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Abstract. Given integers 2 ≤ t ≤ k + 1 ≤ n, let gk(t, n) be the minimum N such that every
red/blue coloring of the k-subsets of {1, . . . , N} yields either a (k + 1)-set containing t red k-
subsets, or an n-set with all of its k-subsets blue. Erdős and Hajnal proved in 1972 that for fixed
2 ≤ t ≤ k, there are positive constants c1 and c2 such that

2c1n < gk(t, n) < twrt−1(n
c2),

where twrt−1 is a tower of 2’s of height t − 2. They conjectured that the tower growth rate in the
upper bound is correct. Despite decades of work on closely related and special cases of this problem
by many researchers, there have been no improvements of the lower bound for 2 < t < k. Here we
settle the Erdős–Hajnal conjecture in almost all cases in a strong form, by determining the correct
tower growth rate, and in half of the cases we also determine the correct power of n within the
tower. Specifically, we prove that if 2 < t < k − 1 and k − t is even, then

gk(t, n) = twrt−1(n
k−t+1+o(1)).

Similar results are proved for k − t odd.

Keywords. Hypergraph Ramsey numbers, stepping-up lemma

1. Introduction

A k-uniform hypergraph H (k-graph for short) with vertex set V is a collection of k-
element subsets of V . We write Kk

n for the complete k-uniform hypergraph on an n-
element vertex set. Given two families F , G of k-graphs, the Ramsey number r(F,G)
is the minimum N such that every red/blue coloring of the edges of Kk

N results in a
monochromatic red copy of F ∈ F or a monochromatic blue copy of G ∈ G. In order to
avoid the excessive use of superscripts, we use the simpler notation

rk(F , n) = r(F,Kk
n) and rk(s, n) = r(K

k
s ,K

k
n).

Estimating the Ramsey number rk(s, n) is a fundamental problem in combinatorics
and has been extensively studied since 1935. For graphs, classical results of Erdős [12]
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and Erdős and Szekeres [16] imply that 2n/2 < r2(n, n) < 22n. For k-graphs with k ≥ 3,
Erdős, Hajnal, and Rado [14, 13] showed that there are positive constants c1 and c2 such
that

twrk−1(c1n
2) ≤ rk(n, n) ≤ twrk(c2n),

where the tower function is defined recursively as twr1(x) = x and twri+1(x) = 2twri (x).

It is a major open problem to determine if rk(n, n) ≥ twrk(cn) and Erdős offered a $500
reward for a proof (see [5]).

In order to shed more light on these questions, Erdős and Hajnal [13] in 1972 consid-
ered the following more general parameter.

Definition 1. For integers 2 ≤ k < s < n and 2 ≤ t ≤
(
s
k

)
, let rk(s, t; n) be the mini-

mum N such that every red/blue coloring of the edges of Kk
N results in a monochromatic

blue copy of Kk
n or has a set of s vertices which contains at least t red edges.

By definition, rk(s, n) = rk
(
s,
(
s
k

)
; n
)

so rk(s, t; n) includes classical Ramsey numbers.
Note also that we have changed the original notation of Erdős and Hajnal to fit better
with the more standard notation rk(F , n). Here F denotes the collection of k-graphs
on s vertices with at least t edges and we have further simplified this by just listing the
parameters s, t .

The main conjecture of Erdős and Hajnal states that as t grows from 1 to
(
s
k

)
, there

is a well-defined value t1 = h
(k)
1 (s) at which rk(s, t1 − 1; n) is polynomial in n while

rk(s, t1; n) is exponential in a power of n, another well-defined value t2 = h
(k)
2 (s) at

which it changes from exponential to double exponential in a power of n and so on, and
finally a well-defined value tk−2 = h

(k)
k−2(s) <

(
s
k

)
at which it changes from twrk−2 to

twrk−1 in a power of n. They were not able to offer a conjecture as to what h(k)i (s) is in
general, except when i = 1 and when s = k + 1.

• When i = 1, Erdős and Hajnal conjectured that t1 = h
(k)
1 (s) is 1 more than the

number of edges in the k-graph obtained from a complete k-partite k-graph on s vertices
with almost equal part sizes, by repeating this construction recursively within each part.
Erdős offered $500 for a proof of this (see [5]). For k = 3, this was settled for many values
of s, including powers of 3, by Conlon, Fox, and Sudakov [6]. Very recently, Mubayi and
Razborov [24] proved the conjecture for all s ≥ k ≥ 4.

•When s = k+ 1, Erdős and Hajnal conjectured that h(k)i (k+ 1) = i + 2 and proved
this for i = 1 via the following:

Theorem 1 (Erdős–Hajnal [13]). For k ≥ 3, there are positive c = c(k) and c′ = c′(k)
such that

rk(k + 1, 2; n) < cnk−1 and rk(k + 1, 3; n) > 2c
′n.

They also stated that the methods of Erdős and Rado [15] show that for 4 ≤ t ≤ k + 1
there exists c = c(k, t) > 0 such that

rk(k + 1, t; n) ≤ twrt−1(n
c). (1)

Hence in our notation their conjecture for s = k + 1 is the following lower bound:
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Conjecture 1 (Erdős–Hajnal [13]). For 2 ≤ t ≤ k, there exists c = c(k, t) > 0 such
that

rk(k + 1, t; n) ≥ twrt−1(cn).

Another important special case of the Erdős–Hajnal problem is when s is fixed and
t =

(
s
k

)
. Here we are interested in determining the correct tower growth rate for the

off-diagonal Ramsey number rk(s, n) as n grows. It follows from well-known results that
rk(s, n) ≤ twrk−1(n

c) where c = c(k, s) (see [1, 3, 4, 15] for the best known bounds) and
the Erdős–Hajnal conjecture implies that for all s ≥ k + 1 there exists c′ > 0 such that

rk(s, n) ≥ rk(s, h
(k)
k−2(s); n) > twrk−1(c

′n).

The Erdős–Hajnal stepping-up lemma shows this for all s ≥ 2k−1
−k+3 and Conlon,

Fox, and Sudakov [7] improved this to s ≥ d5k/2e−3. Recently the current authors [27],
and independently Conlon, Fox, and Sudakov [8], further improved this to s ≥ k+ 3. For
the remaining two values s = k + 2 and k + 1 the current authors improved the previous
best bounds to twrk−1(cn

1/5) and twrk−2(n
c log n) respectively [26].

As we have indicated, analyzing the function rk(s, t; n) encompasses several funda-
mental problems which have been studied for a while. In addition to off-diagonal and di-
agonal Ramsey numbers already mentioned, the case (k, s, t, n) = (k, k+1, k+1, k+1)
has been studied in the context of the Erdős–Szekeres theorem and Ramsey numbers
of ordered tight paths by several researchers [9, 10, 11, 22, 23], the more general case
(k, k+1, k+1, n) is related to high-dimensional tournaments [21], and even the very spe-
cial case (3, 4, 3, n) has tight connections to quasirandom hypergraph constructions [2,
18, 19, 20]. Lastly, h(3)1 (s) is quite well understood due to results of Erdős–Hajnal [13]
and Conlon–Fox–Sudakov [6]. In spite of this activity, no lower bound better than

rk(k + 1, t; n) ≥ 2cn (2)

has been proved for a single pair (k, t) with 2 < t < k.
In this paper we prove such lower bounds and settle Conjecture 1 in almost all cases,

while also improving the upper bounds. In half of the cases we even obtain the correct
power of n within the tower, thereby improving Theorem 1 and the bounds (1) and (2).
First, we state our result when t = 3.

Theorem 2. For k ≥ 3, there are positive c = c(k) and c′ = c′(k) such that

2c
′nk−2 log n

≥ rk(k + 1, 3; n) ≥ 2cn
k−2
.

Our result for larger t , which represents the main new advance in this work, is similar.

Theorem 3. For 4 ≤ t ≤ k − 2, there are positive c = c(k, t) and c′ = c′(k, t) such that

twrt−1(c
′nk−t+1 log n) ≥ rk(k + 1, t; n) ≥

{
twrt−1(cn

k−t+1) if k − t is even,
twrt−1(cn

(k−t+1)/2) if k − t is odd.
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Remarks. • The lower bound in Theorem 2 shows that the lower bound of Erdős and
Hajnal [13, Theorem 9] is incorrect for k ≥ 4.
• The basic approach for the proof of the tower lower bounds in Theorem 3 is the

stepping-up technique. Although this method first appeared in 1965 (Lemma 6 of Erdős–
Hajnal–Rado [14]), and has been used extensively since then by many researchers to
solve various cases of the Erdős–Hajnal problem, it has not yielded any progress on Con-
jecture 1. It is the new ingredients that we add to the stepping-up method that allow us to
prove our lower bounds. These new ingredients have already been used successfully for
the Erdős–Rogers problem [25] and we expect more applications in the future.
• The upper bounds in Theorem 3 also hold when k − 2 < t ≤ k + 1.
• The missing cases of Conjecture 1 are for r4(5, 4; n), and for rk(k + 1, t; n) when

k ≥ 5 and t ∈ {k − 1, k}. The proof of the lower bound in Theorem 3 together with the
previous remark yields

twrk−3(cn
3) ≤ rk(k + 1, k; n) ≤ twrk−1(c

′n) for all k ≥ 4,

and
twrk−3(cn

3) ≤ rk(k + 1, k − 1; n) ≤ twrk−2(c
′n2) for all k ≥ 5.

Note that both of these results are new though we still expect that further improvements
of the lower bounds should be possible.

2. The upper bound

In this section, we prove the upper bounds in Theorems 2 and 3. The standard Erdős-Rado
argument [15] gives an upper bound of the form

rk(k + 1, t; n) < 2(
rk−1(k,t−1;n−1)

k−1 ). (3)

We improve this substantially in the case t = 3 (to the optimal power of n) by adapting
the on-line approach of Conlon, Fox, and Sudakov [6].

Here we consider ordered (k − 1)-uniform hypergraphs H = (V ,E), that is, hyper-
graphs whose vertex set V = {v1, . . . , vn} is ordered: v1 < · · · < vn. We define the
ordering ≺ on

(
V
k−2

)
such that for a = (a1, . . . , ak−2) and b = (b1, . . . , bk−2) where

a1 < · · · < ak−2 and b1 < · · · < bk−2, we have a ≺ b if for the maximum i for which
ai 6= bi we have ai < bi . This is the colex order on sequences.

Consider the following game, called the vertex on-line ordered Ramsey game, played
by two players, builder and painter: at stage i + 1 a new vertex vi+1 is revealed; then, for
every (k− 2)-tuple S among the existing vertices v1, . . . , vi , builder decides, one by one,
whether to draw the (k − 1)-edge S ∪ {vi+1}; if he does expose such an edge, painter has
to color it either red or blue immediately. The exposed vertices will be naturally ordered
v1 < · · · < vi .

Let F be the ordered (k − 1)-graph on k vertices a1, . . . , ak , where a1 < · · · < ak ,
with two edges (a1, . . . , ak−1) and (a1, . . . , ak−2, ak).

Our main result in this section is the following.
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Theorem 4. In the vertex on-line ordered Ramsey game, builder has a strategy which
ensures a red F or a blue Kk−1

n using at most s = O(nk−2) vertices, r = O(nk−2) red
edges, and m = O(n2k−4) total edges.

For t ≥ 2, let Fk
t be the collection of ordered k-graphs with vertex set {a1 < · · · < ak+1}

and t edges, where one of the edges is (a1, . . . , ak). Define rk(Fk
t , n) to be the mini-

mum N such that in every red/blue coloring of
(
[N ]
k

)
there is a red ordered H ∈ Fk

t

or a blue Kk
n . We need the following result which is a straightforward adaptation of

[6, Theorem 2.1].

Theorem 5. Suppose that in the vertex on-line ordered Ramsey game, builder has a strat-
egy which ensures a red F or a blue Kk−1

n using at most s vertices, r red edges, and in
total m edges. Then, for any 0 < α < 1/2,

rk(Fk
3 , n) ≤ O(sα

−r(1− α)r−m).

Setting α = n−2k+4 and using Theorem 4 we obtain

rk(Fk
3 , n) < 2O(n

k−2 log n). (4)

Now we apply (3) t − 3 times to obtain

rk(k + 1, t; n) < twrt−2(crk−t+3(k − t + 3, 3; n)) ≤ twrt−2(crk−t+3(Fk−t+3
3 , n)).

Note that this application of (3) involves some subtleties, in particular, when applying
the standard Erdős-Rado pigeonhole argument [15], one should observe that a copy of a
member of Fk−1

t−1 gives rise to a copy of some member of Fk
t due to the existence of the

initial edge, and this edge remains to carry out the induction.
Finally, we apply (4) with k replaced by k − t + 3 to obtain

rk(k + 1, t; n) < twrt−1(c
′nk−t+1 log n)

as desired. We now turn to the proof of Theorem 4.

Proof of Theorem 4. The proof is based on the following strategy for builder. During
the game, we will label each exposed vertex with a string of R’s and B’s, and build
a subset T of the exposed vertices as follows. We start the game by exposing k − 2
vertices v1, . . . , vk−2, v1 < · · · < vk−2, and label each of these vertices by ∅. We set
T = {v1, . . . , vk−2}. For any other vertex exposed during this game, builder will draw an
edge between that vertex and {v1, . . . , vk−2}. Recall painter will immediately color that
edge red or blue. The first exposed vertex that is connected to {v1, . . . , vk−2} with a red
[blue] (k − 1)-edge will be labeled R [B]. The first exposed vertex that is connected to
{v1, . . . , vk−2} with a blue edge will be added to the set T .

Now assume that the vertices v1, . . . , vi have been exposed, each such vertex is la-
beled with a string of R’s and B’s, and some (k − 1)-edges between these vertices have
been drawn (and colored). Moreover, we have our current subset T ⊂ {v1, . . . , vi}. The
next stage begins by exposing vertex vi+1, and builder will always begin by drawing the



6 Dhruv Mubayi, Andrew Suk

(k − 1)-edge (v1, . . . , vk−2, vi+1). Depending on whether painter colors this edge red or
blue, the first digit in the string assigned to vi+1 will be R or B respectively. Builder will
continue to draw edges of the form S ∪ {vi+1}, where S ⊂ T and |S| = k− 2, one by one
by considering each such S in order with respect to ≺. If at any point painter colors any
drawn edge red, we immediately stop and proceed to the next stage, revealing the new
vertex vi+2. If painter paints every such edge blue, then we add vi+1 to T , and proceed to
the next stage. Note that all (k − 1)-subsets of T are blue.

Let us make some observations about this game. Suppose at the end of a stage, builder
has not forced a red F or a blue Kk−1

n . Then:

1) a vertex is labeled with a string of B’s (no R’s) if and only if it is in T ,
2) a vertex is labeled with a sequence of B’s followed by a single R if and only if it is

not in T ,
3) no two strings have R in the same position,
4) no two string are the same,
5) no string has more than

(
n
k−2

)
B’s.

1) holds since this is how T is created. 2) holds since we stop the moment we get anR.
3) holds since if we obtained two such strings, and since builder’s strategy was to consider
(k − 2)-tuples S ⊂ T in colex order, we would obtain two red (k − 1)-tuples sharing the
same first k − 2 points S ⊂ T , and this yields a red F . Note that we are using the crucial
fact that the colex order ≺ takes all (k − 2)-subsets of a set before moving on to a new
element. 4) holds since the previous three properties show that this is possible only if
two vertices in T have the same label (number of B’s). However, this is impossible since
the larger vertex considers more edges and must have more B’s. 5) holds since otherwise
T would induce a blue Kk−1

n due to the property of ≺ mentioned above.
Therefore, in the vertex on-line Ramsey game, builder has a strategy which ensures a

red F or a blue Kk−1
n using at most O(nk−2) vertices, O(n2k−4) edges, and O(nk−2) red

edges. ut

3. The lower bound

In this section we prove the lower bounds in Theorems 2 and 3. We start with Theorem 2,
the case when t = 3, which has no dependence on parity. We point out that it is this
result that shows that the lower bound of Erdős and Hajnal in [13, Theorem 9] is incorrect
for k ≥ 4. Note that their lower bound corresponds to the upper bound 2cn log n in our
notation.

Theorem 6. For k ≥ 3 there exists c = c(k) such that

rk(k + 1, 3; n) > 2cn
k−2
.

Proof. Let k ≥ 3 and N = 2cn
k−2

where c = c(k) is a sufficiently small constant that
will be determined later. Color the (k − 1)-sets of [N ] randomly with k colors, where
each edge has probability 1/k of being a particular color independent of all other edges.
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Call this coloring ϕ and suppose that ϕ(S) ∈ [k] for all S ∈
(
[N ]
k−1

)
. Now, given a k-set

e = {a1 < · · · < ak} of [N ], and a (k − 1)-subset S = e − {ai} of e, let ranke(S) = i.
Define the red/blue coloring χ of

(
[N ]
k

)
by

χ(e) = red iff ϕ(S) = ranke(S) for all S ∈
(
e
k−1

)
.

The probability that χ(e) = red is pk = k−k . If an n-set X is blue, then all the k-subsets
of X in a partial Steiner system F = Sp(k − 1, k, n) of X are blue, and the colors
within F are assigned independently as they depend only on (k − 1)-subsets (recall that
by definition of F , |A ∩ B| ≤ k − 2 for all A,B ∈ F ). It is well known that there exists
an F such that |F | = 2(nk−1) as n grows. Hence the expected number of blue copies
of Kk

n in [N ] is at most(
N

n

)
(1− pk)|F | < Nne−2(n

k−1) < (Ne−2(n
k−2))n < 1

due to the choice of ck . So there exists a coloring χ with no blue Kk
n . Next, suppose for

contradiction that Y is a (k + 1)-subset of [N ] that contains three red edges under χ . Say
that Y = {a1 < · · · < ak+1}. Call these red edges ei, ej , el , where eq = Y−{aq}. Assume
that i < j < l so that l − 1 > i and let S = Y − {ai, al}. Then

ϕ(S) = rankei (S) = l − 1 > i = rankel (S) = ϕ(S).

This contradiction shows that we have at most two red edges in Y . ut

For larger values of t , we establish the lower bound in Theorem 3 using ideas that origi-
nated in the Erdős–Hajnal stepping-up lemma (see [17]) and were further developed re-
cently by the authors [25]. As mentioned in the introduction, this is the main new advance
in this work.

It is convenient to use the following notation. Let Ht := Hk
t be the family of k-graphs

with k + 1 vertices and t edges, and define rk(Hk
t , n) = rk(k + 1, t; n). We will omit the

superscript if it is obvious from the context. In what follows, by a red Ht we mean a red
copy of some member H ∈ Ht .

Theorem 7. Let k ≥ 6 and t ≥ 4. If we are not in the case when t = 4 and k is odd, then
rk(Ht , 2kn) > 2rk−1(Ht−1,n)−1.

Proof. Set N = rk−1(Ht−1, n)−1, and let ϕ be a red/blue coloring of the edges ofKk−1
N

with no red Hk−1
t−1 and no blue Kk−1

n . Given ϕ, we will produce a red/blue coloring χ
on the edges of Kk

2N with no red Hk
t and no blue Kk

2kn. Let V (Kk−1
N ) = [N] and

V (Kk
2N ) = {0, 1}N .

The vertices of V (Kk
2N ) are naturally ordered by the integer they represent in binary,

so for a, b ∈ V (Kk
2N ) where a = (a(1), . . . , a(N)) and b = (b(1), . . . , b(N)), a < b iff

there is an i such that a(i) = 0, b(i) = 1, and a(j) = b(j) for all 1 ≤ j < i. In other
words, i is the first position (minimum index) in which a and b differ. For a, b ∈ V (Kk

2N )
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distinct, let δ(a, b) denote the least i for which a(i) 6= b(i).1 Notice we have the following
stepping-up properties (see [17]).

Property A. For every triple a < b < c, δ(a, b) 6= δ(b, c).

Property B. For a1 < · · · < ar , δ(a1, ar) = min1≤j≤r−1 δ(aj , aj+1).

Before we define the coloring χ , let us introduce several definitions. Set V = {0, 1}N .
Given any m-set S = {a1, . . . , am} ⊂ V where a1 < · · · < am, consider the integers
δi = δ(ai, ai+1), 1 ≤ i ≤ m− 1. We say that δi is a local minimum if δi−1 > δi < δi+1,
a local maximum if δi−1 < δi > δi+1, and a local extremum if it is either a local minimum
or a local maximum. Since δi−1 6= δi for every i, every nonmonotone sequence {δi}m−1

i=1
has a local extremum. For convenience, we write δ(S) = {δi}mi=1.

We now define the coloring χ on the k-tuples of V = {0, 1}N as follows. Given an
edge e = (a1, . . . , ak) in V = V (Kk

2N ), where a1 < · · · < ak , let δi = δ(ai, ai+1). Then
χ(e) = red if

• the sequence δ(e) is monotone and ϕ(δ1, . . . , δk−1) = red, or
• the sequence δ(e) is zigzag, meaning δ2, δ4, . . . are local minimums and δ3, δ5, . . . are

local maximums. In other words, δ1 > δ2 < δ3 > δ4 < · · · .

Otherwise χ(e) = blue.
Note that the definition of zigzag requires δ1 > δ2 < δ3 > δ4 < · · · and if the

inequalities are in the opposite directions, i.e. δ1 < δ2 > δ3 < · · · , then δ(e) is not
zigzag.

The following property can easily be verified using Properties A and B (see [17]).

Property C. For a1 < · · · < ar , set δj = δ(aj , aj+1) and suppose that δ1, . . . , δr−1
forms a monotone sequence. If χ colors every k-tuple in {a1, . . . , ar} red [blue], then ϕ
colors every (k − 1)-tuple in {δ1, . . . , δr−1} red [blue].

Set m = 2kn. For the sake of contradiction, suppose there is an m-set S = {a1, . . . , am}

⊂ V such that χ colors every k-tuple in S blue. Let δi = δ(ai, ai+1) for 1 ≤ i ≤ m− 1.
By Property C, there is no integer j such that the sequence {δi}

j+n−1
i=j is monotone, since

otherwise ϕ colors every triple of the n-set {δj , δj+1, . . . , δj+n−1} blue, which is a con-
tradiction. Therefore, we can assume there are k consecutive extremums δi1 , δi2 , . . . , δik
such that δi1 , δi3 , . . . are local maximums and δi2 , δi4 , . . . are local minimums. Recall that
δij = δ(aij , aij+1). For k even, consider the k vertices

e = (ai1 , ai1+1, ai3 , ai3+1, ai5 , ai5+1, . . . , aik−1 , aik−1+1).

By Property B, we have

δ(ai1 , ai1+1) > δ(ai1+1, ai3) < δ(ai3 , ai3+1) > δ(ai3+1, ai5) < · · · .

1 For a = (1, 0, 1, 1, 0) and b = (1, 0, 0, 1, 1), we have a > b and δ(a, b) = 3. Let us remark
that we have slightly modified the definition of δ given in [17], using least i rather than largest i for
which a(i) 6= b(i).
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Hence δ(e) is zigzag and χ(e) = red, contradiction. For k odd, consider the k vertices

e = (ai1 , ai1+1, ai3 , ai3+1, ai5 , ai5+1, . . . , aik−2 , aik−2+1, aik−2+2).

Again by Property B, we have

δ(ai1 , ai1+1) > δ(ai1+1, ai3) < δ(ai3 , ai3+1) > δ(ai3+1, ai5) < · · · ,

which implies δ(e) is zigzag and χ(e) = red, contradiction.
Now it suffices to show that there is no red copy of an H ∈ Hk

t under χ . We first
establish the following claim. We use the notation X + x = X ∪ {x}.

Claim 1. For k ≥ 6, let e, e′ ∈ E(Kk
2N ) be such that δ(e) is monotone, δ(e′) is zigzag,

and χ(e) = χ(e′) = red. Then |e ∩ e′| < k − 1.

Proof. Suppose for contradiction that e = (a1, . . . , ak) where a1 < · · · < ak , and
e′ = e − ai + a

′. Now the sequence δ(e − ai) is monotone of length k − 1. Relabel
e − ai = (b1, . . . , bk−1) where b1 < · · · < bk−1 and insert a′ into e − ai . Assume
first that the sequence δ(e − ai) is increasing. If a′ > b3, then δ(b1, b2) < δ(b2, b3)

shows that δ(e′) is not zigzag (starts in the wrong direction). If a′ < b2, then δ(b2, b3) <

δ(b3, b4) < δ(b4, b5) shows that δ(e′) is not zigzag. So we have b2 < a′ < b3. However,
by Property B, δ(b2, a

′) ≥ δ(b2, b3). So we have

δ(b2, a
′) ≥ δ(b2, b3) > δ(b1, b2),

which shows that δ(e′) is not zigzag.
Now suppose δ(e − ai) is decreasing. For δ(e′) to be zigzag, we must have b2 <

a′ < b4. If b2 < a′ < b3, then by Property B we have δ(a′, b3) > δ(b3, b4) > δ(b4, b5),
which is a contradiction. Now if b3 < a′ < b4, we must have δ(b2, b3) < δ(b3, a

′) >

δ(a′, b4) < δ(b4, b5). However, Property B and the fact that δ(e−ai) is decreasing imply
that δ(a′, b4) ≥ δ(b3, b4) > δ(b4, b5), which is a contradiction. ut

For the sake of contradiction, suppose χ produces a red H ∈ Ht . By Claim 1, we
may assume that for the t red edges e1, . . . , et ∈ E(H), either all of the sequences
δ(e1), . . . , δ(et ) are monotone or all of them are zigzag. Let V (H) = a = {a1, . . . , ak+1}

with a1 < · · · < ak+1 and δi = δ(ai, ai+1).

Case 1. All t sequences are monotone. Suppose they are all increasing (clearly one can-
not be increasing and another decreasing). Then one can easily see that δ(a) is increasing.
By Property B, for i ≤ k, we have δ(a − ai) = δ(a)− δi and δ(a − ak) = δ(a − ak+1).
Hence these t red edges give rise to at least t − 1 red edges in Kk−1

N , which is a contra-
diction. If all t sequences are decreasing, then a similar argument follows.

Case 2. All t sequences are zigzag, and t ≥ 5. Since t ≥ 5, we must have two red edges
e1 = a − ai and e2 = a − aj where |i − j | ≥ 4. Several times we will use the following

Fact. δi 6= δi+2 as long as δi+1 > δi .

Case 2.1. If i = 1, then j ≥ 5. Since δ(e2) is zigzag, we have δ1 > δ2 < δ3, but this
contradicts the fact that δ(e1) is zigzag as δ3 is a local maximum in the sequence.
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Case 2.2. If i = 2, then j ≥ 6. Since δ(e2) is zigzag, we have δ1 > δ2 < δ3 > δ4. By
Property B, δ(e1) is not zigzag since δ3 is a local maximum in the sequence.

Case 2.3. If i ≥ 3, then we can also conclude that i ≤ k − 3 since t ≥ 5. Suppose δi
is a local minimum in the sequence δ(e2). Since δ(e2) is zigzag, we have δi−2 < δi−1 >

δi < δi+1. Moreover, i − 2 ≥ 2 since otherwise δ(e2) is not zigzag (wrong direction).
Hence δi−3 > δi−2 < δi−1 > δi < δi+1. By Property B, δ(ai−1, ai+1) = δi . By the
Fact, δi 6= δi−2. If δi < δi−2, then δ(e1) is not zigzag as δi−3 > δi−2 > δ(ai−1, ai+1). If
δi > δi−2, then again δ(e1) is not zigzag as δi−2 < δ(ai−1, ai+1) < δi+1, contradiction.

Now suppose δi is a local maximum in the sequence δ(e2). Then δi−2 > δi−1 <

δi > δi+1 < δi+2. By Property B, δ(ai−1, ai+1) = δi−1. By the Fact, δi−1 6= δi+1. If
δi−1 > δi+1, then δ(e1) is not zigzag as δi−2 > δ(ai−1, ai+1) > δi+1. If δi−1 < δi+1,
then again δ(e1) is not zigzag as δ(ai−1, ai+1) < δi+1 < δi+2, contradiction.

Case 3. Suppose t = 4, k is even, and all four sequences are zigzag. Let ej = a − aij be
the four red edges on the vertex set a = {a1, . . . , ak+1} such that i1 < i2 < i3 < i4. We
copy the argument in Case 2 verbatim unless i4− i1 = 3, and therefore we can assume the
four red edges are of the form e1 = a− ai, e2 = a− ai+1, e3 = a− ai+2, e4 = a− ai+3.

Case 3.1. Suppose i = 1. Since δ(e4) is zigzag, we have δ1 > δ2 < δ(a3, a5). By
Property B, δ3 ≥ δ(a3, a5) > δ2, which implies δ(e1) cannot be zigzag (wrong direction).

Case 3.2. Suppose i = 2. Since δ(e4) is zigzag, we have δ1 > δ2 < δ3. By Property B,
δ(a1, a3) = δ2 < δ3, which implies δ(e1) is not zigzag (wrong direction), contradiction.

Case 3.3. Suppose i = k− 2. This is the only part of the proof that requires k to be even.
Since k is even and δ(e1) is zigzag, we have δk−4 < δ(ak−3, ak−1) > δk−1 < δk . By
Property B, δk−2 ≥ δ(ak−3, ak−1) > δk−1, and since k is even, this implies δ(e4) is not
zigzag (wrong direction).

Case 3.4. Suppose 3 ≤ i ≤ k − 3. Then δi is an extremum in the sequence δ(e4).
Suppose it is a local minimum, which implies i ≥ 4. Then δi−3 > δi−2 < δi−1 >

δi < δi+1. By Property B, δ(ai−1, ai+1) = δi . By the Fact, δi 6= δi−2. If δi > δi−2,
then δi−2 < δ(ai−1, ai+1) < δi+1, and hence δ(e1) is not zigzag. If δi < δi−2, then
δi−3 > δi−2 > δ(ai−1, ai+1), and hence δ(e1) is not zigzag, contradiction.

Now suppose that δi is a local maximum in the sequence δ(e4). Then δi−2 > δi−1 <

δi > δi+1 < δ(ai+2, ai+4). By Property B, δi+2 ≥ δ(ai+2, ai+4) and δ(ai−1, ai+1)

= δi−1. By the Fact, δi−1 6= δi+1. If δi−1 < δi+1, then δ(ai−1, ai+1) < δi+1 < δi+2,
which implies δ(e1) is not zigzag. If δi−1 > δi+1, then δi−2 > δ(ai−1, ai+1) > δi+1,
which implies δ(e1) is not zigzag, contradiction. ut

We now establish the stepping-up lemma for the special case where k is odd and t = 4.

Theorem 8. For odd k > 6, we have rk(H4, 4n2) > 2rk−1(H3,n)−1.

Proof. The proof is nearly identical to the previous proof though there is one crucial
difference in the definition of a red edge. Again we set N = rk−1(H3, n) − 1, and let
ϕ be a red/blue coloring of the edges of Kk−1

N with no red Hk−1
t−1 and no blue Kk−1

n .
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Given ϕ, we will produce a red/blue coloring χ on the edges of Kk
2N with no red Hk

t

and no blue Kk
4n2 . Let V (Kk−1

N ) = [N] and V (Kk
2N ) = {0, 1}N , and order the elements

of V (Kk
2N ) by the integer they represent in binary. We define χ slightly differently than

above. Given an edge e = (a1, . . . , ak) inKk
2N where a1 < · · · < ak , let δi = δ(ai, ai+1).

Then χ(e) = red if

• the sequence δ(e) is monotone and ϕ(δ1, . . . , δk−1) = red, or
• the sequence δ(e) is strong-zigzag, meaning δ2, δ4, . . . are local minimums and
δ3, δ5, . . . are local maximums, and δk−1 < δk−3. In other words,

δ1 > δ2 < δ3 > δ4 < · · · · · · > δk−3 < δk−2 > δk−1 and δk−1 < δk−3.

Otherwise χ(e) = blue.
Set m = 4n2. For the sake of contradiction, suppose there is an m-set S =

{a1, . . . , am}, where a1 < · · · < am, such that χ colors every k-tuple in S blue. Let
δi = δ(ai, ai+1) for 1 ≤ i ≤ m − 1 and consider the sequence δ(S). By Property C,
there is no integer j such that the sequence {δi}

j+n−1
i=j is monotone, since otherwise ϕ

colors every (k − 1)-tuple of the n-set {δj , δj+1, . . . , δj+n−1} blue, which is a contradic-
tion. Therefore, we can assume there are 2n consecutive extremums δi1 , δi2 , . . . , δi2n such
that δi1 , δi3 , . . . , δi2n−1 are local maximums and δi2 , δi4 , . . . , δi2n are local minimums. Re-
call that δij = δ(aij , aij+1). Notice that by Properties A and B (or the Fact), we have
δi2n 6= δi2n−2 . Suppose δi2n < δi2n−2 , and consider the vertices corresponding to the last
(k − 1)/2 local maximums along with ai2n+1, more precisely, the vertices

ai2n−(k−2) , ai2n−(k−2)+1, . . . , ai2n−3 , ai2n−3+1, ai2n−1 , ai2n−1+1, ai2n+1.

By the same argument as above, these vertices correspond to a strong-zigzag sequence,
and therefore χ colors these k vertices red and we have a contradiction. Therefore we can
assume δi2n > δi2n−2 . By the same argument, we can conclude that δi2n−2 > δi2n−4 . After
repeating this argument n times, we have

δi2n > δi2n−2 > · · · > δi2 .

Set T = {ai2 , ai4 , . . . , a2n−2, a2n, a2n+1}. By Property B, δ(T ) is a monotone sequence
of length n, which implies ϕ created a blue clique of size n in Kk−1

N , contradiction.
Now it suffices to show that there is no red copy of an H ∈ Hk

4 under χ . For the sake
of contradiction, suppose χ produces a red H ∈ H4. Let V (H) = a = {a1, . . . , ak+1},
a1 < · · · < ak+1, and δi = δ(ai, ai+1).

We follow the same arguments as in Theorem 7, except we need to replace Case 3.3,
since that was the only place where we used the fact that k is even. This is the case when
our four red edges have the form e1 = a−ak−2, e2 = a−ak−1, e3 = a−ak, e4 = a−ak+1.
Since δ(e1) is strong-zigzag and k is odd, we have δ(ak−3, ak−1) < δk−1 > δk and
δ(ak−3, ak−1) > δk . For δ(e4) to be strong-zigzag, we must have δk−3 < δk−2 > δk−1.
By Property B, this implies δ(ak−3, ak−1) = δk−3, and therefore δk−3 < δk−1, which
implies δ(e4) is not strong-zigzag, contradiction. ut
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Proof of lower bound in Theorem 3. Suppose k − t + 4 is even. Then by a (t − 3)-fold
application of Theorem 7, along with Theorem 6, we have rk(Ht , n) ≥ twrt−1(c1n

k−t+1)

where c1 = c1(k, t). If k − t + 4 is odd, then by a (t − 4)-fold application of Theorem 7,
along with Theorems 8 and 6, we have rk(Ht , n) ≥ twrt−1(c2n

(k−t+1)/2), where c2 =

c2(k, t). ut
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[1] Ajtai, M., Komlós, J., Szemerédi, E.: A note on Ramsey numbers. J. Combin. Theory Ser. A
29, 354–360 (1980) Zbl 0455.05045 MR 0600598
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[15] Erdős, P., Rado, R.: Combinatorial theorems on classifications of subsets of a given set. Proc.
London Math. Soc. 3, 417–439 (1952) Zbl 0048.28203 MR 0065615
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