetrical around the middle should be connected

by short geodesics. On the other hand, in the limit t → 0,

the situation is reversed—there are only correlations between

very close points. Appropriate approximate tensor networks

are described in Fig. 6.

One interesting question in this regard is what the nature

of a bulk Hamiltonian generating such superpositions is. It is

quite clear that the rainbow network, for example, represents

a bulk state that is unlikely to be generated by an exact

local bulk Hamiltonian: It consists of a superposition of bulk

rainbows that cannot be deformed to each other by local bulk

moves. Is this a feature of the particular representation we

found, or is it a general expectation that high entanglement

ground states have to be associated with nonlocal bulk Hamil-

tonians?
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APPENDIX

Color correlation functions

The color correlations in the colorful Motzkin model can

be described via

Gx1,x2
=

∑

w∈C+
t2A(w) −

∑

w∈C−
t2A(w)

∑

w
t2A(w)

, (A1)

where we defined the sets:

C±(x1, x2) := {w ∈ M
2n
s : color(x1)color(x2) = ±1}.

Consider a particular Motzkin walk in C+(x1, x2). If in this

walk the color in x2 is independent of that of x1 (for example,

if in x2 the step is upwards) then there will be a correspond-

ing Motzkin walk in C−(x1, x2) with the same area, and no

contribution to Gx1,x2
. Thus, walks where the colors of x1, x2

are not correlated will not contribute to the sum. We therefore

write G as

Gx1,x2
=

∑

w: s.t. color(x1 ) = color(x2 ) t2A(w)

∑

w
t2A(w)

. (A2)
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