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Quantum computing is a disruptive paradigm widely believed to be capable of solving classically intractable

problems. However, the route toward full-scale quantum computers is obstructed by immense challenges

associated with the scalability of the platform, the connectivity of qubits, and the required fidelity of various

components. One-way quantum computing is an appealing approach that shifts the burden from high-fidelity

quantum gates and quantum memories to the generation of high-quality entangled resource states and high

fidelity measurements. Cluster states are an important ingredient for one-way quantum computing, and a

compact, portable, and mass producible platform for large-scale cluster states will be essential for the widespread

deployment of one-way quantum computing. Here, we bridge two distinct fields—Kerr microcombs and

continuous-variable (CV) quantum information—to formulate a one-way quantum computing architecture based

on programmable large-scale CV cluster states. Our scheme can accommodate hundreds of simultaneously

addressable entangled optical modes multiplexed in the frequency domain and an unlimited number of

sequentially addressable entangled optical modes in the time domain. One-dimensional, two-dimensional,

and three-dimensional CV cluster states can be deterministically produced. When combined with a source

of non-Gaussian Gottesman-Kitaev-Preskill qubits, such cluster states enable universal quantum computation

via homoyne detection and feedforward. We note cluster states of at least three dimensions are required for

fault-tolerant one-way quantum computing with known error-correction strategies. This platform can be readily

implemented with silicon photonics, opening a promising avenue for quantum computing on a large scale.

DOI: 10.1103/PhysRevResearch.2.023138

I. INTRODUCTION

Quantum computing is deemed a disruptive paradigm for

solving many classically intractable problems such as fac-

toring big numbers [1], data fitting [2], combinatorial opti-

mization [3], and boson sampling [4]. The development of

quantum-computing platforms has significantly progressed

over the last decade [5–9], but outstanding challenges asso-

ciated with the system scalability, fidelity of quantum gates,

and controllability of qubits remain. To date, there has not

been a single quantum-computing platform that successfully

addresses all these challenges.

One-way quantum computing [10] is an intriguing ap-

proach to obviate the demanding requirement on quantum-

gate fidelity [11]. Unlike quantum-computing schemes based
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on quantum gates, the quantum logic in one-way quantum

computing is implemented via measuring a highly entangled

state known as a cluster state [12]. Measurements are imple-

mented sequentially, so that the measurement basis at a given

step may be adaptively chosen based on outcomes of prior

measurements. Thus, given access to high-quality entangled

resource states and high-fidelity measurements, the need for

active quantum gates is eliminated.

One-way quantum computing can be implemented in dif-

ferent platforms, and is particularly well suited to quantum-

photonic architectures because: first, photons are robust

quantum-information carriers even at room temperature; sec-

ond, quantum measurements on photons are well developed—

they can be precisely controlled and efficiently read out; and

third, photons can be readily transmitted over long distances

to link distributed quantum-computing and quantum-sensing

devices without requiring extra quantum-information trans-

ductions. A barrier to photonic one-way quantum computing,

however, lies in the generation of large-scale, high-quality

cluster states.

Bosonic modes are compatible with both discrete-variable

(DV) degrees of freedom, e.g., photon occupation basis,

and continuous-variable (CV) degrees of freedom, e.g., en-

coding in the quadrature basis. Photonic one-way quantum
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computing based on DV cluster states, typically based on

dual-rail encoding on single photons, has been theoretically

studied [10,13,14] and verified in proof-of-concept exper-

iments [15–18]. Scaling up the size of DV cluster states,

however, is impeded by a lack of deterministic means for their

generation. A mainstream mechanism to produce DV clus-

ter states based on spontaneous parametric down-conversion

(SPDC) in nonlinear crystals followed by nondeterminis-

tic post-selection suffers from an exponentially small state-

generation success rate as the size of the DV cluster state

increases. Deterministic means of generating large-scale DV

cluster states from single quantum emitters have only ap-

peared in recent theoretical works [19,20].

CV states are encoded into continuous quadratures of

bosonic modes. Like DV systems, superdense coding [21],

quantum teleportation [22], and quantum cryptography [23]

have been demonstrated in CV systems. Moreover, one-way

quantum computing can also be generalized to CVs [24]. An

appealing feature of this approach is that large-scale entangled

states can be deterministically generated on a large scale.

Indeed, CV-cluster-state sources have been studied in the

frequency domain [25,26] and the time domain [27–32]. A

recent experiment of frequency-multiplexed CV cluster states

demonstrated 60 simultaneously accessible spectral modes

[25]. In the time domain, temporal modes can be addressed

sequentially, enabling demonstrations of cluster states made

of 10 000 modes [28] and over one-million modes [31].

Though large in scale, the aforementioned demonstrations

all generated one-dimensional cluster states, which are in-

sufficient for universal one-way quantum computing. More

recently, two-dimensional time-multiplexed CV cluster states

were generated by Asavanant et al. [32] and Larsen et al. [33].

The utility of such 2D CV cluster states in one-way quantum

computing is, however, constrained by the shorter of the two

dimensions. Extending this dimension comes at the price of

potentially introducing additional losses, limiting the potential

scalability of time-multiplexing in more than one dimension.

Hybrid time-frequency multiplexed CV cluster states [34,35]

would significantly enlarge the size of the shorter dimension,

but obtaining phase references to simultaneously access all

spectral modes remains an outstanding open problem.

A key factor in assessing the feasibility of fault-tolerant

one-way quantum computation is the amount of squeezing

available in a CV cluster state [36,37]. The amount of re-

quired squeezing depends on the form of error correction

used [38]. Recent work has highlighted the possibility of

using a combination of robust bosonic qubits, known as the

Gottesman-Kitaev-Preskill (GKP) encoded qubits [39], and

3D entangled structures to implement fault-tolerant quantum

computation [40–43]. While the former have recently been

demonstrated experimentally [44,45], the latter still presents

a challenge. As such, a platform that generates 3D CV

cluster states would be an enabler for fault-tolerant quantum

computing.

In this paper, we bridge two distinct fields, Kerr-soliton mi-

crocombs and CV quantum information, to formulate a one-

way quantum-computing architecture based on large-scale 3D

CV cluster states generated in a scalable quantum-photonic

platform. In the proposed architecture, third-order (χ (3)) Kerr

nonlinearity is utilized with both time and frequency multi-

GKP qubits
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FIG. 1. Universal quantum computation is possible by combin-

ing a source of non-Gaussian GKP qubits with multimode Gaussian

unitaries and Gaussian measurements with feedforward [46,47].

These elements are summarized in the top three bubbles embedded

in the green box. Our scheme addresses the need for multimode

Gaussian gates and measurements via the on-chip implementation

of a CV cluster state. It achieves this by combining two elements:

on-chip squeezed-light sources and linear optics, and homodyne

measurements.

plexing to produce reconfigurable 1D, 2D, or 3D CV cluster

states. Frequency multiplexing can provide access to hun-

dreds of simultaneously accessible, highly-connected spectral

modes, whereas the time multiplexing allows for sequential

access to an unlimited number of temporal modes. By virtue

of large bandwidth (in a gigahertz range) of the spectral

modes, the quantum-photonic platform offers the scalability

and robustness required to produce large-scale 3D CV cluster

states for fault-tolerant quantum computing. A unique advan-

tage of our approach—which uses χ (3) Kerr nonlinearity—

is that we can generate a frequency-comb soliton suitable

for acting as a local phase reference for all spectral modes,

thereby solving a key challenge that faced by previous work

on frequency-multiplexed CV cluster states. Access to a large

number of spectral modes enables us to reach a scale required

to see a truly 3D structure, without introducing prohibitively

high loss.

Our setup for generating an on-chip 3D CV cluster state ad-

dresses the need for implementing multimode Gaussian uni-

taries and Gaussian measurements in the scheme for universal

quantum computing described in Refs. [46,47]. Illustrated in

Fig. 1, given a source of GKP qubit states, the CV cluster state

and measurement hardware can be used to implement single-

and multiqubit Clifford gates, Pauli measurements, and magic

state distillation.

In Sec. II, we will first describe the mechanism to obtain

classical frequency-comb phase references followed by elabo-

rating on our scheme for generating programmable CV cluster

states. We proceed in Sec. III to analyze device parameters

that determine the scale and quality of the generated CV

cluster states. The universal one-way quantum computing

framework tailored to the 3D CV cluster state is formulated

in Sec. IV.

II. THE ARCHITECTURE

The microring resonator (MR) is the workhorse of our

photonic platform, providing the means of generating both a
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FIG. 2. (Top) Classical frequency-comb generation. (Bottom)

The spectra for the input pump (orange bar) and the output side-mode

fields (blue bars).

classical frequency-comb reference and large-scale CV cluster

states. In this section, we discuss the physics relevant to utiliz-

ing MRs for the generation of both classical and nonclassical

states of light.

A. Classical frequency-comb phase references

A continuous-wave (c.w.) pump field is sent through a bus

waveguide and coupled into the MR, as shown in Fig. 2.

The power of the in-coupled field is greatly enhanced by an

appropriate quality (Q) factor of the MR. Above the para-

metric oscillation threshold, side-mode fields (represented as

blue bars in Fig. 2) are first created via spontaneous four-

wave mixing (FWM). The generated side-mode fields then

couple with the pump field to create more side-mode fields

via stimulated FWM. Moreover, provided that the power of

the generated side-mode fields are above the cavity threshold,

they also serve as new pump sources that, in turn, generate

other side-mode fields. Ultimately, this cascading FWM pro-

cess will lead to an extensively-extended spectrum profile, as

shown in Fig. 2.

Locking the phase of each frequency tooth leads to the

generation of a Kerr-soliton [48,49], which can address the

corresponding spectral mode of the CV cluster state in coher-

ent quantum measurements.

B. Quantum CV cluster-state sources

We now describe our method for generating 0D, 1D, 2D,

and 3D CV cluster states. We note that 1D and 2D CV

cluster states have been analyzed in prior works based on the

bulk-optics platform [25,28,31–34,55]. In this paper, we de-

scribe how the CV cluster states arising from the bulk-optics

platform can be adapted into an on-chip platform. Moreover,

the scalability of the on-chip platform, an elusive feature of

the bulk-optics platform, enables the generation of 3D CV

cluster states to greatly facilitate quantum error correction and

fault-tolerant quantum computation.

This involves sending a c.w. pump field, whose power is

below the parametric oscillation threshold, through the config-

uration described in Sec. II A. Choosing an input pump power

level below the cavity oscillator threshold brings multiple

benefits. First, operating at a lower power level is more energy

efficient; second, this reduces thermally induced instabilities;

FIG. 3. Generation of the 0D cluster state. Middle panel illus-

trates the FWM process in the MR. The bottom panel is the graph

representation of the output state. The edge-weight parameter is

C = 1.

and third, the mean fields of the quantum modes would other-

wise be very large above the oscillation threshold, creating

a barrier to quantum-limited homodyne detection. We then

describe a programmable photonic platform that can switch

between generating a variety of different CV cluster states

with different dimensions simply by tuning the phase of var-

ious Mach-Zehnder interferometers (MZIs). In our scheme,

we pump the MRs at even spectral modes while detecting the

output fields at only odd modes.

Throughout this article, we represent the multimode Gaus-

sian states generated using the graphical notation introduced

in Ref. [99] and summarized in Appendix A. The magnitude

of the edgeweights of each graph in the infinite squeezing

limit is given by the edge weight parameter C = 1 (see

Appendix A for more details).

1. Entangled spectral mode pairs: 0D CV cluster states

The FWM process couples different cavity spectral modes,

creating side-mode fields in a pair-wise fashion. As shown

in Fig. 3, pairs of pump photons at spectral mode l =0

are converted into signal photons at spectral modes

−l = −1,−3,−5, . . . and idler photons at spectral modes

l = 1, 3, 5, . . . . These modes become entangled with each

other. More specifically, they become two-mode squeezed

states, which are equivalent to two-mode CV cluster states via

application of local phase shifts [27].

2. 1D CV cluster states

The 1D cluster-state source consists of two identical sets of

0D configurations connected by a 50:50 integrated beamsplit-

ter (IBS). This IBS is designed so that it is capable of coupling

the fields across a wide-frequency range [50]. The two MRs

are pumped at different cavity spectral modes: spatial mode

“a” is at l = 0 and “b” is at l = 2. The frequency offset of
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FIG. 4. Generation of the 1D cluster state. Top and bottom

inserted panels depict the graph-state representations right after stage

(i) and (ii). The upper rail is for spatial mode a, and the lower rail is

for spatial mode b. C = 1 for stage (i) and C = 1/2 for stage (ii).

these two pumps results in each frequency being connected

by an entangled pair to its neighbor, as shown in stage (i)

of Fig. 4. A one-dimensional entangled CV cluster state is

produced in the frequency domain, as shown in stage (ii) of

Fig. 4. This is known as the dual-rail wire and is a resource for

single-mode CV one-way quantum computing [37]. States of

this type have been successfully generated using bulk-optics

setups [25,28,31].

3. 2D CV cluster states

By extending the setup from the 1D case by including an

additional unbalanced Mach-Zehnder interferometer (UMZI),

delay line (DL) and one 50:50 IBS, we are able to generate a

2D universal CV cluster state known as the bilayer square

lattice [34]. This approach is equivalent to the bulk-optics

scheme proposed in Ref. [34] to produce a (frequency)×(time)

2D CV cluster state, but the large MR bandwidth now allows

for a shorter delay line (DL) that can be integrated on a

photonic chip.

FIG. 5. Generation of the 2D cluster state. Gray, green, and magenta shaded areas in the inserted figures denote the temporal modes

t1, t2, t3 ∈ T , where t2 = t1 + δt and t3 = t2 + δt , and δt is the time delay due to the DL. For stages (i), (ii), (iii), and (iv), C = 1, 1/2, 1/2,

and 1/2
√

2, respectively. The labels a (4n + 1), a (4n − 1), b (4n + 1), and b (4n − 1) indicate the spatial mode indices (a and b) followed by

the spectral mode index, where n ∈ Z. Electrodes for the UMZI are shown in yellow.
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FIG. 6. Generation of programmable CV cluster states. The inserted figures show the graph states at stages (i)–(v). The graphs at stages

(iv) and (v) are coarse-grained so that each node contains four modes and each edge represents many connections between two particular

macronodes (group of four modes). The magenta box indicates where single-mode input states, such as GKP qubit ancilla states, can be

injected into the 3D lattice via the BMZI. For stages (i)–(v), C = 1, 1/2, 1/4, 1/4, and (4
√

2)−1, respectively.

Stage (i) and (ii) in Fig. 5 are the same as in Fig. 4.

After stage (ii), the four ports are processed by two UMZIs.

The length difference between the two arms of each UMZI

is specially designed so that the spectral modes l = 4n + 1

are spatially separated from the spectral modes l = 4n − 1,

where n ∈ Z [34,51,52]. The two UMZIs are fine tuned using

electrodes via the thermal-optical effect [53,54].

After stage (ii), the field in one arm is temporally delayed.

This arrangement extends the spectral entanglement across

modes with different temporal indices. The state after stage

(iii) is shown in Fig. 5. In stage (iv), the middle two arms are

mixed by another 50:50 IBS, generating a 2D CV cluster state.

A closely related CV cluster state was recently generated in

the time domain using a long DL [32].

4. 3D CV cluster states

A 3D CV cluster state can be generated using the setup

shown in Fig. 6. Part of the setup consists of two copies

of the 2D cluster state setup, but all the 50:50 IBSs are re-

placed by balanced Mach-Zehnder interferometers (BMZIs).

The MZIs are tuned to act as 50:50 IBSs. This replacement

will be relevant in the next section where we discuss how

to tune the MZIs in order to make CV cluster states of

different dimensions with the same chip. These two copies are

coupled together with two additional BMZIs at stage (ii) in

Fig. 6.

Spatial modes {a, b, c, d} are pumped at spectral modes

l=0, 2, 1+�, 1−�, respectively, where � ∈ {2n+1, n ∈ N}
is a free parameter that sets the length of one lattice direc-

tion in frequency, as described below. At stage (i), the state

consists of a collection of entangled pairs. At stage (ii), each

mode has passed through a BMZI, resulting in a collection of

dual-rail wire graphs, just like in the 1D case. At stage (iii),

two additional BMZIs stitch these wires together to create a

2D square lattice embedded on a cylinder with circumference

� and length set by the overall bandwidth of the experiment.

This state is known as the quad-rail lattice [27,55]. In fact, the

generation circuit until this point is the same as was proposed

in Ref. [55]. At stage (iv), one quarter of the modes are

delayed by one time step. This is analogous to the use of DL

in 2D case. The result is the 3D CV cluster state shown in

Fig. 6 and further elaborated in Fig. 7. Finally, two additional

50:50 IBSs are applied on four of the resulting fields. This is

a (frequency)×(frequency)×(time) lattice. Single mode input

states, such as GKP ancilla states, can be injected into the clus-

ter state by an input port indicated on the chip in Fig. 6. Use

of such states for universal fault-tolerant quantum computing

will be discussed later in Sec. IV B. The 3D structure of the

cluster state becomes apparent when the modes are combined

into groups of four, referred to as macronodes.

C. Programming the 3D CV cluster-state chip for other lattices

Besides the 3D CV cluster state, the chip proposed in Fig. 6

is able to generate CV cluster states of any dimension from 0D

to 3D by controlling phase shifts via the electrodes, E1, E2,

and E3 in Fig. 6. These electrode control the relative phases

between the two arms of BMZIs such that the splitting ratios

are tuned.
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FIG. 7. Introduction of the macronodes for Fig. 6. Each edge is labeled corresponding to the legend shown above. (a) The single sheet

is equivalent to the graph state at stage (iii), where multiple copies of the quad rail lattice cluster state multiplexed in time. C = 1/4 (b) 3D

cluster state at stage (v). (b1) Unit cell of the 3D cluster state. (b2) Single spacelike slice of the 3D cluster state. (b3) Single time-like slice of

the 3D cluster state. C = (4
√

2)−1.

First, 0D cluster states, i.e., a collection of pairwise

entangled states, can be generated by setting the split-

ting ratios of all BMZIs to be 100:0. These are shown

in Fig. 8(a).

To make many copies of 1D entangled states in the fre-

quency domain as shown into Fig. 8(b), one tunes the splitting

to ratios of the BMZIs at E1 to 50:50, and the BMZIs at E2

and E3 100:0.

In order to make two copies of 2D cluster states shown to

in Fig. 8(c), one sets the splitting ratios of the BMZIs at E2 to

100:0 and modifies the BMZIs at E1 and E3 to 50:50. These

2D cluster states are (frequency)×(time) lattices.

The (frequency)×(time) mode analog of the 2D cluster

state proposed in Ref. [33] is shown in Fig. 8 (d). This can

be generated by setting the splitting ratio of the BMZIs at E3

to 100:0.

Finally, we note that if the BMZIs at E2 are tuned to

50:50, then we create a train of uncoupled (frequency)×
(frequency) quad-rail lattices described in Ref. [55] and

shown in Fig. 8(e).

D. Nullifiers

An N-mode Gaussian pure state |ψ〉 with zero mean and

complex graph Z can be efficiently specified by a list of N

linear combinations of the quadrature operators that satisfy

the nullifier relation:

p̂ − Zq̂|ψ〉 = 0, (1)

where operators that satisfy this relation are referred to as nul-

lifiers [99], and q̂ = (q̂1, . . . , q̂N )T, p̂ = ( p̂1, . . . , p̂N )T, and

âk = (q̂k + i p̂k )/
√

2, where k ∈ {1, 2, . . . , N}.
Measuring expectation values of nullifiers plays a key role

in verifying Gaussian pure states and genuine multipartite

inseparability, e.g., via the van Loock-Furusawa criterion [56].

Particularly convenient are states which have nullifiers that

can be re-expressed such that each only consists of either

position or momentum operators. These enable particularly

efficient state verification since they can be measured by

setting all homodyne detectors to measure either the local

position or momentum operator.

FIG. 8. (a) A (frequency)×(time) array of two-mode CV cluster states. C = 1. (b) A train of frequency entangled dual-rail wire cluster

states. C = 1/2. (c) A (frequency)×(time) entangled 2D resource [33]. C = 1/4. (d) The bilayer square lattice cluster state [34]. C = (2
√

2)−1.

(e) A train of quad-rail lattice cluster states [55]. C = 1/4.
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Any state prepared from two-mode squeezed states and

beamsplitters that do not mix position and momentum quadra-

tures in the Heisenberg picture has nullifiers of this type.

Explicit formula were given in Ref. [29]:

(I − V)p̂|ψ〉 ≈ 0,

(I + V)q̂|ψ〉 ≈ 0, (2)

where I is the identity operator, and V is the infinite squeezing

limit of Z and is a real symmetric matrix.

III. ARCHITECTURAL ANALYSIS

A. Material considerations

Bulk quantum-optics platforms have successfully demon-

strated the generation of large-scale CV cluster states. For

next-generation quantum information processing, however,

issues arising from long-term stability, cost, portability, and

mass productivity need to be accounted for. Silicon photonics,

in this regard, is a promising scalable platform as mass inte-

gration of hundreds of devices on a single chip for classical

optical communication has already been accomplished [57].

With respect to quantum information processing, silicon pho-

tonic implementations of integrated on-chip DV nonclassical

sources [58–61], single-photon detectors [62], and DV logic

gates [63] have already been demonstrated. More recently,

DV high-dimensional entangled states were demonstrated in

a silicon-photonics platform with 500+ waveguide and inter-

ferometer components [64]. Critically, quantum information

processing in silicon photonics is carried out in the telecom-

munication band, and is thereby compatible with mature

modulation, transmission, and detection technologies. Silicon,

however, is not an ideal material for quantum information

processing based on CVs due to its strong two-photon ab-

sorption in the telecommunication band, which precludes the

generation of, e.g., highly squeezed light. Indeed, optical

parametric oscillation, a key ingredient for the generation of

large squeezing, has only been observed in silicon at mid-

infrared [65], where efficient photo detectors and processing

units have not yet been fully developed.

Lithium niobate has been a widely used photonic material

by virtue of its large nonlinearity and low absorption in the

telecommunication window. Lithium niobate was recently

employed in quantum information processing [66,67], but the

development of quantum-information-processing platforms

based on lithium niobate has been highly challenging and cost

ineffective due to a lack of fabrication recipe for large-scale

devices composed of hundreds to thousands of elements.

The stoichiometric silicon nitride (Si3N4), in this regard,

shows its superiority in this exciting area. As a well-developed

commercially-available material, Si3N4 has been widely used

in both microelectronic and optical integrated circuits. The

compatibility with the mature CMOS fabrication technology

makes the Si3N4 platform stable, high performance, and cost

effective. Unlike silicon, Si3N4’s ultrabroad transparency win-

dow spanning from the visible to the mid-infrared makes it

immune to two-photon absorption in the telecommunication

band [68]. In addition, the Si3N4 platform enjoys three key

features that render it ideal for CV quantum information

processing. First, the nonlinearity of Si3N4 is about 20 times

lower than that of silicon but the nonlinear interactions can be

enhanced in MRs, as demonstrated in the generation of twin

beams [69,70] and entangled states [71]. Very recently, ∼1-dB

quadrature squeezing was observed in Si3N4-based devices

[72,73], opening the door to a scalable CV quantum informa-

tion processing platform. Second, the Si3N4 platform enjoys

an additional advantage in measuring frequency-multiplexed

CV cluster states over the bulk quantum-optics platform based

on the second-order nonlinearity: a phase-coherent soliton

frequency comb produced [48,74–77] via the third-order Kerr

nonlinearity of Si3N4 allows for simultaneous addressing of

all spectral modes of the CV cluster state. Such a capability

is demonstrated in the generation of octave-spanning Kerr-

soliton frequency combs in Si3N4 [78] and is unmatched

by conventional bulk quantum-optics platforms in which the

number of accessible spectral modes is fundamentally limited

by the bandwidth of the electro-optic modulator used to pro-

duce the phase reference for each spectral mode. Third, as a

critical ingredient for time-multiplexed CV cluster states, long

DLs of a few meters and an ultralow loss level (0.1 dB/m)

have been demonstrated in the Si3N4 platform [79], represent-

ing a nearly two orders of magnitude improvement over that

of silicon-based DLs.

B. Classical frequency-comb phase references

The generation of Kerr-soliton frequency combs has been

studied extensively both in theory [48,76,77] and in exper-

iments [49,74,75,78]. Here, we provide a brief review on

the generation mechanism for Kerr-soliton frequency combs,

which will be subsequently used as phase references to ad-

dress each spectral mode of the CV cluster state.

1. Microring resonators

We consider a MR with circumference L. In the absence of

optical nonlinearities and dispersion, the resonant frequency

of the cavity eigenmodes are equally spaced across the whole

spectrum as shown in Fig. 9(a). The spectral linewidth, κ ,

is determined by the loaded Q factor, Q(L), as κ = ω0/Q(L)

with ω0 = 2πc/λ0, where λ0 is the pump wavelength. The

free spectral range (FSR) is �ω/2π = c/ngL, where ng is the

group-velocity refractive index.

2. Kerr nonlinearity

The Kerr effect is a third-order nonlinear phenomenon that

manifests itself as a intensity-dependent refractive index n =
n0 + n2I , where n0 denotes the original material refractive

index, I is the intensity of the field propagating in the material,

and n2 is the nonlinear refractive index. To study the nonlinear

interactions in a MR, it is more convenient to define an n2-

related nonlinear coefficient

g0 =
h̄ω2

0n2c

n2
0V0

, (3)

where h̄ = h/2π is the reduced Planck constant, ω0 is the

angular frequency of the pump, c is the speed of light, and V0

is the mode volume of the MR [80]. Physically, g0 quantifies

the shift of the resonant frequency induced by a single pump

photon. Since n2 > 0 in Si3N4, the resonant frequency for the
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FIG. 9. Shifting of cavity modes. δωX and δωS denote the fre-

quency shifts from cross-phase modulation and self-phase modu-

lation. δωl is the dispersion frequency shift of spectral mode l .

(a) Zero-detuned (σ = 0) cold cavity without considering dispersion

effect (ζ2 = 0). (b) Zero-detuned hot cavity without considering dis-

persion effect. (c) Zero-detuned cold cavity in the case of anomalous

dispersion (ζ2 > 0). (d) Zero-detuned cold cavity in the case of

normal dispersion (ζ2 < 0). (e) Balancing between dispersion and

Kerr nonlinearity (e.g., σ < 0, ζ2 > 0).

pump will be red shifted relative to a cold cavity by self-phase

modulation. The presence of intracavity pump power also

shifts the resonant frequencies of other cavity-resonant modes

via cross-phase modulation. The magnitude of cross-phase

modulation is twice that of self-phase modulation, thereby

leading to a doubled shift for other resonant frequencies aside

from the pump, as illustrated in Fig. 9(b).

3. Dispersion

To employ MRs in broadband applications such as the

generation of Kerr-soliton frequency combs or large-scale

frequency-multiplexed CV cluster states, the frequency de-

pendence of refractive index n(ω) must be accounted for.

Let us first expand the frequency-dependent wavevector,

β(ω) ≡ n(ω)ω/c, at ω0 as

β(ω) =
∞
∑

s=0

βs

s!
(ω − ω0)s. (4)

The group velocity is vg = 1/β1 and β2 is the group-velocity

dispersion (GVD) parameter. Nonzero βs’s for s � 2 lead to

dispersion-induced resonant-frequency shifts. For the cavity

mode indexed by l ∈ Z, the shifted resonant frequency be-

comes

ωl = ω0 + l�ω +
∞
∑

s=2

ζs

s!
ls, (5)

where ζs can be derived from βss and �ω, as shown in

Appendix B. The shifted resonant frequencies are illustrated

in Fig. 9(c) for ζ2 > 0, i.e., anomalous dispersion and Fig. 9(d)

for ζ2 < 0, i.e., normal dispersion. A strong pump redshifts

the resonant frequencies, while the anomalous dispersion

blue-shifts the resonant frequencies. The overall frequency

shift is balanced to ensure that a large number of spectral

modes reside approximately on the cavity resonances, as

shown in Fig. 9(e). This is a key to achieving efficient Kerr-

soliton and CV cluster-state generation [48,49,74–78].

4. Classical dynamics

We now formulate the generation of Kerr-soliton frequency

combs that will serve as phase references for the CV cluster

states. We consider an MR pumped by a single mode situated

at l = 0 with amplitude Ain (in units of
√

photons/s). Let

the intracavity field of spectral mode l be Al (in units of√
photon number). The evolution of the intracavity modes is

governed by the coupled-mode equations [77,80–83]:

dAl (t )

dt
= −

κ

2
Al (t ) + i

(

σ −
∞
∑

s=2

ζs

s!
ls

)

Al (t )

+ ig0

∑

j,k

A j (t )A∗
k (t )Ak+l− j (t ) + δl,0

√
κ (o) Ain(t ).

(6)

Here, κ = κ (i) + κ (o) is the spectral linewidth, which de-

scribes the total power decay rate. It accounts for the intrinsic

cavity loss κ (i) and the out-coupling loss κ (o); σ is the pump

detuning away from pump frequency ω0. On the right-hand

side of Eq. (6), the first term corresponds to intracavity power

decay, the second term relates to the resonant frequency shift

due to dispersion, the third term describes the nonlinear Kerr

interactions between different cavity modes, including self-

phase modulation, cross-phase modulation, and FWM, and

the last term links the extracavity pump with the intracavity

field. The coupled-mode equations represent a frequency-

domain approach in which the evolution of each spectral mode

is derived. Alternatively, the classical dynamics can be studied

in the time domain by the Lugiato-Lefever equation (LLE)

[49,75,84]:

tR
∂E (t, τ )

∂t
=

[

−
α + θ

2
− iδ + iL

∞
∑

s=2

βs

s!

(

i
∂

∂τ

)s
]

E (t, τ )

+ iγ L|E (t, τ )|2E (t, τ ) +
√

θ Ein(t ). (7)

Here, tR = 2π/�ω is the round trip time, E (t, τ ) describes

the intracavity field involving all cavity modes (in units of√
W). t and τ denote the slow time and fast time of the fields,

α = ω0tR/Q(i) is the normalized intrinsic cavity loss, where
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TABLE I. High-order dispersions with waveguide geometry,

WC = 2.1 μm and HC = 0.82 μm.

β2 (s2/m) −1.986×10−25

β3 (s3/m) 2.546×10−39

β4 (s4/m) 3.318×10−52

β5 (s5/m) −1.625×10−65

β6 (s6/m) −3.863×10−79

β7 (s7/m) −4.000×10−92

β8 (s8/m) −7.916×10−106

Q(i) is the intrinsic Q-factor. θ is the normalized out-

coupling loss. The normalized total cavity loss encompass-

ing both the intrinsic and out-coupling contributions is α +
θ = ω0tR/Q(L). δ is the normalized pump detuning, γ =
n2ω0L/cV0 is the effective nonlinear coefficient, and Ein is the

input pump field.

We simulated the formation of Kerr-soliton frequency

combs in the overcoupling regime using the LLE. In our

simulation, we consider a MR circumference L = 15.7 mm,

Q(L) = 2×106, and Q(i) = 2.22×107 [85,86]. The pump

wavelength is chosen to be λ0 = 1549.6 nm. To design the

MR waveguide with the desired dispersion properties, we

utilized the simulation environment COMSOL supplied with

Sellmeier equations for Si3N4 reported in Ref. [87]. The

designed MR waveguide has a rectangular cross-section with

width WC = 2.1 μm and height HC = 0.82 μm. The simula-

tion result gives the effective refractive indices n0 = 1.85 and

ng = 2.05, and the dispersion coefficients shown in Table I.

The nonlinear index is n2 = 2.5×10−19 m2/W [88], cor-

responding to an effective nonlinear coefficient of γ = 0.59

(1/Wm). Also, the simulated effective refractive index deter-

mines an FSR of �ω/2π = 9.32 GHz.

To produce Kerr-soliton frequency combs, the MR is

pumped above its oscillating threshold Pth = 51.53 mW by

a c.w. pump with a power level of Pin = 1.2 W and an initial

normalized pump detuning of δ = 0. Subsequently, the pump

detuning is adjusted to 0.21, 0.42, and 0.75 at, respectively,

25, 50, and 75 ns, when a stable Kerr-soliton is observed, as

plotted in Fig. 10 its spectrum.

FIG. 10. The spectrum of a stable Kerr-soliton frequency comb.

Each frequency tooth can serve as a pump or a phase reference that

addresses a corresponding spectral mode in the CV cluster state.

C. Quantum dynamics

To study the quantum dynamics, in particular, the for-

mation of entanglement between different spectral modes,

the classical coupled-mode equations need to be augmented

with quantum field operators. Specifically, the quantum field

operator âl (t ) for the lth intracavity field can be decomposed

into a classical mean field Al (t ) and a quantum fluctuation

operator δâl (t ) [77]:

âl (t ) = Al (t ) + δâl (t ). (8)

The evolution of Al (t ) is derived using the classical

coupled-mode equations in Eq. (6), while the dynamics of

δâl (t ) is governed by quantum coupled-mode equations:

dδâl (t )

dt
= −

[

κ

2
− i

(

σ −
∞
∑

s=2

ζs

s!
ls

)

− 2ig0|A0|2
]

δâl (t )

+ ig0A2
0δâ
†

−l
(t ) +

∑

s=i,o

√
κ (s) V̂

(s)
l

(t ), (9)

where κ = ω0/Q(L), A0 is the stabilized classical field at the

pump mode. Here, without loss of generality, we assume

the pump mode is situated at l = 0. V̂
(i)
l

(t ) and V̂
(o)
l

(t ) are

the vacuum noise field operators at the spectral mode l ,

induced by the cavity intrinsic loss and the out-coupling loss,

respectively. The introduction of the vacuum noise operators

is required to preserve the Heisenberg uncertainty principle

[89]. Both noise operators satisfy the commutation relations:
[

V̂
(i)
l

(t ), V̂
†(i)
l ′ (t ′)

]

= δl, l ′δ(t − t ′),
[

V̂
(o)
l

(t ), V̂
†(o)
l ′ (t ′)

]

= δl, l ′δ(t − t ′). (10)

To study the quantum dynamics, it is convenient to derive

the spectrum of the quantum field operators. To do so, we take

the Fourier transform on both sides of Eq. (9) and obtain

−iω δ ˆ̃al (ω) = −

[

κ

2
− i

(

σ −
∞
∑

s=2

ζs

s!
ls

)

− 2ig0|A0|2
]

δ ˆ̃al (ω)

+ ig0A2
0 δ ˆ̃a†−l

(ω) +
∑

s=i,o

√
κ (s) ˆ̃
V

(s)
l

(ω), (11)

where “∼” on the top denotes the frequency-domain operators

obtained by taking Fourier transform on the time-domain

operators.

The intracavity field is coupled out to the bus waveguide

to form the out-coupling field residing in the bus waveguide,

which can be directly measured and characterized. Here, the

out-coupling field is represented as δ ˆ̃a(out), which relates to the

intracavity field, δ ˆ̃al , via

δ ˆ̃a
(out)
l

(ω) =
√

κ (o) δ ˆ̃al (ω) − ˆ̃
V

(o)
l

(ω). (12)

From Eqs. (11) and (12), δ ˆ̃a
(out)
l

(ω) and δ ˆ̃a
†(out)
−l

(ω), are

written in a matrix-form representation:
(

δ ˆ̃a
(out)
l

(ω)

δ ˆ̃a
†(out)
−l

(ω)

)

= −M−1
l

∑

s=i, o

√
κ (s)κ (o)

⎛

⎝

ˆ̃
V

(s)
l

(ω)

ˆ̃
V
†(s)
−l

(ω)

⎞

⎠

−

⎛

⎝

ˆ̃
V

(o)
l

(ω)

ˆ̃
V
†(o)
−l

(ω)

⎞

⎠. (13)
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FIG. 11. The squeezing and anti-squeezing spectra, normalized to the shot-noise limit, for (a) 0D, (b) 1D, (c) 2D, and (d) 3D CV cluster

states. Blue solid (dashed) curves are the squeezing (anti-squeezing) spectra with the maximum squeezing levels in 10.18, 8.17, 6.25, and

4.03 dB in 0D, 1D, 2D, and 3D cases. Orange solid (dashed) curves are the squeezing (anti-squeezing) spectra at 3 dB squeezing.

Here,

Ml =
(

Jl + iω ig0A2
0

−ig0A∗2
0 J∗

−l + iω

)

,

J±l = i

[

σ −
∞
∑

s=2

ζs

s!
(±l )s + 2g0|A0|2

]

−
κ

2
. (14)

The introduction of IBSs, DLs and waveguide crossings

causes attenuation on the power of the extracavity quantum

fields by a factor of 1 − η. To account for the power attenua-

tion, we introdue an attenuated quantum-field operator, δ ˆ̃a
(att)
l

,

modeled by

δ ˆ̃a
(att)
l

(ω) = √
η δ ˆ̃a

(out)
l

(ω) +
√

1 − η ˆ̃
V

(a)
l

(ω), (15)

where η ∈ [0, 1], and ˆ̃
V

(a)
l

(ω) is the vacuum noise operator

associated with the power attenuation. ˆ̃
V

(a)
l

(ω) and its corre-

sponding noise operator in the time domain, V̂
(a)
l

(t ), satisfy

the commutation relations similar to those of Eq. (10).

From Eq. (15), the nullifiers [25,90] for verifying the

multipartite inseparability of the 0D, 1D, 2D, and 3D CV

cluster states can be derived [56]. These follow immediately

from the graphical representation of the state and Eqs. (2).

To derive the nullifiers, recall the definition of position and

momentum operators (q̂ and p̂):

q̂ =
1

√
2

(â + â†),

p̂ =
1

i
√

2
(â − â†), (16)

where â and â† are the annihilation and creation oper-

ators, respectively, applied to any dimension from zero

to three. Similarly, we can define the rotated quadrature

operators as

q̂(θ ) = q̂ cos θ − p̂ sin θ,

p̂(θ ) = q̂ sin θ + p̂ cos θ. (17)

This θ parameter arises due to the phase difference be-

tween the local oscillator and the quantum fields. By tuning

θ ∈ [0, 2π ), we search for the angle that results in the max-

imum squeezing of the nullifier variance. Figure 11 shows

the simulation result for nullifier variances, under the physical

parameters β2, L, λ0, Q(L), Q(i), n2, n0, and V0 specified in

Sec. III E.

1. Generation of 0D CV cluster states

In the 0D case, the output quantum fields form pair-wise

two-mode squeezed states between mode l and −l with the

nullifiers

δ ˆ̃ql (ω) − δ ˆ̃q−l (ω),

δ ˆ̃pl (ω) + δ ˆ̃p−l (ω). (18)

The mode configuration is illustrated in Fig. 3. We consider

l � l3dB, where ±l3dB index the entangled spectral modes at

which the squeezing level is right above 3 dB. The optimal

squeezing spectrum is displayed in Fig. 11(a) and shows a

10.18 dB squeezing level.

2. Generation of 1D CV cluster states

To generate 1D cluster states, we prepare two 0D cluster

states produced at spatial modes a and b. The two 0D cluster

states are subsequently mixed through a 50:50 IBS shown

explicitly in Fig. 4. In passing through the 50:50 IBS, quantum
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fields are linearly processed, leading to the nullifiers,

δ ˆ̃qa, l (ω) − δ ˆ̃qa,−l (ω)
√

2
+

δ ˆ̃qb, l (ω) − δ ˆ̃qb,−l (ω)
√

2
,

δ ˆ̃qa, l (ω) − δ ˆ̃qa,4−l (ω)
√

2
−

δ ˆ̃qb, l (ω) − δ ˆ̃qb,4−l (ω)
√

2
,

δ ˆ̃pa, l (ω) + δ ˆ̃pa,−l (ω)
√

2
+

δ ˆ̃pb, l (ω) + δ ˆ̃pb,−l (ω)
√

2
,

δ ˆ̃pa, l (ω) + δ ˆ̃pa,4−l (ω)
√

2
−

δ ˆ̃pb, l (ω) + δ ˆ̃pb,4−l (ω)
√

2
, (19)

where the sub-indices denote “spatial mode” and “spectral

mode”. IBS can operate across a wide frequency range from

1500 to 1580 nm, while introducing an estimated insertion

loss of 0.28 dB/IBS [50]. The output squeezing spectrum is

displayed in Fig. 11(b) with a squeezing level of 8.17 dB.

3. Generation of 2D CV cluster states

To generate 2D CV cluster states, 1D cluster states are

processed by linear optics [27], as shown in Fig. 5. With the

introduction of the DL, the quantum-field operators acquire

an additional index, time. We denote the set of temporal

labels as T = {t j | t j = t0 + j δt, j ∈ Z
+
0 }, where t0 is the

starting time. The number of temporal modes is determined

by the amount of time over which the experiment is executed.

The DL spreads the momentary entanglement to a series of

entangled temporal modes with spacing δt . The nullifiers can

be derived as the linear combinations of the fields, δ ˆ̃as, l, tn ,

where s ∈ {a, b}, l � l3dB, and tn ∈ T , are fully described by

Eq. (2). The corresponding graph state is further displayed in

the stage (iv) of Fig. 5.

The generation of 2D cluster states requires two 50:50

IBSs, one UMZI, and one DL. Overall, the insertion loss of

the IBSs and the propagation loss of DL need be considered.

Reported propagation loss of DLs was as low as 0.1 dB/m

[79]. Taking into account all losses, the output squeezing level

becomes 6.25 dB, as shown in Fig. 11(d).

4. Generation of 3D CV cluster states

To generate 3D CV cluster states, we replicate two sets of

the 2D cluster state setup and process the output fields based

on the structure illustrated in Fig. 6. At each time step, the

state consists of a 2D entangled structure, with axes f1 and

f2 made by appropriate frequency multiplexing. To achieve

this, we choose our four input pump spectral modes to be

l = 0, 2, 1 − �, 1 + �, where the total number of spectral

modes is determined by the phase-matching bandwidth, and

� specifies how the total number of frequency indices are split

between the two lattice axes f1 and f2 [55]. The nullifiers of

3D cluster state are shown in stage (v) of Fig. 6 and described

by Eq. (2).

Making the structure depicted in Fig. 6 in a small chip

requires some of the waveguides to cross others. To exam-

ine the squeezing level in the 3D cluster case, we need to

account for the loss arising from waveguide crossing, aside

from insertion loss and propagation loss. The experimentally

achievable crossing loss can be as low as 0.015 dB/cross [91].

TABLE II. Selected four combinations of WQ and HQ and their

corresponding β1s, β2s, and β3s.

HQ WQ β1 (×10−9) β2 (×10−26) β3 (×10−39)

(μm) (μm) (s/m) (s2/m) (s3/m)

0.81 2.7 6.834 −0.133 0.335

0.79 2.7 6.837 −0.988 −1.090

0.79 2.4 6.850 −2.359 −0.383

0.83 2.1 6.865 −13.270 1.226

Thus the overall attenuation results in an output squeezing

level of 4.03 dB, as shown in Fig. 11(d).

D. Effect of dispersion

To take into account the effects of dispersion, we model

the cross-section of each quantum MR as a rectangle, with

width WQ and height HQ, similar to that of the classical MR in

Sec. III B 4. Tuning the aspect ratio WQ/HQ allows us to obtain

different dispersion parameters, which in turn determine the

dimensions of the cluster state.

Given WQ, HQ, and the pump wavelength λ0 = 1549.6 nm,

dispersion parameters β1, β2, and β3 can be calculated by

COMSOL. Four combinations of WQ and HQ are listed in

Table II. The 0D-cluster-state squeezing levels as a function of

available mode pairs for the four settings are shown in Fig. 12.

The wave-vector mismatch at spectral modes l and −l is

�k = kl + k−l − 2k0, where k±l = (ω±l − 2g0|A0|2)/c. Us-

ing k0 = (ω0 − g0|A0|2)/c, �k can be further derived as

�k ≈
1

c

(

ζ2l2 − 2g0|A0|2
)

. (20)

Since �k ties to the amount of squeezing, Eq. (20) indicates

that the size of the cluster state is determined by β2. A lower

β2 results in greater number of entangled spectral modes, i.e.,

a larger l3dB, as depicted in Fig. 12.

FIG. 12. Normalized squeezing levels for the 0D case versus the

entangled pair index for four waveguide cross section configurations.

Red dashed horizontal line is at the 3 dB squeezing level. The

numbers of entangled pairs above the 3 dB squeezing level for the

four cases are l3dB = 1340, 500, 331, and 143.
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E. Experimental realization

In this section we summarize the parameters for the CV

cluster-state platform, estimate the size and squeezing of the

resultant state, and provide further details about the experi-

mental realization.

Given the dispersion parameters in Table II, a quantum MR

with WQ = 2.7 μm and HQ = 0.81 μm is chosen so that the

dispersion parameters, β1, β2, and β3, result in a large number

of entangled spectral modes. In the following, we focus on

improving the squeezing level, by optimizing other physical

parameters of the quantum MR.

The pump detuning is selected to be σ/2π = −82 MHz

apart from the pump at ∼193 THz. The input pump power

is Pin = 55.63 mW, below the threshold Pth = 65.45 mW.

The length of the DLs is designed to be LDL � vg�T =
151.27 cm, where �T = 2π/κ = 10.34 ns. In our designed

quantum MR, we set its loaded Q factor Q(L) = 2×106,

intrinsic Q factor Q(i) = 2.22×107, and FSR �ω/2π =
9.32 GHz, so that these parameters match those of the clas-

sical MR described in Sec. III B 4. By doing so, we can

utilize the frequency comb, from the classical MR, to ad-

dress the CV cluster state, from quantum MR, in homodyne

detection.

The above physical parameters lead to maximum squeez-

ing levels of 10.18, 8.17, 6.25, and 4.03 dB for 0D, 1D, 2D,

and 3D cluster states, respectively. We estimate the size of CV

cluster states for each dimension assuming a 3 dB cutoff for

modes in the frequency direction. For the states displayed in

Figs. 3–6, these are

N (0D) = 1×2680,

N (1D) = 2×2604,

N (2D) = 2×2472×τ,

N (3D) = 4×45×45×τ, (21)

respectively, which follow the multiplication forms as

N (0D) → (spatial number)×(spectral number),

N (1D) → (spatial number)×(spectral number),

N (2D) → (spatial number)×(spectral number)

× (temporal number),

N (3D) → (spatial number)×(spectral number) f1

×(spectral number) f2
×(temporal number).

(22)

In the 3D case, we choose � ≈ O(
√

N (3D)/4τ ) so that the

number of spectral modes in f1 agrees with that of f2. Overall,

our scheme does not set an upper bound for the temporal mode

index τ , and, therefore, N (2D) and N (3D) can, in principle, be

extended to infinity.

Thus our approach should provide an experimentally fea-

sible scheme to generate time-frequency multiplexed cluster

states in a photonic circuit. Nevertheless, in a real exper-

iment, there are still some challenges to be overcome. In

the following, we list one primary challenge along with its

solution.

To generate large-scale CV cluster states, we need to

prepare several identical MRs—2 MRs for the 1D and 2D

cases, and 4 MRs for the 3D case. However, fabricating

several effectively identical MRs poses an engineering chal-

lenge. Fabrication errors may, for example, result in variations

in the FSR of each MR and ultimately a reduction in the

quality of the output CV cluster states. One way to overcome

this problem is to sandwich each MR by two parallel bus

waveguides. Then, we send a pair of pump fields from each

bus waveguides in counter-propagating directions so that they

are into the same MR base. This allows for the FSRs of the

MRs to be matched by the thermo-optical fine tuning.

IV. QUANTUM COMPUTING

WITH THE CV CLUSTER STATE

In previous sections, we provided details for how to gener-

ate 0D, 1D, 2D, and 3D CV cluster states. Here we describe

how such states can be used for one-way quantum computing.

Implementing one-way quantum computing requires ho-

modyne measurements of each spectral-temporal mode of the

CV cluster state. The local oscillators required for homodyne

detection can be generated via classical frequency combs from

a supplementary MR system. We pump the supplementary

MR above threshold to experimentally realize optical soliton

generation by choosing the physical parameters in Sec. III B 4.

The frequency teeth of the generated optical are coherent,

nearly equidistant from each other, and can be a new source

of classical fields or serve as multiple phase references.

To implement independently tunable homodyne detection on

multiple spectral modes, the relative phase of each tooth must

be variable. This can be implemented using a wave shaper

[92].

Though we are primarily interested in describing quantum

computing with the 3D cluster state, we first briefly sum-

marize what is known about the other cases. The 0D case

is not sufficiently connected for use in one-way quantum

computing. The 1D case is a resource for single-mode one-

way quantum computing, as described in Ref. [37]. The 2D

case is a universal resource, and can implement multimode

gates via the one-way quantum-computing protocol described

in Ref. [34]. The quantum circuits that can be implemented

on this resource are local in (1+1) dimensions. Below, we

provide a one-way quantum-computing protocol for the 3D

resource state. Our protocol is capable of implementing local

quantum circuits in (2+1) dimensions, which should improve

quantum circuit compilation relative to 2D resources.

Recall also that the states described in the previous sections

were technically not CV cluster states. This does not cause

any issues because the generation circuit only consists of

two-mode squeezing and 50:50 beamsplitters that do not mix

the position part and momentum part of each quadrature. For

this reason, the states generated are equivalent to CV cluster

states by application of a π/4-phase delay on all modes. This

change can be incorporated into the measurement device. See

Appendix A and Ref. [29] for more details. For the procedure

described below, we assume that these phase delays have

already been implemented, and thus, the states described will

be CV cluster states.
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A. Preliminaries

Before constructing a model for one-way quantum com-

puting using the 3D cluster state, we requires some additional

definitions.

The first step is to define the relevant modes that the

CV cluster state is made from in terms of the infinitesimal

spectral modes described in the previous section. These can be

written as an integral over the squeezing spectrum weighted

by a normalized Kernel function, K (ω), within the frequency

range [−�ω/2,�ω/2], with time index tn, spectral index l

and a spatial mode index s. We collect all the field operators

δâs, l, tn (ω), into a vector â:

â ≡
⊕

s ∈ {a,b,c,d}
l � l3dB

tn ∈ T

∫ �ω
2

− �ω
2

K (ω) δâs, l, tn (ω)dω

= (â1, â2, â3, â4, . . . , ân, . . .)
T. (23)

The subscript of â j denotes the modes on a particular graph

representation of CV cluster state. The entanglement was

previously characterized by spatial, spectral, and temporal

modes, but now is only characterized by a single subscript

j. The length of â is set by the number of entangled modes in

Eq. (21).

Relative to these operators, recall that the quadrature oper-

ators can be defined via â j = (q̂ j + i p̂ j )/
√

2. We denote the

sth basis state of the operator r̂ j as |s〉rl
, where r̂ will usually

be a position or momentum operator, or a linear combination

of the two.

Now we define some useful gates to construct our

measurement-based protocol. The 50:50 beamsplitter gate

(BSG) between modes ( j , k) can be written as

B̂ jk ≡ e− π
4

(â†j âk−â
†

k
â j ). (24)

Note that this gate is not invariant under a swapping of the

inputs. Graphically, this is represented by a red arrow from

mode j to mode k.

A specific combination of these results in a balanced

mixing of four modes, which we call the foursplitter gate

Â jklm ≡ B̂ jkB̂lmB̂ jl B̂km. (25)

It will become convenient to use the matrix representation

of the Heisenberg-picture evolution for these gates, i.e.,

B̂
†

jk

(

â j

âk

)

B̂ jk = B

(

â j

âk

)

(26)

and

Â
†

jklm

⎛

⎜

⎝

â j

âk

âl

âm

⎞

⎟

⎠
Â jklm = A

⎛

⎜

⎝

â j

âk

âl

âm

⎞

⎟

⎠
, (27)

where

B =
1

√
2

(

1 −1

1 1

)

, A =
1

2

⎛

⎜

⎝

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

1 1 1 1

⎞

⎟

⎠
.

(28)

The phase delay is written as

R̂(θ ) ≡ eiθ â†â. (29)

The single mode squeezer is given the following nonstandard

definition:

Ŝ(s) ≡ R̂(Im ln s) exp
[

− 1
2
(Re ln s)(â2 − â†2)

]

, (30)

where s is known as the squeezing factor, which is the

ordinary squeezing gate with squeezing paramater r = ln |s|
followed by a π phase delay if s < 0.

The displacement operator is defined as

D̂(α) ≡ eαâ†−α∗â. (31)

Finally, it will be convenient to define the following single-

mode Gaussian unitary

V̂ (θ j, θk ) ≡ R̂

(

θ j + θk

2

)

Ŝ

(

tan
θ j − θk

2

)

R̂

(

θ j + θk

2

)

.

(32)

1. Square cluster state

The following square cluster state plays a key role in the

analysis of our one-way quantum-computing protocol. It can

be generated by sending one mode from each of a pair of two-

mode CV cluster states through a 50:50 BSG

(33)

where C = 1/
√

2 on the left and C = 1 on the center and

right.

2. Physical modes and distributed modes

As with other multilayered CV cluster states [34,37,93],

the description of one-way quantum computing can be simpli-

fied by expressing it in terms of so-called distributed modes,

which defines a nonlocal tensor product structure for each

macronode. Each of the physical modes {a, b, c, d} within a

given macronode is mapped to a distinct distributed mode in

{α, β, γ , δ} via

⎛

⎜

⎝

âα

âβ

âγ

âδ

⎞

⎟

⎠
≡ A−1

⎛

⎜

⎝

âa

âb

âc

âd

⎞

⎟

⎠
. (34)

Expressing the 3D cluster state in terms of the distributed

modes simplifies the graph substantially. It becomes a disjoint

collection of square cluster states as shown in Fig. 13.

In our protocol, we encode input states into half of the

macronodes of a given time step—specifically the red ones

shown in Fig. 7. The gray macronodes serve as “routers”

that control the application of entangling gates as the inputs

distribute through the cluster state in the time direction.

Besides simplifying the graph, the distributed modes play a

special role in defining how each input is encoded within a

given red macronode on a given time slice. More concretely,

we will choose to encode each input into either the α or the

γ distributed mode. In fact, it will be convenient to change
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FIG. 13. (a) Unit cell of the 3D cluster state with respect to physical modes. Every macronode is connected to eight other macronodes.

Furthermore, each individual mode has 8×4 = 32 neighbours. Edge conventions are as defined in Fig. 7. (b) Unit cell of the 3D cluster state

graph in terms of distributed modes α, β, γ , and δ [see Eq. (34)]. (c) Top view of (b). Constant time cross section showing a layer of grey

and red macronodes and their connections to macronodes in the layers above and below. Solid (dotted) lines represent upwards (downwards)

pointing edges.

whether the input resides in either the α or γ mode from time

step to time step.

Our procotol for one-way quantum computing involves

local homodyne measurements with respect to the physical

modes. We denote the measured bases as

p̂ j (θ ) ≡ cos θ p̂ j + sin θ q̂ j, (35)

where the angle θ is controlled by the relative phase between

physical mode j and its corresponding local oscillator. Local

measurements on the physical modes [as shown in Fig. 14(a)]

translate to quantum gates followed by local measurements

on the distributed modes [as shown in Fig. 14(b)]. However,

for special choices of the measurement angles, this measure-

ment can appear as partially separable [see Fig. 14(c)] or

completely separable [see Fig. 14(d)]. This follows from the

following identity in Ref. [34]:

〈m j |p j (θ )〈mk|pk (θ )B̂ jk =
〈

m j − mk√
2

∣

∣

∣

∣

p j (θ )

〈

m j + mk√
2

∣

∣

∣

∣

pk (θ )

.

(36)

It will also be useful to note that introducing an arbitrary

permutation on the four modes before measurement shown in

Fig. 14(b) is equivalent to swapping some of the measurement

bases after the four splitter and changing the sign of some

outcomes [93]. Let P̂ be an operator that permutes modes

{α, β, γ , δ}. Then

P̂†Â
†

αβγ δ

⎛

⎜

⎝

p̂α (θa)

p̂β (θb)

p̂γ (θc)

p̂δ (θd)

⎞

⎟

⎠
Âαβγ δP̂ = Â

†

αβγ δM

⎛

⎜

⎝

p̂α (θa)

p̂β (θb)

p̂γ (θc)

p̂δ (θd)

⎞

⎟

⎠
Âαβγ δ,

(37)

where the left-hand side is the Heisenberg picture evolution

of the vector of observables measured in the circuit from

Fig. 14(b) through the permutation gate P̂. The right-hand

side shows that this is equivalent to multiplying the vector

of observables on the right-hand side by a 4×4 matrix M,

which is the product of a permutation matrix and a diagonal

matrix with entries in {−1, 1} [93]. Therefore introducing a

permutation gate before such a measurement is equivalent to

swapping the measurement bases at the homodyne detectors

in Fig. 14(a), and flipping the sign of some outcomes.

3. Quantum computing via teleportation

Given an input, a two-mode CV cluster state, and a mea-

surement that implements a 50:50 BSG followed by local

homodyne detection, i.e.,

(38)

FIG. 14. (a) Local measurement of the physical modes via Eq. (35). (b) From the perspective of the distributed modes, such a measurement

will in the general case project onto entangled states. (c) For some choices of angles, these projections will be onto partially or fully separable

states. Choosing θa = θc and θb = θd makes the measurement separable with respect to the (α, β | γ , δ) bipartition. This follows from two

applications of Eq. (36). (d) Choosing θa = θb = θc = θd results in a local measurement with respect to the distributed modes. We define

(na, nb, nc, nd)T = A(ma, mb, mc, md)T. This follows from four applications of Eq. (36).
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FIG. 15. (a) In order to implement single-mode gates on all

inputs, the grey macronodes in the (un-)shaded regions are measured

in the p̂(±π/4) basis, respectively. (b) The relative sign in the gate

implemented in Eq. (40) depends on whether the input lies in a green

shaded region, or not. Diagrammatic conventions are the same as in

Figs. 13(b) and 13(c).

we can implement the gate

D̂

[

−ieiθ2 m1 − ieiθ1 m2

sin(θ1 − θ2)

]

V̂ (θ1, θ2) (39)

via teleportation, where we have assumed infinite squeezing

[29,37]. Finite squeezing effects for this gate can be included

via the analysis described in Ref. [37]. The teleportation-

induced gate V̂ is a crucial factor for the one-way quantum-

computing protocol described below. For convenience, we

assume all measurement outcomes equal to zero. The true evo-

lution will only differ from this case by a final displacement

since all gates described are Gaussian.

Now, we consider performing measurements on the top

red and four grey macronodes in Fig. 13(b). Each macronode

is measured as shown in Figs. 14(a) and 14(b). For the red

macronode, we set θa = θc, and θb = θd, and the measurement

can be modelled as shown in Fig. 14(c). Subsequently, we

choose to measure all grey macronodes in either the p̂(±π/4)

basis, where the sign of the angle is determined with respect

to Fig. 15(a). Since each mode within a given grey macronode

is measured in the same basis, measurement of the physical

modes can be modelled as shown in Fig. 14(d). The overall

measurement pattern can now be summarized as shown in

Fig. 16(a).

Equivalently, we could use the description in Fig. 16(b),

which shows more clearly that this measurement pattern im-

plements two rounds of teleportation [see Eq. (38)]. Thus we

can write the gate implemented as

V̂α

(

±
π

4
,∓

π

4

)

V̂γ

(

±
π

4
,∓

π

4

)

V̂α (θa, θb)V̂γ (θa, θb), (40)

where the ± sign depends on whether the red macronode

is within a green shaded region or an unshaded region in

Fig. 15(b), respectively. Note that after teleportation, the input

resides in the bottom red macronode of Fig. 13(b).

Evolving under Eq. (40) is equivalent to using two decou-

pled copies of the dual rail wire [37]. Two successive rounds

of this measurement pattern are sufficient to implement arbi-

trary single-mode Gaussian unitary gates for inputs in either

the α and γ distributed modes [37,94].

FIG. 16. (a) The two square graphs from Fig. 13 have been

redrawn side by side. Note that the time arrow is from left to right,

rather than from top to bottom. The green modes on the left are

the distributed modes that can contain an input. The red arrows

denote the application of a 50:50 BSG, and the black arrows indicate

the local basis measurement after all such BSGs. (b) Alternative

representation of (a). The square graph cluster state is equivalent

to two pairs stitched together by a 50:50 BSG [see Eq. (33)]. This

picture more clearly shows that the measurement pattern implements

sequential teleportation [see Eq. (38)].

Another important measurement-based operation for our

one-way quantum computing protocol is a swap between

modes α and γ , thus changing the distributed mode in which

the logical information resides. As described in Eq. (37),

a swap before a macronode measurement is equivalent to

permuting the homodyne angles and post-processing. By

swapping between the α and γ distributed modes, one can

use the BMZI in Fig. 6 to insert an input state, such as a GKP

ancilla state, into either distributed mode of any macronode in

the cluster state.

4. Entangling gates

Next we describe how to implement multimode (also

known as entangling) gates between inputs encoded within ad-

jacent red macronodes. We consider the four red macronodes

adjacent to a particular grey macronode. In order to perform

an entangling operation between any subset of the inputs on

these four red macronodes, the only change relative to the

single-mode gates described in the previous section is that

modes that make up the central grey macronode are measured

in different bases. For concreteness, we consider a particular

subgraph of the 3D cluster state, as shown in Fig. 17.

We will assume that if a grey macronode is used to imple-

ment entangling gates, then none of the adjacent grey macron-

odes are used to do so as well. With respect to Fig. 17(c), this

means that modes in macronodes E, F, G, K, L, and M are all

measured in the p̂(±π/4) basis, and modes in macronodes H

and J are measured in the p̂(∓π/4) basis, as described in the

previous section. In order for inputs in macronodes A and D

(B and C) to participate in the entangling gate, they will be

assumed to reside in the γ (α) distributed mode. Note that if

the input happened to be in the other of the two distributed

modes, a swap can be employed as described in the previous

section.

Denote the measured bases for the red macronodes R ∈
{A, B, C, D} as p̂Ra(θRa), p̂Rb(θRb), p̂Rc(θRa) and p̂Rd(θRb).

Similarly, denote the measured bases for macronode I (shaded

purple in Fig. 17) as p̂Ia(θIa), p̂Ib(θIb), p̂Ic(θIc), and p̂Id(θId).
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FIG. 17. (a) Subgraph of the full 3D cluster state represented using distributed modes. Some of the square graphs are shaded red or green

to make the 3D layout clearer. (b) The top layer of the graph viewed from above. Macronodes A, B, C, and D contain input states encoded

within α and γ distributed modes. Solid lines are pointing out of the page, while dotted lines are pointing into the page. (c) Middle layer of

the graph viewed from above. (d) Bottom layer of the graph viewed from above. These modes are not measured in this round, but will contain

input states after the upper two layers are measured. (e) Macronode I is the only grey macronode where the homodyne angles are not all the

same. The dotted arrows represent 50:50 BSGs that act before those represented by the solid arrows. After all 50:50 BSGs, the modes in this

macronode are measured in the bases shown in black.

Excepting special cases such as those mentioned in

Figs. 14(b) and 14(c), generic angles θIa, θIb, θIc, and θId will

result in measurements as shown in Fig. 14(b). The 50:50

BSGs acting before the measurement device in Fig. 14(b)

are represented graphically in Fig. 17(e). By employing a

series of identities for 50:50 BSGs acting on entangled pairs,

we can move the BSGs so that they act on other modes,

thereby reducing the measurement on macronode I to one

that is local with respect to the distributed mode tensor

product structure. This technique is known as beamsplitter

gymnastics [34].

Figure 18 shows how to do this for B̂Iα,Iβ and B̂Iα,Iγ ,

and similarly, Fig. 19 shows how to do this for B̂Iγ ,Iδ

and B̂Iβ,Iδ . The beamsplitter positioning in Figs. 18(e) and

19(b) are such thet all beamsplitters lie between teleporta-

tion steps, and thus, the evolution is merely a sequence of

logical BSGs and teleportation. The total evolution can be

written as

ŴAα,Bγ ,Cγ ,Dα (θ)

= ÂDγ ,Aγ ,Bα,CαV̂Aα

(

±
π

4
, θIb

)

V̂Bγ

(

±
π

4
, θIc

)

×V̂Cγ

(

θId,±
π

4

)

V̂Dα

(

θIa,±
π

4

)

ÂDγ ,Aγ ,Bα,Cα

×

⎡

⎣

∏

R∈{Aγ ,Bα,Cα,Dγ }

V̂R(θRa, θRb)

⎤

⎦. (41)

Any inputs present in the alternative distributed modes j ∈
{Aα, Bγ , Cγ , Dα} evolve according to the single-mode pro-

tocol described in the previous section

V̂j

(

±
π

4
,∓

π

4

)

V̂j (θ ja, θ jb). (42)

FIG. 18. Beamsplitter gymnastics for B̂Iα,Iβ and B̂Iα,Iγ . For B̂Iα,Iβ , modes (1–10) = (Dγ , Dδ, Aγ , Aδ, Mβ, Iα, Iβ, Eα, Qγ , Nγ ). For B̂Iα,Iγ ,

modes (1–10) = (Dγ , Dδ, Aγ , Aδ, Mβ, Iα, Iγ , Gδ, Qγ , Oα). (a) The goal is to move the 50:50 BSG between the grey modes in the purple

oval (6 and 7), replacing it with an operation that only acts on different modes. (b) Since modes 5 and 8 are measured in the same basis, we

can use postprocessing to insert an extra 50:50 BSG [see Eq. (36)]. (c) Each square graph can be replaced with two entangled pairs and a pair

of 50:50 BSG. The dotted lines indicate that these act before the other 50:50 BSGs [see Eq. (33)]. (d) By direct calculation using Eqs. (26),

B̂5,8B̂6,7B̂6,5B̂8,7 = B̂6,5B̂8,7B̂6,8B̂7,5. (e) We can move the rightmost dotted beamsplitter using the second equality in Eq. (33). (f) Similarly, the

leftmost dotted beamsplitter can be moved to the left and we can substitute the square graphs back in by four applications of Eq. (33). At this

stage, the 50:50 BSG B̂6,7 had been replaced with the two dotted 50:50 BSGs that act on either sides of the square graphs, thereby achieving

our goal.

023138-16



QUANTUM COMPUTING WITH MULTIDIMENSIONAL … PHYSICAL REVIEW RESEARCH 2, 023138 (2020)

FIG. 19. Beamsplitter gymnastics for B̂Iγ ,Iδ and B̂Iβ,Iδ . For B̂Iγ ,Iδ ,

modes (1–10) = (Bα, Bβ, Cα, Cβ, Gδ, Iγ , Iδ, Kγ , Oα, Cα). For

B̂Ib, Id, modes (1–10) = (Aγ , Aδ, Cα, Cβ, Eα, Iβ, Iδ, Kγ , Nγ , Pα).

(a) The goal is to move the BSG between the grey modes in the

purple oval (6 and 7), replacing it with an operation that only

on other modes. (b) By following a similar sequence of steps as

in Fig. 18 (or equivalently, using the proof shown in Ref. [34])

we arrive at this alternative description. (c) The leftmost dotted

beamsplitter can be moved to the left and we can substitute the

square graphs back in by four applications of Eq. (33). At this stage,

the 50:50 BSG B̂6,7 had been replaced with the two dotted 50:50

BSGs that act on either sides of the square graphs, thereby achieving

our goal.

Therefore, by the applying the swap degree of freedom be-

tween α and γ distributed modes, we can control participation

in the entangling gate.

The four-mode entangling gate Ŵ can be simplified for

particular choices of homodyne angles. Below we describe

various restrictions on the angles that result in gates that

entangling gates between any two pairs of modes within

{Aγ , Bα, Cα, Dγ }. We define

Ĝ±
jk (θ1, θ2, θ3, θ4, θ5, θ6)

≡ B̂ jk

[

V̂j

(

±
π

4
, θ5

)

V̂k

(

θ6,±
π

4

)]

B̂ jk[V̂j (θ1, θ2)V̂k (θ3, θ4)].

(43)

Restricting θIa = θIb and θIc = θId simplifies Ŵ to

R̂Bα (π )R̂Dγ (π )Ĝ±
Dγ ,Bα (θDa, θDb, θBa, θBb, θIa, θIc)

×Ĝ±
Aγ ,Cα (θAa, θAb, θCa, θCb, θIa, θIc), (44)

which implements a pair of two-mode gates between pairs of

modes (Dγ , Bα) and (Aγ , Cα).

Restricting θIb = θId and θIa = θIc simplifies Ŵ to

R̂Aγ (π )R̂Dγ (π )Ĝ±
Dγ ,Aγ (θDa, θDb, θAa, θAb, θIa, θIb)

×Ĝ±
Bα,Cα (θBa, θBb, θCa, θCb, θIa, θIb), (45)

which implements a pair of two-mode gates between pairs of

modes (Dγ , Aγ ) and (Bα, Cα).

Restricting θIa = θId and θIb = θIc simplifies Ŵ to

R̂Aγ (π )R̂Cα (π )R̂Dγ (π )Ĝ±
Dγ ,Cα (θDa, θDb, θCa, θCb, θIa, θIb)

×Ĝ±
Aγ ,Bα (θAa, θAb, θBa, θBb, θIa, θIb)R̂Cα (π ), (46)

which implements a pair of two-mode gates between pairs of

modes (Dγ , Cα) and (Aγ , Bα).

By applying further restrictions, the gates Ĝ can be reduced

into a more familiar and tunable ĈZ (g) = eigq̂⊗q̂ gate, ∀g ∈ R,

which is a standard entangling gate in continuous-variable

quantum computing. In particular,

Ĝ±
jk

(

∓
π

8
,±

3π

8
,∓

π

8
,±

3π

8
, φ ±

π

4
, φ ±

π

4

)

=
[

R̂ j

(

∓
3π

4

)

⊗ R̂k

(

±
π

4

)]

ĈZ jk (2 cot φ), (47)

where we have used the protocol from Ref. [34]. Thus the four

mode gate Ŵ can be reduced to pairs of ĈZ gates with respect

to any pairings of modes {Aα, Bγ , Cγ , Dα}.
By leveraging the swap degrees of freedom at red macron-

odes as well as the above measurement restrictions at grey

macronodes, we have shown that it is possible to implement

either two (Ĝ) or four (Ŵ ) mode entangling gates between

nearest neighbor input states.

B. Universal quantum computing and error correction

against finite squeezing effects

Using finitely squeezed continuous-variable cluster states

will result in Gaussian noise [37], the strength of which is set

by the available amount of squeezing in the cluster state. This

effect can be combated using non-Gaussian quantum error

correction, such as a supply of GKP qubits, provided that

the squeezing in the CV cluster state is sufficiently high. A

20.5 dB upper bound on the amount of squeezing required was

given in Ref. [38], however, it is likely that this bound can be

improved by incorporating quantum error correction strategies

compatible with 3D entangled resource states [40–43].

A non-Gaussian resource is also required to extend the

above one-way quantum-computing protocol—which can

only implement Gaussian unitary gates, and hence, is clas-

sically simulable—to a universal model. With the access to a

supply of GKP qubits, we can generate all of the necessary

ingredients for universal quantum computing with Gaussian

operations [46,47]. In principle, all required Gaussian oper-

ations can be implemented using the 3D cluster state with

homodyne detection via the gate set described above. Though

implementing these gates on the 3D cluster state will addi-

tionally introduce Gaussian noise that arises due to having

only finite squeezing, this can be corrected by using additional

GKP ancilla states injected into the state at regular intervals

[38].

TABLE III. Summary of the key components of the integrated

quantum-computing platform, the performance metrics used in the

simulation, and the reported experimental data as a comparison. The

geometry of low-loss delay lines is reported in Ref. [95].

Integrated Simulation Experimental

component Parameter value data

Microring Intrinsic Q factor 2.2×107 3.7×107[86]

MMI Insertion loss 0.28 dB 0.28 dB [50]

Crossing Insertion loss 0.015 dB 0.015 dB [91]

Waveguide Propagation loss 0.1 dB/m 0.1 dB/m [79]

Delay line Length 151 cm 600 cm [79]
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FIG. 20. A full architecture of the integrated photonic one-way quantum computing.

C. Full architecture

All the ingredients introduced above, in conjunction with

classical control, yields a method for implementing universal

quantum computing, as sketched in Fig. 20 and further de-

scribed below.

The quantum MRs and linear optical components are

configured to generate a 3D CV cluster state described in

Sec. II B 4. To implement Gaussian quantum gates, homodyne

measurements (with fully tunable and independent local os-

cillator phases) are performed simultaneously on all spectral

modes and sequentially on all temporal modes. To do so, a

classical Kerr-Soliton frequency comb is shaped by classical

processing circuits so that each frequency tooth carries a

designated phase to address its corresponding quantum spec-

tral mode. The processed classical frequency comb interferes

with the 3D cluster state at a 50:50 beamsplitter, whose

outputs are frequency demultiplexed by wavelength-division

multiplexers (WDMs). An array of detectors perform bal-

anced measurements. The measurement outcome is processed

by a classical algorithm that determines the basis settings

for homodyne measurements on the next batch of temporal

modes.

Table III summarizes the key components of the pro-

posed integrated Si3N4-based quantum-computing platform,

including on-chip MRs, waveguides, MMIs, crossings, and

DLs. Table III also compares the parameters employed in

the simulation with those reported in experiments, thereby

showing that the proposed quantum-computing platform can

be readily realized by available technology.

V. CONCLUSION

We have proposed and analyzed a scalable platform for

generating time-frequency-multiplexed 3D CV cluster states

and utilizing them for large-scale quantum computing. The

platform leverages robust integrated photonic circuit technol-

ogy that is readily available and experimentally viable. Our

proposal inherits the compactness of previous bulk-optical ap-

proaches, and thus, only requires a handful of squeezed light

sources, multimode interference couplers, delay lines, and

MZIs. The squeezed light is produced via a χ (3) nonlinearity

enhanced by MRs. This platform offers two key advantages:

(1) only constant length delay lines are required to grow the

resource state in the time direction and (2) multiplexing in

the frequency domain makes it possible to accommodate a

large number (>2000) of spectral modes and address them via

a frequency-comb soliton local oscillator, thereby solving an

outstanding problem with the frequency-domain implemen-

tations of CV cluster states. This claim is backed up by our

numerical analysis, which found compatible physical device

parameters to generate such a 3D cluster state. Unlike previ-

ous schemes [27,29,33,34,55] for the generation of 2D cluster

states, our scheme’s capability of producing 3D cluster states

is significant because known fault-tolerant error correction

schemes, such as topological error correction strategies for

Gottesman-Kitaev-Preskill qubits [41,43,96], require cluster

states with at least three dimensions.

Our proposal has the added benefit that it can be repro-

grammed to generate cluster states of dimension less than

three. This makes it compatible with previously studied pro-

tocols for lower dimensional cluster states [93,97,98].
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APPENDIX A: GRAPHICAL NOTATION

In this paper, we describe how to generate various multi-

mode Gaussian states. It will be convenient to use a graphical

representation of each state [99]. This allows each Gaussian

pure state to be represented up to displacements and overall

phase by a complex weighted adjacency matrix

Z ≡ V + iU. (A1)

We define x̂ ≡ (q̂1, . . . , q̂n, p̂1, . . . , p̂n)T, where â = (q̂ + i p̂)/√
2.

For CV cluster states, the visual representation of the cor-

responding graph gives a direct indication of the correlations

between various modes, and can in geneneral be related to the

correlation matrix of the state’s Wigner function

� jk = 1
2
〈{x̂ j, x̂k}〉 (A2)
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FIG. 21. On top we show the desription of the Gaussian pure

state using the full graphical calculus. On the bottom we show

the simplified notation described in the main text. (a) Two-mode

continuous-variable cluster state. The rescaling parameter is C = 1.

(b) Four mode continuous-variable cluster state. The rescaling pa-

rameter is C = 1/
√

2.

via the equation [99]

� =
1

2

(

U−1 U−1V

V−1U U + VU−1V

)

. (A3)

This graphical description can be made even simpler when

describing states whose nonzero graph edges all have same

magnitude and differ only by a sign. We will not show

self loops, which will all take value i cosh2r, where r is a

parameter that describes the overall squeezing used to produce

the state. Blue and yellow edges are all weight ∓iC sinh2r,

respectively, where C is a real rescaling parameter specified

in the relevant figure captions throughout this paper. The

states represented by these graphs are not CV cluster states.

However, all states described in this paper have the prop-

erty that they are made from two-mode squeezed states and

beamsplitters that do not mix the position and momentum

quadratures. As a result, they can be converted to CV clus-

ter states with self-loop weights i sech2r and edge weights

±C tanh2r, respectively, by applying π/4-phase delays prior

to each measurement, which can be incorporated into the local

oscillator(for a proof, see theorem 1 in Ref. [29]). Due to

this fact, we will treat each Gaussian state as if it were such

a CV cluster state. These conventions are the same as those

used and described in Refs. [29,34,93]. Some examples of the

simplified graphical notation are given in Fig. 21.

The evolution of Gaussian pure states under Gaussian uni-

taries can be incorporated into this formalism as a graphical

update rule [99]. One transformation that is particularly useful

for understanding the construction of CV cluster states is the

beamsplitter rule:

(A4)

where the arrow points from mode j to mode k, indicating the

application of a 50:50 beamsplitter B̂ jk . Let C by the rescaling

parameter for the left-hand side. Then the rescaling parameter

for the right hand side isC/
√

2 [27]. Note that the beamsplitter

“copies” each link, up to a change in sign.

APPENDIX B: DISPERSION PARAMETERS ζn

The dispersion effect shifts the cavity resonant frequency

nonuniformly. Given the dispersion parameters β1, β2, β3 . . .,

here we seek to solve for the coefficients ζ2, ζ3 . . . via Eq. (5).

Intracavity fields are constrained by periodic boundary

conditions, β(ωl )L = 2π×l , ∀l ∈ Z, where L is the circum-

ference of MR cavity, and we have

∞
∑

n=0

βn

n!

(

l�ω +
∞
∑

m=2

ζm

m!
lm

)n

L = 2π l. (B1)

We match the coefficients, l , l2, l3 · · · for both sides of

Eq. (B1) and derive ζ2 and ζ3,

ζ2 = −
4π2β2

L2β3
1

,

ζ3 =
8π3

(

3β2
2 − β1β3

)

L3β5
1

. (B2)

From Eq. (B2), we calculate the dispersion-induced resonant-

frequency shifts by determining ζ2 and ζ3 or even higher order

terms.
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