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Entanglement is the key resource for measurement-based quantum computing. It is stored in quantum

states known as cluster states, which are prepared offline and enable quantum computing by means

of purely local measurements. Universal quantum computing requires cluster states that are both

large and possess (at least) a two-dimensional topology. Continuous-variable cluster states—based on

bosonic modes rather than qubits—have previously been generated on a scale exceeding one million

modes, but only in one dimension. Here, we report generation of a large-scale two-dimensional

continuous-variable cluster state. Its structure consists of a 5- by 1240-site square lattice that was

tailored to our highly scalable time-multiplexed experimental platform. It is compatible with Bosonic

error-correcting codes that, with higher squeezing, enable fault-tolerant quantum computation.

Q
uantum computers promise applica-

tions beyondwhat is possible with their

classical counterparts (1). Recent work

hasproducedadvances inquantumcom-

puting with stationary matter qubits

such as superconducting systems (2), ion trap

systems (3), and silicon-based systems (4).With

access to both high-quality qubits and high-

fidelity quantumgates, it is thus believed that a

small-scale quantumcomputer is within reach.

In order to bring these platforms to the scale at

which they become useful, efforts [for example,

(5)] have been made to address the difficulties

of preparing, interfacing, addressing, and tuning

large numbers of qubits. However, a techno-

logical leap will be necessary to achieve a

scalable quantum computer along these lines.

In the light of this, we sought a more direct

path to scalability. Rather than sequentially

preparing and interfacing qubits, one can

prepare a large-scale quantum resource state

whose constituent quantum systems (such as

qubits or modes) are interconnected in ad-

vance. Provided that this resource—known as

a cluster state (6)—has the required structure

and scale, then quantum computing can pro-

ceed bymeans of purely local (single-site) quan-

tummeasurements. This paradigm is known

as measurement-based quantum computation

(MBQC) (7, 8). The scale of the cluster state

typically determines the number of possible

computational steps. Its structure—codified as

a graph that describes the entanglement prop-

erties of the state—determineswhich logic gates

can be implementedwith localmeasurements.

For example, a cluster state corresponding to

multiple disjoint one-dimensional (1D) graphs

(Fig. 1A) can be used to implement multistep

computations, with teleportation along the

length of the cluster state being analogous to

time evolution along a single circuit wire.How-

ever, the absence of connections betweenwires

makes this state incapable of generating en-

tanglement between inputs on separatewires,

and hence, this resource is insufficient for uni-

versal quantum computing. A 2D square lat-

tice graph (Fig. 1B) possesses connectivity in

two directions, allowing for time evolution

through teleportation in one direction and the

multi-input unitary evolution (that generates

entanglement) between inputs through con-

nections in the other direction. It enables uni-

versal quantum computing by means of local

measurements and hence is a universal re-

source state for MBQC.

Finding a universal resource state that is

experimentally feasible (so that it can be gen-

erated on a large scale) is therefore of para-

mount importance to the development of a

universal measurement-based quantum com-

puter. Cluster states based on bosonicmodes—

known as continuous-variable cluster states

(8)—can be generated deterministically by

using compact quantum optics experiments

(9). Despite several theoretical proposals for

generating universal continuous-variable clus-

ter states [for example, (9–12)], until now the

current state-of-the-art experimental demon-

strations have been limited to either small-

scale (few-system) cluster states (13) or to the

generation of large-scale 1D cluster states,

which are insufficient for multi-input MBQC

(14–16). Generation of evenmoderately sized

2D cluster states by using discrete variables

(qubits) has also never been reported.

In this work, we report the generation of

a large-scale universal continuous-variable

cluster state. The scalability of our experi-

mental method stems from using a time-

domain multiplexing (TDM) architecture for

continuous-variable (CV) optical systems (9).

Optical CV quantum information is encoded

within continuous-valued quadratures x̂k and

p̂k that satisfy ½x̂ j ; p̂k� ¼ iℏdjk and correspond

to the complex electric field amplitudes of op-

tical modes residing in temporally localized

wave packets. An unlimited number of modes

can be continuously and deterministically pre-

pared froma few sources and then transformed

into a continuous-variable cluster state through

the repeated use of a circuit made of only a

small number of optical components. Entan-

glement in the resulting state can be observed

from correlations in quadrature values of dif-

ferent temporal modes. In this way, we gen-

erate and verify a universal cluster state with

a 5- by 1240-site 2D square lattice structure,

with the possibility of further extension along

both lattice dimensions by several orders of

magnitude in the near future by use of current

technology.

Ourmethod generates a continuous-variable

cluster state from four squeezed light sources

and a linear optical network consisting of five

beam splitters and two delay lines (Fig. 1C).

After single-mode squeezed states leave each

optical parametric oscillator (OPO), they are

converted to two-mode squeezed states by

beam splitter 1 and beam splitter 2 and then a

four-mode entangled state by beam splitter 3.

Next, the delay linesmultiplex these in time so

that they form a 2D (but still disconnected)

grid layout with cylindrical boundary condi-

tions. Last, beam splitter 4 and beam splitter 5

produce additional connections, resulting in

a continuous cylindrical structure (Fig. 1D)

[as shown for the case in which N = 30]. A

more detailed description of this generation

procedure can be found in (17), section SM2.

The surface of this cylinder consists of sites

(macronodes) that are arranged in a 2D square

lattice whose temporal modes (micronodes)

are connected in a nontrivial way (Fig. 1E).

The delay between temporal modes arriving

at each detector is set by the shorter delay Dt.

The longer delay line NDt controls the cir-

cumference length (N sites) of the cylinder.

Therefore, our method can generate arbitrar-

ily long 2D cluster states, and only the length

of the long delay line needs to be increased to

extend the circumferential dimension. One

limitation onN is thatNDtmust be below the

coherence time of the light source.

Relative to the 1D case (14, 15), generating a

2Dcluster state requires amore complexnetwork

of beam splitters. This is further complicated

by stabilization issues and additional optical
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losses that arise from requiring the longer

delay line NDt and adjustment issues that

arise from the constraint that the length ratio

of the two optical delay lines must be an in-

teger. The former can be addressed by instead

shortening the length of each temporal-mode

wave packet, which allows us to make the

cluster state using delay lines with shorter

lengths.We achieved this by developing broad-

band squeezed light sources, broadbandhomo-

dyne detectors, and control systems (18). With

this, we reduced the width of the wave packet

from~160ns in (14, 15) toDt=40ns. Regarding

the latter issue, the current setup was designed

so that the lengths of two optical delay lines can

be easily measured and adjusted (17) while

keeping the number of the optical compo-

nents the same or less than that in the pre-

vious proposals (9, 10). We picked N = 5 for

experimental demonstration.

To implement universal CV quantum com-

putation, we require the ability to perform

arbitrarymultimodeGaussian operations and

at least one non-Gaussian operation (19). Al-

though it is possible to map the structure of

our 2D square lattice cluster state to themore

standard square lattice [whose methodology

for implementingMBQC is known (8)], such a

mapping introduces excessive noise (20). We

have noticed that a similar experiment of gen-

erating a 2D cluster state has recently been re-

ported (21), although themethodology to avoid

such a mapping has not been developed for

their cluster state yet.Here, we describe amore

efficient method to use our cluster state without

such mapping. The structure of multimode

Gaussian quantum circuits that can be imple-

mented with our resource state by means of

local homodyne measurements is shown in

Fig. 2A. The number of inputmodesN is equal

to the circumference length, and each gate

is implemented by means of teleportation
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Fig. 1. MBQC and 2D cluster state. (A and B) Abstract illustration of MBQC.

(A) One-input MBQC by using 1D cluster state. (B) Universal multi-input

MBQC using 2D cluster state. Each colored circle represents a mode, and each

link represents quantum entanglement. (C) Schematic of our experimental

setup for the 2D cluster state. OPO, optical parametric oscillator; BS, beam

splitter; ODL, optical delay line; Dt, time interval between adjacent wave

packets; N, integer corresponding to number of inputs that 2D cluster states

can take in computation; HD, homodyne detector. All beam splitters are

50:50. (D and E) 2D cluster state. (D) Example for the case in which N = 30.

(E) Zoom in of the state. The representations of states make use of the

simplified graphical calculus (9). Each small node (small colored sphere) of

the graph, which we call a micronode, represents a localized wave packet

at each temporal index. Four micronodes at each temporal index k can

be grouped into a single site (large gray sphere), called a macronode. The

links and their colors represent how micronodes are entangled. The 2D cluster

state has a helical graph structure, with N macronodes on every single turn

of the helix. For actual experimental demonstration, we use N = 5. Full

descriptions are given in (17).

RESEARCH | REPORT

o
n
 J

u
n
e
 1

7
, 2

0
2
0

 
h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 



along the length of the cylindrical cluster

state. Further details for how to implement

multimode Gaussian operations are given in

(17), section SM6. Non-Gaussian operations

can be implemented by replacing homodyne-C

or homodyne-D with cubic-phase ancilla as-

sisted measurement (10). When implement-

ing an encoded qubit-level computation by

means of the Gottesman-Kitaev-Preskill (GKP)

error correction scheme for CV cluster states

(10, 22–24), the only non-Gaussian resource

required for both universal and fault-tolerant

quantum computing is GKP logical j0i states,
which can be inserted into the cluster state at

regular intervals (25), andnomeasurements other

than homodyne measurement are required.

An n-mode Gaussian pure state jyi can be ef-

ficiently characterized by a list ofn-independent

linear nullifiers, which are linear combinations

of the quadrature operators that have jyias
their mutual zero-eigenspace. Nullifiers also

play an important role in verifying genuine

multipartite inseparability for experimentally

generated states that can be generated from

two-mode squeezed states by means of a se-

quence of beam splitters (10). Such states are

approximately nullified by linear combina-

tions of quadratures that are either all of

position- or momentum-type. By measuring

these operators, if the states are sufficiently

highly squeezed, then genuine multipartite

inseparability can be verified with the van

Loock–Furusawa criterion.

Our state can be characterized in this way

by measuring

d̂
ðx;1Þ
k ¼ x̂A

k þ x̂B
k �

1
ffiffiffi

2
p

�

� x̂A
kþ1 þ x̂B

kþ1 þ

x̂CkþN þ x̂DkþN

�

ð1Þ

d̂
ðp;1Þ
k ¼ p̂A

k þ p̂B
k þ

1
ffiffiffi

2
p

�

� p̂A
kþ1 þ p̂B

kþ1 þ

p̂C
kþN þ p̂D

kþN

�

ð2Þ

d
ðx;2Þ
k ¼ x̂Ck � x̂D

k � 1
ffiffiffi

2
p

�

� x̂A
kþ1 þ x̂B

kþ1 �

x̂CkþN � x̂DkþN

�

ð3Þ

d̂
ðp;2Þ
k ¼ p̂C

k � p̂D
k þ 1

ffiffiffi

2
p

�

� p̂A
kþ1 þ p̂B

kþ1 �

p̂C
kþN � p̂D

kþN

�

ð4Þ

where x̂
j

k and p̂
j

k are quadrature operators at

temporal mode index k and at spatial index j.

Shown in Fig. 3 are the quadrature values and

quantum correlations of quadratures corre-

sponding to each type of nullifier of the first

50 temporal mode indices. These quadrature

values are obtained by processing the time-

domain electrical signal from each homodyne

detector and taking appropriate linear com-

binations. We observed strong correlations

between quadrature values from different tem-

poral modes, which are qualitative evidences

of quantum entanglement of our states. By
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Fig. 2. Quantum computation with our cluster state. (A) Equivalent

quantum circuit that is implemented when our state is used. We show the

case for five inputs in which 40 light modes (10 temporal mode indices) of

2D cluster states are used. The number in each box is the index of the

measured temporal modes. (B and C) The circuit is composed of multiple

quantum teleporters: (B) one-mode operation and (C) two-mode operation.

Two-mode operations can be turned off by selecting the same measurement

basis for HD-A and HD-B. Classical feed-forward does not have to be implemented

immediately after homodyne measurements and can be delayed to the end

of the computation for Gaussian-only computations.

Fig. 3. Quadrature values and four types of quadrature correlations of the first

50 temporal mode indices. (A and B) Single-shot quadrature values of x̂
j
k
and p̂

j
k

obtained by processing time-domain signals from homodyne detector-j ( j = A, B, C,

D). (C to F) Correlations of quadrature values corresponding to d̂
ðx;1Þ
k , d̂

ðp;1Þ
k , d̂

ðx;2Þ
k ,

and d̂
ðp;2Þ
k , respectively. Although the quadrature values measured at each

homodyne detector seemed to be just fluctuating randomly around zero,

we observed four types of strong quantum correlations between

six quadrature values with different temporal mode index k and spatial

index j. The quadrature values are plotted by using the unit at which

variance of the vacuum state is equal to 1.
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applying the van Loock–Furusawa criterion,

we verified the 2D entanglement structure of

the state if we observed that the variances of

all the nullifiers were below –4.5 dB compared

with shot noise (17).

The measurement results for each nullifier

type for each temporalmode indexk are shown

in Fig. 4. All nullifiers were observed to be

below –4.5 dB for up to k = 6240. Because

there are four micronodes at each temporal

index k, the states we verified possess 24,960

micronodes. Because onemacronode (or one

site) consists of four micronodes and we used

N = 5, the structure of the state we verified is a

5- by 1248-site 2D square lattice with cylindri-

cal boundary conditions. The means of the

variances for each type of nullifier are –4.82 ±

0.06 dB, –5.34 ± 0.06 dB, –4.81 ± 0.06 dB, and

–4.93 ± 0.06 dB, respectively. These values are

limited by the original squeezing level from

the squeezed light sources, optical losses and

fluctuations in the optical system, and elec-

trical noises from homodyne detectors and

are in good agreement with the experimental

parameters. Statistical errors are the main

contributors to the error bars, which can be

arbitrarily decreased by increasing the num-

ber of events used for calculating the nullifiers.

There are no corrections for experimental im-

perfections, and the nullifiers do not degrade

with the increasing k, suggesting that k can be

arbitrarily large.

Thus, we have proposed and verified the

generation of a universal resource state for

MBQC. Using this cluster state for large-scale

MBQC requires a few additional steps. First,

because the delay line ratioN = 5 sets the num-

ber of inputs in the effective quantum circuit,

thismust be increased. Second, because finite

squeezing level sets the noise level when clus-

ter states are used in MBQC (20), the squeez-

ing level must be improved to be above the

fault-tolerant threshold (22). It is possible to

increase the delay line ratio by increasing the

bandwidth of the squeezed light source, which

reduces wave packet size, and development

of a low-loss optical delay line. Even with cur-

rently available technology (26, 27), we expect

a number of the input modes on the order of

10
4
to be achievable, and if we consider the

ultimate limit set by coherence time of the

light source, the number of the input modes

could be potentially increased to ~10
10
modes

by use of a narrow-linewidth laser (28). Re-

garding improvement of the squeezing level to

above the fault-tolerant threshold, the squeez-

ing level of our cluster state can potentially

reach –15 dBwith the state-of-the-art squeezed

light source (29), which begins to be within

reach of the known thresholds (–15 to –17 dB)

for fault tolerance in this architecture by using

particular quantum-error-correcting codes (30).

Moreover, it has recently been shown that it is

possible to further relax the threshold to about

–10 dB with analog quantum error correction

and postselection (23). Therefore, we believe

that demonstration of our cluster state pro-

vides a feasible way toward realization of a

practical quantum computer.
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Fig. 4. Verification of generated cluster state for 24,960 temporal modes. (A to D) Measurement results for each type of nullifier: d̂
ðx;1Þ
k , d̂

ðp;1Þ
k , d̂

ðx;2Þ
k ,

and d̂
ðp;2Þ
k

, respectively. Black points indicate measured variances of shot noise, which are used as reference levels. Blue points indicate measured variances of

nullifiers. Purple regions indicate regions where the variances of the nullifiers are below –4.5 dB compared with shot noise, which indicate entanglement. The variances

of four types of nullifiers satisfied quantum inseparability criteria up to k = 6240 corresponding to 4 × 6240 = 24,960 temporal modes.
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ensures that the approach meets the requirements for quantum computation.
component of the cluster state), such a platform is readily scalable and fault tolerant. The topology of the cluster state 
these are optically prepared and easier to handle (one simply performs local measurements on each individual
measurement-based quantum computation, which is a platform based on the generation of large-scale cluster states. As 

 explore an alternative route:et al. and Larsen et al.scale-up of such systems is experimentally challenging. Asavanant 
much progress is being made in circuit platforms in which arrays of qubits are addressed and manipulated individually, 

The development of a practical quantum computer requires universality, scalability, and fault tolerance. Although
Generating large-scale cluster states
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