Data Mining and Knowledge Discovery (2019) 33:1446-1467
https://doi.org/10.1007/s10618-019-00625-3

®

Check for
updates

Deeply supervised model for click-through rate prediction
in sponsored search

Jelena Gligorijevic' - Djordje Gligorijevic' - Ivan Stojkovic' - Xiao Bai' -
Amit Goyal? - Zoran Obradovic3

Received: 13 August 2018 / Accepted: 26 March 2019 / Published online: 3 April 2019
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019

Abstract

In sponsored search it is critical to match ads that are relevant to a query and to accu-
rately predict their likelihood of being clicked. Commercial search engines typically
use machine learning models for both query-ad relevance matching and click-through-
rate (CTR) prediction. However, matching models are based on the similarity between
a query and an ad, ignoring the fact that a retrieved ad may not attract clicks, while
click models rely on click history, limiting their use for new queries and ads. We pro-
pose a deeply supervised architecture that jointly learns the semantic embeddings of a
query and an ad as well as their corresponding CTR. We also propose a novel cohort
negative sampling technique for learning implicit negative signals. We trained the
proposed architecture using one billion query-ad pairs from a major commercial web
search engine. This architecture improves the best-performing baseline deep neural
architectures by 2% of AUC for CTR prediction and by statistically significant 0.5%
of NDCG for query-ad matching.

Keywords Deep learning - Click prediction - Query to ad matching

1 Introduction

Sponsored search has been a major monetization model for commercial web search
engines, contributing a significant portion to the multi-billion-dollar industry of online
advertising. Given a query, it is critical for search engines to retrieve relevant ads and
to accurately predict their click-through-rate (CTR) in order to maximize the expected
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revenue while ensuring good user experience. Both overpredicting and underpredicting
CTR would result in revenue loss to search engines, as they would either allocate
limited search result slots to unattractive ads or miss opportunities to show attractive
ads.

Machine learning models have achieved great success in predicting CTR for spon-
sored search. Most of the models adopted in the industry rely on a large set of
well-designed features to predict CTR. Features extracted from click history have been
proved very effective (Cheng and Cantid-Paz 2010). However, models that heavily rely
on click features often fail to generalize to new queries and new ads with insufficient
history (Richardson et al. 2007). To make predictions in such cases, models resort to
syntactic or semantic features extracted from queries, ads, and advertisers (Richard-
son et al. 2007; Li and Xu 2014). Deep neural networks were also proposed to learn
features from traditional models (Jiang 2016) or to learn CTR from existing features
(Zhang et al. 2014). In spite of the existing success, designing and selecting appropriate
features remains a very challenging problem for CTR prediction (He et al. 2014).

Following the progress of deep learning in natural language processing, recent
efforts rely on deep neural networks to capture semantic similarities between queries
and ads to predict CTR without any feature engineering (Edizel et al. 2017). However,
since such models are learned end-to-end from clicks without explicit supervision for
capturing the semantic similarity between a query and an ad, they have not achieved
their full potential in CTR prediction, as we show in this work.

A number of recent works (Grbovic et al. 2016; Jaech et al. 2017) used deep neural
networks to model the semantic similarity between a query and an ad. These models
were shown to be effective in a query-ad relevance matching. However, as they do not
directly model clicks, retrieved ads can be weakly correlated to the ads presented to
users based on expected revenue (which highly depends on the predicted CTR).

In this work, we propose a deeply supervised end-to-end architecture for CTR
prediction in sponsored search. This architecture jointly learns CTR and discriminative
representations of queries and ads such that clicked query-ad pairs are also mapped
closer in the embedded space. Specifically, this architecture takes the texts of a query
and an ad as input to bi-directional recurrent neural networks (bi-RNNs) and attention
networks to learn discriminative distributed embeddings. Query and ad embeddings
are then matched together and fed into convolutional neural networks (CNNs) to
predict CTR. Two losses, specific to CTR prediction and semantic matching, are
jointly optimized at different levels of the architecture to provide a deep supervision
for both tasks. This architecture has the advantages of (i) not relying on any feature
engineering; (ii) directly optimizing CTR prediction; (iii) implicitly learning semantic-
rich discriminative representations to enable query-ad matchings more correlated with
clicks and expected revenue. The key contributions of this work are as follows:

— We propose a novel deep architecture that jointly learns CTR and discriminative
representations of queries and ads. To the best of our knowledge, this is the first
effective attempt to simultaneously learn CTR and semantic embeddings using
click data. By optimizing two losses specific to CTR prediction and semantic
matching instead of using only one CTR specific logistic loss, we were able to
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achieve statistically significant increase in the area under the receiver-operating
characteristic curve (AUC).

— We propose a novel cohort negative sampling technique to naturally draw infor-
mation from implicit negative signals in the data.

— We conduct an extensive empirical evaluation of the proposed architecture using
about one billion query-ad samples from a major web search engine. Comparison
with state-of-the-art CTR prediction models shows that our model improves the
AUC of the best-performing baseline model by 2%.

— We evaluate the quality of the query and ad embeddings learned by our model
through a query-ad matching task using a large-scale editorially labeled dataset.
Comparison with state-of-the-art matching models shows that our model improves
the normalized discounted cumulative gain (NDCG) of the best-performing base-
line by a statistically significant 0.5%, confirming its ability to learn meaningful
semantic embedding.

2 Related work

In this section, we first present problems and challenges in sponsored search and
review the most recent advances in deep learning approaches applied to this area.
Subsequently, we review other relevant advances in deep learning, which have not
previously been applied to sponsored search tasks.

2.1 Related work in sponsored search

The frequently tackled problems of improving sponsored search include CTR predic-
tion and query to ad matching.

A large body of work focuses on predicting the probability that an ad would be
clicked, if shown as a response to a submitted query (Graepel et al. 2010; McMahan
etal. 2013; He et al. 2014). State-of-the-art approaches have mainly used handcrafted
features of ad impressions obtained from historical impressions (i.e. ad and query
CTR’s, users’ historical features, etc.) and semantic similarities of queries and ads
(Richardson et al. 2007). These approaches range from Bayesian (Graepel et al. 2010)
to feature selection approaches (He et al. 2014), however, a common challenge for all
is creating and maintaining a large number of sparse contextual and semantic features
(McMabhan et al. 2013). Manually designing and selecting features requires substantial
investment of human time and effort, and utility of such generated features is largely
dependent on the domain knowledge of human experts curating the features (McMahan
et al. 2013). Moreover, since typical applications are nonlinear, considering feature
interactions (e.g cross-features) quickly becomes prohibitively expensive due to a
combinatorial explosion (Bhamidipati et al. 2017).

More recently, many approaches for CTR prediction stared using deep learning
techniques, primarily to alleviate some of the mentioned issues with handcrafting
features. Deep learning models automatically learn informative and nonlinear features
directly from the “raw” query and ad text data, but at the cost of requiring huge amounts
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of data and computational power. In Shan et al. (2016), features of an impression (query
text, ad text, ad landing page, campaign ID, keywords, etc.) are learned automatically
from the impression, in a deep architecture, to predict click probability. Other models,
like DeepMatch (Edizel et al. 2017) and MatchTensor (Jaech et al. 2017), proposed
very deep dual network architectures for query and ad embeddings with a matching
layer to learn ad impression representations useful for CTR prediction.

Focusing on the matching of queries and ads that have similar semantic meaning is
another line of research (Fuxman et al. 2008; Zheng et al. 2008; Robertson and Walker
1994). The task is to retrieve ads that are semantically similar to the query (Grbovic
et al. 2016) without exactly matching keywords (i.e. query “running machine” and
ad “elliptical trainer”). This task has been commonly addressed by query rewriting
models (Jones et al. 2006) or by semantic matching (Grbovic et al. 2016; Fuxman
et al. 2008; Huang et al. 2013).

Huang et al. (2013) proposed a deep structured semantic model (DSSM) with dual
architecture that embeds a query on the one side and a web search document on the
other and learns matching between the two given the click information. In order to
improve quality of the learned semantic match and to capture query intent, a word
attention mechanism was successfully used for the query and ad representations (Zhai
et al. 2016). Pair-wise loss is common in most recent approaches (Guo et al. 2016;
Mitra et al. 2017) that deal with query-to-document relevance modeling. For web
search, relevance is the most important factor to determine the ranking, therefore the
goal is to ensure that a relevant document is ranked better than an irrelevant document
through the pairwise loss function. However, for sponsored search, the actual CTR
value is also important in addition to ranking by relevance, therefore a point-wise loss
function is more appropriate for the CTR prediction. Thus, we focus on point-wise
approaches and do not compare experimentally to the aforementioned pairwise ranking
models, due to their similarity to other baselines in building blocks and reported under-
performance against more traditional baselines (Robertson and Walker 1994), which
our baselines largely outperformed (Edizel et al. 2017).

Both groups of approaches, learning semantics of queries and ads and learning
to predict CTR, are widely used in systems for serving ads. However, they pose a
trade-off. While semantic learning learns relations between queries and ads, it has no
direct click probability notion. CTR prediction models, on the other hand, may suffer
from not capturing the semantics of queries and ads implicitly, thus affecting their
prediction quality. Another recent work (Yan et al. 2018) combines click information
and semantic similarity matching, but in an in effective way, as may be seen from the
achieved results. The approach we propose in this study is a well-rounded and effective
framework for ad systems capable of both learning quality semantics of queries and
ads as well as accurately predicting click probability.

The two mentioned approaches, DeepMatch (Edizel et al. 2017) and MatchTensor
(Jaech et al. 2017) have shown great results in practice and will, thus, be the main
baselines and building blocks for the model proposed in this study. The two approaches
are conceptually very similar, as both learn independent representations of a query and
an ad, and use a matching layer to associate their words, and finally learn to predict
CTR. However, the difference between them is in the way they learn representations of
words, i.e. DeepMatch primarily uses temporal convolutional layers, while MatchTen-
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sor uses bi-RNNs. Also, they propose slightly different matching layers, DeepMatch
proposes a cross-feature matrix, while MatchTensor proposes cross-feature tensor. As
both models perform exceptionally well, we present a detailed analysis of performance
of both models experimentally in Sect. 4.

The model proposed in this study further extends on the advances described above
by addressing their shortcomings by introducing novel ways of learning semantically
rich representations. As such, the proposed model demonstrates the state-of-the-art
results on both CTR prediction and query2ad matching tasks, traditionally modeled
by different families of models. This is achieved by means of (i) learning new blocks
in the deep architectures to improve modeling capacity, (ii) adding deep supervision
to improve quality of learned representations deep in the model and (iii) learning
parameters in an efficient and information-rich way to capture more of the available
semantics in the dataset.

2.2 Related work in deep learning

Many approaches for mathematical characterization of language, that model sequence
data, were proposed to advance the field of natural language processing. Initially,
distributed low-dimensional representations of words were introduced in Rumelhart
et al. (1988) and recently successfully applied for learning semantic and syntactic
relations among words or tokens (Mikolov et al. 2013b). The idea of using distributed
representations of words was further exploited in approaches such as RNNs, capable
of learning an embedded high-dimensional representation of sequences.

Recurrent Neural Networks RNNs are a popular family of models for sequential
problems. While previous approaches have often modeled word sequence as an order-
oblivious sum, RNNs learn representations of word sequences by maintaining internal
states, which are updated sequentially and are used as a proxy for predicting the target.
The ability to stack multiple layers allows building deeper representations that result
in great improvements on many tasks. In particular, an architecture of RNNs called
long short-term memory (LSTM) cell achieved the biggest success (Greff et al. 2017).

bi-RNNs  Another successful paradigm is the bidirectional-RNN (bi-RNN) approach,
where two RNNS (i.e. LSTM, thus bi-LSTM) independently encode the text sequence
in both forward and in backward direction (Schuster and Paliwal 1997) computing rep-
resentation that captures complex relations between words in the text. Final sentence
representation is obtained by aggregating representations of the two single-directional
LSTMs, and it was observed that bi-LSTM’s perform well on datasets where there
is no strict order in the sequences, such as the case with Web queries. Therefore, we
employ this approach in the proposed model.

Attention Network Models  Attention models dynamically re-weight the importance
of various elements (words, phrases or characters) in the text during the decoding
process, thus altering the learned representation. Use of attention demonstrated con-
siderable improvements in performance (Bahdanau et al. 2015; Gligorijevic et al.

@ Springer



Deeply supervised model for click-through rate prediction 1451

2018b). An attention mechanism was developed as a separate neural network that takes
a sequence of word embeddings and learns attention scores for each word, where more
“important” words in the document have higher attention leading to a more focused
higher-order representation of the sequence. Attention models were recently adapted
for the general setting of learning compact representations of documents (Zhai et al.
2016; Gligorijevic et al. 2018b, a). We utilize this mechanism for the summarization
of query and ad representations in the proposed model.

Convolutional Text Models  Recently, architectures for sequence modeling increas-
ingly include temporal convolutions as building blocks. Temporal convolutions are
capable of learning representations of sequences which proved as a good building block
for several deep architectures. Good examples being ConvNet for text classification
(Zhang et al. 2015) and the Very Deep CNN (VDCNN) model (Conneau et al. 2017),
both of which use temporal convolutions to model a sequence of words/characters with
aim to perform classification. These models successfully outperformed RNN based
models. In this study, we use word-level VDCNN as one of the baselines, as it consists
of equivalent blocks comparable to the DeepMatch model (except for the matching
layer in Deep Match).

Deeply supervised models Recently, several models drew benefits from utilizing
deep supervision (Zhang et al. 2016; Lee et al. 2015; Szegedy et al. 2015). The key idea
is to use supervision at various layers across the model to enforce discriminativeness of
the features (Lee et al. 2015) and potentially resolve the exploding/vanishing gradients
problem (Zhang et al. 2016; Szegedy et al. 2015). However, the existing approaches
mostly use the same predictive task in lower layers as in the final layer (Lee et al. 2015;
Szegedy et al. 2015) and in some cases use reconstruction loss (Zhang et al. 2014).
We build upon these advances proposing a novel approach of using deep supervision
specifically designed to extract information from data in an explicit way, semantically
controlling the discriminativeness of lower layers in deep architectures.

Due to their similarity, it is worth to contrast deep supervision to multi-task learn-
ing approaches (Liu et al. 2016). Multi-task learning approaches use supervision on
the top of their architecture with the goal to optimize the algorithm for several tasks
simultaneously. Deep supervision, on the other hand, operates by addressing the orig-
inally ill-posed optimization problem by limiting the space of solutions to ones that
satisfy the imposed supervision on deeper layers. As such, deep supervision has a
regularization effect (Lee et al. 2015) by imposing a prior on lower layers, although it
should not be confused with regularization.

Learning from implicit negative signals Modeling implicit negative signals in search
sessions has been a challenging task for a long time. Recently, search2vec model for
learning with implicit negative signals from sponsored search sessions was proposed
(Grbovic et al. 2015) with improved performance and speed of the algorithm. Further-
more, Chen et al. (2017) have confirmed this approach and applied it on the special case
of bipartite graphs. We exploit implicit negatives in our model and consider comparing
experimentally to the search2vec algorithm in Sect. 4.2.
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3 Proposed model

Graphical representation of the proposed model, which we call the Deeply Supervised
Matching (DSM) model is given in Fig. 1.

The model takes query text and ad text as inputs, and it learns their separate embed-
dings through a series of layers, including bi-direction LSTM and attention layers.
Learned embeddings are then used in two-fold matching: (1) embeddings of query
and ad words are used in an elementwise product to construct a matching tensor, and
(2) matching of dense representations of query and ad is learned using a matching
loss. The learned matching tensor is then passed through a series of convolutional and
pooling blocks to learn CTR prediction.

3.1 Blocks of the proposed model
3.1.1 Query and ad text embedding

Embeddings of query and ad texts are performed in two separate parts of the network.
First, [, words in the query and /, words in the ads are embedded into a d;la) = 300
dimensional common space (word embeddings layer). The word embeddings layer is
common between queries and ads, as queries and ads come from the same language
and share the same vocabulary. Then, a fully connected layer (300 x 40) is used to
learn linear combinations of words in a dcﬁ) = 40 dimensional space. This layer
shares weights for both query and ad word vectors, similar to the embedding layer.
This layer is introduced to allow pre-trained embeddings, as well as to enable the
size of the embeddings to be varied without relearning the word embeddings from
scratch each time. The output of the first projection layer is an (/; x 40) embedding
for query and an (/, x 40) embedding for ad. The (/; x 40) query embedding is then
passed to the query bi-LSTM, and the (I, x 40) ad embedding is passed through the ad
bi-LSTM layer, such that the model learns complex relations between words, which
is in particular important for queries that may have a different order of words but the
same meaning (i.e. “best restaurants in Boston” vs. “Boston best restaurants”). Due
to different lengths of query and ad text embedding sizes are now d,?) = 30 and

d{g.%) = 140, as suggested in the literature (Jaech et al. 2017; Zhai et al. 2016). Finally,
fully connected layers are used to reduce representations of all words to the same,

reduced, dimensional space d‘%) = 50, resulting in representations v, = [, X d;;) and

Vg =1y X dﬁ), for query and ad, respectively.
3.1.2 Attention learning

In order to learn rich representations of queries and ads, it is imperative to focus on
words that carry the most information. To learn representations that focus on important
parts of queries and ads we employ the attention models from machine translation and
adapt them to a more general case of using word scores for learning compact (vector)
representations (Zhai et al. 2016). Two attention blocks are used, one for query text
and one for ad text. These blocks yield word scores, that signify the attentions that the
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model will give to different words. Both attention models are implemented as two-
layered individual neural networks s, (vy; 64) and s, (vg; 0,) with softmax at their final
layer .

exp(sy (vy; 0))

Yl explsy w; 6,))

() —
l‘q =

ey

Neural networks s, (v((;) ;04) and s, (v,(l’) : 6,) learn real valued scores for each i’" word
in a given query and ad, respectively. Attentions learning in DSM is coupled with the
entire network (_end-to-end). ‘

Attentions t[;l) for a query word, and ta(l) for an ad word, are then used to re-weight
their input representations v, and v, to obtain compact representations of query and
ad used for learning to match as a simple sum of element-wise multiplications (x):
hy =Y 157 %0l and hy = 32, 1 0. There are other ways of obtaining compact
representations /i, and h,, such as sum, average or max of individual word vectors.
However, our experiments, as well as available literature (Zhai et al. 2016; Gligorijevic
et al. 2018b), demonstrate that such strategies are inferior to using attention.

3.1.3 Query and ad matching

Many models for sponsored search advertising have either the capability to learn high-
quality semantic representations of queries and ads, or the capability to perform CTR
prediction well without explicitly modeling semantics, thus (over-)specializing in only
one of the tasks. To address this, we have two matching processes in our framework.

First, similarly to MatchTensor (Jaech et al. 2017), we build a tensor for implicitly
matching words in a query and an ad. [, words in a query and /, words in an ad, with

dﬁ) -dimensional embeddings, are matched in a tensor of shape [, x [, x d,ﬁ). Each
word in a query will be matched to each word in an ad, and the element-wise product
of their vectors will be a thread in the matching tensor. Finally, an exact-match [, x I,
slice is added to the tensor, with all zeros except for words that co-occur in a query and
an ad, where we put ones. This slice serves as a bias and yields slight improvement as
opposed to the model that does not use exact matches (Jaech et al. 2017).

Precisely, using the learned higher-order representations of words in a query Q of

shape 1, x d(;i) and an ad A of shape [, x d;i), a tensor is built for their implicit

matching. Matching tensor H of the shape [, x [, x d,gi}) is created in the following
manner:

H(m,n,:) = Q(m,:)® A, ), 2)

wherem,n € N, 1 <m <1,;,1 <n <1, and © represents the element-wise product
of Q;(m,:) and A;(n, :). Each word in a query will be matched to each word in an ad,
and the element-wise product of their vectors will be a thread in the matching tensor.
Finally, an exact-match l; x [, slice is added to the tensor, with all zeros except for
words that co-occur in a query and an ad, where we put ones. This slice serves as a
bias and yields slight improvement as opposed to the model that does not use exact
matches (Jaech et al. 2017).
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Second, we propose a matching to capture semantic similarity between a query and
an ad. We propose a way to match the vectors a4 and h,, where we aim to embed them
such that they are closer in the embedded space if there was a click and further away
if there was no click, similarly to Grbovic et al. (2016). To achieve this, we optimize
scores between i, and h, vectors, where scores are posed as an inner product of the
vectors. To avoid introducing the computational complexity of negative sampling, we
introduce a cohort negative sampling approach to optimize the matching function.

Benefits of using deep supervision have recently been recognized (Lee et al. 2015).
Deep models benefit from enforcing the middle layers to be discriminative, which is
beneficial for the final predictive task, as discriminative classifiers trained on highly
discriminative features will perform better than a discriminative classifier trained on
less discriminative features. In our case, representations of query and ad should be close
for semantically similar pairs and distant for dissimilar ones. Such representations
benefit the classification task, as the semantic relations have been well captured deep
in the model. Due to adding such deep supervision, our model is named the Deeply
Supervised Matching (DSM) model.

3.1.4 Learning to predict from matched representation

The matching tensor from the previous block is then convolved through the entire depth
dg:,) + 1 by three convolutional blocks with different filter sizes: 3 for query words;
and 3, 4, and 5 words for ad filters. The number of filters is fixed to 6 for the first set of
convolution blocks and 20 for the final convolutional layer. Complex representations
between a query and ad words are learned here, and they are passed through the
ReLU (rectified linear unit) layer, after which another 1 x 1 convolution with ReLU
was used before the two-dimensional max-pool layer that embeds the whole query-ad
impression in a single vector. Finally, the vector is fed to a fully connected layer and
passed through a sigmoid layer o (-) to obtain the logits of the model.

3.2 Logistic and matching losses

Finally, to optimize the parameters of DSM (denoted as W in remainder of the text),
we have obtained logistic loss P for the CTR prediction based on logits from the
topmost layer:

1

N
— 2 (mlog(Gn) + (1 =y log(1 = 5) . 3)

n=1

PW) =

where 3§, are obtained logits after final sigmoid layers and y, is click label for the n'"
ad impression. The matching loss Q for query and ad vectors, as a negative sampling
approximation, can be generalized as a composition of positive and negative pairs
(Mikolov et al. 2013a):
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where B is the total number of batches, while D), and D,, are positive and negative
impressions within each batch, respectively. In our implementation, we use a variant
of the negative sampling loss for learning to match query and ad vectors, called cohort!
negative sampling. As will be discussed later in the paper, this loss differs from the
negative sampling loss proposed in Mikolov et al. (2013a), as negative samples are
used within the cohort but not sampled ad-hoc, thus saving computational time.

The final loss function becomes the sum of Eqs. 3 and 4

LW) =PW) + QW). (&)

We use W to annotate the set of all parameters in DSM.

Based on the Lemma 1 in Lee et al. (2015), a good solution for Q is also a good
solution for P. However, the converse is not necessarily true. This clearly states that
features learned for P may not be optimal for Q. In the case of our application, fea-
tures learned for the classification task may not capture semantic similarities between
queries and ads that may carry considerable amounts of information. Another interest-
ing aspect of using multiple optimization functions is that it is reasonable to assume
that £ and P share the same optimum (Lee et al. 2015), while Q can be observed as
a regularizer.

Therefore, it is important to notice that Q is not used for learning to match explicitly,
but as stated before, to enforce discriminative embeddings of the lower layers such
that final logits reflect semantic information found in the data. To demonstrate this, we
used the DSM model for query to ad matching task and compared it to well-established
models designed for that task in Sect. 4.2.

Weights are initialized by a truncated normal initializer. To optimize £, we use
Adam (Kingma and Ba 2015) with a decaying gradient step.

3.2.1 Cohort negative sampling for matching loss

The nature of ad serving in sponsored advertising is that for each query, the publisher
(search engine in this case) can provide a set of ads in different positions on the search
result page. The most impactful position is called “north” (ads placed above organic
links) and it yields the largest click-through rate for ads (Chen and Yan 2012). Up
to five ads can be presented at this location, and users may or may not click on any
of them. Click/No-click information provides implicit information on query and ad
relevance that we can learn from. An example can be query “things to do in Paris” for

1 We use word cohort to disambiguate our sampling strategy from the traditional mini-batch i.i.d. sampling.
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Fig.2 Cohort negative sampling click
(an example with queries and
served ads in the position
“north”, nl up to n5) Red links
are ad clicks, blue links are ads
displayed but not clicked, and
negative pairs we recreated by
coupling queries and ads that
were not displayed for that
query—gray dotted links (Color
figure online)

ad 1.1 (n1
ad 1.2 (n2)

ad 2.1 (n1
ad 2.2 (n2

9% <

which are shown three ads: “guided bike tour in Paris”, “secret food tours Paris” and
“Louvre tickets and tours”, such that a user clicked on the “Louvre tickets and tours”
ad only. Thus, to learn matching we need to focus on a group of query-ad pairs that
were served to the user for a given search, and we can pull several such searches in
the cohort/batch we use for training. Such data allows us to learn a semantic match
of a query and an ad implicitly, based on users’ feedback. In the past, learning such
implicit relations between queries and ads has shown great benefit in sponsored search
ad recommendations (Grbovic et al. 2016), while its computational benefits were
supported in Chen et al. (2017). In this study, unlike in Chen et al. (2017), implicit
negative samples naturally occur as signals from the users. Furthermore, in Chen et al.
(2017) a complete ground-truth bipartite graph is needed to obtain a good working
model, however, artificial negative samples can be harmful if a pair is semantically
related. The later issue is leveraged with matching tensor layer, while matching loss
merely plays a role of discriminativeness enforcing regularizer. An example of a cohort
of users’ search query impressions used for training our models is given in Fig. 2.

Originally, techniques such as negative sampling were proposed for efficient
approximation of the costly normalization function in Softmax, while learning to
match (Mikolov et al. 2013a). However, to implement negative sampling in DSM, for
each of m positive samples (in our case clicked query-ad (g, a) pairs) and n negative
samples in the given cohort (not clicked query-ad (g, a) pairs), kK new ads need to be
randomly sampled from the distribution P, of negative ads for each given query ¢
(i.e. ads that were never shown for the query, like ad “hotels in Melbourne” for query
“things to do in Paris”), resulting in a total of m +n +m xk embedding operations prior
to matching (as in every moment in one cohort we have readily accessible embeddings
for queries and ads from that cohort only)

In the case of cohort negative sampling, there is no need for additional sampling of
k negative ads, as embeddings of ads displayed for (other) different queries within the
given cohort are already calculated and k random ads can be selected for constructing
negative pairs within the cohort (dotted gray links in the Fig. 2), thus the computation is
decreased by m *x k from the standard negative sampling approach. Using this strategy,
we can obtain m * (b — 1) — n additional negative pairs in the cohort of size b, in
addition to existing n implicit negative pairs. The cohort negative sampling is based on
the assumption/observation that queries in a batch are mostly unrelated to each other,
making the matching ads of other queries “negative” to the query being examined.
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4 Experiments

In order to assess the capabilities of the proposed DSM approach, we conducted an
extensive empirical evaluation for the CTR prediction task on a large dataset (about one
billion query-ad samples) from a major commercial search engine (Sect. 4.1). We also
evaluate the quality of the query and ad embeddings learned by our model through a
query-ad matching task using a large-scale editorial labeled dataset (Sect. 4.2). The data
and the experimental set-up used for both tasks are described in each of these sections.

4.1 CTR prediction

For the CTR prediction task, the aim is to estimate, as accurately as possible, the prob-
ability p(clicklad, query) that a user would click on an ad displayed after submitting
a query. In the remainder we will refer to this shortly as p(s).

4.1.1 Click-through rate data

To train and test the proposed model and baselines for this task, we collected a ran-
dom sample of logged query-ad pairs served by a popular commercial search engine.
The sample comprises of 987,734,146 query-ad pairs for training and 16,881,864 for
testing, containing only advertisements placed at the top (north) of search result page
(ads that are served above organic search links). The data consists of a query text on
one side, and ad title, ad description and ad display URL on the other side. The query
and ad texts are processed and normalized using an in-house tool to remove special
characters and punctuations, make letters lower case, split URLs to domain and sub-
domain (for example, www.cnn.com/specials/space-science becomes “www.cnn.com
specials space science”). Furthermore, for query canonization, text processing tools
such are typo reduction and stemming are used to obtain canonic forms of queries and
match them to their canonic forms if possible, i.e. canon query “buy iPhone X from
query “buying iPhone X”. All example pairs are accompanied with information on
whether the ad was clicked or not, which we use as supervised information to train all
models. To better characterize the dataset, we comment on its distribution of queries.
A majority (75%) of queries are infrequent (tail queries), i.e. appearing less than five
times overall, and if measured in the test set only there are more than 90% them.
As discussed before, this is a major limitation of most traditional history-based CTR
prediction models, and given the volume of the tail queries, this reaffirms the necessity
for predictive, broad-match, models that can generalize when insufficient or no click
history is available. For a subset of queries that are seen often (appear more than 20
times, called head queries) we expect all the models to perform better, even though
they make up only about 3% of the training set and less than 1% of the testing dataset.

4.1.2 Baselines

We compare our proposed Deeply Supervised Matching (DSM) approach against
several alternatives described in Sect. 2.2: A linear logistic regression learned on top
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Fig.3 Models with learned ROC AUC
embeddings (on the right) HDSM
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of the word embedding layer (LM), Very Deep CNN (VDCNN) (Conneau et al. 2017),
DeepMatch (DM) (Edizel et al. 2017), and MatchTensor (MT) (Jaech et al. 2017).

All deep learning models were trained in two ways: (i) with the use of pre-trained
word embedding vectors (obtained from Pennington et al. (2014)); and (ii) when
the word embeddings are learned specifically for the task, directly from the training
dataset. All the models were implemented in the TensorFlow on Spark” framework
and were run on a distributed cluster with multiple GPU machines (NVIDIA Tesla
K80) due to the size of the data. The number of executors per experiment was 8. Mini-
batch size was set to 512, giving about 2 million updates in total (250,000 updates per
executor) for 1 iteration through the bigger (~1 billion records) dataset and models
were trained in 4 iterations. Training of one iteration took approximately 1 day for all
the models. The initial learning rate of 0.0001 was set for the Adam Optimizer.

4.1.3 Metrics

For assessing the quality of estimated CTR probabilities, we use the area under the
ROC curve (AUC) classification performance measure, as well as Accuracy obtained
after choosing the appropriate classification threshold. In addition, we study the bias
(Baeza-Yates and Ribeiro-Neto 1999) of the predicted probabilities defined as the ratio
between sum of sample (s € S) click probabilities p(s) € [0..1], and sum of click
labels I(s) € {0, 1}: Bias =) g P(s)/ Y ses1(5).

Unbiasedness (bias=1) is a desirable property, as higher than 1 bias implies overly-
optimistic estimates and waste of resources (bidding where there is a lower chance
of click), and lower than 1 bias implies to overly-conservative estimates and missed
opportunity (not bidding where there is a higher probability of click).

4.1.4 Results

Prediction performance results, on the holdout test set are presented in Fig. 3. Results
shown in Table 1 are the best results obtained by each respective model. The DSM
approach outperforms all the alternatives with the highest AUC of 0.775.

We first evaluate the simplest way (LM) of learning to predict CTR from combined
text data of query and ad, and we observe a decent performance of such an approach,
which resonates well with the word embedding approaches described in Sect. 2. Fur-
thermore, we see that by introducing deep models, such as VDCNN, we are able to

2 https://github.com/yahoo/TensorFlowOnSpark.
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Table 1 Performance of the

broposed models vereus Model DSM MT DM VDCNN LM
basclines AUC 0775 0745 0755  0.744 0711
Bias 0.991 1046 1.033 0974 0.965
Accuracy 0.742 0.703 0.719 0.734 0.711

achieve significant improvement in performance (3% increase in AUC). However, by
introducing individual embeddings of query and ad to capture specificities of both,
and learning to match the two, such as in the case of the DM or MT models, we see
that the results are further improved (1% increase in AUC). Finally, when a model is
capable of capturing discriminative features deep in the architecture, we obtain further
improvements (additional 2% of AUC increase). The accuracy measure consistently
identified DSM as the best performing model.

Furthermore, we evaluate the bias of predictions made by different models and
observe that the DSM model is the most unbiased model in the experiment (closest
to the ratio of 1, as shown in Table 1). This implies that the expected number of
clicks deviates the least from the exact number of clicked ads, thus achieving better
monetization. The results show that the DSM model’s click expectation would on
average be wrong for 9 clicks, out of 1000, which is 17 clicks better compared to the
next-best V. DCN N model, with 26 out of 1000. This significantly impacts revenue,
due to high volume of served ads.

Learn word embeddings versus use pre-trained word vectors  As all baselines sug-
gest using pretrained word embeddings in their original approaches, we examined the
effect of learning embeddings in an end-to-end manner, rather than using pretrained
ones. Results in Fig. 3 show that the models where the word embeddings are learned
directly on the task of CTR prediction, are superior to their counterparts which use
pre-trained vectors in a majority of cases. Thus, we argue that it is important for
such models to capture word specificities of the domain rather than using an external
embedding that may be suboptimal.

The following two experiments show results obtained by the best version (using
pre-trained word vectors vs. learning word embedding) of the respective model.

CTR prediction for Head, Torso and Tail Queries It is expected that predictability of
CTR depends on the query frequency. For example, for less frequent queries there may
not be enough data to generalize properly. Therefore, in this subsection, we analyze
the influence of the query frequency on the model predictive performance. For that
purpose, examples were divided into three categories: the most frequent “head” (“>
20” occurrences), least frequent “tail” (“< 5” occurrences), and “torso” in-between.

CTR prediction over different Ad Positions It was previously noted that ad position
plays an important role in CTR prediction (Chen and Yan 2012). For example, ads
placed in the north section are more likely to be clicked than those in the south or east
sections, both because it was considered the most relevant (by algorithm), and because
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Fig.4 AUC for CTR decomposed by a query frequency and b ad position

Table2 AUC for CTR

decomposed by query frequency
for the DSM model trained on 1 Tail Torso Head
billion versus 1 million records

Query frequency

1B dataset 0.701 0.689 0.805
1M dataset 0.662 0.656 0.778
Improvement 3.9% 3.3% 2.6%

its position is the most favorable (convenient) one. Therefore, in this subsection, we
also analyze the influence of the ad position on the model predictive performance. For
that purpose, we segregated the examples into 5 groups based on their positions in the
north section (n1 to n5). Results presented in Fig. 4b convey that predictability decays
with the rise in the position number. From the first to the second position it displays
the sharpest decrease in the AUC, and from-then-on it goes more gradually until the
last, fifth position. Still, the proposed model is the best on all positions, with even
larger improvements over baselines on less attractive ad locations, demonstrating its
potential to capture wider semantic relations between a query and an ad.

CTR prediction - training set scaleimpact We also studied model training on datasets
of different scales, including small-scale data with million (1M) of examples, and
large-scale data with billion (1B) of examples. Dataset scale is an important aspect of
model performance, as a model trained on small data would underperform on larger
sets of data, failing to observe enough words in right contexts. More data is particularly
helpful for tail queries whose words may not be observed in small training data. If we
compare the DSM model trained on 1B dataset with the DSM model trained on the
smaller 1M dataset on tail,torso and head queries, we see in Table 2 that the largest
improvement (~ 4%) is obtained exactly for the tail queries.

As shown in Fig. 5, scale matters when trying to characterize models for ad impres-
sion data. For example, models that use pre-trained word vectors perform better on
smaller dataset than their learn-embeddings alternatives, as the models that learn
embeddings require more data to learn meaningful representations of words. We also
note that the algorithms that use a batch normalization approach perform much worse
on smaller datasets than their non-batch-normalizing alternatives, which is not the
case on the larger dataset, suggesting that algorithms that use batch normalization
need more data to learn good representations. It is important to note the difference
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Fig.5 Effect of Data set scale on models’ CTR prediction performance

in the order of baselines with the change in scale of the data. This clearly suggests a
need to evaluate novel deep architectures on very large datasets. Variants of the pro-
posed DSM model are top-performing on both smaller and larger scale-data, obtaining
statistically significant improvements over all baselines.

Robustness of the DSM model optimization For the proposed methodology ablation
analysis, we first analyze how batch normalization affects the performance, as out-
of-the-distribution “tail” queries can cause loss fluctuations during the optimization.
Second, as the two losses are used simultaneously on different depths, the deep super-
vision can reach zero much faster than the main loss, therefore, in order to analyze
performance when the deep supervision loss is prevented from easily reaching zero,
we normalized the two losses to the same scale. Hence, we had four varieties of our
model: plain DSM, DSM with normalization of the two losses (trying to prevent one
of the losses dropping too fast) DSM,, DSM with batch normalization on the fully
connected layers DS M}, to prevent large fluctuations of the logistic loss and DSM
with both batch normalization and normalized losses DSM,, p,.

Results of all exploited normalization strategies yield comparable prediction per-
formance with 0.7754, 0.7734, 0.7743 and 0.7727 AUC for DSM, DSM,,, DSMp,
and DSM,, pn, respectively. This provides evidence for the stability of optimization
of the DSM model under various discussed situations.

DSM without matching loss Finally, we removed the matching loss from the DSM
model to evaluate 1) the performance gain obtained by using the attention layer com-
pared to the M T model we built upon and 2) the performance loss when using logistic
loss only (without using the matching loss).

From Fig. 5 we see a larger drop from 0.775 AUC for DSM to 0.7671 AUC for
DSMy,jomi Wwhen removing the matching loss (the Wilcoxon signed-rank test p—value
8.63¢7%% ), thus validating that the matching loss benefits the quality of the CTR
prediction. We also notice the increase of 2% in AUC that the attention layer brings
when compared to the 7 M model AUC of 0.745 (the Wilcoxon signed-rank test p—
value 7.35¢79 ), confirming that highlighting important terms in queries and ads by
weighted attentions brings performance improvements.

In further analysis, we noticed that the matching loss drops much faster than the
logistic loss, even after losses normalization. That confirms that the matching loss
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served as a regularization surrogate (Lee et al. 2015) that forces lower layer of query
and ad representations to be semantically discriminative thus yielding higher quality
CTR predictions and enabling the model to excel on matching tasks.

4.2 Query-to-ad matching

Finally, we assess the quality of the learned representations. The proposed DSM learns
semantic matching of a query-ad pair as an effect of the matching layer and deep
supervision. To validate this, we evaluate our model on the query-to-ad (query2ad)
matching task, traditionally used for performance assessment. Note that this is not the
primary task of DSM, however, due to the nature of the proposed matching, it has the
ability to perform it well. The scores between query and ad used for matching are the
final layer’s logits, which reflect query-ad semantics as well as the click probability.
Using scores from the matching loss is avoided, as it leads to suboptimal performance
because it represents a surrogate loss.

4.2.1 Relevance data

To evaluate the quality of query and ad embeddings, we used an in-house dataset
consisting of editorially graded query-ad pairs. The editors were instructed to grade
65446 query-ad pairs as either Perfectly Relevant, Highly Relevant, Relevant, Some-
what Relevant, Barely Relevant, or Irrelevant as in Aiello et al. (2016). For each ad,
the editors had access to ad title, description, and display URL to help them reach their
judgment. For each query (8315 unique queries) there was on average ~ 7 graded
ads, allowing us to evaluate ranking of ads in addition to relevance.

4.2.2 Baselines

We compared our method to traditional relevance models: Gradient boosted decision
trees (with 1000 trees) (Zheng et al. 2008) (G B DT1p00), with 185 text-based features
(Aielloetal. 2016) (trained on 700,000 editorial query-ad pairs) and the B M»5 (Robert-
son and Walker 1994). We also use other CTR prediction task baselines (described
in Sect. 4.1.2), where, as for the DSM, logits of the models were used as matching
scores. Finally, we evaluated the search2vec (Grbovic et al. 2016) for the matching
task. Since the model is only trained for known queries and clicked ads, the coverage
of the model on our editorial dataset was small (2167 unique queries coming from
8725 query ad pairs out of 65,446 records) and as such model yielded only fairish
results ([0.7, 0.8] for NDCG@2 to NDCG@7), so we do not show them in Fig. 6a.
For matching quality, we measure precision@K and Normalized Discounted
Cumulative Gain NDCG @K (Wang et al. 2013) averaged across all queries.

4.2.3 Matching results
NDCG Relevance was assessed using N DCG @ K (Wang et al. 2013), and the results

are given in Fig. 6a. We observe that the DSM approach improves over the alterna-
tives (higher values of NDCG). Even though the difference is not obvious because
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Fig.6 NDCG@K and precision@K for editorially judged 65K query-ad pairs

ofthe NDCG @2 to NDCG @7 scores’ scale, Wilcoxon signed-rank test p-value of
2.69¢~% measured on NDCG@1 to NDCG @100 shows that the improvement of
the DSM model over alternatives is statistically significant. DSM improves NDCG @7
of the GBDT model by 2% and the best deep learning baseline MT by 0.5%.
Precision We also measure Precision@K to further characterize models, as shown in
Fig. 6b. The DSM model is still the best performing model. However, for this metric
the traditional B M»s model performs as the second-best model. Statistical significance
test of the improvement of the DS M over the B M,s model returns p-value of 8.85¢ %3,
confirming that observed improvements are indeed statistically significant.

5 Final remarks

In this study we proposed a novel deep architecture that jointly learns CTR and seman-
tic embeddings using click data. In addition, we proposed a novel cohort negative
sampling technique for efficient learning of implicit negative signals. The results of
our extensive experiments demonstrate that the proposed DSM model outperforms
state-of-the-art approaches on CTR prediction tasks, as measured by multiple metrics.
It was the most accurate, and had the least bias of all the approaches. Our model
learned on click data also outperformed other competitive algorithms on a query to
ad matching task, as measured by the NDCG on the editorial dataset. Ablation study
confirmed that the dual loss architecture statistically significantly enhanced the model
performance. Moreover, our DSM model was the best performer over different scales
of data, frequencies of the queries, ad positions and embedding choices. The above
results suggest that joint training of two complementary tasks through deep supervi-
sion, query to ad matching and CTR prediction, yields high quality, versatile models.

However, the proposed method also has its limitations. Some of its disadvantages are
directly inherited from the general framework of deep neural networks, like the need
for large amounts of data, computation power. and training time. Although automatic
learning of features comes with much less effort compared to manually crafted ones,
it also comes at cost of lost interpretability. This would substantially increase required
effort and time for debugging the model and explaining the results (good or bad)
from model deployment. Other limitations stem from problem modeling. Namely,
advertisements are served on multiple positions, and some positions are more likely
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to be clicked due to sole convenience, and as we show in Fig. 4b, models tend to
predict better at higher positions. In the proposed DSM model, we haven’t explicitly
accounted for such position bias, and in the future, we will aim to introduce such
perspective into the prediction model, perhaps by using the “deep and wide” network
architecture to inject position as an extra feature to the network.

Advances presented in this study, such as deeply supervised matching architecture
and cohort-negative sampling optimization for large scale data, are applicable beyond
the case of sponsored search. Essentially, the proposed methods can be utilized in any
task where one needs to find a good match among the instances from two distinct
sources of free text data. Prominent examples of such tasks are online recommender
systems, where best match of product description and user’s query should be found;
professional networking services where one needs to match appropriate job opportu-
nities and prospective employees based on requirements and skills in textual form; or
online dating sites where users should be matched based on the textual descriptions
of themselves.
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