
Stability-enhanced AP IMEX-LDG schemes for linear kinetic

transport equations under a diffusive scaling

Zhichao Peng∗ Yingda Cheng† Jing-Mei Qiu‡ Fengyan Li§

April 29, 2020

Abstract

Transport equations arise in many applications such as rarefied gas dynamics, neutron trans-
port, and radiative transfer. In this work, we consider some linear kinetic transport equations
in a diffusive scaling and design high order asymptotic preserving (AP) methods within the
discontinuous Galerkin method framework, with the main objective to achieve unconditional
stability in the diffusive regime when the Knudsen number ε � 1, and to achieve high order
accuracy when ε = O(1) and when ε � 1. Initial layers are also taken into account. The
ingredients to accomplish our goal include: model reformulations based on the micro-macro
decomposition and the limiting diffusive equation, local discontinuous Galerkin (LDG) methods
in space, globally stiffly accurate implicit-explicit (IMEX) Runge-Kutta methods in time, and
strategies to handle non-well prepared initial data. Formal asymptotic analysis is carried out
for the continuous model within the micro-macro decomposed framework to derive the initial
layer as well as the interior problem with an asymptotically consistent initial condition as ε→ 0,
and it is also conducted for numerical schemes to show the AP property and to understand the
numerical initial treatments in the presence of initial layers. Fourier type stability analysis is
performed, and it confirms the unconditional stability in the diffusive regime, and moreover it
gives the stability condition in the kinetic regime when ε = O(1). In the reformulation step,
a weighted diffusive term is added and subtracted to remove the parabolic stiffness and en-
hance the numerical stability in the diffusive regime. Such idea is not new, yet our numerical
stability and asymptotic analysis provide new mathematical understanding towards the desired
properties of the weight function. Finally, numerical examples are presented to demonstrate the
accuracy, stability, and asymptotic preserving property of the proposed methods, as well as the
effectiveness of the proposed strategies in the presence of the initial layer.

1 Introduction

We consider a linear kinetic transport equation in a diffusive scaling,

Pε : εft + v∂xf =
1

ε
(〈f〉 − f) (1.1)

with the initial condition and suitable boundary conditions. The function f = f(x, v, t) is the
probability phase space density function of the particles, with x ∈ Ωx ⊂ R, v ∈ Ωv ⊂ R, and
t ≥ 0 being the spatial, velocity, and temporal variables, respectively. The operator L(f) =
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〈f〉 − f defines a normalized scattering operator, where 〈f〉 :=
∫

Ωv
fdν and ν is a measure of

the velocity space. The parameter ε > 0 is the dimensionless Knudsen number that is the ratio
of the mean free path of the particles over the characteristic length of the system. With the
presence of ε in front of the time derivative of f , we focus on the long time behavior of the
system under a diffusive scaling. As ε → 0, the solution to this singular perturbation problem
Pε converges to that of a macroscopic linear diffusive model P0 in (2.4) (at least away from
the initial and boundary of the space-time domain). When ε = O(1), the system balances the
transport and the scattering processes. The linear kinetic transport equation (1.1) provides a
prototype model for more realistic models in studying rarefied gas dynamics, neutron transport,
radiative transfer, among many others.

In this work, we are concerned with the design and the mathematical understanding of
high order numerical methods for (1.1), particularly under the discontinuous Galerkin (DG)
framework and with the asymptotic preserving (AP) property. Numerical methods with the AP
property are designed for the multi-scale model Pε, and they are consistent and stable for a wide
range of values of ε. As ε→ 0, the limiting schemes are consistent discretizations of the limiting
equation P0 when the discretization parameters (such as mesh and time step sizes) are fixed
and under-resolved. AP methods have gone through active development in past few decades for
various problems, see e.g. the review papers [16] for kinetic and hyperbolic equations and [11]
for fluid models. Unlike domain decomposition methods for multi-scale problems, AP methods
provide a natural transition between models at different scales when ε varies in space and/or in
time.

DG methods are finite element methods that use discontinuous functions as approximations.
They are chosen here as spatial discretizations due to their many attractive properties, such as
the ease to be designed with arbitrary accuracy, flexibility in adaptive implementation, com-
pactness and high parallel efficiency, and more importantly, the methods suit for many different
types of differential equations, hence are a natural candidate for the design of AP schemes that
can simultaneously capture the solutions in various regimes. DG methods have a long history
for simulating transport problems. Indeed the first upwind DG method by Reed and Hill in
1973 [28] was for the linear stationary neutron transport equation. For the stationary radiative
transfer equation in diffusive regimes, it was shown in one dimension [20] that the P 0 upwind
DG method is not AP yet the P 1 upwind DG method is. The AP property was also examined
in [21] for the P 1 upwind DG method in the presence of the boundary layer. This property
was further investigated numerically [1] and analyzed [12] in high dimensions and/or for more
general discrete spaces. And the understanding to the issue also led to the development of a
new AP-DG method in [18] that uses the reduced upwind stabilization in the numerical flux.

The methods reviewed above involve DG discretizations based on the original form of the
kinetic models. The resulting algebraic systems can be solved by (accelerated) source iterations
with transport sweep techniques [2, 18]. We here will propose numerical methods that are based
on a reformulated form of the underlying model. Particularly, our methods are based on the
micro-macro reformulation (see (2.2), also [26]) of the model problem (1.1), and the implicit
part to solve in our proposed methods is essentially a discrete Poisson equation. Within the
micro-macro framework, in [23, 25] a first order finite difference AP method was formulated
and analyzed for stability. Later a family of high order AP methods, based on DG spatial
discretization and globally stiffly accurate implicit-explicit (IMEX) Runge Kutta (RK) temporal
discretizations of type ARS (after Asher, Ruuth, and Spiteri [3, 5]), was proposed in [14] and
analyzed in [15]. As ε→ 0, the limiting schemes of the methods in [14] are intrinsically explicit
discretizations for the limiting heat equation. Therefore for the schemes with ε � 1 in the
diffusive regime, numerical stability requires the time step to satisfy ∆t = O(h2), where h
denotes the characteristic spatial mesh size. Such parabolic time step condition is quite stringent
for the computational efficiency. Similar issue also occurs to other AP schemes, including the
finite difference methods based on the even-odd parity formulation [17, 19] or based on the
micro-macro decomposition in [23, 25]. The primary objective of this work is to design new
AP methods, improved from the methods in [14], that are unconditionally stable when the
underlying problem is in its diffusive regime, and additionally we want to establish mathematical
understanding of the proposed methods especially in the presence of the initial layers. One will
see that our analysis also contributes to the understanding of some previous developments in
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the literature.
To enhance the stability, similar to [5, 4], we add and subtract a weighted diffusion term

to further reformulate the micro-macro decomposed equation, aiming to remove the parabolic
stiffness. The added term is chosen according to the limiting equation and involves a weight
function ω. For this newly reformulated system, we design local DG (LDG) methods [10] in
space, and globally stiffly accurate IMEX-RK method of type ARS in time [3, 5], equipped with
a suitably chosen implicit-explicit strategy.

Numerically the proposed methods (with a properly chosen weight function ω) are observed
to be unconditionally stable in the diffusive regime when ε/h is relatively small. Fourier type
numerical stability further confirms this when it is applied to a discrete velocity model. Our
stability analysis also reveals a scaling structure of the model, and this provides useful guidance
to the choice of the weight function ω in terms of the model and discretization parameters
ε, h,∆t. Using weight functions preserving this scaling structure in return will result in some
invariant property of the numerical stability condition (see the existence of the function Fp,ω in
the stability condition in Section 4). Based on our analysis, the weight functions ω = exp(−ε/h)
and ω = exp(−ε2/∆t) will preserve the scaling structure of the model, while the choice ω =
exp(−ε2/h) used in [5] will not. What we also look into is the stability property of the methods
when they are applied to the kinetic regime with ε = O(1) where the transport effect dominates.

Another important aspect is to examine the proposed methods being AP, with the limiting
schemes as ε→ 0 not only being consistent to the limiting equations but also being high order
accurate. This is investigated with the initial layers being taken into account. We first carry out
formal asymptotic analysis for the continuous problem within the micro-macro framework when
ε� 1 with the possible presence of the initial layer and when the boundary condition is periodic
in x. On the numerical level, strategies are proposed to avoid order reduction or inaccuracy
when the initial data is not well-prepared. For the resulting methods, formal asymptotic analysis
is carried out to confirm the AP property of the proposed schemes, regardless the initial data
being well-prepared or not. Moreover, the limiting schemes are of formally high order accuracy.
The asymptotic analysis identifies more property of the weight function ω, see (5.13), to ensure
the AP property of the methods.

The remaining of this paper is organized as follows. In Section 2, we reformulate the model
equation, and carry out a formal asymptotic analysis with respect to the parameter ε� 1 and
when the initial data may or may not be well-prepared. In Section 3, we present the proposed
numerical methods, by first discretizing the problem in time then in space. Modification is
proposed to the numerical methods during the first one or two time steps to address the accuracy
reduction or loss in the presence of the initial layer. In Section 4, numerical stability is examined
through Fourier analysis in both the diffusive and kinetic regimes. It also provides some guidance
on choosing the weight function ω in the schemes. Formal asymptotic analysis is then performed
for the proposed methods in Section 5, and it shows the methods are AP, with the limiting
schemes as ε→ 0 being formally high order accurate. The performance of the proposed methods
is demonstrated numerically in Section 6, which is followed by concluding remarks in Section 7.

2 Model equation

In this section, we will reformulate the model equation (1.1) and carry out a formal asymptotic
analysis with respect to the parameter ε when it is small, i.e. ε � 1. It is assumed that the
boundary condition is periodic in x. The readers can have two specific examples of (1.1) in
mind. One is the one-group transport equation in slab geometry. Here Ωv = [−1, 1] and

〈f〉 =

∫
Ωv

fdν =
1

2

∫
Ωv

f(x, v, t)dv,

with dv as the standard Lebesgue measure. The other is the telegraph equation, involving two
discrete velocities with Ωv = {−1, 1}, and

〈f〉 =

∫
Ωv

fdν =
1

2
(f(x, v = 1, t) + f(x, v = −1, t)) .
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In both cases, the scattering operator L(f) = 〈f〉 − f in (1.1) only acts on the v variable and
has one dimensional null space Null(L) = {f : f = 〈f〉} = Span{1}.

2.1 Reformulation

Our proposed numerical methods are based on a reformulated form of the model equation (1.1),
obtained in two steps.

As the first step, we reformulate (1.1) into its micro-macro decomposition, originated in [26]
for PDE analysis and later used in [23, 15, 14] for numerical method design. Consider the square-
integrable space L2(Ωv) in v, with an inner product 〈f, g〉 := 〈fg〉. Let Π be the L2 projection
operator onto Null(L), and let ρ := Πf = 〈f〉. Then f can be decomposed orthogonally into

f = 〈f〉+ εg = ρ+ εg, (2.1)

where 〈g〉 = 0. We now apply Π and its orthogonal complement I − Π to (1.1), and this leads
to the micro-macro reformulation

∂tρ+ ∂x〈vg〉 = 0, (2.2a)

∂tg +
1

ε
(I−Π)(v∂xg) +

1

ε2
v∂xρ = − 1

ε2
g. (2.2b)

The operator I is the identity operator. As it will be shown in next subsection, as ε → 0, the
system (2.2) (at least away from the initial layer) becomes

∂tρ+ ∂x〈vg〉 = 0, (2.3a)

g = −v∂xρ, (2.3b)

which implies that the macroscopic part ρ satisfies a diffusive (indeed a heat) equation,

∂tρ = 〈v2〉∂xxρ (2.4)

with an asymptotically consistent initial condition ρ(x, 0) = limε→0〈f(x, ·, 0)〉. (The initial data
of f for the model equation (1.1) may depend on ε.) The relation (2.3b) will be referred to as the
local equilibrium, and it indicates g can be expressed in terms of ρ in the limiting model. Note
that 〈v2〉 = 1 for the telegraph equation and 〈v2〉 = 1/3 for the one-group transport equation
in slab geometry.

As the second step, we add a weighted diffusion term ω〈v2〉∂xxρ to the both sides of (2.2a),
and get

∂tρ+ ∂x〈v(g + ωv∂xρ)〉 = ω〈v2〉∂xxρ, (2.5a)

∂tg +
1

ε
(I−Π)(v∂xg) +

1

ε2
v∂xρ = − 1

ε2
g. (2.5b)

The term 〈v2〉∂xxρ is closely related to the limiting equation (2.4), and a similar idea was used
in [5]. The non-negative weight function ω depends on ε and it is bounded and independent of
x, satisfying

ω → 1 as ε→ 0. (2.6)

Other properties desired for the weight function ω will be identified as we analyze the proposed
numerical methods.

2.2 Formal asymptotic analysis with initial layers: the continuous
problem

In this section, we will carry out a formal asymptotic analysis for the micro-macro reformulation
(2.2) (hence (2.5)), assuming the smallness of the parameter ε. Particularly, we will consider
the case with initial layers when the initial data is not well-prepared. One can refer to [27] for
an analysis based on the original form of a kinetic transport equation. Note that the analysis
here does not essentially depend on the dimension of the spatial space Ωx and the velocity space
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Ωv. Within this section, functions will be written with their explicit dependence on ε, such as
u(x, v, t; ε). Here and below, when the big-O notation z = O(Υn) is used, it means that there
exists a constant C > 0, Υ0 > 0, such that |z| ≤ CΥn,∀Υ < Υ0. Here Υ can be ε, h, or ∆t,
while C is independent of ε, h and ∆t. Under the assumption that the boundary condition is
periodic in x, boundary effects including boundary layers are not considered. The initial data
f(x, v, 0; ε) = ρ(x, 0; ε) + εg(x, v, 0; ε) is taken as

f(x, v, 0; ε) = Λ(x, v) + εΘ(x, v) +O(ε2), (2.7)

where Λ and Θ are integrable in v. This implies

ρ(x, 0; ε) = 〈Λ〉+ ε〈Θ〉+O(ε2), g(x, v, 0; ε) =
Λ− 〈Λ〉

ε
+ Θ− 〈Θ〉+O(ε). (2.8)

The solution to (2.2) has the following decompositions

ρ = ρI + ρi, g = gI + gi. (2.9)

Here ρI(x, t; ε) and gI(x, v, t; ε) correspond to the interior solution that is the entire solution
away from the initial layer; while ρi(x, t; ε), gi(x, v, t; ε) are from the initial layer solution, and
they decay to zero when exiting from the initial layer. Next we will derive the leading terms in
ρ and g for the interior problem and the initial layer up to O(1), and then summarize our main
observations.

Interior problem: for the interior problem, we take the ansatz

ρI = ρI0(x, t) +O(ε), gI = gI0(x, v, t) +O(ε), (2.10)

and plug them into (2.2). (One can start with an O(ε−1) term in gI , and this term turns out
to be zero.) After collecting the O(1) leading terms, we get

∂tρ
I
0 + ∂x〈vgI0〉 = 0, (2.11a)

gI0 + v∂xρ
I
0 = 0, (2.11b)

and this implies that the leading term ρI0 of the interior solution satisfies the heat equation

∂tρ
I
0 = 〈v2〉∂xxρI0. (2.12)

And gI0 itself is not an independent quantity, and it is determined by ρI0 via (2.11b).

Initial layer: for the initial layer problem, one can show the layer width is of O(ε2) following
a standard dominant balance argument [13]. Let τ = t/ε2 be the scaled (or called stretched)
time variable. The initial layer solution, still represented by ρi(x, τ ; ε) and gi(x, v, τ ; ε), satisfies

∂τρ
i + ε2∂x〈vgi〉 = 0, (2.13a)

∂τg
i + ε(I−Π)(v∂xg

i) + v∂xρ
i = −gi. (2.13b)

We take the ansatz

ρi = ρi0(x, τ) +O(ε), gi = gi−1(x, v, τ)ε−1 + gi0(x, v, τ) +O(ε), (2.14)

and collect O(ε−1) and O(1) terms, respectively, and get

O(ε−1) : ∂τg
i
−1 + gi−1 = 0, (2.15a)

O(1) : ∂τρ
i
0 = 0, (2.15b)

∂τg
i
0 + (I−Π)(v∂xg

i
−1) + v∂xρ

i
0 + gi0 = 0. (2.15c)

Now by matching the leading terms of ρ and g with the given initial data (2.8), we have

O(1) : ρI0(x, 0) + ρi0(x, 0) = 〈Λ〉, gi−1(x, v, 0) = Λ− 〈Λ〉, (2.16a)

O(ε) : gI0(x, v, 0) + gi0(x, v, 0) = Θ− 〈Θ〉. (2.16b)
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Based on (2.15b) and ρi0(x,∞) = 0, we get

ρi0(x, τ) = 0, ∀τ ≥ 0. (2.17)

This, together with (2.16a), gives the asymptotically consistent initial condition for the interior
heat equation (2.12):

ρI0(x, 0) = 〈Λ〉. (2.18)

Moreover, from (2.16b), (2.11b) and (2.18), we get the initial data for gi0 in the initial layer
solution,

gi0(x, v, 0) = Θ− 〈Θ〉+ v∂xρ
I
0(x, 0) = Θ− 〈Θ〉+ v∂x〈Λ〉. (2.19)

We next solve for gi−1 from (2.15a) and (2.16a),

gi−1(x, v, τ) = gi−1(x, v, 0) e−τ = (Λ− 〈Λ〉) e−τ . (2.20)

Finally we can solve for gi0 based on (2.15c), (2.17), (2.19), (2.20):

gi0(x, v, τ) =
(
gi0(x, v, 0)− τ(I−Π){v∂x(Λ− 〈Λ〉)}

)
e−τ

=
(

Θ− 〈Θ〉+ v∂x〈Λ〉 − τ(I−Π){v∂x(Λ− 〈Λ〉)}
)
e−τ . (2.21)

Summary and observations: In summary, when ε � 1, the solution to the micro-macro
reformulated system (2.2) with the initial condition (2.7) has the following form

ρ(x, t; ε) = ρI0(x, t) +O(ε),

g(x, v, t; ε) = gI0(x, v, t) +
1

ε
gi−1(x, v, t/ε2) + gi0(x, v, t/ε2) +O(ε).

One can make the following observations:

• For the leading term (ρI0, g
I
0) in the interior solution, ρI0 satisfies the heat equation (2.12)

with the initial condition (2.18), and gI0 is determined by ρI0 via (2.11b);

• The leading term (up to O(1)) in ρ does not contain an initial layer;

• When 1
εg
i
−1 + gi0 = 0, with gi−1, g

i
0 given in (2.20)-(2.21), the leading term (up to O(1))

has no initial layer; otherwise the initial layer of O(ε2)-width is present.

• Based on the explicit formula in (2.20)-(2.21), the leading term of g is free of the initial
layer if and only if

Λ− 〈Λ〉
ε

+ Θ− 〈Θ〉+ v∂x〈Λ〉 − τ(I−Π){v∂x(Λ− 〈Λ〉)} = 0. (2.22)

That is,
Λ = 〈Λ〉, Θ− 〈Θ〉+ v∂x〈Λ〉 = 0.

This, under the assumption (2.7) and (2.8) on the initial data, is equivalent to

g(x, v, 0; ε) + v∂xρ(x, 0; ε) = O(ε). (2.23)

Note that (2.23) indicates the initial data is within the O(ε)-width neighborhood of the local
equilibrium (2.11b) (see also (2.3b)). In this case, we say the initial data is well-prepared. The
analysis above shows that the initial data being well-prepared or not determines the presence
of the initial layer in the leading term of the solution.

Definition 2.1. The initial data f(x, v, 0; ε) = ρ(x, 0; ε)+εg(x, v, 0; ε) is said to be well-prepared
if it satisfies the relation (2.23).

3 Numerical methods

In this section, we will present the proposed numerical methods. We will start with the temporal
discretization, then discretize in space. The boundary condition in space is assumed to be
periodic. Some more general boundary conditions will be considered in Section 6.2.
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3.1 Temporal discretization

In time, we will apply IMEX-RK methods. We will begin with the first order method and
explain our proposed implicit-explicit strategy, then discuss initial layer treatments to avoid
accuracy loss or reduction, and finally we will present high order IMEX-RK methods.

First order temporal discretization. When the temporal accuracy is of first order, our
scheme, denoted as IMEX1, is defined as follows. Given the numerical solution ρn, gn at t = tn,
we look for ρn+1, gn+1 at tn+1 = tn + ∆t, satisfying

ρn+1 − ρn

∆t
+ ∂x〈v(gn + ωv∂xρ

n)〉 = ω〈v2〉∂xxρn+1, (3.1a)

gn+1 − gn

∆t
+

1

ε
(I−Π)(v∂xg

n) +
1

ε2
v∂xρ

n+1 = − 1

ε2
gn+1. (3.1b)

The implicit-explicit strategy we adopt here (and later for high order temporal discretizations)
is to treat all the terms that are dominating when ε� 1 implicitly. This includes the most stiff
terms on the scale 1

ε2 in (3.1b), and the diffusion term on the right side of (3.1a). Note that in
the diffusive regime with ε � 1, the solution (at least away from the initial layer) is expected
to stay close to the local equilibrium g + v∂xρ = 0. Hence based on the property (2.6) of the
weight function ω, namely, ω → 1 as ε→ 0, the term

∂x〈v(g + wv∂xρ)〉 = ∂x〈v(g + v∂xρ)〉+ (ω − 1)〈v2〉∂xxρ

is less dominating, and it is treated explicitly together with the transport term (I−Π)(v∂xg).

Treatment for initial layers. When the initial data is not well-prepared, the solution will
contain an initial layer of O(ε2)-width in its leading term. In this case g can be of O(ε−1)
initially, yet after the first time step at t = ∆t � ε2, the solution exits from the initial layer,
and both ρ and g should be of O(1). This feature, however, is not well respected at the discrete
level by our implicit-explicit strategy above, mainly due to the explicit treatment of g in (3.1a).
In fact in this case, the numerical scheme (3.1) may produce ρ1, g1 of size O(ε−1) following
(3.1a), hence becomes very inaccurate. To overcome this, one would want to treat the g term
(hence the g+ωv∂xρ term) in (3.1a) implicitly. With the consideration for an easy analysis, we
propose to replace the scheme (3.1) at n = 0 by

ρ1 − ρ0

∆t
+ ∂x〈vg1〉 = 0. (3.2a)

g1 − g0

∆t
+

1

ε
(I−Π)(v∂xg

0) +
1

ε2
v∂xρ

0 = − 1

ε2
g1. (3.2b)

The resulting scheme with the modification, namely (3.1) for n ≥ 1 and (3.2) for n = 0,
is still referred to as the IMEX1 scheme. Using this slightly modified scheme, one will get
ρ1, g1 = O(1) even with g0 = O(ε−1). This will be explained more systematically in Section
5.1. Alternatively, we can address the accuracy issue around the non well-prepared initial data
by replacing the scheme at n = 0 by (3.2a) coupled with (3.1b). In [7], an initial fixing strategy
based on Richardson extrapolation was used to guarantee the designed second order accuracy
in the presence of an initial layer.

Remark 3.1. The first order temporal discretization (3.2) was previously used in [23] for the
same kinetic equation to define a first order finite difference AP scheme regardless of the initial
data, and this scheme also has the parabolic time step restriction ∆t = O(h2) as ε→ 0 just like
our method in [14, 15]. Here, we use the discretization (3.2) only for the first time step to deal
with the initial layer, and more specifically, to drive the numerical solution to be O(1) after the
first step. Note that away from the initial layer, our implicit-explicit strategy in (3.1) drives the
numerical solution to stay close to the local equilibrium, with gn + v∂xρ

n = O(ε), n ≥ 2, while
a scheme with (3.2) for all n ≥ 0 drives the solution to satisfy gn+1 + v∂xρ

n = O(ε), that is
gn + v∂xρ

n = O(ε) + O(∆t) with an extra O(∆t) error. This shows that our implicit-explicit
strategy (3.1) better keeps the computed solution close to the local equilibrium when ε� 1.
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Higher order temporal discretization. To improve the temporal accuracy, higher order
globally stiffly accurate IMEX-RK time integrators of type ARS will be applied. An r-stage
IMEX-RK scheme we consider here can be represented with a double Butcher tableau

c̃ Ã
b̃T

c A
bT

, (3.3)

where both Ã = (ãij) and A = (aij) are lower triangular r × r matrices, with Ã having zero
diagonal entries. For convenience, the index is taken as i, j = 0, 1, · · · , s, with s = r − 1.
The components of c̃ = (c̃i) and c = (ci) are related to Ã and A in the usual way, namely,

c̃i =
∑i−1
j=0 ãij , ci =

∑i
j=0 aij , i = 0, · · · , s and vectors b̃ = (b̃i) and b = (bi) provide the

quadrature weights to combine the numerical approximations from inner stages. The IMEX-
RK scheme is said to be globally stiffly accurate [5] if

cs = c̃s = 1, and asj = bj , ãsj = b̃j ,∀j = 0, · · · , s. (3.4)

Its being type ARS [5] refers to the following structure of the implicit part

A =

[
0 0

0 Â

]
, (3.5)

where Â is invertible. We want to particularly point out that the r-stage IMEX-RK method of
type ARS effectively has s = r − 1 stages.

The first order time integrator in our scheme (3.1) is globally stiffly accurate and of type
ARS. It is denoted as ARS(1, 1, 1) and represented by

0 0 0
1 1 0

1 0

0 0 0
1 0 1

0 1
.

For second and third order accuracy, we use ARS(2, 2, 2) and ARS(4, 4, 3) proposed in [3] (also
see the appendix in [5] for the formulas). Here ARS(s, s, p) stands for an IMEX-RK method
of type ARS, that is p-th order accurate with effective s stages in both the explicit and implicit
parts. In this work, the semi-discrete temporal schemes with ARS(1, 1, 1), ARS(2, 2, 2) and
ARS(4, 4, 3) are referred to as the IMEXp scheme, with p = 1, 2, 3, respectively.

When the initial data is not well-prepared, the IMEXp scheme may suffer from order reduc-
tion or poor accuracy. Based on the formal asymptotic analysis in Section 5 (also see Remark
3.3 and Remark 5.2), the following strategy is proposed. At n = 0, we replace the IMEXp
scheme by the first order scheme in (3.2). In addition, for the first two steps with n = 0, 1,
we modify the time step size into ∆t1 = ∆t2 = ∆tp, where ∆t is the time step used for later
steps and predicted by stability analysis. Here and below, whenever needed, we will use ∆tn to
represent the time step size from the n-th time step.

Remark 3.2. It is important for us to use globally stiffly accurate IMEX-RK methods in
order for the proposed methods to be AP (also see discussion in [5]). Moreover, with our
proposed implicit-explicit strategy, such time integrators also ensure that the numerical solutions
from both inner stages and full RK steps will stay close to the local equilibrium when ε � 1,
particularly with gn+v∂xρ

n = O(ε), n ≥ 2 (see Section 5). The implicit part A being triangular
will render a simple system to solve. We want to point out that the IMEX-RK methods being
ARS is not essential for our analysis. Compared with the A-type IMEX-RK methods which
are another viable type of globally stiffly accurate IMEX-RK for our objective, the ARS type
has a relatively more manageable order conditions. For instance it was proved in [6] that there
is no three stage A-type IMEX-RK method that is second order accurate and globally stiffly
accurate.

Remark 3.3. In the presence of the initial layer, high order versions of the scheme (3.2) will
still result in first order temporal accuracy, hence it is sufficient to apply the first order scheme
(3.2) directly at n = 0 in the modified scheme.
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Remark 3.4. Our goal is to design AP methods with high order accuracy for ε ranging from
0 to O(1). To this end, it seems important that the numerical solutions stay sufficiently close
to the local equilibrium in the diffusive regime, namely, gn + v∂xρ

n = O(ε). This property is
guaranteed by our proposed implicit-explicit strategy (at least for n ≥ 2, also see Section 5).
To facilitate with the understanding, in Appendix A, we examine a family of AP methods, that
are closely related to our proposed methods except using a different implicit-explicit strategy as
in (3.2). Both our formal analysis and numerical tests show that an insufficient approximation
of the local equilibrium at the numerical level can result in temporal accuracy reduction in g
(at least) in the diffusive regime with ε� 1, and this reduction may further affect the accuracy
in f . Surely a mathematically more rigorous analysis would be needed to fully understand how
different implicit-explicit strategies may affect the accuracy of formally high order AP methods.

3.2 Spatial discretization

For the semi-discrete methods in Section 3.1, DG methods will be further applied in space. We
will start with some notation. Let Ωx = [xL, xR] be the computational domain in space, with
a mesh defined by xL = x 1

2
< x 3

2
< · · · < xN+ 1

2
= xR. Let Ii = [xi− 1

2
, xi+ 1

2
] be an element

with its length hi = xi+ 1
2
− xi− 1

2
and its midpoint xi. We set h = maxi hi. With k be any

nonnegative integer, we define a finite dimensional discrete space

Ukh =
{
u ∈ L2(Ωx) : u|Ii ∈ P k(Ii), ∀i = 1, · · · , N

}
, (3.6)

where the local space P k(I) consists of polynomials of degree up to k on I. For any u ∈ Ukh , we
further define its jump at xi+ 1

2
as [u]i+ 1

2
= u(x+

i+ 1
2

)− u(x−
i+ 1

2

). Here, u(x±) = lim∆x→0± u(x+

∆x), and we also use ui+ 1
2

= u(xi+ 1
2
), u±

i+ 1
2

= u(x±
i+ 1

2

),∀i.
The spatial discretization will follow a standard derivation of DG methods, with the diffusive

term discretized via a local DG method, which is based on the first order form of ∂xxρ with
q = ∂xρ as an auxiliary unknown. The fully discrete scheme with a first order temporal accuracy
is given as follows. Given ρnh, qnh and gnh(·, v) ∈ Ukh that approximate the solution ρ, q = ∂xρ
and g at t = tn, we look for ρn+1

h , qn+1
h , gn+1

h (·, v) ∈ Ukh at tn+1 = tn + ∆t, satisfying

(qn+1
h , ϕ) + dh(ρn+1

h , ϕ) = 0, ∀ϕ ∈ Ukh (3.7a)(ρn+1
h − ρnh

∆t
, φ
)

+ lh(〈v(gnh + ωvqnh)〉, φ) = ω〈v2〉lh(qn+1
h , φ), ∀φ ∈ Ukh (3.7b)(gn+1

h − gnh
∆t

, ψ
)

+
1

ε
bh,v(g

n
h , ψ)− v

ε2
dh(ρn+1

h , ψ) = − 1

ε2
(gn+1
h , ψ), ∀ψ ∈ Ukh . (3.7c)

The bilinear forms in the scheme are

dh(ρh, ψ) =
∑
i

∫
Ii

ρh∂xψdx+
∑
i

ρ̆h,i− 1
2
[ψ]i− 1

2
, (3.8a)

lh(qh, φ) = −
∑
i

∫
Ii

qh∂xφdx−
∑
i

q̂h,i− 1
2
[φ]i− 1

2
, (3.8b)

bh,v(gh, ψ) = ((I−Π)Dh(gh; v), ψ) = (Dh(gh; v)− 〈Dh(gh; v)〉, ψ). (3.8c)

Here (·, ·) is the standard inner product for the L2(Ωx) space. For any fixed v ∈ Ωv, the function
Dh(gh; v) ∈ Ukh in (3.8c) is the upwind approximation of the transport term v∂xg within the
DG framework, namely,

(Dh(gh; v), ψ) = −
∑
i

(∫
Ii

vgh∂xψdx

)
−
∑
i

(̃vgh)i− 1
2
[ψ]i− 1

2
, ∀ψ ∈ Ukh , (3.9)

with ṽg being the upwind numerical flux consistent to vg,

ṽg :=

{
vg−, if v > 0
vg+, if v < 0

. (3.10)
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The terms ρ̆ and q̂ in (3.8) are also consistent numerical fluxes, related to the discretization of
a diffusive operator. In this paper, either of the following alternating flux pairs is considered.

right-left: ρ̆ = ρ+, q̂ = q−; left-right: ρ̆ = ρ−, q̂ = q+. (3.11)

These alternating fluxes are known to lead to stable and optimally accurate DG discretizations
for the diffusive operator ∂xx, see [10].

We further introduce two linear operators, Dρh, Dqh : Ukh → Ukh , satisfying

(Dρhφ, ψ) = −dh(φ, ψ), (Dqhψ, φ) = lh(ψ, φ). (3.12)

Both approximates the spatial derivative ∂x. They are well-defined bounded operators following
the Riesz representation, and are determined entirely by the discrete space Ukh and the involved
numerical fluxes. With these, the scheme (3.7) can be rewritten into its strong form,

qn+1
h = Dρh(ρn+1

h ), (3.13a)

ρn+1
h − ρnh

∆t
+Dqh(〈v(gnh + ωvqnh)〉) = ω〈v2〉Dqh(qn+1

h ), (3.13b)

gn+1
h − gnh

∆t
+

1

ε
(I−Π)Dh(gnh ; v) +

v

ε2
Dρh(ρn+1

h )︸ ︷︷ ︸
qn+1
h

= − 1

ε2
gn+1
h . (3.13c)

Once we realize the fully discrete scheme (3.13) is obtained by replacing the spatial derivative
operator in (a first order form of) (3.1) by the discrete analogue, it is straightforward to write
down the fully discrete schemes with the higher order globally stiffly accuracy IMEX-RK schemes
of type ARS in time. These fully discrete schemes will be referred to as IMEX-LDG methods,
or IMEXp-LDG if the p-th order accuracy in time is specified, or IMEXp-LDGk if Uk−1

h is used
in the LDG spatial discretization, with p = 1, 2, 3 and k = 1, 2, · · · .

The initialization will be done for ρ, g, q via the L2 projection onto Ukh . In actual implemen-
tation, for less smooth ρ(·, 0), such as in the Riemann problem in Section 6, we instead initialize
q0
h ∈ Ukh as a discrete derivative of ρ0

h, namely, q0
h = Dρhρ0

h.
The choice of the numerical fluxes is important for the discrete derivative operators Dρh and

Dqh (or equivalently, dh and lh) to preserve some key relation of the differential operators. This
is summarized in next lemma, which can be verified directly. The superscript > to an operator
denotes its adjoint.

Lemma 3.5. With each pair of alternating fluxes (3.11), the following holds

dh(φ, ϕ) = lh(ϕ, φ), ∀ϕ, φ ∈ Ukh , or equivalently Dρh = −(Dqh)>. (3.14)

Proposition 3.6. The proposed IMEX-LDG method is uniquely solvable for any ε > 0.

The proof of this proposition boils down to the unique solvability of the problem examined
in next lemma. And the boundedness established in next lemma will also be used in the formal
asymptotic analysis of the numerical methods.

Lemma 3.7. Given S ∈ L2(Ωx) and γ > 0. Consider the following problem: look for ρh,
qh ∈ Ukh , such that

(qh, ϕ) + dh(ρh, ϕ) = 0, ∀ϕ ∈ Ukh , (ρh, φ)− γlh(qh, φ) = (S, φ), ∀φ ∈ Ukh , (3.15)

or equivalently,
qh = Dρhρh, ρh = γDqhqh + Sh. (3.16)

Here Sh denotes the L2 projection of S onto Ukh . Then ρh and qh are uniquely solvable. In
addition, ||ρh|| ≤ ||S||.

Proof. Take ϕ = qh, φ = ρh in (3.15), and use the relation of lh and dh in Lemma 3.5, we get

||ρh||2 + γ||qh||2 = (S, ρh) ≤ ||S|| ||ρh||. (3.17)

Particularly if S = 0, then ρh = qh = 0. This, in combination with the linearity of the problem
and Ukh being finite dimensional, indicates the uniqueness hence the unique solvability of the
solution ρh, qh ∈ Ukh . From (3.17), one also obtains ||ρh|| ≤ ||S||.
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4 Numerical stability by Fourier analysis

In this section, Fourier analysis, also referred to as von Neumann analysis, is presented to study
the numerical stability of the proposed IMEXp-LDGk methods when they are applied to the
telegraph equation with the discrete velocity in different regimes. Numerical experiments show
that such analysis also informs about the methods when they are applied to more general models,
such as the one group transport equation in slab geometry. Furthermore, the analysis in this
section provides some guidance to the choice of the weight function ω, particularly see Theorem
4.1 and Theorem 4.3. Note that our schemes with or without the modification during the first
few steps to address the non well-prepared initial data share the same numerical stability.

4.1 Setup of the analysis

To carry out the Fourier analysis, we assume the mesh is uniform and the boundary condition
in x is periodic. Consider the IMEXp-LDGk methods with p = 1, 2, 3, k ≥ 1 and the left-right
alternating flux pair in (3.11), applied to the telegraph equation where Ωv = {−1, 1}. Let the
numerical solutions be

ρnh(x) =
k−1∑
l=0

ρnmlφ
l
m(x), qnh(x) =

k−1∑
l=0

qnmlφ
l
m(x), (4.1a)

gnh(x, 1) =
k−1∑
l=0

gn+,mlφ
l
m(x), gnh(x,−1) =

k−1∑
l=0

gn−,mlφ
l
m(x) (4.1b)

for any x ∈ Im. Here φlm(x) = φl(Xm), with Xm = x−xm

hm/2
and φl being the l-th Legendre

polynomial on [−1, 1].
Recall 〈gnh〉 = 0, this implies gn+,ml = −gn−,ml, ∀n,m, l. Moreover, qh can be locally elim-

inated. We now collect the independent unknowns into ρnm = (ρnm0, . . . , ρ
n
m k−1)T , gnm =

(gn+,m0, . . . , g
n
+,m k−1)T , take the ansatz ρnm = ρ̂n exp(Iκxm) and gnm = ĝn exp(Iκxm) with

I2 = −1, then our IMEXp-LDGk scheme will render(
ρ̂n+1

ĝn+1

)
= Gω(ε, h,∆t; ξ)

(
ρ̂n

ĝn

)
, (4.2)

where Gω(ε, h,∆t; ξ) is a 2k × 2k amplification matrix dependent of the model parameter ε,
mesh size h, time step size ∆t, the discrete wave number ξ = κh ∈ [0, 2π], and also the weight
function ω in the scheme (3.1). (More details about Gω(ε, h,∆t; ξ) can be seen from the proof
of Theorem 4.1.) The following principle will be used for us to study numerical stability.

Principle for Numerical Stability: For any given ε, h,∆t, let the eigenvalues of Gω

be λi(ξ), i = 1, . . . , 2k. Our scheme is “stable”, if for all ξ ∈ [0, 2π], it satisfies either

(∗) max
i=1,...,2k

{|λi(ξ)|} < 1, or (4.3)

(∗) max
i=1,...,2k

{|λi(ξ)|} = 1 and Gω is diagonalizable. (4.4)

This principle is a necessary condition for the standard L2 energy to be non-increasing,
and the resulting analysis provides mathematical insight regarding the stability of the proposed
schemes. For the rest of this section, we will use this principle to study the stability conditions.
On the other hand, what we have learned here about numerical stability through Fourier analysis
seems to be quite consistent with what we have observed numerically for the schemes.

4.2 Main findings

The next theorem reveals a structure of the amplification matrix Gω in terms of its dependence
on ε, h,∆t when the weight function is taken to be ω = 1.
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Theorem 4.1. For any given k ≥ 1 and p = 1, 2, 3, the amplification matrix Gω(ε, h,∆t; ξ) of

the IMEXp-LDGk method with the weight function ω = 1 is similar to some matrix Ĝ( εh ,
∆t
εh ; ξ).

As a direct consequence, the eigenvalues of this Gω(ε, h,∆t; ξ) depends on ε, h,∆t only in terms

of ε
h and ∆t

εh , or equivalently, only in terms of ε
h and ε2

∆t = ε/h
∆t/(εh) .

Proof. Throughout the proof, we write the amplification matrix Gω(ε, h,∆t; ξ) with the weight
function ω = 1 as G(ε, h,∆t; ξ). We first consider the IMEX1-LDGk scheme defined in (3.7)
with ω = 1. Let us start with examining how each term in (3.7) contributes to the amplification
matrix. With the notation and expansion in (4.1), we have(
Dρhρ

n+1
h , φlm

)
Im

= −
k−1∑
s=0

ρn+1
ms

∫
Im

φsm(x)∂xφ
l
m(x)dx

+
k−1∑
s=0

ρn+1
ms φ

s
m(xm+ 1

2
)φlm(xm+ 1

2
)−

k−1∑
s=0

ρn+1
m−1 sφ

s
m−1(xm− 1

2
)φlm(xm− 1

2
). (4.5)

Here (·, ·)Im is the standard L2 inner product on Im. Substitute into (4.5) the ansatz ρn+1
ms =

ρ̂ns exp(Iκxm),∀m,∀s, and use φsm(x) = φs(Xm) with Xm = x−xm

hm/2
, we obtain

(
Dρhρ

n+1
h , φlm

)
Im

= exp(Iκxm)
k−1∑
s=0

Dls(ξ)ρ̂
n+1
s , (4.6)

where Dls(ξ) = −
∫ 1

−1
φs(x)∂xφ

l(x)dx + φs(1)φl(1) − exp(−Iξ)φs(1)φl(−1). We write D(ξ) =(
Dls(ξ)

)
∈ Rk×k, and it only depends on ξ = κh (surely also on k).

Similarly, there exist S(ξ) = (Sls(ξ)), L(ξ) = (Lls(ξ)) ∈ Rk×k, such that

((
(I−Π)Dhgnh

)
(·, v = 1), φlm

)
Im

= exp(Iκxm)

k−1∑
s=0

Sls(ξ)ĝ
n
s ,

(
Dqhρ

n
h, φ

l
m

)
Im

= exp(Iκxm)

k−1∑
s=0

Lls(ξ)ρ̂
n
s .

Indeed −L(ξ) = D? := D(ξ)
>

, that is, −L(ξ) is the conjugate transpose of D(ξ). We also define

M = (Mls) ∈ Rk×k, with Mls = 1
2

∫ 1

−1
φs(x)φl(x)dx.

Based on the derivation above, the Fourier analysis for the IMEX1-LDGk method will lead
to (

hM + 〈v2〉∆th D
?M−1D 0

∆tD (ε2 + ∆t)hM

)(
ρ̂n+1

ĝn+1

)
=

(
hM + 〈v2〉∆th D

?M−1D ∆tD?

0 ε2hM − ε∆tS

)(
ρ̂n

ĝn

)
. (4.7)

Here ρ̂n = [ρ̂n0 , · · · , ρ̂nk−1]>, and ĝn = [ĝn0 , · · · , ĝnk−1]>. We further left-multiply

(
1
εI 0
0 1

εh2 I

)
to both sides of (4.7), and get h

εM + 〈v2〉∆tεhD
?M−1D 0

∆t
εh2D ( εh + ∆t

εh )M


︸ ︷︷ ︸

GL

(
ρ̂n+1

ĝn+1

)

=

 h
εM + 〈v2〉∆tεhD

?M−1D ∆t
ε D

?

0 ε
hM −

∆t
εh ·

ε
hS


︸ ︷︷ ︸

GR

(
ρ̂n

ĝn

)
, (4.8)

and hence the amplification matrix G(ε, h,∆t; ξ) = G−1
L GR. One can verify that this matrix G

is similar to Ĝ( εh ,
∆t
εh ; ξ), more specifically,(

hI 0
0 I

)−1

G(ε, h,∆t; ξ)

(
hI 0
0 I

)
= Ĝ(

ε

h
,

∆t

εh
; ξ),
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where Ĝ( εh ,
∆t
εh ; ξ) = h

εM + 〈v2〉∆tεhD
?M−1D 0

∆t
εhD ( εh + ∆t

εh )M

−1 h
εM + 〈v2〉∆tεhD

?M−1D ∆t
εhD

?

0 ε
hM −

∆t
εh ·

ε
hS

 .

For the general IMEXp-LDGk method with p = 2, 3, we can carry out a similar analysis as
above. Particularly, for the l-th inner stage, we have(

ρ̂n,(l)

ĝn,(l)

)
= Gl(ε, h,∆t; ξ)

(
ρ̂n

ĝn

)
,

one can then show (
hI 0
0 I

)−1

Gl(ε, h,∆t; ξ)

(
hI 0
0 I

)
= Ĝl(

ε

h
,

∆t

εh
; ξ)

for some Ĝl(
ε
h ,

∆t
εh , ξ). With the identical similarity transformation for all inner stages, the

theorem will hold for p = 2, 3.

Remark 4.2. The structure of the amplification matrix Gω with ω = 1 shown in Theorem 4.1
is essentially due to the diffusive scaling of the model.

The result in Theorem 4.1 shows that numerical stability of the proposed schemes with the
weight function ω = 1 depends on ε, h,∆t only in terms of ε/h and ε2/∆t. In order for this
intrinsic structure not affected by the weight function ω, one should choose ω as a function of ε/h
and ε2/∆t only. By taking into account the property in (2.6), some suitable weight functions
include ω = exp(−ε/h) and ω = exp(−ε2/∆t). On the other hand, the weight exp(−ε2/h)
used in [5] does not keep such scaling structure of the amplification matrix, while the piecewise
constant weight ω = χ{ε<h} in [4] does (here χE is an indicator function associated with the
set E). The discussion above leads to the next theorem, which can be established just as for
Theorem 4.1.

Theorem 4.3. The result in Theorem 4.1 holds as long as the weight ω in the scheme is a

function of ε
h and ∆t

εh , or equivalently, it is a function of ε
h and ε2

∆t .

4.3 Numerical results

We are now ready to present the results from the stability analysis. Motivated by Theorem
4.1 and Theorem 4.3, and based on the stability principle, we plot stability regions in terms
of σ = log10(ε/h) and η = log10(∆t/(εh)) in Figure 4.1 for ω = 1, and in Figure 4.2 for
ω = exp(−ε/h) and ω = exp(−ε2/∆t). What we also plot are the results for the methods with
the weight function ω = 0 in Figure 4.3, and in this case, our methods recover the DGp-IMEXp
methods proposed in [15]. The white region in each plot represents the stable region. Both σ
and η are sampled with a spacing 1/40, and the discrete wave number ξ is uniformly taken from
[0, 2π] with 100 samples. As the horizontal axis σ = log10(ε/h) goes from the left to right, the
spatial mesh starts from being under-resolved to being resolved with respect to the ε-scale of
the model, hence the model goes from its diffusive regime to its kinetic (or transport) regime.
Our observations are summarized below.

1. When the weight function is ω = 1, exp(−ε/h), or ω = exp(−ε2/∆t), the IMEXp-LDGp
scheme (with p = 1, 2, 3) is unconditionally stable with no restriction on the time step
size ∆t when σ < σp,ω, or equivalently when ε/h < Rp,ω. Here σp,ω and Rp,ω are some
constants. This confirms the proposed schemes are unconditionally stable in the diffu-
sive regime, measured by sufficiently small ε/h. In this regime, exp(−ε/h) ≈ 1 and
exp(−ε2/∆t) ≈ 1, and the proposed method with all three weights are very “close” and
hence with comparable σp,ω for a given p.
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(a) IMEX1-LDG1 with ω = 1 (b) IMEX2-LDG2 with ω = 1

(c) IMEX3-LDG3 with ω = 1 (d) IMEX3-LDG2 with ω = 1

Figure 4.1: Stability regions of the IMEXp-LDGk methods with the weight function ω = 1. White:
stable; black: unstable.
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(a) IMEX1-LDG1 with ω = exp(−ε/h) (b) IMEX1-LDG1 with ω = exp(−ε2/∆t)

(c) IMEX2-LDG2 with ω = exp(−ε/h) (d) IMEX2-LDG2 with ω = exp(−ε2/∆t)

(e) IMEX3-LDG3 with ω = exp(−ε/h) (f) IMEX3-LDG3 with ω = exp(−ε2/∆t)

Figure 4.2: Stability regions of the IMEXp-LDGk methods with the weight function ω = exp(−ε/h)
and ω = exp(−ε2/∆t). White: stable; black: unstable.

15



2. When the weight function is ω = 1, exp(−ε/h), or ω = exp(−ε2/∆t), and under the
condition σ ≥ σp,ω, the IMEXp-LDGp scheme (with p = 1, 2, 3) is conditionally stable.
And the boundary of the conditionally stable region is determined by a function Fp,ω, that
is, the scheme is stable when η ≤ Fp,ω(σ).

2.a) With the scale- and mesh-dependent weight function ω = exp(−ε/h) and exp(−ε2/∆t),
it is observed that the function Fp,ω(σ) ≈ Cp,ω when σ � 1 for p = 1, 2, 3. Here Cp,ω
is some constant. This implies that when the regime is relatively kinetic (or transport)
with h� ε, the conditional stability requires approximately

log10(
∆t

εh
) ≤ Cp,ω,

corresponding to a hyperbolic type time step condition ∆t = O(εh). This is highly
desirable numerically. With the constant weight function ω = 1, similar observation
can be made when p = 1, 3, not when p = 2.

2.b) For the scheme with the constant weight function ω = 1 and p = 2, the boundary of
the stability region becomes a straight line with a slope approximately −1 for large
σ. That is, the function Fp,ω(σ) ≈ −σ + Cp,ω when σ � 1, with Cp,ω being some
constant. This implies in the kinetic regime with h � ε, the conditional stability of
the method requires approximately

log10(
∆t

εh
) ≤ − log10(

ε

h
) + Cp,ω.

This corresponds to ∆t = O(h2), a parabolic time step restriction for stability in this
regime. Such time step restriction, though not desirable, is also confirmed numerically.

With the same spatial discretization (namely the LDG2 method and ω = 1), if we
apply a more costly temporal discretization, the third order ARS(4,4,3) scheme in
time, the resulting IMEX3-LDG2 method will display the desired stability property
in both the diffusive and kinetic regimes, namely the unconditional stability in the
diffusive regime and the hyperbolic time step condition in the kinetic regime, see the
final plot in Figure 4.1.

3. When the weight function is ω = 0, our proposed IMEXp-LDGp methods (p = 1, 2, 3)
are exactly the DGp-IMEXp methods previously designed and studied in [15]. Note that
this zero weight does not satisfy the property in (2.6), and the unconditional stability
is not expected in the diffusive regime. From Figure 4.3, one can observe that in the
kinetic regime, the methods require hyperbolic time step condition. This is expected as
the IMEX-LDG methods with the weight ω = exp(−ε/h), exp(−ε2/∆t) and ω = 0 are
very “close” when ε� h. In the diffusive regime when ε� h, the DGp-IMEXp methods
requires a parabolic time step condition ∆t = O(h2). Recall this is one motivation for the
present work.

5 Formal asymptotic analysis with initial layers: numeri-
cal methods

In this section, we assume ε � 1 and perform a formal asymptotic analysis for the proposed
schemes with the small ε while the mesh parameters h and ∆t are fixed. The main objective is
to show the schemes are asymptotic preserving (AP), namely, the limiting schemes as ε→ 0 are
consistent discretizations of the limiting equation. In the presence of the initial layer, the limiting
equation is referred to as the interior heat equation (2.11) ((2.12)) with the asymptotically
consistent initial data (2.18). In addition, we will show the limiting schemes are of formally
high order accuracy. The initial data f(x, v, 0; ε) = ρ(x, 0; ε) + εg(x, v, 0; ε) is taken as (2.7)
(also see (2.8)). With this, ρ(x, 0; ε) = O(1), yet g(x, v, 0; ε) = O(ε−1) in general, unless other
property is specified for the initial data (e.g. being well-prepared). The following assumptions
are further made for the initial data.
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(a) IMEX1-LDG1 with ω = 0
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(b) IMEX2-LDG2 with ω = 0
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(c) IMEX3-LDG3 with ω = 0

Figure 4.3: Stability regions of the IMEXp-LDGp methods with ω = 0 (the methods are also the
DGp-IMEXp methods in [15]). White: stable; black: unstable.

Assumption: All spatial derivatives of ρ at t = 0, namely ||∂(m)
x ρ(·, 0; ε)|| with m = 1, 2, · · · ,

have comparable scales as ||ρ(·, 0; ε)|| with respect to ε. Similarly all spatial derivatives of g at

t = 0, namely ||∂(m)
x g(·, v, 0; ε)|| with m = 1, 2, · · · , have comparable scales as ||g(·, v, 0; ε)|| with

respect to ε. For instance, they can all be O(1), or all be O(ε−1).

Under this assumption, it is reasonable to state that, at the discrete level, the discrete spatial
derivatives of ρ (resp. q, g) of all orders, such as DρhD

q
h, DqhD

ρ
h, DρhD

ρ
h that are defined based

on one or more from Dρh, Dqh, Dh, have comparable scales as ρ (resp. q, g) respect to ε. As for
the small parameters ε, h, and ∆t, it is assumed that ε2 � ∆t. That is, the exact solution exits
from the initial layer (if it exists) by the time t = ∆t, and the temporal mesh is under-resolved
with respect to the initial layer feature. In addition, we assume ε ≤ ∆t ≤ 1,∆t/h = O(1) to
avoid explicit dependence on ∆t, h of the hidden constant in the big-O notation. For instance,
under this assumption, ε/(ε2 + ∆t) ≤ 1 holds.

This section is organized as follows. In Section 5.1, the formal asymptotic analysis is carried
out for the first order semi-discrete temporal scheme, IMEX1, for both the well-prepared and
non well-prepared initial data. In Section 5.2, the analysis will be done for the fully discrete
IMEX1-LDG methods, to illustrate the role of the spatial discretization. Finally in Section 5.3,
we analyze the method involving higher order IMEX-RK temporal discretizations, to see how
the structures of the adopted IMEX-RK methods, namely being globally stiffly accurate and
being type ARS, work for the proposed methods to achieve the AP property. For the clarity of
the presentation, we will focus on the analysis for the schemes with the weight function ω = 1.
More general weight functions will be discussed in Section 5.2.

5.1 Semi-discrete temporal scheme: IMEX1

In this section, we consider the semi-discrete temporal IMEX1 scheme in Section 3.1 with the
weight function ω = 1. Let Rn = gn + v∂xρ

n, then the IMEX1 scheme in (3.1) leads to the
following updates for ρn+1, gn+1, and Rn+1,

ρn+1 = ρn + ∆t〈v2〉∂xxρn+1 −∆t∂x〈vRn〉, (5.1a)

gn+1 =
ε2

ε2 + ∆t
gn − ε∆t

ε2 + ∆t
(I−Π)(v∂xg

n)− ∆t

ε2 + ∆t
(v∂xρ

n+1), (5.1b)

Rn+1 =
ε2

ε2 + ∆t
(gn + v∂xρ

n+1)− ε∆t

ε2 + ∆t
(I−Π)(v∂xg

n). (5.1c)

Based on the classical PDE theory for the well-posedness of second order elliptic equations,
one can get the unique solvability of ρn+1 from (5.1a), and additionally ||ρn+1|| ≤ C(||ρn|| +
||∂x〈vRn〉||) for some generic constant C.

When there is an initial layer, the proposed modification (3.2) to the first time step with
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n = 0 leads to a different set of updates,

g1 =
ε2

ε2 + ∆t
g0 − ε∆t

ε2 + ∆t
(I−Π)

(
v∂xg

0
)
− ∆t

ε2 + ∆t
v∂xρ

0, (5.2a)

ρ1 = ρ0 + ∆t〈v2〉∂xxρ0 −∆t
( ε2

ε2 + ∆t
〈vR0〉 − ε∆t

ε2 + ∆t
〈v2∂xxg

0〉
)
, (5.2b)

R1 =
ε2

ε2 + ∆t
R0 − ε∆t

ε2 + ∆t
(I−Π)

(
v∂xg

0
)

+ v∆t〈v2〉∂xxxρn − v∆t
( ε2

ε2 + ∆t
∂x〈vR0〉 − ε∆t

ε2 + ∆t
〈v2∂xxxg

0〉
)
. (5.2c)

The initial data being well-prepared corresponds to R0 = O(ε). Under the assumption of the
initial data (2.7), the more general data would lead to R0 = O(ε−1). Accordingly, we examine
two cases to understand the behavior of the schemes when ε� 1.

Case 1: the initial is well-prepared with R0 = O(ε). In this case, following mathematical
induction in n, one can show that the updates in (5.1) with ε� 1 lead to

• ρn, gn = O(1), ∂xρ
n, ∂xg

n = O(1), ∀n ≥ 0;

• Rn = gn + v∂xρ
n = O(ε),∀n ≥ 0; that is, the numerical solution stays within the O(ε)-

width neighborhood of the local equilibrium. In addition, ∂x〈vRn〉 = O(ε), ∀n ≥ 0;

• ρn satisfies
ρn+1 − ρn

∆t
= 〈v2〉∂xxρn+1 +O(ε), ∀n ≥ 0. (5.3)

Here the estimates for the spatial derivatives of ρn, gn, 〈vRn〉 are obtained similarly as for
ρn, gn, Rn after one differentiates each equation in (5.2) with respect to x and uses the assump-
tion on the initial data and the spatial derivatives. In this case with the well-prepared initial,
the limiting scheme as ε→ 0 is a consistent scheme of the first order temporal accuracy for the
limiting heat equation, and more specifically, the scheme involves a backward Euler method in
time with the consistent initial data. And the computed ρ and g satisfies the local equilibrium
property. This shows the IMEX1 scheme is AP.

Case 2: the initial is not well-prepared with R0 = O(ε−1). In this case and with ε� 1,
the updates in (5.1) for n ≥ 1 and in (5.2) for n = 0 lead to

• ρn, gn = O(1), ∂xρ
n, ∂xg

n = O(1), ∀n ≥ 1, even though ρ0, ∂xρ
0 = O(1) and g0, ∂xg

0 =
O(ε−1).

• Rn = gn + v∂xρ
n = O(ε), ∂x〈vRn〉 = O(ε), ∀n ≥ 2, while R0, ∂x〈vR0〉 = O(ε−1) and

R1, ∂x〈vR1〉 = O(1).

• ρn satisfies
ρn+1 − ρn

∆t
= 〈v2〉∂xxρn+1 +O(ε), ∀n ≥ 2, (5.4)

while at n = 0, 1, it satisfies

ρ1 = ρ0 + ∆t〈v2〉∂xxρ0 +O(∆t), ρ2 = ρ1 + ∆t〈v2〉∂xxρ2 +O(∆t). (5.5)

In Case 2, even though the local truncation errors at the first two steps are O(1), the local
errors in ρ1 and ρ2 are of first order in ∆t, hence the limiting scheme as ε → 0 of the IMEX1
scheme is still a first order consistent discretization of the limiting interior heat equation with
the asymptotically consistent initial condition. Particularly, the limiting scheme involves a per-
turbed forward Euler method of the first order accuracy during the first time step, a perturbed
backward Euler method of the first order accuracy during the second time step, and a standard
backward Euler method afterward. The solution of the limiting scheme satisfies the local equi-
librium property when n ≥ 2 (after the first two steps and away from the initial layer). Hence
the proposed IMEX1 scheme with the modified first step treatment is still AP.
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Remark 5.1. The analysis above can be improved based on more refined classification of the
initial data. For example, there is an intermediate case with R0 = O(1). Moreover, a close
examination shows that the initial quantity R0 comes into play in (5.1a) via its first moment in
v, namely 〈vR0〉, instead of R0 itself. And 〈vR0〉 could be much smaller than R0 with respect to
ε. In Table 5.1, we summarize the accuracy of the semi-discrete temporal scheme IMEX1 (and
indeed IMEXp, with p = 1, 2, 3) when it is applied to cases with various size of the initial data
〈vR0〉 with respect to ε and when the scheme is not modified during the initial steps to address
the possible accuracy loss or reduction. From the table, one can see that with p = 1, only the
worst case, namely 〈vR0〉 = O(ε−1), requires a modified version of the IMEX1 scheme to achieve
the first order temporal accuracy. In practice, the initial data is often given as f |t=0 = f0, and
R0 and 〈vR0〉 can be expressed in terms of f0 as follows

R0 =
f0 − 〈f0〉

ε
+ v∂x〈f0〉, 〈vR0〉 = 〈v2〉∂x〈f0〉+

1

ε
〈vf0〉. (5.6)

Table 5.1: The relation between the initial data and the accuracy of the semi-discrete temporal
IMEXp scheme without any special modification during the initial steps to address the potential
accuracy loss and reduction for ε � 1. The IMEXp scheme here refers to the scheme in (3.1) for
p = 1 and scheme in (5.14)-(5.15) for general p, with n ≥ 0. Here R0 = g0 + v∂xρ

0.

initial being well-prepared? R0 IMEXp

yes, with R0 = O(ε) R0 = O(ε) O(∆tp)

no, with R0 = O(1)
〈vR0〉 = O(ε) O(∆tp)
〈vR0〉 = O(1) O(∆t1)

no, with R0 = O(ε−1)
〈vR0〉 = O(ε) O(∆t1) +O(∆t2)
〈vR0〉 = O(1) O(∆t1) +O(∆t2)
〈vR0〉 = O(ε−1) O(ε−1)

5.2 Fully discrete scheme: IMEX1-LDG

In this section, we will consider the fully discrete scheme in Section 3.2, the IMEX1-LDG method
with the first order accuracy in time. The focus will be on understanding the role of the spatial
discretization. We start with the schemes with the weight function ω = 1, and then discuss the
cases with more general weight functions.

The analysis can be based on the numerical scheme either of its integral form (3.7), or its
equivalent strong form (3.13). We will follow the latter for a more clear presentation. Based on
(3.13), one gets the following updates for ρn+1

h , qn+1
h , gn+1

h , as well as for Rn+1
h := gn+1

h + vqn+1
h ,

qn+1
h −Dρh(ρn+1

h ) = 0, (5.7a)

ρn+1
h −∆t〈v2〉Dqh(qn+1

h ) = ρnh −∆tDqh(〈vRnh)〉), (5.7b)

gn+1
h =

ε2

ε2 + ∆t
gnh −

ε∆t

ε2 + ∆t
(I−Π)(Dh(gnh ; v))− ∆t

ε2 + ∆t
vqn+1
h , (5.7c)

Rn+1
h =

ε2

ε2 + ∆t
(gnh + vqn+1

h )− ε∆t

ε2 + ∆t
(I−Π)(Dh(gnh ; v)). (5.7d)

The unique solvability of qn+1
h and ρn+1

h from (5.7a)-(5.7b) is guaranteed by Lemma 3.7, and
additionally, ||ρn+1

h || = C(||ρnh|| + ∆t||Dρh〈vRnh〉||), with some generic constant C. From this,
(5.7) and the assumption on the initial data (especially its discrete analogue), one can conclude
that with the well-prepared initial data satisfying R0

h = O(ε),

• ρnh, qnh , gnh = O(1), Dh(gnh ; v) = O(1), ∀n ≥ 0;

• Rnh = gnh + vqnh = O(ε), Dqh(〈vRnh〉) = O(ε), ∀n ≥ 0;
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• ρnh and qnh satisfy

qn+1
h = Dρh(ρn+1

h ),
ρn+1
h − ρnh

∆t
= 〈v2〉Dqh(qn+1

h ) +O(ε), ∀n ≥ 0. (5.8)

Here the estimate for qnh is obtained similarly as for the semi-discrete case, namely, by applying
Dqh to (5.7a) and Dρh to (5.7b) and utilizing that Lemma 3.7 holds if one switch Dqh and Dρh in
(3.16). Now with the fixed h and ∆t, the limiting scheme as ε → 0 is a consistent scheme for
the limiting heat equation, and it involves the first order backward Euler method in time, and a
local DG method in space with the discrete space Ukh , together with the consistent initial data.
And the computed g, q satisfies the local equilibrium property. This shows the IMEX1-LDG
scheme is AP. Note that the analysis shares great similarity as that for the semi-discrete IMEX1
scheme, due to the property of Lemma 3.5. When the initial condition is not well-prepared, the
formal asymptotic analysis can be done similarly as for the IMEX1 scheme with the modification
during the first time step, and similar conclusions can be obtained as in Table 5.1, except that
the accuracy in Table 5.1 is only for temporal accuracy, and in space, the scheme has the
designed formal (high order) spatial accuracy of the local DG method.

For the limiting scheme, one can also write down its integral form when the initial data is
well-prepared: look for ρn+1

h , qn+1
h , gn+1

h (·, v) ∈ Ukh , such that

(qn+1
h , ϕ) = −dh(ρn+1

h , ϕ), ∀ϕ ∈ Ukh , (5.9a)(ρn+1
h − ρnh

∆t
, φ
)

= 〈v2〉lh(qn+1
h , φ), ∀φ ∈ Ukh , (5.9b)

(gn+1
h , ψ) = vdh(ρn+1

h , ψ) = −(vqn+1
h , ψ), ∀ψ ∈ Ukh , (5.9c)

for n ≥ 0. In fact, (5.9c) implies gn+1
h = −vqn+1

h .
Finally in this section, we want to take a look at the schemes with a more general weight

function ω, which satisfies (2.6). All the updates in (5.7) stay the same except for the second
equation (5.7b) to be replaced by

ρn+1
h − ω∆t〈v2〉Dqh(qn+1

h ) = ρnh −∆tDqh(〈vRnh〉)− (ω − 1)∆t〈v2〉Dqh(qnh). (5.10)

Similar as for the case when ω = 1, with ε � 1 and the well-prepared initial data, one can
get ρnh, q

n
h , g

n
h ,Dh(gnh ; v) = O(1), Rnh = gnh + vqnh = O(ε), Dqh(〈vRnh〉) = O(ε), ∀n ≥ 0. Moreover,

Dqh(qn+1
h − qnh)/∆t = O(1). Now the solution ρnh and qnh satisfy, ∀n ≥ 0,

qn+1
h = Dρh(ρn+1

h )

and

ρn+1
h − ρnh

∆t
= 〈v2〉Dqh(qn+1

h )−Dqh(〈vRnh〉)︸ ︷︷ ︸
O(ε)

+(ω − 1)〈v2〉Dqh(qn+1
h − qnh)︸ ︷︷ ︸
O(∆t)

(5.11)

= 〈v2〉Dqh(qn+1
h )−O(ε) + (ω − 1)O(∆t). (5.12)

One can see that as long as
(ω − 1)O(∆t) = O(ε), (5.13)

the limiting scheme will be a consistent implicit discretization of the limiting heat equation,
hence the proposed methods are AP. The two scale- and mesh-dependent choices, ω = exp(−ε/h)
and ω = exp(−ε2/∆t), suggested by the numerical stability analysis, satisfy the property (5.13)
under our assumption ∆t/h = O(1).

5.3 Higher order temporal discretizations: IMEXp

What remained is to understand the semi- and fully-discrete schemes with higher order temporal
discretizations. Since the spatial discretization does not essentially affect the analysis (just as
for the first order case in Sections 5.1-5.2), we here only focus on the semi-discrete temporal
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IMEXp scheme in this section. Such analysis also informs us the asymptotic behavior of the
fully-discrete IMEXp-LDGk scheme.

In our IMEXp scheme, globally stiffly accurate IMEX-RK methods of type ARS, denoted
as ARS(s, s, p), are applied. These are one-step p-th order method with effective s stages (see
Section 3.1 for the specific form of the schemes for p = 1, 2, 3). Based on the definitions, the
time integrators being globally stiffly accurate ensures that the numerical solution at tn+1 is
the same as that from the last inner stage of the RK step; and with the type ARS structure,
the solutions from the first inner stage are the same as that from the previous RK step. Using
these features, and following the same implicit-explicit strategy used in the IMEX1 scheme,
the IMEXp scheme is: given the numerical solution ρn, gn at t = tn, we look for ρn+1, gn+1 at
tn+1 = tn + ∆t, such that

ρn+1 = ρn,(s), gn+1 = gn,(s), (5.14)

where ρn,(l), gn,(l), l = 0, · · · , s, are from inner stages, satisfying

ρn,(0) = ρn, gn,(0) = gn, (5.15a)

ρn,(l) = ρn −∆t
l−1∑
j=0

ãlj

(
∂x〈v(gn,(j) + v∂xρ

n,(j))〉
)

+ ∆t
l∑

j=1

alj

(
〈v2〉∂xxρn,(j)

)
, l = 1, · · · , s,

(5.15b)

gn,(l) = gn − ∆t

ε

l−1∑
j=0

ãlj (I−Π)
(
v∂xg

n,(j)
)
− ∆t

ε2

l∑
j=1

alj

(
gn,(j) + v∂xρ

n,(j)
)
, l = 1, · · · , s.

(5.15c)

Note that the summation in the implicit part is from j = 1 instead of j = 0. It implies that
the update in the inner stages, related to the implicit part of the IMEX-RK methods, does not
explicitly depend on the solution from the previous RK step. This is due to the ARS structure
and plays an important role in the presence of the initial layer.

When the initial data is not well-prepared, a modification is proposed to the first two steps
in Section 3.1. To examine the asymptotic behavior of the methods, two cases will be considered
next. We will write Rn = gn + v∂xρ

n, and Rn,(l) = gn,(l) + v∂xρ
n,(l).

Case 1: the initial is well-prepared with R0 = O(ε). The IMEXp scheme will lead to the
updates of ρn+1, gn+1, Rn+1, together with ρn,(l), gn,(l), Rn,(l) as follows.

ρn+1 = ρn,(s), gn+1 = gn,(s), Rn+1 = Rn,(s), (5.16)

where the inner stages are updated according to

ρn,(0) =ρn, gn,(0) = gn, Rn,(0) = Rn, (5.17a)

ρn,(l) =ρn + ∆tall

(
〈v2〉∂xxρn,(l)

)
−∆t

l−1∑
j=0

ãlj∂x〈vRn,(j)〉+ ∆t
l−1∑
j=1

alj

(
〈v2〉∂xxρn,(j)

)
, l = 1, · · · , s,

(5.17b)

gn,(l) =
ε2gn −∆tallv∂xρ

n,(l)

ε2 + all∆t
− ε∆t

ε2 + all∆t

l−1∑
j=0

ãlj (I−Π) (v∂xg
n,(j))

− ∆t

ε2 + all∆t

l−1∑
j=1

aljR
n,(j), l = 1, · · · , s, (5.17c)

Rn,(l) =
ε2

ε2 + all∆t

(
gn + v∂xρ

n,(l)
)
− ε∆t

ε2 + all∆t

l−1∑
j=0

ãlj (I−Π) (v∂xg
n,(j))

− ∆t

ε2 + all∆t

l−1∑
j=1

aljR
n,(j), l = 1, · · · , s. (5.17d)

With ε� 1, we have
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• ρn,(l), gn,(l) = O(1), ∂xρ
n,(l), ∂xxρ

n,(l), ∂xg
n,(l) = O(1), l = 0, · · · , s, ∀n ≥ 0.

• Rn = O(ε), Rn,(l) = O(ε), ∂x〈vRn,(l)〉 = O(ε),∀n ≥ 0, l = 0, · · · , s. That is, the nu-
merical solutions from both inner stages and full RK steps stay within the O(ε)-width
neighborhood of the local equilibrium.

• ρn satisfies

ρn+1 = ρn,(s), where ρn,(l) = ρn+∆t
l∑

j=1

alj

(
〈v2〉∂xxρn,(j)

)
+O(ε), l = 1, · · · , s, ∀n ≥ 0.

Hence the limiting scheme for ρn as ε→ 0 is a consistent scheme of p-th order temporal accuracy
for the limiting heat equation, and more specifically, the scheme involves the implicit part of
ARS(s, s, p) in time with the asymptotically consistent initial data. Additionally, the computed
solution satisfies the local equilibrium property at the full RK steps and at all inner stages. This
shows the IMEXp scheme is AP.

Case 2: the initial is not well-prepared with R0 = O(ε−1). The IMEXp scheme will lead
to the updates of ρn+1, gn+1, Rn+1 as well as ρn,(l), gn,(l), Rn,(l), ∀n ≥ 2, just as in (5.16)-(5.17)
except that in step 1 with n = 0, the update in (3.2) is used with the time step ∆t1 = ∆tp, and
in step 2 with n = 1, the update (5.16)-(5.17) is used with the time step ∆t2 = ∆tp. Then with
ε� 1, the modified scheme leads to

• ρn, gn, ρn,(l), gn,(l) = O(1), ∂xρ
n,(l), ∂xxρ

n,(l), ∂xg
n,(l) = O(1), ∀n ≥ 1, l = 0, · · · , s, even

though ρ0 = O(1), g0 = O(ε−1).

• Rn = O(ε), Rn,(l) = O(ε), ∂x〈vRn,(l)〉 = O(ε), ∀n ≥ 2, l = 0, · · · , s, while R0 = O(ε−1),
R1 = R1,(0) = O(1), ∂x〈vR1〉 = O(1), and R1,(l) = O(ε), ∂x〈vR1,(l)〉 = O(ε), l = 1, · · · , s.

• ρn satisfies

ρn+1 = ρn,(s), where ρn,(l) = ρn+∆t
l∑

j=1

alj

(
〈v2〉∂xxρn,(j)

)
+O(ε), l = 1, · · · , s, ∀n ≥ 2,

while at n = 0,

ρ1 = ρ0 + ∆t1〈v2〉∂xxρ0 +O(∆t1), with ∆t1 = ∆tp. (5.18)

And at n = 1, ρ2 = ρ1,(s) where

ρ1,(l) = ρ1 + ∆t2

l∑
j=1

alj

(
〈v2〉∂xxρn,(j)

)
−∆t2ãl0∂x〈vR1〉+O(ε)

= ρ1 + ∆t2

l∑
j=1

alj

(
〈v2〉∂xxρn,(j)

)
+O(∆t2) +O(ε), l = 1, · · · , s, with ∆t2 = ∆tp.

(5.19)

In the limit of ε→ 0, the local error to ρ1 in Case 2 is of first order in ∆t1 = ∆tp hence of p-th
order in ∆t. In the second step to computer ρ2, the scheme can be regarded as a perturbed
method to an otherwise p-th order temporal discretization. Given that each inner stage solution
ρ1,(l) is perturbed by an error proportional to ∆t2, ρ2 will be of first order in ∆t2, hence the
choice of the step size ∆t2 = ∆tp ensures that ρ2 is a p-th order approximation. When n ≥ 2,
the scheme has similar behavior as in Case 1. Therefore we can conclude when ε → 0, the
limiting scheme is a consistent scheme with the p-th order accuracy. This shows the IMEXp
scheme is AP even in the presence of the initial layer.

Remark 5.2. Consider the diffusive regime with ε � 1. When the initial data is not well-
prepared with the presence of the initial layer, the modification for n = 0 based on (3.2) will
drive the numerical solution to be bounded with respect to ε after the first step, yet the solution
by then is only within the O(1)-width neighborhood of the local equilibrium. The second
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step based on (5.16)-(5.17) further drives the numerical solution to fall into the O(ε)-width
neighborhood of the local equilibrium. Our scheme in each of the first two time steps will lead
to a first order error to the solution at the full RK steps. Such first order error is with respect
to the time step size, and it can be reduced to the desired accuracy by taking ∆t1 = ∆t2 = ∆tp,
where ∆t is the time step size for later steps, predicted by stability analysis.

Remark 5.3. Similar to Remark 5.1, a more refined analysis can be carried out for the accuracy
of the IMEXp scheme, which is summarized in Table 5.1. From this table, one can see that
only for the worst scenario, namely when R0, 〈vR0〉 = O(ε−1), the proposed modification is
needed to gain full accuracy. For other moderate cases, such as when R0 = O(ε−1) with
〈vR0〉 = O(ε), O(1), or when R0 = O(1) with 〈vR0〉 = O(1), one can gain the full temporal
accuracy by using the base IMEXp scheme with a modified step size in the initial one or two
steps, without the need for the scheme (3.2).

Remark 5.4. In Case 2, the property that R1,(0) = O(1) while R1,(l) = O(ε), l = 1, · · · , s is due
to that the update in (5.17d) does not depend on Rn,(0). This feature is due to the IMEX-RK
method being of type ARS.

Remark 5.5. In actual simulation, it is possible that ε2 � ∆t, yet the modified step size
∆t1,∆t2 (= ∆tp) is smaller than the initial layer width. In this case, more than one modified
time step would be needed for the solution to exit the initial layer to ensure full accuracy.

6 Numerical examples

In this section, we will present a set of numerical examples to illustrate the performance of the
proposed schemes in terms of their accuracy and robustness, when the underlying models involve
different values of ε in different regimes with smooth or non-smooth solutions. When the initial
data is not well-prepared, we also demonstrate the effectiveness of the proposed strategies to
avoid the order reduction and inaccuracy of the numerical solutions. Two weight functions will
be considered, and they are ω = 1 and ω = exp(−ε/h). The schemes with ω = 1 are referred to
as the IMEXp-LDGp methods, while the schemes with ω = exp(−ε/h) are referred to as IMEXp-
LDGp-M methods. Recall that in IMEXp-LDGp and IMEXp-LDGp-M methods, the discrete
space Up−1

h is used in space. The numerical results by the schemes with ω = exp(−ε2/∆t) are
qualitatively similar to those by the schemes with ω = exp(−ε/h), and they are not presented
here.

Based on the stability analysis in Section 4, we observe that the methods, when applied
to the model equation (1.1), are unconditionally stable when ε/h ≤ Rp,ω for some constant
Rp,ω > 0; when ε/h > Rp,ω, the methods are stable under the condition

∆t

εh
≤ Gp,ω(

ε

h
) (6.1)

for some function Gp,ω. In an ongoing project, we also carry out an energy-type stability analysis
for the IMEX1-LDG1 scheme, and the analysis suggests a specific form of Gp,ω(s), namely,
Gp,ω(s) =

αps
βps−1 . This form of Gp,ω(s) seems to also fit what we numerically observed through

Fourier-type stability analysis for other IMEXp-LDGp(-M) methods. Motivated by this, for
our numerical experiments in this section, we take Gp,ω(s) =

αps
βps−1 , with the parameters αp and

βp chosen based on the stability plots in Section 4. Particularly when the boundary conditions
are periodic, the time step size is set as ∆t = ∆tCFLp for IMEXp-LDGp and ∆t = ∆tCFLpM
for IMEXp-LDGp-M, where
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IMEX1-LDG1 : ∆tCFL1 =

{
0.25h, ε ≤ h/4,
min(0.25h, 4ε2h

4ε−h ), ε > h/4,
(6.2a)

IMEX2-LDG2 : ∆tCFL2 =


0.25h, ε ≤ h/251,

min(0.25h, 62.75ε2h
251ε−h ), h/251 < ε < 5h/2,

0.625h2, ε ≥ 5h/2

(6.2b)

IMEX3-LDG3 : ∆tCFL3 =

{
0.25h, ε ≤ h/30,

min(0.25h, 4.5ε2h
30ε−h ), ε > h/30.

(6.2c)

IMEX1-LDG1-M : ∆tCFL1M =

{
0.25h, ε ≤ h/4,
min(0.25h, 3ε2h

6ε−h ), ε > h/4,
(6.2d)

IMEX2-LDG2-M : ∆tCFL2M =

{
0.25h, ε ≤ h/251,

min(0.25h, 62.75ε2h
251ε−h ), ε > h/251,

(6.2e)

IMEX3-LDG3-M : ∆tCFL3M =

{
0.25h, ε ≤ h/35,

min(0.25h, 4.375ε2h
35ε−h ), ε > h/35.

(6.2f)

Note that an O(h) upper bound is imposed to the time step size to ensure reasonable resolution
of the numerical solutions. As implied by the stability analysis in Section 4, a parabolic time step
condition is needed for the IMEX2-LDG2 method in the kinetic regime. When the boundary
conditions are not periodic, time step sizes may need to be adjusted due to the numerical
boundary treatments. This will be specified when we come to those examples. In all figures in
this section, the reference solutions are always plotted in solid lines.

With the IMEX temporal discretization, linear systems need to be solved for each time step.
Fortunately, the implicit part of our schemes with the global nature comes from the discretization
of a Poisson operator, the corresponding linear system is hence symmetric and positive definite
when the boundary conditions are periodic. For such examples, Conjugate Gradient method
is used as the linear solver. In the case of Dirichlet boundary conditions (see Section 6.2 and
Remark 6.1), symmetry will be broken, and Conjugate Gradient Squared method will be applied
instead. Even though not explored in this work, one can apply standard fast solver techniques
for elliptic equations, such as multigrid methods, to efficiently solve the linear systems resulting
from the proposed methods.

6.1 Telegraph equation

Two examples will be presented for the telegraph equation which involves discrete velocity. The
meshes are uniform. We use the left-right flux pair alternating flux (3.11).

6.1.1 Smooth solution with periodic boundary conditions

First, we consider an example with the following exact solution{
ρ(x, t) = 1

γ exp(γt) sin(x), γ = −2
1+
√

1−4ε2
,

g(x, v = ±1, t) = ± exp(γt) cos(x)

on the domain Ωx = [−π, π] with periodic boundary conditions. We carry out the convergence
study for the IMEXp-LDGp and IMEXp-LDGp-Mmethods (with p = 1, 2, 3) in different regimes
with ε = 0.5, 10−2 and 10−6. The errors in the normalized L1 norm (namely, normalized with
respect to the domain size) and convergence orders for ρ(x, t) and j(x, t) = 〈vg〉 = 1

2 (g(x, v =
1, t) − g(x, v = −1, t)) are shown in Tables 6.2-6.4 at time T = 1.0. For both ρ and j, we
observe the optimal p-th order convergence for all three schemes in all regimes, implying an
optimal accuracy with respect to the approximation property of the discrete space Up−1

h . As
expected, the error obtained with two different weights differ in the kinetic regime and have the
same leading digits in the diffusive regime. In the intermediate regime, the IMEX1-LDG1 and
IMEX1-LDG1-M methods give quite different errors, while for p = 2, 3, the errors obtained by
IMEXp-LDGp and IMEXp-LDGp-M methods have the same leading digits.
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Table 6.2: L1 errors and orders for the example in Section 6.1.1, IMEX1-LDG1(-M)

ε N
IMEX1-LDG1 IMEX1-LDG1-M

L1 error of ρ order L1 error of j order L1 error of ρ order L1 error of j order

0.5

10 3.781E-02 - 4.824E-02 - 3.629E-02 - 5.128E-02 -
20 1.763E-02 1.10 2.585E-02 0.90 1.623E-02 1.16 2.732E-02 0.91
40 7.956E-03 1.15 1.334E-02 0.95 7.507E-03 1.11 1.392E-02 0.97
80 3.699E-03 1.11 6.742E-03 0.98 3.617E-03 1.05 6.988E-03 0.99
160 1.773E-03 1.06 3.380E-03 1.00 1.778E-03 1.02 3.496E-03 1.00
320 8.664E-04 1.03 1.691E-03 1.00 8.817E-04 1.01 1.748E-03 1.00

10−2

10 7.001E-02 - 9.516E-02 - 4.472E-02 - 7.900E-02 -
20 3.875E-02 0.85 5.187E-02 0.88 2.169E-02 1.04 3.885E-02 1.02
40 2.011E-02 0.95 2.640E-02 0.97 1.057E-02 1.04 1.929E-02 1.01
80 1.036E-02 0.96 1.342E-02 0.98 5.113E-03 1.05 9.537E-03 1.02
160 3.588E-03 1.53 5.461E-03 1.30 2.196E-03 1.22 4.599E-03 1.05
320 1.108E-03 1.70 2.300E-03 1.25 1.094E-03 1.00 2.299E-03 1.04

10−6

10 4.460E-02 - 7.907E-02 - 4.460E-02 - 7.907E-02 -
20 2.180E-02 1.03 3.895E-02 1.02 2.180E-02 1.03 3.895E-02 1.02
40 1.078E-02 1.02 1.946E-02 1.00 1.078E-02 1.02 1.946E-02 1.00
80 5.356E-03 1.01 9.702E-03 1.00 5.356E-03 1.01 9.702E-03 1.00
160 2.668E-03 1.01 4.843E-03 1.00 2.668E-03 1.01 4.843E-03 1.00
320 1.331E-03 1.00 2.419E-03 1.00 1.331E-03 1.00 2.419E-03 1.00

Table 6.3: L1 errors and orders for the example in Section 6.1.1, IMEX2-LDG2(-M)

ε N
IMEX2-LDG2 IMEX2-LDG2-M

L1 error of ρ order L1 error of j order L1 error of ρ order L1 error of j order

0.5

10 1.944E-03 - 9.887E-004 - 1.965E-003 - 9.223E-04 -
20 4.667E-04 2.06 2.185E-04 2.18 4.567E-04 2.11 1.850E-04 2.32
40 1.155E-04 2.01 4.831E-05 2.18 1.128E-04 2.02 4.162E-05 2.15
80 2.821E-05 2.03 1.046E-05 2.21 2.789E-05 2.02 9.751E-06 2.09
160 6.974E-06 2.02 2.451E-06 2.09 6.928E-06 2.01 2.396E-06 2.02
320 1.733E-06 2.01 5.941E-07 2.04 1.730E-06 2.00 5.984E-07 2.00

10−2

10 6.524E-03 - 1.861E-03 - 6.524E-03 - 1.861E-03 -
20 1.616E-03 2.01 4.376E-04 2.09 1.616E-03 2.01 4.376E-04 2.09
40 4.031E-04 2.03 1.047E-04 2.06 4.031E-04 2.00 1.047E-04 2.06
80 1.007E-04 2.00 2.561E-05 2.03 1.007E-04 2.00 2.561E-05 2.03
160 2.518E-05 2.00 6.336E-06 2.02 2.518E-05 2.00 6.336E-06 2.02
320 6.294E-06 2.00 1.576E-06 2.01 6.294E-06 2.00 1.576E-06 2.01

10−6

10 6.605E-03 - 1.860E-03 - 6.605E-03 - 1.860E-03 -
20 1.630E-03 2.02 4.417E-04 2.07 1.630E-03 2.02 4.417E-04 2.07
40 4.065E-04 2.00 1.069E-04 2.05 4.065E-04 2.00 1.069E-04 2.05
80 1.016E-04 2.00 2.642E-05 2.02 1.016E-04 2.00 2.642E-05 2.02
160 2.539E-05 2.00 6.582E-06 2.01 2.539E-05 2.00 6.582E-06 2.01
320 6.346E-06 2.00 1.644E-06 2.00 6.346E-06 2.00 1.644E-06 2.00

25



Table 6.4: L1 errors and orders for the example in Section 6.1.1, IMEX3-LDG3(-M)

ε N
IMEX3-LDG3 IMEX3-LDG3-M

L1 error of ρ order L1 error of j order L1 error of ρ order L1 error of j order

0.5

10 6.780E-05 - 1.125E-04 - 6.223E-05 - 9.885E-05 -
20 9.617E-06 2.82 8.386E-06 3.75 8.831E-06 2.82 1.918E-05 2.37
40 1.183E-06 3.02 4.172E-06 1.01 8.901E-07 3.32 1.960E-06 3.29
80 1.177E-07 3.33 6.258E-07 2.74 1.552E-07 2.52 5.958E-07 1.72
160 1.413E-08 3.06 7.121E-08 3.14 2.339E-08 2.73 1.815E-08 5.04
320 1.929E-09 2.87 1.067E-08 2.74 1.844E-09 3.67 6.854E-09 1.41
640 2.258E-10 3.09 1.881E-09 2.50 2.998E-10 2.69 3.904E-10 4.13

10−2

10 2.491E-04 - 2.473E-04 - 2.491E-04 - 2.473E-04 -
20 3.139E-05 2.99 3.127E-05 2.98 3.139E-05 2.99 3.127E-05 2.98
40 3.901E-06 3.01 3.902E-06 3.00 3.901E-06 3.01 3.902E-06 3.00
80 4.873E-07 3.00 4.874E-07 3.00 4.873E-07 3.00 4.874E-07 3.00
160 6.090E-08 3.00 6.091E-08 3.00 6.090E-08 3.00 6.091E-08 3.00
320 7.613E-09 3.00 7.613E-09 3.00 7.613E-09 3.00 7.613E-09 3.00

10−6

10 2.485E-04 - 2.546E-04 - 2.485E-04 - 2.546E-04 -
20 3.139E-05 2.99 3.139E-05 3.02 3.139E-05 2.99 3.139E-05 3.02
40 3.910E-06 3.00 3.911E-06 3.01 3.910E-06 3.00 3.911E-06 3.01
80 4.892E-07 3.00 4.892E-07 3.00 4.892E-07 3.00 4.892E-07 3.00
160 6.114E-08 3.00 6.114E-08 3.00 6.114E-08 3.00 6.114E-08 3.00
320 7.641E-09 3.00 7.641E-09 3.00 7.641E-09 3.00 7.641E-09 3.00

6.1.2 Riemann problem

The second example for the telegraph equation is a Riemann problem, with the initial conditions{
ρ(x, 0) = ρL = 2.0, g(x, v, 0) = gL = 0, for x ≤ 0,

ρ(x, 0) = ρR = 1.0, g(x, v, 0) = gR = 0, for x > 0,
(6.3)

and ε = 0.7, 10−6. Without loss of generality, we use a mesh satisfying xk0+ 1
2

= 0, for some
k0 ∈ N.

When ε = 0.7, the computational domain is taken as Ωx = [−1, 1] with the final time
T = 0.15. In Figure 6.4, we present the numerical results by IMEXp-LDGp-M methods with
h = 0.025 and p = 1, 2, 3. No nonlinear limiter is applied. The results by the lowest order
IMEX1-LDG1-M method are most dissipative, while the results by IMEXp-LDGp-M methods
with p = 2, 3 are much sharper. As no limiter is applied, some mild oscillations are observed
around discontinuities in the results by the IMEXp-LDGp-M methods with p = 2, 3.

In Figure 6.5, we present the numerical results of the IMEXp-LDGp methods with h = 0.025
and p = 1, 2, 3. In order to control numerical oscillations, the TVB-minmod limiter in [9]
with M = 1 is applied to ρ, g and q for the IMEXp-LDGp methods with p = 2, 3, and the
time step size is also adjusted to be smaller. More specifically, we take 0.025∆tCFL1 for the
IMEX1-LDG1 method, 0.5∆tCFL2 for the IMEX2-LDG2 method, and 0.125∆tCFL3 for the
IMEX3-LDG3 method. One can see the IMEXp-LDGp methods with p = 2, 3 outperform the
IMEX1-LDG1 method. The results by the IMEX2-LDG2 method match the reference solutions
the best (note that the time step size of this method is O(h2) for this example). The use of
nonlinear limiter still leave visible oscillations to the results by the IMEXp-LDGp (p = 2, 3)
methods.

Even though the IMEXp-LDGp-M methods use larger time step sizes without a nonlinear
limiter, they overall perform better than the IMEXp-LDGp schemes for this Riemann problem
when ε = 0.7. We attribute this to the auxiliary unknown, q = ∂xρ, that contains a Dirac-δ
singularity in this Riemann problem. The singularity in q imposes challenge to the IMEX-LDG
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methods with the weight function ω = 1 in the kinetic regime. For the IMEX-LDG-M methods,
the weight function w = exp(−ε/h)|ε=0.7,h=0.025 ≈ 10−13, and it significantly reduces the impact
of the singularity in q. Actually, in this regime, the IMEX-LDG-M schemes are very close to the
DG-IMEX schemes in [15] (which are also the proposed methods here with the weight ω = 0).

When ε = 10−6, the computational domain is taken as Ωx = [−2, 2] with the final time
T = 0.15. The solutions are smooth around this time, and no limiter is needed. Still with
h = 0.025, the numerical solutions are shown in Figure 6.6. The results obtained by the
IMEXp-LDGp schemes and IMEXp-LDGp-M schemes have no visible difference. Hence, only
the results of the IMEXp-LDGp-M schemes are presented with p = 1, 2, 3. All methods capture
the solutions well, and higher order methods show better resolution.

6.2 One group transport equation in slab geometry

In this section, we will consider the one-group transport equation in slab geometry in a more
general form [23], namely,

ε∂tf + v∂xf =
σs
ε

(〈f〉 − f)− εσAf + εG (6.4)

on Ωx = [xL, xR] and with a continuous velocity space Ωv = [−1, 1]. The parameter σs = σs(x)
is the scattering coefficient, which is assumed to be positive, the non-negative σA = σA(x) is
the absorption coefficient, and G = G(x) is the source term. Following the derivation in Section
2, one can get the micro-macro reformulation

∂tρ+ ∂x〈vg〉 = −σAρ+G,

∂tg +
1

ε
(I−Π)(v∂xg) +

1

ε2
v∂xρ = −σs

ε2
g − σAg.

(6.5)

When ε→ 0, the limiting equation (at least away from the initial and boundary) is

g = −v∂xρ/σs, ∂tρ = 〈v2〉∂x(∂xρ/σs)− σAρ+G. (6.6)

The proposed IMEX-LDG methods can be extended directly to (6.4) based on the following
reformulated form of the model:

∂tρ+ ∂x〈v(g + ωvq/σs)〉 = ω〈v2〉∂x(q/σs)− σAρ+G, q = ∂xρ, (6.7a)

∂tg +
1

ε
(I−Π)(v∂xg) +

1

ε2
v∂xρ = −σs

ε2
g − σAg. (6.7b)

In addition to periodic boundary conditions, some numerical examples in this section involve
Dirichlet boundary conditions, that are given at the inflow boundaries of the domain Ωx =
[xL, xR], in the form of

f(xL, v, t) = fL(v, t), v ≥ 0, and f(xR, v, t) = fR(v, t), v ≤ 0.

They are insufficient to define ρ = 〈f〉 (resp. g and q) at the boundary within the micro-macro
decomposition framework. In this case, numerical boundary treatments are needed to complete
the proposed methods. Next we will present two strategies, which will be described when σs = 1
and σA = 0, and can be easily given to the cases with more general σs and σA. We will first
present assumptions for boundary conditions and then impose boundary conditions through
numerical fluxes.

1.) Limiting boundary condition. The first boundary treatment is based on the limiting
equation as ε → 0. Similar strategy was used in [5, 17] within an even-odd decomposition
framework. As ε→ 0, the limiting equation gives

g = −v∂xρ = −vq, with q = ∂xρ. (6.8)

We assume this relation at the boundary, then the given boundary conditions become

ρL(t)− εvqL(t) = fL(v, t), v ≥ 0 and ρR(t)− εvqR(t) = fR(v, t), v ≤ 0.
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(a) IMEX1-LDG1-M, ρ for ε = 0.7
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(b) IMEX1-LDG1-M, j for ε = 0.7
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(c) IMEX2-LDG2-M, ρ for ε = 0.7
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(d) IMEX2-LDG2-M, j for ε = 0.7

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

0.8

1

1.2

1.4

1.6

1.8

2

2.2

ρ

(e) IMEX3-LDG3-M, ρ for ε = 0.7
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(f) IMEX3-LDG3-M, j for ε = 0.7

Figure 6.4: Numerical solutions by IMEXp-LDGp-M methods for the example in Section 6.1.2 with
ε = 0.7 at T = 0.15. The reference solution is obtained by the first order forward Euler upwind
finite difference scheme, with h = 10−3 and ∆t = 7× 10−4. No limiter is applied.
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(a) IMEX1-LDG1, ρ for ε = 0.7
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(b) IMEX1-LDG1, j for ε = 0.7
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(c) IMEX2-LDG2 with minmod limiter, ρ for
ε = 0.7
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(d) IMEX2-LDG2 with minmod limiter, j for
ε = 0.7
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(e) IMEX3-LDG3 with minmod limiter, ρ for
ε = 0.7
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(f) IMEX3-LDG3 with minmod limiter, j for
ε = 0.7

Figure 6.5: Numerical solutions by IMEXp-LDGp methods for the example in Section 6.1.2 with
ε = 0.7 at T = 0.15. The reference solution is obtained by the first order forward Euler upwind
finite difference scheme, with h = 10−3 and ∆t = 7 × 10−4. The minmod limiter with M = 1 is
used when p = 2, 3.
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(a) IMEX1-LDG1-M, ρ for ε = 10−6
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(b) IMEX1-LDG1-M, j for ε = 10−6
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(c) IMEX2-LDG2-M, ρ for ε = 10−6
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(d) IMEX2-LDG2-M, j for ε = 10−6
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(e) IMEX3-LDG3-M, ρ for ε = 10−6
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(f) IMEX3-LDG3-M, j for ε = 10−6

Figure 6.6: Numerical solutions by IMEXp-LDGp-M methods for the example in Section 6.1.2
with ε = 10−6 at T = 0.15. The reference solution is obtained by solving the limiting diffusion
equation using the forward Euler with second order central difference scheme, with h = 10−3 and
∆t = 2.5× 10−7.

30



We further integrate the first equality in v from 0 to 1 at the left boundary, and integrate the
second equality in v from −1 to 0 at the right boundary. This gives

ρL(t)− ε1

2
qL(t) =

∫ 1

0

fL(v, t)dv, ρR(t) + ε
1

2
qR(t) =

∫ 0

−1

fR(v, t)dv. (6.9)

Motivated by this, the following numerical boundary treatment is proposed.

• We specify numerical fluxes ρ̆ and ṽg at both boundaries:

ρ̆n1
2

=

∫ 1

0

fL(v, tn)dv +
1

2
εqn(x+

1
2

) : , ρnL,
(
ṽgn
)

1
2

= vgn(x+
1
2

),

ρ̆nN+ 1
2

=

∫ 1

0

fR(v, tn)dv − 1

2
εqn(x−

N+ 1
2

) : , ρnR,
(
ṽgn
)
N+ 1

2

= vgn(x−
N+ 1

2

). (6.10)

• We modify the equation (3.7b) into the following(ρn+1
h − ρnh

∆t
, φ
)

+ l†h(〈vgnh〉, φ) + ω〈v2〉lh(qnh , φ) = ω〈v2〉lh(qn+1
h , φ), ∀φ ∈ Ukh (6.11)

where lh(·, ·) is just as before in (3.8b), with the numerical flux modified at the boundary,
namely,

q̂n1
2

= qn(x+
1
2

) + cL (ρn(x+
1
2

)− ρnL), q̂nN+ 1
2

= qn(x−
N+ 1

2

)− cR (ρnR − ρn(x−
N+ 1

2

));

while

l†h(〈vgnh〉, φ) = −
∑
i

∫
Ii

〈vgnh〉∂xφdx−
∑
i

̂̂〈vgnh〉i− 1
2
[φ]i− 1

2
, (6.12)

and
̂̂〈vgnh〉i− 1

2
= 〈̂vgnh〉i− 1

2
,∀i = 2, 3, · · · , N − 1 for interior nodes, and

̂̂〈vgn〉 1
2

= 〈vgn〉(x+
1
2

),
̂̂〈vgn〉N+ 1

2
= 〈vgn〉(x−

N+ 1
2

)

at boundaries.

One can see that the numerical boundary treatments are essentially imposed through numerical
fluxes. The two parameters cL and cR are non-negative, and they are used to facilitate the
inclusion of some jump terms cL (ρn(x+

1
2

)−ρnL) and cR (ρnR−ρn(x−
N+ 1

2

)) at the domain boundary

to ensure the full accuracy of the overall algorithm when alternating fluxes are used at the interior
nodes. More specifically, when the right-left alternating flux in (3.11) is used in our scheme, we
take cL = 1 and cR = 0, while with the left-right alternating flux, we take cL = 0 and cR = 1.
One can refer to [8, 24] to better understand the role of these jump terms in relation to the
accuracy of the schemes.

2.) Inflow-outflow close-loop boundary condition. Using the solution inside the domain
to provide the outflow boundary data, we get a close-loop strategy similar to that in [15]. For
the left boundary, we require the following relations:

ρL(t) + εgL(v, t) = fL(v, t), v ≥ 0 (inflow), (6.13a)

ρL(t) + εgL(v, t) = ρh(x+
1
2

, t) + εgh(x+
1
2

, v, t), v ≤ 0 (outflow), (6.13b)

〈gL(v, t)〉 = 0. (6.13c)

We integrate (6.13a) in v from 0 to 1, and integrate (6.13b) in v from −1 to 0. Summing up
the resulting equations and with (6.13c), one can express the boundary data ρL in terms of the
known fL and the unknown interior solution, and further get gL from (6.13a)-(6.13b), hence
〈vgL(v, t)〉. This leads to, at t = tn,

ρnL :, ρL(tn) =
1

2

(∫ 1

0

fL(v, tn)dv + ρnh(x+
1
2

) + ε

∫ 0

−1

gnh(x+
1
2

, v)dv
)
, (6.14a)

gnL(v) :, gL(v, tn) =

{
1
ε

(
fL(v, tn)− ρL(tn)

)
, v > 0,

1
ε

(
ρnh(x+

1
2

) + εgnh(x+
1
2

, v)− ρL(tn)
)
, v ≤ 0.

(6.14b)
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Similarly, for the right boundary we can get

ρnR :, ρR(tn) =
1

2

(∫ 0

−1

fR(v, tn)dv + ρnh(x−
N+ 1

2

) + ε

∫ 1

0

gnh(x−
N+ 1

2

, v)dv
)
, (6.15a)

gnR(v) :, gR(v, tn) =

{
1
ε

(
ρnh(x−

N+ 1
2

) + εgnh(x−
N+ 1

2

, v)− ρR(tn)
)
, v ≥ 0,

1
ε

(
fR(v, tn)− ρR(tn)

)
, v < 0.

(6.15b)

Based on the relations above, we propose a numerical treatment for boundary conditions,
again by working with the modified equation (6.11) and l†h in (6.12) and specifying the numerical
fluxes on the domain boundary as follows,

ρ̆n1
2

= ρnL, q̂n1
2

= qn(x+
1
2

) + cL (ρn(x+
1
2

)− ρnL),
̂̂〈vgn〉 1

2
=
〈
vgnL(v)

〉
, (6.16a)

ρ̆nN+ 1
2

= ρnR, q̂nN+ 1
2

= qn(x−
N+ 1

2

) + cR (ρnR − ρn(x−
N+ 1

2

),
̂̂〈vgn〉N+ 1

2
=
〈
vgnR(v)

〉
, (6.16b)

and

(
ṽgn
)

1
2

=

{
vgnL(v), if v > 0,

vgnh(x+
1
2

, v), if v ≤ 0,

(
ṽgn
)
N+ 1

2

=

{
vgnh(x−

N+ 1
2

, v), if v ≥ 0,

vgnR(v), if v < 0.
(6.17)

The jump terms for q in (6.16) are for the same accuracy consideration as in the limiting
boundary condition strategy, with the constants cL and cR taken similarly as well.

Remark 6.1. In our numerical experiments, we use the limiting boundary conditions for the
diffusive regime, and the inflow-outflow close-loop boundary conditions for the kinetic regime.
For the diffusive regime, it is observed that using the inflow-outflow close-loop boundary condi-
tions may require a stringent time step condition, namely, ∆t = O(h2), for numerical stability,
while using the limiting boundary conditions will keep the unconditional stability of the pro-
posed scheme. For the intermediate regime, the choice will be example-dependent. With either
numerical boundary treatment above, the symmetry of the resulting linear system to update
ρn+1
h will no longer hold.

Remark 6.2. For those examples in Section 6 with Dirichlet boundary conditions, we only
consider the isotropic ones, that is, when fL and fR are independent of v. When fL and fR are
anisotropic and depend on v, the solutions can develop boundary layers. Such cases however can
not be handled effectively by our proposed boundary treatments. In [22], the boundary layer
issue was addressed for a finite difference scheme, which is based on a different micro-macro
decomposition of the governing equation, together with the use of some extra unknown variable
near domain boundary.

In our simulations, the velocity space Ωv is discretized using 16-point Gaussian quadrature,
and the operator 〈·〉 is replaced by its numerical analogue. The results are obtained with the left-
right flux pair alternating flux (3.11). And the meshes are uniform unless otherwise specified.

6.2.1 Smooth example with periodic boundary conditions

With σA = G = 0, σs = 1, we consider a smooth example with the initial conditions

ρ(x, 0) = sin(x), g(x, v, 0) = −v cos(x)

on the domain Ωx = [−π, π] with periodic boundary conditions. We carry out the numerical
simulations for different regimes with ε = 0.5, 10−2 and 10−6. The final time is T = 1.0. The
convergence order of the schemes is calculated by Richardson extrapolation:

order = REN = log2

(
||uh − uh/2||L1(Ωx)/||uh/2 − uh/4||L1(Ωx)

)
.
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Here uh is the numerical solution computed with a mesh size h
2 = xR−xL

N . And the numerical
error is computed as RN = ||uh − uh/2||L1(Ωx)/|Ωx|.

The numerical errors and convergence orders of ρ and j = 〈vg〉 are shown in Tables 6.5-6.7
for the IMEXp-LDGp and IMEXp-LDGp-M schemes with p = 1, 2, 3. The optimal p-th order
of convergence is observed for all the schemes in all regimes. When p = 2, 3, the schemes with
the two different weights do not lead to much difference in numerical errors in all regimes.

Table 6.5: L1 errors and orders for the example in Section 6.2.1, IMEX1-LDG1(-M)

ε N
IMEX1-LDG1 IMEX1-LDG1-M

RN for ρ order RN for j order RN for ρ order RN for j order

0.5

10 1.454E-01 - 9.771E-03 - 6.466E-02 - 1.036E-02 -
20 3.367E-02 1.09 5.434E-03 0.85 3.154E-02 1.04 5.613E-03 0.88
40 1.661E-02 1.02 2.809E-03 0.95 1.588E-02 0.99 2.859E-03 0.97
80 8.233E-03 1.01 1.423E-03 0.98 8.013E-03 0.99 1.439E-03 0.99
160 4.101E-03 1.01 7.159E-04 0.99 4.024E-03 0.99 7.212E-04 1.00

10−2

10 7.092E-02 - 1.053E-02 - 7.085E-02 - 1.053E-02 -
20 3.600E-02 0.98 5.340E-03 0.98 3.597E-02 0.98 5.341E-03 0.98
40 1.795E-02 1.00 2.677E-03 1.00 1.793E-02 1.00 2.677E-03 1.00
80 8.969E-03 1.00 1.339E-03 1.00 8.953E-03 1.00 1.339E-03 1.00
160 4.513E-03 0.99 6.703E-04 1.00 4.478E-03 1.00 6.689E-04 1.00

10−6

10 7.084E-02 - 1.055E-02 - 7.084E-02 - 1.055E-02 -
20 3.600E-02 0.98 5.344E-03 0.98 3.600E-02 0.98 5.344E-03 0.98
40 1.795E-02 1.00 2.678E-03 1.00 1.795E-02 1.00 2.678E-03 1.00
80 8.963E-03 1.00 1.339E-03 1.00 8.963E-03 1.00 1.339E-03 1.00
160 4.482E-03 1.00 6.692E-04 1.00 4.482E-03 1.00 6.692E-04 1.00

6.2.2 Diffusive and kinetic regimes with isotropic boundary conditions

We here consider an example from [5, 23] with isotropic Dirichlet boundary conditions together
with zero initial condition, namely

fL(v, t) = 1, fR(v, t) = 0; f(x, v, 0) = 0, x ∈ Ωx;

σs = 1, σA = 0, G = 0.

The computational domain is Ωx = [0, 1], with ε = 10−4 for the diffusive regime and ε = 1
for the kinetic regime. For the numerical boundary treatments, we apply the inflow-outflow
close-loop boundary conditions for ε = 1 and the limiting boundary conditions for ε = 10−4.
The spatial meshsize is taken to be h = 1/40.

Note that the initial and boundary data on the left boundary are not compatible, and this
will lead to a Dirac-δ type singularity in q = ∂xρ. In the kinetic regime with ε = 1, this example
will impose similar numerical challenge to the methods with ω = 1 as the Riemann problem in
Section 6.1.2. Related to this, when ε = 1, 0.25∆tCFL1 is used for the IMEX1-LDG1 scheme
while 0.125∆tCFL3 is used for the IMEX3-LDG3 scheme, in order to get reasonable numerical
solutions.

In Figure 6.7, we plot the computed density ρ. More specifically, the top two rows are for the
kinetic regime with ε = 1 by the IMEXp-LDGp (in the first row) and IMEXp-LDGp-M (in the
second row) methods, with p = 1, 2, 3. In each plot, the computed ρ at times T = 0.1, 0.4, 1.0,
1.6 and 4.0 are presented. It is observed that higher order methods capture more details, and
additionally, the IMEXp-LDGp-M scheme outperforms the respective IMEXp-LDGp scheme
when p = 1, 3. Even though q = ∂xρ contains singularity due to the incompatible initial and
boundary data, with the weight ω = exp(−ε/h)|ε=1,h=1/40 ≈ 10−18, the ωq term has negligible
contribution to the IMEXp-LDGp schemes. In this regime, the IMEX-LDG schemes are very
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Table 6.6: L1 errors and orders for the example in Section 6.2.1, IMEX2-LDG2(-M)

ε N
IMEX2-LDG2 IMEX2-LDG2-M

RN for ρ order RN for j order RN for ρ order RN for j order

0.5

10 2.270E-02 - 1.482E-02 - 2.269E-02 - 1.479E-02 -
20 5.677E-03 2.00 3.822E-03 1.96 5.676E-03 2.00 3.806E-03 1.96
40 1.403E-03 2.00 9.524E-04 2.00 1.404E-03 2.02 9.476E-04 2.01
80 3.484E-04 2.01 2.377E-04 2.00 3.483E-04 2.01 2.367E-04 2.00
160 8.678E-05 2.01 5.937E-05 2.00 8.677E-05 2.01 5.915E-05 2.00

10−2

10 2.265E-02 - 1.462E-02 - 2.265E-02 - 1.462E-02 -
20 5.637E-03 2.01 3.773E-03 1.95 5.637E-03 2.01 3.773E-03 1.95
40 1.408E-03 2.00 9.393E-04 2.01 1.408E-03 2.00 9.393E-04 2.01
80 3.518E-04 2.00 2.346E-04 2.00 3.518E-04 2.00 2.346E-04 2.00
160 8.794E-05 2.00 5.863E-05 2.00 8.794E-05 2.00 5.863E-05 2.00

10−6

10 2.262E-02 - 1.467E-02 - 2.262E-02 - 1.467E-02 -
20 5.624E-03 2.01 3.765E-03 1.95 5.624E-03 2.01 3.765E-03 1.95
40 1.404E-03 2.00 9.372E-04 2.01 1.404E-03 2.00 9.372E-04 2.01
80 3.510E-04 2.00 2.340E-04 2.00 3.510E-04 2.00 2.340E-04 2.00
160 8.774E-05 2.00 5.849E-05 2.00 8.774E-05 2.00 5.849E-05 2.00

Table 6.7: L1 errors and orders for the example in Section 6.2.1, IMEX3-LDG3(-M)

ε N
IMEX3-LDG3 IMEX3-LDG3-M

RN for ρ order RN for j order RN for ρ order RN for j order

0.5

10 1.670E-03 - 1.449E-04 - 1.674E-03 - 1.448E-04 -
20 2.069E-04 3.01 1.805E-05 3.01 2.065E-04 3.02 1.797E-05 3.01
40 2.560E-05 3.01 2.258E-06 3.00 2.561E-05 3.01 2.250E-06 3.00
80 3.206E-06 3.00 2.845E-07 2.99 3.206E-06 3.00 2.834E-07 2.99
160 4.014E-07 3.00 3.580E-08 2.99 4.013E-07 3.00 3.566E-08 2.99

10−2

10 1.621E-03 - 1.253E-04 - 1.621E-03 - 1.253E-04 -
20 2.071E-04 2.97 1.558E-05 3.01 2.071E-04 2.97 1.558E-05 3.01
40 2.581E-05 3.00 1.958E-06 2.99 2.581E-05 3.00 1.958E-06 2.99
80 3.223E-06 3.00 2.487E-07 2.98 3.223E-06 3.00 2.487E-07 2.98
160 4.029E-07 3.00 3.183E-08 2.97 4.029E-07 3.00 3.183E-08 2.97

10−6

10 1.619E-03 - 1.248E-04 - 1.619E-03 - 1.248E-04 -
20 2.070E-04 2.97 1.545E-05 3.01 2.070E-04 2.97 1.545E-05 3.01
40 2.581E-05 3.00 1.927E-06 3.00 2.581E-05 3.00 1.927E-06 3.00
80 3.224E-06 3.00 2.407E-07 3.00 3.224E-06 3.00 2.407E-07 3.00
160 4.029E-07 3.00 3.009E-08 3.00 4.029E-07 3.00 3.009E-08 3.00
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closed to the DG-IMEX schemes in [15]. For p = 2, the methods with two weights produce
comparable results. Again recall that the parabolic type time step condition ∆t = O(h2) is used
for the IMEX2-LDG2 scheme.

When ε = 10−4, the problem is in its diffusive regime and numerical results by the methods
with the two weights have no visible difference. In the third row of Figure 6.7, we plot the com-
puted ρ by the IMEXp-LDGp schemes (with p = 1, 2, 3) at T = 0.05, 0.15 and 2.0. It is observed
that higher order methods have better resolution. We want to mention that if the inflow-outflow
close-loop boundary condition is applied, the IMEXp-LDGp method is unconditionally stable
with p = 1, 2, while the IMEX3-LDG3 requires ∆t = O(h2) for stability (see Remark 6.1).

6.2.3 Intermediate regime with isotropic boundary conditions, varying scat-
tering frequency, and source term

Here we consider an example with isotropic Dirichlet boundary conditions and a constant source,
and the scattering coefficient σs(x) is spatially varying [23]:

fL(v, t) = 0, fR(v, t) = 0, f(x, v, 0) = 0, σs(x) = 1 + (10x)2, σA = 0, G = 1

on Ωx = [0, 1] and ε = 10−2. The effective Knudsen number is ε
σs(x) at the spatial location x.

We want to use this example to demonstrate how our methods work in the presence of spatially
varying scales.

For the IMEXp-LDGp-M schemes, the weight function is taken to be

ω = exp(− ε

hσ̄s
),

where σ̄s is the average of σs(x) over the spatial domain, namely, σ̄s = 1
|Ωx|

∫
Ωx
σs(x)dx. When

the schemes are conditionally stable, the time step conditions are adjusted. Particularly, we
use 0.7∆tCFL3 for the IMEX3-LDG3 scheme and 0.75∆tCFL3M for the IMEX3-LDG3-M. No
adjustment is needed for other schemes. To impose the boundary conditions numerically, we
apply the limiting boundary conditions.

In Figure 6.8, the numerical solutions for ρ are plotted at T = 0.4 with h = 0.025. Since the
two weights do not lead to visible difference, we only present the results by the IMEXp-LDGp-
M methods with p = 1, 2, 3. Due to the spatial variation of the scattering coefficient, there is a
sharp feature near the right boundary in space. Overall high order schemes with p = 2, 3 have
better resolution.

6.2.4 Two-material problem

The example we will consider here involve two different materials [23, 15],

σs = 0, σA = 1, G = 0, for x ∈ Ωx,L = [0, 1],

σs = 100, σA = 0, G = 0, for x ∈ Ωx,R = [1, 11],

fL(v, t) = 5, fR(v, t) = 0; f(x, v, 0) = 0, x ∈ Ωx,

with Ωx = Ωx,L ∪ Ωx,R. Following [21, 23], the parameter ε is set to be 1, meaning that
the dimensional variables are used here. And the system consists of a purely absorbing slab
region Ωx,L of one mean-free path length, connected to a purely scattering slab region Ωx,R
of a thousand mean-free path length that is more diffusive over long time observation. We
want to use this example to demonstrate our proposed methods applied to such problems in
the presence of multiple scales. An isotropic configuration of f is introduced to the purely
absorbing region Ωx,L from the left boundary, and it will attenuate and become anisotropic
(that is, v dependent) before entering the purely scattering region Ωx,R. An interior layer will
arise between the absorbing and scattering regions. In our simulation, a non-uniform mesh is
used, with the mesh size h = 0.05 in Ωx,L and h = 0.5 in Ωx,R. We apply the inflow-outflow
close-loop numerical boundary conditions, and the left-right numerical fluxes in (3.11) are used
for the interior points.
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(a) IMEX1-LDG1, ρ for ε = 1
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(b) IMEX2-LDG2, ρ for ε = 1
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(c) IMEX3-LDG3, ρ for ε = 1
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(d) IMEX1-LDG1-M, ρ for ε = 1
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(e) IMEX2-LDG2-M, ρ for ε = 1
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(f) IMEX3-LDG3-M, ρ for ε = 1
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(g) IMEX1-LDG1-M, ρ for ε = 10−4
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(h) IMEX2-LDG2-M, ρ for ε = 10−4
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Figure 6.7: The numerical density ρ for the problem in Section 6.2.2. Top row: the results of
IMEXp-LDGp schemes in the kinetic regime with ε = 1 at T = 0.1, 0.4, 1.0, 1.6 and 4.0. Middle
row: the results of IMEXp-LDGp-M schemes in the kinetic regime with ε = 1 at T = 0.1, 0.4, 1.0,
1.6 and 4.0. The reference solutions for the first two rows are obtained by the first order forward
Euler upwind finite difference scheme, with h = 5 × 10−4 and ∆t = 2.5 × 10−5. Bottom row: the
results of IMEXp-LDGp-M schemes in the diffusive regime with ε = 10−4 at T = 0.05, 0.15, and
2.0. The reference solution for the bottom row is computed by the DG1-IMEX1 scheme in [14],
with h = 10−3 and ∆t = 10−6. From left to right: p = 1, 2, 3.
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Figure 6.8: The numerical density ρ for the problem in Section 6.2.3 at T = 0.4. The reference
solution is obtained by the first order forward Euler upwind finite difference scheme, with h =
5× 10−5 and ∆t = 1.25× 10−7 for ε = 10−2.
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Figure 6.9: The computed steady-state density ρ for the problem in Section 6.2.4 at T = 20000.
The reference solution is obtained by the first order forward Euler upwind finite difference scheme,
with h = 5.5× 10−3 and ∆t = 10−4.

For this example, even though there is a purely absorbing subregion Ωx,L, we choose to use
the weight function ω = exp(−ε/(100h)) for the IMEXp-LDGp-M schemes. This choice is based
on the scattering coefficient σs = 100 in the purely scattering subregion Ωx,R. We examine the
steady state solution by running the simulation over a long time, and the computed solutions for
density ρ are presented in Figure 6.9 at T = 20000. Visually, the results of IMEXp-LDGp and
IMEXp-LDGp-M coincide with each other. Only the results of IMEXp-LDGp-M are shown
with p = 1, 2, 3. All the schemes match the reference solution well. The higher order the scheme
is, the better resolution it has.

6.3 Examples with non well-prepared initial data

Finally we consider two examples with non well-prepared initial data in order to demonstrate the
effectiveness of the proposed initial fixing strategies for accuracy in the presence of the initial
layer. Example 1 starts with f(x, v, 0) = (1 + (v − 0.5)2)(1 + 0.05 cos(x)), while Example 2
has f(x, v, 0) = (1 + ε(v − 0.5)2)(1 + 0.05 cos(x)). They both have ρ(x, 0) = 1 + 0.05 cos(x)
and g(x, v, 0) = O(ε−1). The computational domain is Ωx = [0, 2π] with periodic boundary
conditions. The final time is T = 1.0 and ε = 10−6.

Note that 〈vf(x, v, 0)〉 = 0 for Example 1, implying 〈vR0〉 = O(1), and 〈vf(x, v, 0)〉 6= 0
for Example 2, implying 〈vR0〉 = O(ε−1) according to (5.6). As predicted by the asymptotic
analysis (also see Table 5.1), without any initial treatment, the IMEXp-LDGp(-M) scheme will
be first order accurate for Example 1 and inaccurate for Example 2. And with the initial fixing
strategies we have proposed, the full accuracy of order p will be achieved. This is confirmed by
the results in Table 6.8 and Figure 6.10 before the fix, and by the full order of accuracy in Table
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6.9 after the fixing strategies are applied. Since the weight function ω = exp(−ε/h) is very close
to 1, the leading digits of the errors obtained by IMEXp-LDGp and IMEXp-LDGp-M are the
same. Only the results of the IMEXp-LDGp-M methods (with p = 1, 2, 3) are shown in error
tables. Given that the errors and orders are computed based on Richardson extrapolation, we
also plot the numerical solutions with the fixing strategies and the reference solutions in Figure
6.10 for Example 2 to make sure the correct solutions are captured numerically.

Table 6.8: L1 errors and orders by the IMEXp-LDGp-M schemes for Example 1 in Section 6.3,
ε = 10−6, T = 1, without any initial fixing strategy

scheme N RN for ρ order RN for j order

p = 1

10 4.264E-03 - 5.049E-04 -
20 2.115E-03 1.01 2.519E-04 1.00
40 1.064E-04 0.99 1.245E-04 1.02
80 5.309E-04 1.00 6.199E-05 1.01
160 2.652E-04 1.00 3.091E-05 1.00

p = 2

10 8.290E-04 - 9.376E-04 -
20 4.768E-04 0.80 3.629E-04 1.37
40 2.641E-04 0.85 1.815E-05 1.00
80 1.402E-04 0.91 9.410E-05 0.95
160 7.232E-05 0.96 4.829E-05 0.96

p = 3

10 1.745E-04 - 1.883E-04 -
20 9.763E-05 0.84 7.476E-05 1.33
40 5.138E-05 0.93 3.546E-05 1.08
80 2.614E-05 0.97 1.758E-05 1.01
160 1.315E-05 0.99 8.783E-05 1.00

7 Conclusions

In this paper, we design and analyze high order methods based on discontinuous Galerkin spa-
tial discretizations and implicit-explicit Runge-Kutta temporal discretizations for linear kinetic
transport equations in a diffusive scaling. With Fourier type stability analysis, the methods are
shown to be unconditionally stable in the diffusive regime ε� 1, and can have hyperbolic type
stability condition ∆t = O(εh) in the kinetic regime ε = O(1). The design of the methods takes
into account the initial layer which may be present in the solutions, and in particular when the
initial data is not well-prepared, initial fixing strategies are proposed in the first one or two time
steps to overcome the possible accuracy reduction or loss for ε � 1. The overall schemes are
shown to be asymptotically preserving, namely the methods in the limit of the ε → 0 are con-
sistent and high order discretizations for the limiting diffusive equation with the asymptotically
consistent initial condition. In an ongoing project, an energy-based numerical stability will be
performed, together with the error estimates as well as a rigorous asymptotic analysis.

The proposed methods are based on a reformulated form of the underlying model, by adding
and subtracting a weighted diffusion term. Even though such idea is not new, our analysis
provides mathematical understanding about the desired properties (not all known previously)
of the weight function. One can refer to Theorem 4.1 and Theorem 4.3 that suggest how the
weight function depends on the model and discretization parameters ε, h,∆t, and one can also
see equations (2.6) and (5.13) for the desired properties on the magnitude of the weight function
to ensure the AP property. On the algebraic level, the implicit part that needs to be solved
globally comes from a discrete Poisson operator. The methods in this work can be combined
with fast computation techniques for scattering operators to simulate physically more relevant
kinetic transport models involving multiple scales. Some other issues that are not addressed
here include positivity preserving technique and boundary layer treatments.
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Table 6.9: L1 errors and orders by the IMEXp-LDGp-M schemes for Examples 1 and 2 in Section
6.3, ε = 10−6, T = 1.0 with initial fixing strategy

Example 1 Example 2
scheme N RN for ρ order RN for j order RN for ρ order RN for j order

p = 1

10 2.587E-03 - 5.760E-04 -
20 Full accuracy is achieved without 1.583E-03 0.71 2.789E-04 1.05
40 fixing strategy 8.589E-04 0.88 1.374E-04 1.02
80 4.462E-04 0.94 6.807E-05 1.01
160 2.271E-04 0.97 3.387E-05 1.01

p = 2

10 1.144E-03 - 8.299E-04 - 1.049E-03 - 8.372E-04 -
20 2.815E-04 2.02 1.884E-04 2.14 2.474E-04 2.08 1.657E-04 2.34
40 7.024E-04 2.00 4.687E-05 2.01 6.154E-05 2.01 4.108E-05 2.01
80 1.755E-05 2.00 1.170E-05 2.00 1.536E-05 2.00 1.025E-05 2.00
160 4.387E-06 2.00 2.925E-06 2.00 3.840E-06 2.00 2.560E-06 2.00

p = 3

10 8.381E-05 - 5.375E-05 - 7.864E-05 - 5.367E-05 -
20 1.035E-05 3.02 6.896E-06 2.96 1.046E-05 2.92 6.965E-06 2.95
40 1.290E-06 3.00 8.601E-07 3.00 1.332E-06 2.97 8.877E-07 2.97
80 1.612E-07 3.00 1.074E-07 3.00 1.681E-07 2.99 1.121E-07 2.99
160 2.014E-08 3.00 1.343E-08 3.00 1.955E-08 3.10 1.522E-08 2.88
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Figure 6.10: The numerical density ρ computed by the IMEXp-LDGp-M methods with (left) and
without (right) the initial fixing strategy for Example 2 in Section 6.3. Here ε = 10−6, T = 1.0,
N = 320. Reference solutions are computed by the forward Euler central difference scheme solving
the limiting diffusion equation with N = 2000.
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Appendix A AP methods with a different implicit-explicit
strategy: accuracy reduction

In order for us to achieve AP methods with high order accuracy for a broad range of ε, it
seems important that the numerical solutions stay sufficiently close to the local equilibrium in
the diffusive regime, namely, gn + v∂xρ

n = O(ε). This property is guaranteed by our proposed
implicit-explicit strategy (at least for n ≥ 2, also see Section 5). To help with the understanding,
we here take a closer look at a family of AP methods, that is closely related to our proposed
methods except using a different implicit-explicit strategy as in (3.2) [23]. Our study here show
that with an insufficient approximation of the local equilibrium at the discrete level, formally
high order AP methods can reduce to first order temporal accuracy in g (at least) in the diffusive
regime with ε� 1, and this reduction may further affect the accuracy in f = ρ+ εg.

Since the root of the issue lies in the temporal discretization, particularly in the implicit-
explicit strategy, we will start with a first order in time discretization based on an implicit-
explicit strategy as in (3.2), and consider

ρn+1 − ρn

∆t
+ ∂x〈vgn+1〉+ ω〈v2〉∂xxρn = ω〈v2〉∂xxρn+1, (A.1a)

gn+1 − gn

∆t
+

1

ε
(I−Π)(v∂xg

n) +
1

ε2
v∂xρ

n = − 1

ε2
gn+1. (A.1b)

By combining this new implicit-explicit strategy with the second order ARS(2,2,2) method and
the third order ARS(4,4,3) method, we will have the formally second and third order in time
method, referred to as the IMEX2-LM scheme and the IMEX3-LM scheme, respectively.

A.1 Formal analysis in the limit of ε→ 0

Without loss of generality, we next will focus on the IMEX2-LM scheme in our analysis. We
consider the diffusive regime with ε � 1, and assume ω = 1 (see the property in (2.6)). Given
the numerical solution ρn, gn at tn, we update ρn+1, gn+1 at tn+1 by the IMEX2-LM scheme as
follows.

ρn,(0) = ρn, gn,(0) = gn, (A.2a)

ρn,(1) = ρn − γ∆t
(
〈v2〉∂xxρn,(0) + ∂x〈vgn,(1)〉 − 〈v2〉∂xxρn,(1)

)
, (A.2b)

gn,(1) = gn − γ∆t

(
1

ε
(I−Π)(v∂xg

n,(0)) +
1

ε2
v∂xρ

n,(0) +
1

ε2
gn,(1)

)
, (A.2c)

ρn+1 = ρn −∆t〈v2〉(δ∂xxρn,(0) + (1− δ)∂xxρn,(1)) (A.2d)

− (1− γ)∆t
(
∂x〈vgn,(1)〉 − 〈v2〉∂xxρn,(1)

)
− γ∆t

(
∂x〈vgn+1〉 − 〈v2〉∂xxρn+1

)
,

gn+1 = gn − δ∆t
(

1

ε
(I−Π)(v∂xg

n,(0)) +
1

ε2
v∂xρ

n,(0)

)
(A.2e)

− (1− δ)∆t
(

1

ε
(I−Π)(v∂xg

n,(1)) +
1

ε2
v∂xρ

n,(1)

)
− ∆t

ε2

(
(1− γ)gn,(1) + γgn+1

)
.

As ε→ 0, we formally obtain

ρn,(0) = ρn, ρn,(1) = ρn + γ∆t〈v2〉∂xxρn,(1), (A.3a)

ρn+1 = ρn + ∆t〈v2〉
(

(1− γ)∂xxρ
n,(1) + γ∂xxρ

n+1
)
, (A.3b)

an implicit discretization of the limiting diffusive equation (2.4) to solve ρ, with its second
order accuracy directly inherited from the IMEX-RK ARS(2,2,2) method. This implies the AP

41



property of the IMEX2-LM scheme. On the other hand, the variable g is approximated by

gn,(0) = gn, gn,(1) = −v∂xρn,(0), (A.4a)

(1− γ)gn,(1) + γgn+1 = −δv∂xρn,(0) − (1− δ)v∂xρn,(1) (A.4b)

as ε→ 0, and this further gives

gn+1 =
1− δ − γ

γ
v∂xρ

n,(0) − 1− δ
γ

v∂xρ
n,(1). (A.5)

Next we will argue that the scheme for g in (A.4) is only of first order accuracy. By taking
a spatial derivative over the IMEX2-LM scheme (A.2), it is not hard to see that in the limit of
ε → 0, ∂xρ is approximated by the same second order scheme as (A.3). Hence to show gn+1

being first order accurate boils down showing gn+1 + v∂xρ
n+1 being first order accurate. Based

on the limiting scheme (A.4)-(A.5),

gn+1 + v∂xρ
n+1 =

1− δ − γ
γ

v∂xρ
n − 1− δ

γ
(v∂xρ

n + γ∆t〈v2〉v∂xxxρn,(1))

+
(
v∂xρ

n + ∆t〈v2〉v
(

(1− γ)∂xxxρ
n,(1) + γ∂xxxρ

n+1
))

= ∆t〈v2〉v
(

(δ − γ)∂xxxρ
n,(1) + γ∂xxxρ

n+1
)

= δ∆t〈v2〉v∂xxxρn +O(∆t2). (A.6)

Recall that in the limit of ε → 0, the exact solution satisfies g + v∂xρ = 0. This, combined
with (A.6), indicates the local truncation error to preserve this local equilibrium is first order in
∆t, so is that for g in the limit of ε → 0. This reduced order of accuracy will be subsequently
carried over to the IMEX2-LM scheme with ε � 1 in the diffusive regime (say, under some
uniform boundedness assumptions for the continuous and discrete solutions as at the beginning
of Section 5). With similar analysis, one can formally shown that the IMEX3-LM scheme is
first order accurate when approximating g in the diffusive regime. Given that f = ρ + εg, the
accuracy reduction in g can further affect the accuracy for f .

A.2 Numerical study

We here will report some numerical tests to support and complement our formal analysis. For
the IMEXp-LM scheme (p = 2, 3), we combine it with the LDG spatial discretization in Section
3.2 with the discrete space Up−1

h , and the weight function is taken to be ω = exp(−ε/h). The
resulting method is referred to as the IMEXp-LDGp-M-LM scheme, with the time step set as
∆t = ∆tCFLpM as defined in (6.2e) and (6.2f) for p = 2, 3, respectively. The choice of the time
steps by no means is optimal.

We consider the example in Section 6.1.1 from the telegraph equation. In Table A.10,
we report the L1 errors and orders for j = 〈vg〉 when ε = 10−6 on spatial meshes of N =
10, 20, · · · , 320 elements, and the first order accuracy in g is observed. As a comparison, our
proposed methods with the same weight function approximate j with the designed p-th order
accuracy (p = 2, 3), see Tables 6.3-6.4. Note that with this ε, the errors in εg are rather small,
hence the order reduction in g does not affect the accuracy order of f = ρ + εg on the meshes
we used. We further test the IMEXp-LDGp-M-LM scheme (p = 2, 3) in relatively more kinetic
regimes with ε = 10−2, 0.5, and the full p-th order accuracy is observed for j as designed. The
results are omitted.

Finally we consider a more interesting case with ε = 10−3 when the problem is in a relatively
intermediate regime. In Table A.11, the L1 errors and orders of both ρ and j as well as the L1

∗
errors and orders of f are reported for the IMEX3-LDG3-M-LM and IMEX3-LDG3-M schemes
on spatial meshes of N = 10, 20, · · · , 640. Here ||φ||L1

∗
:= 〈||φ||L1(Ωx)〉. A few observations can

be made.

• First of all, the accuracy for ρ is third order as designed for both schemes, with errors of
two methods being comparable.

42



• Secondly, while the computed g by our proposed IMEX3-LDG3-M scheme is of full third
order accuracy, that by the IMEX3-LDG3-M-LM scheme is only of first order accuracy
on relatively coarser meshes with N = 10, · · · , 160. When N = 320, 640, the problem is
now in a more kinetic regime with respect to the discretization parameter ∆t and h, and
the convergence order for g by the IMEX3-LDG3-M-LM scheme improves. One should
note that with the time step taken according to (6.2f), we have used ∆t = 0.982 × 10−2

for N = 160, and ∆t = 0.559 × 10−5 for N = 320. The drastic change in the time step
size may also contribute to the significant error drop when N = 320, 640. On all meshes
we examined, the errors in g by the IMEX3-LDG3-M-LM scheme are always larger.

• Finally if we examine the errors and orders in f = ρ + εg, the order reduction is most
pronounced when N = 80, 160. Note that with a fixed ε, smaller N corresponds to a
relatively more diffusive regime, and larger N corresponds to a relatively more kinetic
regime.

Based on the tests above, one can see that the AP methods based on the implicit-explicit
strategy as in (A.1) result in order reduction in g in relative diffusive regimes, and this reduction
can further affect the accuracy in f . A mathematically more rigorous analysis would be needed
to fully understand our observations.

Table A.10: L1 errors and orders of j = 〈vg〉 for the example in Section 6.1.1 with ε = 10−6:
IMEXp-LDGp-M-LM with p = 2, 3, and ω = exp(−ε/h)

ε N
IMEX2-LDG2-M-LM IMEX3-LDG3-M-LM
L1 error of j order L1 error of j order

10−6

10 1.303E-02 - 2.952E-02 -
20 6.652E-03 0.97 1.518E-02 0.96
40 3.254E-03 1.03 7.629E-03 0.99
80 1.642E-03 0.99 3.658E-03 1.06
160 8.164E-04 1.01 1.826E-03 1.00
320 4.071E-04 1.00 9.029E-04 1.02

Table A.11: L1 errors of ρ, j = 〈vg〉 and L1
∗ errors of f as well as the respective convergence orders,

for the example in Section 6.1.1 with ε = 10−3: IMEX3-LDG3-M-LM and IMEX3-LDG3-M, and
ω = exp(−ε/h). Here ||φ||L1

∗
:= 〈||φ||L1(Ωx)〉.

N L1 error of ρ order L1 error of j order L1
∗ error of f order

IMEX3-LDG3-M-LM

10 1.867E-04 - 1.515E-02 - 1.868E-04 -
20 2.366E-05 2.98 7.642E-03 0.99 2.403E-05 2.96
40 2.951E-06 3.00 3.658E-03 1.06 4.254E-06 2.50
80 3.694E-07 3.00 1.825E-03 1.00 1.826E-06 1.22
160 4.627E-08 3.00 9.022E-04 1.02 9.022E-07 1.02
320 5.720E-09 3.02 1.630E-07 12.4 5.720E-09 7.30
640 7.157E-10 3.00 1.390E-08 3.55 7.156E-10 3.00

IMEX3-LDG3-M

10 1.867E-04 - 2.233E-04 - 1.867E-04 -
20 2.366E-05 2.98 2.749E-05 3.02 2.366E-05 2.98
40 2.951E-06 3.00 3.452E-06 2.99 2.951E-06 3.00
80 3.691E-07 3.00 4.284E-07 3.01 3.691E-07 3.00
160 4.611E-08 3.00 5.354E-08 3.00 4.611E-08 3.00
320 5.720E-09 3.01 6.668E-09 3.01 5.720E-09 3.01
640 7.155E-10 3.00 8.338E-10 3.00 7.155E-10 3.00
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