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Abstract. Given integers 2 < t < k + 1 < n, let g¢(¢,n) be the minimum N such that every
red/blue coloring of the k-subsets of {1,..., N} yields either a (k + 1)-set containing ¢ red k-
subsets, or an n-set with all of its k-subsets blue. Erdés and Hajnal proved in 1972 that for fixed
2 <t < k, there are positive constants ¢ and c¢; such that

2°U" < g (t,n) < twry_1 (n?),

where twr;_1 is a tower of 2’s of height + — 2. They conjectured that the tower growth rate in the
upper bound is correct. Despite decades of work on closely related and special cases of this problem
by many researchers, there have been no improvements of the lower bound for 2 < ¢ < k. Here we
settle the Erd6s—Hajnal conjecture in almost all cases in a strong form, by determining the correct
tower growth rate, and in half of the cases we also determine the correct power of n within the
tower. Specifically, we prove thatif 2 <t < k — 1 and k — ¢ is even, then

gr(t,n) = twry_ (nk71+1+0(1))_

Similar results are proved for k — ¢ odd.

Keywords. Hypergraph Ramsey numbers, stepping-up lemma

1. Introduction

A k-uniform hypergraph H (k-graph for short) with vertex set V is a collection of k-
element subsets of V. We write K ,’f for the complete k-uniform hypergraph on an n-
element vertex set. Given two families F, G of k-graphs, the Ramsey number r(F, G)
is the minimum N such that every red/blue coloring of the edges of K Ili, results in a
monochromatic red copy of F' € F or a monochromatic blue copy of G € G. In order to
avoid the excessive use of superscripts, we use the simpler notation

m(F.n)=r(F, K and ri(s,n) = r(K*, K.

Estimating the Ramsey number 74 (s, n) is a fundamental problem in combinatorics
and has been extensively studied since 1935. For graphs, classical results of Erdés [12]
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and Erdds and Szekeres [16] imply that 212 < ry(n, n) < 2. For k-graphs with k > 3,
Erd6s, Hajnal, and Rado [14, 13] showed that there are positive constants ¢1 and ¢ such
that

twrk_1(c1n?) < re(n, n) < twrg(con),

where the tower function is defined recursively as twry (x) = x and twr; 1 (x) = 2V ™),
It is a major open problem to determine if r¢ (n, n) > twrg(cn) and ErdSs offered a $500
reward for a proof (see [5]).

In order to shed more light on these questions, Erdés and Hajnal [13] in 1972 consid-
ered the following more general parameter.

Definition 1. Forintegers 2 <k <s <nand2 <t < (i), let r¢ (s, t; n) be the mini-
mum N such that every red/blue coloring of the edges of K Ili, results in a monochromatic
blue copy of K ,’1‘ or has a set of s vertices which contains at least ¢ red edges.

By definition, ri (s, n) = rg (s, (,i), n) so ri (s, t; n) includes classical Ramsey numbers.
Note also that we have changed the original notation of Erdés and Hajnal to fit better
with the more standard notation r¢(F, n). Here F denotes the collection of k-graphs
on s vertices with at least # edges and we have further simplified this by just listing the
parameters s, t.

The main conjecture of Erd6s and Hajnal states that as ¢ grows from 1 to (,S(), there
is a well-defined value t; = hﬁk) (s) at which ri(s, t; — 1; n) is polynomial in n while
rx(s, t1; n) is exponential in a power of n, another well-defined value f, = h;k) (s) at
which it changes from exponential to double exponential in a power of n and so on, and
finally a well-defined value #_, = h,((k_)z(s) < (}) at which it changes from twr;_5 to
twrg—1 in a power of n. They were not able to offer a conjecture as to what hﬁk) (s) is in
general, except when i = 1 and when s = k + 1.

e When i = 1, Erd6s and Hajnal conjectured that #; = hgk) (s) is 1 more than the
number of edges in the k-graph obtained from a complete k-partite k-graph on s vertices
with almost equal part sizes, by repeating this construction recursively within each part.
Erdés offered $500 for a proof of this (see [5]). For k = 3, this was settled for many values
of s, including powers of 3, by Conlon, Fox, and Sudakov [6]. Very recently, Mubayi and
Razborov [24] proved the conjecture for all s > k > 4.

e When s = k + 1, Erd6s and Hajnal conjectured that hgk) (k+1) =i+ 2 and proved
this for i = 1 via the following:

Theorem 1 (Erd6s—Hajnal [13]). For k > 3, there are positive ¢ = c(k) and ¢’ = ¢/ (k)
such that )
ek +1,2:n) <cen*™ ' and re(k+1,3;n) > 2°7.

They also stated that the methods of Erd6s and Rado [15] show that for4 <t < k + 1
there exists ¢ = c(k, t) > 0 such that

re(k +1,1;n) < twr—1 (n°). ey

Hence in our notation their conjecture for s = k + 1 is the following lower bound:
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Conjecture 1 (Erd6s—Hajnal [13]). For 2 < t < k, there exists c = c(k,t) > 0 such
that

re(k + 1,6, n) > twry—1(cn).

Another important special case of the Erdés—Hajnal problem is when s is fixed and

t = (;) Here we are interested in determining the correct tower growth rate for the

off-diagonal Ramsey number r (s, n) as n grows. It follows from well-known results that

ri(s, n) < twrr_i(n¢) where ¢ = c(k, s) (see [1, 3, 4, 15] for the best known bounds) and

the Erd6s—Hajnal conjecture implies that for all s > k + 1 there exists ¢’ > 0 such that
ri(s.n) = re(s, by (5): n) > twre_1 (c'n).

The Erd6s—Hajnal stepping-up lemma shows this for all s > 2¥~! —k4-3 and Conlon,
Fox, and Sudakov [7] improved this to s > [5k/2] — 3. Recently the current authors [27],
and independently Conlon, Fox, and Sudakov [8], further improved this to s > k + 3. For
the remaining two values s = k + 2 and k + 1 the current authors improved the previous
best bounds to twr_(cn'/) and twrg_p (n€108") respectively [26].

As we have indicated, analyzing the function r¢ (s, t; n) encompasses several funda-
mental problems which have been studied for a while. In addition to off-diagonal and di-
agonal Ramsey numbers already mentioned, the case (k, s, t,n) = (k,k+1,k+1,k+1)
has been studied in the context of the Erd6s—Szekeres theorem and Ramsey numbers
of ordered tight paths by several researchers [9, 10, 11, 22, 23], the more general case
(k, k+1, k+1, n) is related to high-dimensional tournaments [21], and even the very spe-
cial case (3, 4, 3, n) has tight connections to quasirandom hypergraph constructions [2,
18, 19, 20]. Lastly, h?) (s) is quite well understood due to results of Erdés—Hajnal [13]
and Conlon—Fox—Sudakov [6]. In spite of this activity, no lower bound better than

re(k+1,t;n) > 2" 2)

has been proved for a single pair (k, r) with2 < ¢ < k.

In this paper we prove such lower bounds and settle Conjecture 1 in almost all cases,
while also improving the upper bounds. In half of the cases we even obtain the correct
power of n within the tower, thereby improving Theorem 1 and the bounds (1) and (2).
First, we state our result when t = 3.

Theorem 2. For k > 3, there are positive ¢ = c(k) and ¢’ = ¢/ (k) such that

2 HOEN > (ke 1,30m) = 2
Our result for larger ¢, which represents the main new advance in this work, is similar.
Theorem 3. For4 <t < k — 2, there are positive c = c(k, t) and ¢’ = ¢'(k, t) such that

twr,_1 (cnk 1) if k —t is even,

twr,_1 (n* " ogn) > re(k+ 1, n) >
-1 gm) z ri( )z twr;_1 (cn®~1TD/2) if k —tis odd.
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Remarks. e The lower bound in Theorem 2 shows that the lower bound of Erdés and
Hajnal [13, Theorem 9] is incorrect for k > 4.

e The basic approach for the proof of the tower lower bounds in Theorem 3 is the
stepping-up technique. Although this method first appeared in 1965 (Lemma 6 of Erdés—
Hajnal-Rado [14]), and has been used extensively since then by many researchers to
solve various cases of the Erd6s—Hajnal problem, it has not yielded any progress on Con-
jecture 1. It is the new ingredients that we add to the stepping-up method that allow us to
prove our lower bounds. These new ingredients have already been used successfully for
the Erd6s—Rogers problem [25] and we expect more applications in the future.

e The upper bounds in Theorem 3 also hold when k —2 <t <k + 1.

e The missing cases of Conjecture 1 are for r4(5, 4; n), and for r¢(k + 1, ¢; n) when
k > 5andt € {k — 1, k}. The proof of the lower bound in Theorem 3 together with the
previous remark yields

twre_z(cn’) < re(k + 1, k; n) < twrg_1(c’n) forall k > 4,
and
twig_s(cn®) < ek + 1,k — 1;n) < twrg_o(c’'n?) forall k > 5.

Note that both of these results are new though we still expect that further improvements
of the lower bounds should be possible.

2. The upper bound

In this section, we prove the upper bounds in Theorems 2 and 3. The standard Erdés-Rado
argument [15] gives an upper bound of the form

rkfl(k.rfl:nfl))

re+1,1:n) <207 3)

We improve this substantially in the case + = 3 (to the optimal power of n) by adapting
the on-line approach of Conlon, Fox, and Sudakov [6].
Here we consider ordered (k — 1)-uniform hypergraphs H = (V, E), that is, hyper-

graphs whose vertex set V. = {v,..., v,} is ordered: v; < --- < v,. We define the
ordering < on (kYZ) such that fora = (ai,...,ar—2) and b = (by, ..., by—2) where
ap < --- < ag—pand by < --- < bp_y, we have a < b if for the maximum i for which

a; # b; we have a; < b;. This is the colex order on sequences.

Consider the following game, called the vertex on-line ordered Ramsey game, played
by two players, builder and painter: at stage i + 1 a new vertex v; 4 is revealed; then, for
every (k — 2)-tuple S among the existing vertices v1, ..., v;, builder decides, one by one,
whether to draw the (k — 1)-edge S U {v;41}; if he does expose such an edge, painter has
to color it either red or blue immediately. The exposed vertices will be naturally ordered
v < e < U

Let F be the ordered (k — 1)-graph on k vertices ay, ..., ar, where a; < --- < ag,
with two edges (ai, ..., ar—1) and (ay, ..., ak—2, ai).

Our main result in this section is the following.
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Theorem 4. In the vertex on-line ordered Ramsey game, builder has a strategy which
ensures a red F or a blue K,/j_l using at most s = O(nk_z) vertices, r = O(nk_z) red
edges, and m = O (n*=*) total edges.

Fort > 2, let }',k be the collection of ordered k-graphs with vertex set {a; < -+ < ax41}
and ¢ edges, where one of the edges is (ay, ..., ax). Define ry (}'tk ,n) to be the mini-
mum N such that in every red/blue coloring of (UZ ]) there is a red ordered H € .7-","

or a blue K,’f. We need the following result which is a straightforward adaptation of
[6, Theorem 2.1].

Theorem 5. Suppose that in the vertex on-line ordered Ramsey game, builder has a strat-
egy which ensures a red F or a blue K ,]1‘*1 using at most s vertices, r red edges, and in
total m edges. Then, for any 0 < o < 1/2,

re(F,n) < O(sa™ (1 —a)™™™).

—2k+4

Setting o = n and using Theorem 4 we obtain

r(FE, m) < 200" loen), )
Now we apply (3) ¢ — 3 times to obtain
etk + 1, t:n) < twry_a(cri—p3(k — t + 3,31 1)) < twr,_a(cre—rq3(Fy " n)).

Note that this application of (3) involves some subtleties, in particular, when applying
the standard Erd&s-Rado pigeonhole argument [15], one should observe that a copy of a
member of ]-'tk__l1 gives rise to a copy of some member of ]-'tk due to the existence of the
initial edge, and this edge remains to carry out the induction.

Finally, we apply (4) with k replaced by k — ¢ 4 3 to obtain

rek + 1,13 n) < twr_ 1 (¢n* "+ logn)
as desired. We now turn to the proof of Theorem 4.

Proof of Theorem 4. The proof is based on the following strategy for builder. During
the game, we will label each exposed vertex with a string of R’s and B’s, and build
a subset T of the exposed vertices as follows. We start the game by exposing k — 2
vertices vy, ..., Vk—2, V] < --- < vUg—2, and label each of these vertices by . We set
T = {vy, ..., vg—2}. For any other vertex exposed during this game, builder will draw an
edge between that vertex and {vq, ..., vg—2}. Recall painter will immediately color that
edge red or blue. The first exposed vertex that is connected to {vy, ..., vk—»} with a red
[blue] (k — 1)-edge will be labeled R [B]. The first exposed vertex that is connected to
{v1, ..., vg—2} with a blue edge will be added to the set T'.

Now assume that the vertices vy, ..., v; have been exposed, each such vertex is la-
beled with a string of R’s and B’s, and some (k — 1)-edges between these vertices have
been drawn (and colored). Moreover, we have our current subset 7 C {vy, ..., v;}. The
next stage begins by exposing vertex v;41, and builder will always begin by drawing the
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(k — 1)-edge (v1, ..., vk—2, vi+1). Depending on whether painter colors this edge red or
blue, the first digit in the string assigned to v; 1 will be R or B respectively. Builder will
continue to draw edges of the form S U {v;4}, where S C T and |S| = k — 2, one by one
by considering each such S in order with respect to <. If at any point painter colors any
drawn edge red, we immediately stop and proceed to the next stage, revealing the new
vertex vj2. If painter paints every such edge blue, then we add v; 11 to T, and proceed to
the next stage. Note that all (k — 1)-subsets of T are blue.

Let us make some observations about this game. Suppose at the end of a stage, builder
has not forced a red F or a blue K¥~1. Then:

1) a vertex is labeled with a string of B’s (no R’s) if and only if itisin T,

2) a vertex is labeled with a sequence of B’s followed by a single R if and only if it is
notin 7T,

3) no two strings have R in the same position,

4) no two string are the same,

5) no string has more than (kfz) B’s.

1) holds since this is how T is created. 2) holds since we stop the moment we get an R.
3) holds since if we obtained two such strings, and since builder’s strategy was to consider
(k — 2)-tuples S C T in colex order, we would obtain two red (k — 1)-tuples sharing the
same first k — 2 points S C T, and this yields a red F. Note that we are using the crucial
fact that the colex order < takes all (k — 2)-subsets of a set before moving on to a new
element. 4) holds since the previous three properties show that this is possible only if
two vertices in T have the same label (number of B’s). However, this is impossible since
the larger vertex considers more edges and must have more B’s. 5) holds since otherwise
T would induce a blue K ,’z‘ ~1 due to the property of < mentioned above.

Therefore, in the vertex on-line Ramsey game, builder has a strategy which ensures a
red F or a blue K,’;’l using at most O (n*~2) vertices, O (n%*—*%) edges, and O (n*2) red
edges. O

3. The lower bound

In this section we prove the lower bounds in Theorems 2 and 3. We start with Theorem 2,
the case when ¢+ = 3, which has no dependence on parity. We point out that it is this
result that shows that the lower bound of Erdés and Hajnal in [13, Theorem 9] is incorrect
for k > 4. Note that their lower bound corresponds to the upper bound 2" 1°¢" in our
notation.

Theorem 6. For k > 3 there exists ¢ = c(k) such that

ek +1,3:0) > 207

Proof. Letk > 3 and N = 207" Where ¢ = c(k) is a sufficiently small constant that
will be determined later. Color the (k — 1)-sets of [N] randomly with k colors, where
each edge has probability 1/k of being a particular color independent of all other edges.
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Call this coloring ¢ and suppose that ¢(S) € [k] for all § € (,EZX ]1) Now, given a k-set

e={a; <--- <a}of [N],and a (k — 1)-subset S = e¢ — {a;} of e, let rank,(S) = i.
Define the red/blue coloring x of (UZ ]) by

x(e) =red iff ¢(S)=rank,(S)forall S € (.°,).

The probability that x (¢) = red is p; = k~*. If an n-set X is blue, then all the k-subsets
of X in a partial Steiner system F = Sp(k — 1, k,n) of X are blue, and the colors
within F are assigned independently as they depend only on (k — 1)-subsets (recall that
by definition of F, |A N B| < k —2forall A, B € F). It is well known that there exists
an F such that |F| = ©@(n* 1) asn grows. Hence the expected number of blue copies
of K,’Z‘ in [N]is at most

(N>(1 — plFl < N"e 0D < (Nem @ Ty
n

due to the choice of ck. So there exists a coloring x with no blue K*. Next, suppose for
contradiction that Y is a (k 4 1)-subset of [ N] that contains three red edges under x. Say
that Y = {a; < --- < ax41}. Call these red edges ¢;, ¢;, ¢;, where e, = Y —{a,}. Assume
thati < j <lsothat!/ — 1 >iandletS =Y — {a;, a;}. Then

@(S) =rank,, () =1 —1 > i =rank, (S) = ¢(9).
This contradiction shows that we have at most two red edges in Y. O

For larger values of ¢, we establish the lower bound in Theorem 3 using ideas that origi-
nated in the Erd6s—Hajnal stepping-up lemma (see [17]) and were further developed re-
cently by the authors [25]. As mentioned in the introduction, this is the main new advance
in this work.

It is convenient to use the following notation. Let H; := ”Hf be the family of k-graphs
with k + 1 vertices and ¢ edges, and define ry (’Hf ,n) =ri(k + 1, t; n). We will omit the
superscript if it is obvious from the context. In what follows, by a red H; we mean a red
copy of some member H € H;.

Theorem 7. Letk > 6 andt > 4. If we are not in the case whent = 4 and k is odd, then
ri(Hy, 2kn) > 271 Haom=1,

Proof. Set N = ry_1(H;—1,n) — 1, and let ¢ be a red/blue coloring of the edges of Kllffl
with no red Hf__ll and no blue K,’j_l. Given ¢, we will produce a red/blue coloring
on the edges of Ké‘N with no red ’Hf and no blue Kékn' Let V(K,]i,_l) = [N] and
V(KSy) = {0, 1}V,

The vertices of V(K é‘N) are naturally ordered by the integer they represent in binary,
sofora,b e V(Ké‘N) where a = (a(l),...,a(N))and b = (b(1),...,b(N)),a < b iff

there is an i such that a(i) = 0, b(i) = 1, and a(j) = b(j) forall 1 < j < i. In other
words, i is the first position (minimum index) in which @ and b differ. Fora, b € V(K ;N)
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distinct, let § (a, b) denote the least i for which a(i) # b(i ).1 Notice we have the following
stepping-up properties (see [17]).

Property A. For every triplea < b < ¢, §(a, b) # §(b, ¢).
Property B. Fora; < --- < a,, 8(ar,a;) =minj<j<,—1(a;, aj41).

Before we define the coloring x, let us introduce several definitions. Set V = {0, 1}V.
Given any m-set S = {ay,...,a,} C V where a; < --- < ay,, consider the integers
8;i = 6(aj,ai41), 1 <i <m — 1. We say that §; is a local minimum if §;_1 > §; < 8;j+1,
a local maximum if §;_1 < &; > §;+1, and a local extremum if it is either a local minimum
or a local maximum. Since §;—1 # §; for every i, every nonmonotone sequence {8,'}1’.”:_11
has a local extremum. For convenience, we write §(S) = {§; };”: 1

We now define the coloring x on the k-tuples of V = {0, 1}V as follows. Given an

edge e = (a1, ..., ar) in V = V(K},), where ay < -+ < a, let 8 = 8(ai, ai11). Then
x (e) = red if

e the sequence §(e) is monotone and ¢ (41, ..., S¢—1) = red, or

e the sequence §(e) is zigzag, meaning 87, 84, . . . are local minimums and §3, Js, . . . are

local maximums. In other words, 81 > §» <83 > 64 < ---.

Otherwise x (e) = blue.

Note that the definition of zigzag requires §; > 8> < §3 > 84 < --- and if the
inequalities are in the opposite directions, i.e. §; < 8, > 83 < ---, then 8(e) is not
zigzag.

The following property can easily be verified using Properties A and B (see [17]).

Property C. For a; < --- < a,, set §; = 8(aj, aj4+1) and suppose that 8y, ..., 5_1
forms a monotone sequence. If x colors every k-tuple in {ay, ..., a,} red [blue], then ¢
colors every (k — 1)-tuple in {81, ..., 6,—1} red [blue].

Set m = 2kn. For the sake of contradiction, suppose there is an m-set S = {ay, ..., ay}
C V such that x colors every k-tuple in S blue. Let §; = 6(a;,ai+1) for1 <i <m — 1.
By Property C, there is no integer j such that the sequence {8,~}‘i’:1_1 is monotone, since
otherwise ¢ colors every triple of the n-set {;, §j4+1, ..., 8j1,—1} blue, which is a con-
tradiction. Therefore, we can assume there are k consecutive extremums §;,, 8;,, . . ., 8;,
such that §;,, &;;, ... are local maximums and §;,, §;,, . . . are local minimums. Recall that
8,-_/. = S(a,-_/, a,-_/+1). For k even, consider the k vertices
e = (Qjy, Aj; 41, Aiyy Qg1 Qisy Qs 15 -5 Aig_y 5 Aig_1+1)-

By Property B, we have

d(ai;, aij+1) > 8(ai;+1, aiy) < 8(aiy, Aiyy1) > 8(Aiz41, ais) < - - .

I Fora = (1,0,1,1,0)and b = (1,0,0, 1, 1), we have a > b and &(a, b) = 3. Let us remark
that we have slightly modified the definition of § given in [17], using least i rather than largest i for
which a(i) # b(i).
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Hence é(e) is zigzag and y (e) = red, contradiction. For k odd, consider the k vertices
e = (|, Aj;+1, Ay, iz+1, is, Qis+1s - - > Aig_y» Aig_5+1, Aig_o+2)-
Again by Property B, we have
8(aiy, aiy+1) > 8(ai+1, aiy) < 8(ais, Giz+1) > 8(a@iz+1, ais) < -+,

which implies §(e) is zigzag and x (e) = red, contradiction.
Now it suffices to show that there is no red copy of an H € Hf under x. We first
establish the following claim. We use the notation X 4+ x = X U {x}.

Claim 1. Fork > 6, lete, e’ € E(K;‘N) be such that §(e) is monotone, 5(¢') is zigzag,
and x(e) = x(e') = red. Then leNe'| <k — 1.

Proof. Suppose for contradiction that e = (ay,...,ar) where a1 < --- < ag, and
¢’ = e — a; + a’. Now the sequence §(e — a;) is monotone of length k — 1. Relabel
e —a; = (by,...,bx—1) where by < --- < by_1 and insert a’ into e — a;. Assume

first that the sequence §(e — a;) is increasing. If @’ > b3, then 8(by, by) < 8(b2, b3)
shows that §(e’) is not zigzag (starts in the wrong direction). If @’ < by, then 8 (b3, b3) <
8(b3, by) < 8(by, bs) shows that §(¢’) is not zigzag. So we have by < a’ < bs. However,
by Property B, §(b2, a’) > 8(b3, b3). So we have

8(b2,a’) = (b2, b3) > 8(b1, ba),

which shows that §(¢’) is not zigzag.

Now suppose §(e — a;) is decreasing. For §(¢’) to be zigzag, we must have b, <
a’ < byg. If by < a’ < b3, then by Property B we have §(a’, b3) > §(b3, by) > 8(bs, bs),
which is a contradiction. Now if b3 < a’ < by, we must have (b, b3) < 8(b3,a’) >
8(a’, by) < 8(by, bs). However, Property B and the fact that § (e — a;) is decreasing imply
that 8(a’, bsy) > §(b3, by) > (b4, bs), which is a contradiction. ]

For the sake of contradiction, suppose x produces a red H € H;. By Claim 1, we
may assume that for the ¢ red edges e1,...,e; € E(H), either all of the sequences
8(e1), ..., d8(es) are monotone or all of them are zigzag. Let V(H) =a = {ay, ..., ak+1}
witha; < -+ < agy1 and §; = 8(a;, aj+1).

Case 1. All ¢ sequences are monotone. Suppose they are all increasing (clearly one can-
not be increasing and another decreasing). Then one can easily see that §(a) is increasing.
By Property B, fori < k, we have §(a — a;) = §(a) — é; and §(a — ax) = §(a — ax+1).
Hence these ¢ red edges give rise to at least # — 1 red edges in K 1/;—1, which is a contra-
diction. If all # sequences are decreasing, then a similar argument follows.

Case 2. All r sequences are zigzag, and ¢ > 5. Since ¢ > 5, we must have two red edges
e1 =a —a; and e; = a — aj where |i — j| > 4. Several times we will use the following

Fact. §; # 6;+2 as long as §;+1 > §;.

Case 2.1. Ifi = 1, then j > 5. Since 8(ey) is zigzag, we have 1 > §» < §3, but this
contradicts the fact that §(eq) is zigzag as &3 is a local maximum in the sequence.
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Case 2.2. Ifi = 2, then j > 6. Since §(ep) is zigzag, we have §; > 6y < 63 > 64. By
Property B, §(e1) is not zigzag since 63 is a local maximum in the sequence.

Case 2.3. If i > 3, then we can also conclude that i < k — 3 since ¢t > 5. Suppose §;
is a local minimum in the sequence §(e;). Since 8(ey) is zigzag, we have §; 2 < §;—1 >
8; < &i+1. Moreover, i — 2 > 2 since otherwise &(e2) is not zigzag (wrong direction).
Hence 6,3 > 8;—2» < §;—1 > &; < d;+1. By Property B, §(a;—1,ai+1) = d;. By the
Fact, §; # 8;_». If 8; < §;—2, then §(e) is not zigzag as §; 3 > §;—p > 8(ai—1, aj4+1). If
8; > &i—2, then again §(eq) is not zigzag as §;—» < §(a;j—1, ai+1) < 8;i+1, contradiction.

Now suppose §; is a local maximum in the sequence §(ez). Then §;_p > §i—1 <
8;i > 8i+1 < 8it2. By Property B, 6(a;—1,ai+1) = 8i—1. By the Fact, §;—1 # &i+1. If
8i—1 > 8i+1, then §(ep) is not Zigzag as §j—2 > 6(ai—1,ai+1) > 8i+1. If 8i—1 < bit1,
then again §(ep) is not zigzag as §(a;—1, ai+1) < Si+1 < 8i+2, contradiction.

Case 3. Suppose 7 = 4, k is even, and all four sequences are zigzag. Let ¢; = a — aj; be
the four red edges on the vertex set a = {ay, ..., ax4+1} such thati; < ir < i3 < is. We
copy the argument in Case 2 verbatim unless i4 —i; = 3, and therefore we can assume the
four red edges are of the forme; = a —a;,ex =a —ajy1,e3 =a—ajy2,e4a = a—a;43.

Case 3.1. Suppose i = 1. Since §(e4) is zigzag, we have §; > & < §(as, as). By
Property B, 83 > (a3, as) > >, which implies §(e1) cannot be zigzag (wrong direction).

Case 3.2. Suppose i = 2. Since 8(eq) is zigzag, we have §; > §> < §3. By Property B,
8(ay, a3) = &y < 83, which implies §(eq) is not zigzag (wrong direction), contradiction.

Case 3.3. Suppose i = k — 2. This is the only part of the proof that requires & to be even.
Since k is even and §(e) is zigzag, we have 8;_4 < §(ar—3, ax—1) > Sk—1 < 8. By
Property B, 8> > §(ax—3, ax—1) > Sk—1, and since k is even, this implies §(es) is not
zigzag (wrong direction).

Case 3.4. Suppose 3 < i < k — 3. Then §; is an extremum in the sequence §(es).
Suppose it is a local minimum, which implies i > 4. Then §;—3 > §;_2 < &i—1 >
8; < &i+1. By Property B, é6(a;—1,ai+1) = é;. By the Fact, §; # 8;—>. If §; > §i—3,
then §;_» < &(aj—1,ai+1) < di+1, and hence &(e;) is not zigzag. If §; < §;_», then
8i—3 > 6ij—2 > 8(aj—1, ai+1), and hence 8 (ey) is not zigzag, contradiction.

Now suppose that §; is a local maximum in the sequence 8(e4). Then §;_2 > §;—1 <
5,’ > 5,’+1 < 8(ai+2,a,~+4). By Pl"OpeI‘ty B, (SH_Q > 6(ai+2,ai+4) and B(a,-_l,ai_,_l)
= §;—1. By the Fact, §;—1 # 8i+1. If 8,1 < Si+1, then d(aj—1,ai+1) < 8i+1 < i4+2,
which implies §(ep) is not zigzag. If §;—1 > 8;+1, then §;_2 > &(aj—1,ai+1) > 8i+1,
which implies §(e1) is not zigzag, contradiction. O

We now establish the stepping-up lemma for the special case where k is odd and ¢ = 4.

Theorem 8. For odd k > 6, we have ri,(Ha, 4n?) > 2rk—1(Hz.m)—1

Proof. The proof is nearly identical to the previous proof though there is one crucial
difference in the definition of a red edge. Again we set N = ry_1(H3,n) — 1, and let
¢ be a red/blue coloring of the edges of K 1’%_1 with no red ’Hf__ll and no blue K,’j_l.
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Given ¢, we will produce a red/blue coloring x on the edges of K§N with no red ’Hf
and no blue Ki‘nz. Let V(K/]f,_l) = [N] and V(K;‘N) = {0, 1}", and order the elements
of V(K é‘N) by the integer they represent in binary. We define x slightly differently than

above. Given an edge ¢ = (ay, ..., ax) in K;‘N where a; < --- < ag, let§; = 8(a;, aj+1).
Then yx (e) = red if
e the sequence §(e) is monotone and ¢ (41, ..., 6¢k—1) = red, or
e the sequence 4(e) is strong-zigzag, meaning &>, 84, ... are local minimums and
83, 85, . .. are local maximums, and §;_| < &x_3. In other words,
31 > 82 < 53 > 84 <L veeee > (Sk,3 < Sk,Q > (Sk,1 and 51(,1 < 8k73‘

Otherwise x (e) = blue.

Set m = 4n’. For the sake of contradiction, suppose there is an m-set S =
{ai,...,an}, where a; < --- < ap, such that x colors every k-tuple in S blue. Let
8; = 8(aj,aj4+1) for 1 < i < m — 1 and consider the sequence §(S). By Property C,
there is no integer j such that the sequence {8,-}{:'.’_1 is monotone, since otherwise ¢
colors every (k — 1)-tuple of the n-set {§;, 8j+1, ..., 8j4+n—1} blue, which is a contradic-
tion. Therefore, we can assume there are 2n consecutive extremums &;,, §;,, . . . , 8;,, such
that §;,, 8;5, ..., 8;,,_, are local maximums and §;,, d;,, . . ., 8;,, are local minimums. Re-
call that (Si_]. = S(aij, ai_/.+1). Notice that by Properties A and B (or the Fact), we have
8i, F Oiy,_,. SUpPpPose &;,, < &i,,_,, and consider the vertices corresponding to the last
(k — 1)/2 local maximums along with a;, 11, more precisely, the vertices

Airy_k—2)2 Piny—k—2)+1s + + + s Qiny_35 Qiny_3+15 Aiy, 15 iy _1+15 Ain,+1-

By the same argument as above, these vertices correspond to a strong-zigzag sequence,
and therefore x colors these k vertices red and we have a contradiction. Therefore we can

assume d;,, > 8j,, ,. By the same argument, we can conclude that §;,, , > §;,,_,. After
repeating this argument » times, we have

8iny > Bigyp > -+ > 8iy.
Set T = {ai,, ai,, ..., am—2, a2, azu+1}. By Property B, §(T') is a monotone sequence

of length n, which implies ¢ created a blue clique of size n in K ]1:/—1’ contradiction.

Now it suffices to show that there is no red copy of an H € Hﬁ under y. For the sake
of contradiction, suppose x produces ared H € H4. Let V(H) = a = {ay, ..., ar+1},
a) < --- < ag+1,and §; = 8(a;, aj+1).

We follow the same arguments as in Theorem 7, except we need to replace Case 3.3,
since that was the only place where we used the fact that k is even. This is the case when
our four red edges have the forme; = a—ay_», 2 = a—ax—1, €3 = a—ay, e4 = a—ay41.
Since 8(ep) is strong-zigzag and k is odd, we have §(ax—3,ar—1) < 8r—1 > d and
8(ax—3, ar—1) > . For §(eq) to be strong-zigzag, we must have 83 < 8p—> > 8p—1.
By Property B, this implies é(ax—3, ax—1) = Sx—3, and therefore 8;_3 < &;—1, which
implies §(e4) is not strong-zigzag, contradiction. O
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Proof of lower bound in Theorem 3. Suppose k — t + 4 is even. Then by a (¢ — 3)-fold
application of Theorem 7, along with Theorem 6, we have ry(H;, n) > twr;_1(c1 nk—t 1y
where ¢ = ¢y (k,t). If k — t + 4 is odd, then by a (¢ — 4)-fold application of Theorem 7,
along with Theorems 8 and 6, we have ri(H;, n) > twr,_1(con®~TD/2) where ¢; =
co(k,1). ]
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