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Abstract. We study an iterative low-rank approximation method for the solution of the steady-
state stochastic Navier—Stokes equations with uncertain viscosity. The method is based on lineariza-
tion schemes using Picard and Newton iterations and stochastic finite element discretizations of the
linearized problems. For computing the low-rank approximate solution, we adapt the nonlinear iter-
ations to an inexact and low-rank variant, where the solution of the linear system at each nonlinear
step is approximated by a quantity of low rank. This is achieved by using a tensor variant of the
GMRES method as a solver for the linear systems. We explore the inexact low-rank nonlinear it-
eration with a set of benchmark problems, using a model of flow over an obstacle, under various
configurations characterizing the statistical features of the uncertain viscosity, and we demonstrate
its effectiveness by extensive numerical experiments.
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1. Introduction. We are interested in the efficient computation of solutions of
the steady-state Navier-Stokes equations with uncertain viscosity. Such uncertainty
may arise from measurement error or uncertain ratios of multiple phases in porous
media. The uncertain viscosity can be modeled as a positive random field parame-
terized by a set of random variables [23, 28, 31] and, consequently, the solution of
the stochastic Navier-Stokes equations also can be modeled as a random vector field
depending on the parameters associated with the viscosity (i.e., a function of the same
set of random variables). As a solution method, we consider the stochastic Galerkin
method [1, 12] combined with the generalized polynomial chaos (gPC) expansion [34],
which provides a spectral approximation of the solution function. The stochastic
Galerkin method results in a coupled algebraic system of equations. There has been
considerable progress in development of solvers for these systems [7, 22, 24, 29, 32],
although costs may be high when the global system becomes large.

One way to address this issue is through use of tensor Krylov subspace methods,
which operate in tensor format and reduce the costs of matrix operations by exploit-
ing a Kronecker-product structure of system matrices. Variants of this approach have
been developed for the Richardson iteration [14, 18], the conjugate gradient and the
BiCGstab methods [14], the minimum residual method [30], and the generalized min-
imum residual (GMRES) method [2], Efficiencies are also obtained from the fact
that solutions can often be well approximated by low-rank objects. These ideas have
been shown to reduce costs for solving steady [6, 11, 16, 18] and unsteady stochastic
diffusion equations [4],

In this study, we adapt the low-rank approximation scheme to a solver for the
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systems of nonlinear equations obtained from the stochastic Galerkin discretization of
the stochastic Navier-Stokes equations. In particular, we consider a low-rank variant
of linearization schemes based on Picard and Newton iteration, where the solution of
the nonlinear system is computed by solving a sequence of linearized systems using a
low-rank variant of the GMRES method (IrGMRES) [2] in combination with inexact
nonlinear iteration [5].

We base our development of the stochastic Galerkin formulation of the stochastic
Navier-Stokes equations on ideas from [23, 28]. In particular, we consider a random
viscosity affinely dependent on a set of random variables as suggested in [23] (and
in [28], which considers a gPC approximation of the lognormally distributed viscos-
ity). The stochastic Galerkin formulation of the stochastic Navier-Stokes equations
is also considered in [3], which studies an optimal control problem constrained by
the stochastic Navier-Stokes problem and computes an approximate solution using a
low-rank tensor-train decomposition [21]. Related work [31] extends a Proper Gener-
alized Decomposition method [20] for the stochastic Navier-Stokes equations, where
a low-rank approximate solution is built from successively computing rank-one ap-
proximations. See the book [15] for an overview and other spectral approximation
approaches for models of computational fluid dynamics.

An outline of the paper is as follows. In section 2, we review the stochastic Navier-
Stokes equations and their discrete Galerkin formulations. In section 3, we present
an iterative low-rank approximation method for solutions of the discretized stochastic
Navier-Stokes problems. In section 4, we introduce an efficient variant of the inexact
Newton method, which solves linear systems arising in nonlinear iteration using low-
rank format. We follow a hybrid approach, which employs several steps of Picard
iteration followed by Newton iteration. In section 5, we examine the performance of
the proposed method on a set of benchmark problems that model the flow over an
obstacle. Finally, in section 6, we draw some conclusions.

2. Stochastic Navier-Stokes equations. Consider the stochastic Navier-Stokes
equations: Find velocity u(x, £) and pressure p(x, £) such thatl

1 O0'Vyw(z, +Vp(z,0 £),
Vn(x,£) =0,

in D x P, with boundary conditions

"(%,£) = 9(%,€), on <9-DDir X P,
z7(x, £)Vu(x, £) 1 n — p(x, £)n = 0, on dDNeu x P,

where dD — dD"ir v dD"eu. The stochasticity of the equation (1) stems from the
random viscosity v(x,£), which is modeled as a positive random field parameterized
by a set of independent, identically distributed random variables £ = {£i, — £n,,}-
The random variables comprising £ are defined on a probability space (f2, P, P) such
that (:O-=rc R"", where D is a sample space, P is a cr-algebra on fl, P is a
probability measure on f2, and P = Pi x '+ x Thu is the joint image of £. For each i, P;
is a finite interval symmetric about the origin. The joint probability density function
of £ is denoted by p(£) = H'=1 #(&), where /%(&) is assumed to be symmetric about
0, i.e., Pi(-5) = pi(S) for all 5 6 P«. The expected value of a random function v(£)
on T is then {v)p = E[u] =_f7 v(£)p(£)d£.

For the random viscosity, we consider a random field that has affine dependence
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on the random variables £,
fly

2 7(a;, €) = 1Q + P& W&,
fe=i

where {10, T2} are parameters characterizing the statistical properties of the random
field z/(x,£). The random viscosity leads to the random Reynolds number

G) Re)  7F

where U is the characteristic velocity and L is the characteristic length. We denote
the Reynolds number associated with /0 by Reo = In this study, we ensure that
the viscosity (2) has positive values by controlling {PQ, ct2} and only consider small
enough Reo so that the flow problem has a unique solution.

2.1. Stochastic Galerkin method. In the stochastic Galerkin method, a mixed
variational formulation of (1) can be obtained by employing Galerkin orthogonality:
Find (u,p) E (VE,OD) <8 F-(F) such that

VUE Vo®A(F),

Vg E Q# ® L12(P).

The velocity solution and test spaces are VE = {M E 'HI(D)2\U — g on D"} and
VD = {v e 'Hx{D)2\v = 0 on S-Dcir}, where refers to the Sobolev space of
functions with derivatives in L2(D), for the pressure solution, Op = T2(D), and
L2(T) is a Hilbert space equipped with the inner product

The solution of the variational formulation (4)-(5) satisfies
(6) Uu,p,v,q) =0, Vv £ VD ® L2(r), Vg E OD ® L2(V),
where 7Z(u,p; v, q) is a nonlinear residual

- e/ '11- VL = [(w- V) w] - il S p(V -1
(-"g(V.12)),

To compute the solution of the nonlinear equation (6), we employ linearization tech-
niques based on either Picard iteration or Newton iteration [9]. Replacing (u,p) of
(4)-(5) with (u + 5u,p + 8p) and neglecting the quadratic term c(Su,Su,v), where
c(z;u, 1= [(z V)u]-i;, gives

® (ID Vv e(Su; u, v) + c(u; Su, v) — fD 6p(Viv)p

In the Newton iteration, the (n + 1)st iterate (un+l,pnt+l) is computed by taking
u =un, p =pn in (8), solving (8) for (5un, 8pn), and updating
= u" + JW", = pﬂ + Zip".

In the Picard iteration, the term c(Su, u, v) is omitted from the linearized form (8).
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2.2. Discrete stochastic Galerkin system. To obtain a discrete system, the
velocity u(x, £) and the pressure p(x, $) are approximated by a generalized polynomial
chaos expansion [34]:

i=1 i=l

where {"i(£))21 is a set of n,,-variate orthogonal polynomials (i.e., (ipiipj)p = 0 ifi ™
J) consisting of products of univariate orthogonal polynomials V'i(C) = Hy=i ™ («) (6)
where d{i) = (di(i),... ,dnv{i)) is a multi-index consisting of non-negative integers
and /d.(i) is the dj(i)th order polynomial of  In this study, we set the total degree
space, Anv,dtot = {d(i) 6 NQ" : ||d(1)|]i < dtot}, where N0 is the set of non-negative in-
tegers, [|:d()|[i = Yak'Ll dk(i), and dtot defines the maximal degree of {V*(O)7=1+ For
ordering the index set {d(i)}"l1, we consider the graded lexicographical ordering [33,
Section 5.2], where i > 7 if and only if ||[d(«)|[i > ||d(§)||i or ||d(*)||i = ||d()||1 and the
rightmost nonzero entry of d(i) —d(j) is positive (e.g., A3i2 = {(0,0,0), (1,0,0), (0,1,0),
(0,0,1), (2,0,0), (1,1,0), (0,2,0), (0,1,1), (0,0,2)}). This set of orthogonal polynomials
gives rise to a finite-dimensional approximation space S = span({*i(C)}"il) C Z,2(T).
For spatial discretization, a div-stable mixed finite element method [9] is consid-
ered, the Taylor-Hood element consisting of biquadratic velocities and bilinear pres-
sure. Basis sets for the velocity space Vg and the pressure space are denoted by

'i(z) 0

0 &%) -,
of (9) can be written as

and {y:i(x)}”"1, respectively. Then the fully discrete version

a0,
E:LZI 2sj=1 n€ np
u(x,£) = . B
h 1=l ==l
Let us introduce a vector notation for the coefficients, uf = [u”,..., I 6 R"*
= Mij,--- GR"", and = [pu,...,p».,,F GR"" fori=1, nj, which,

for each gPC index i, groups the horizontal velocity coefficients together followed by
the vertical velocity coefficients, and then by the pressure coefficients, giving a vector

an mr TiT

Taking v{x, £) from (2) and replacing u(z, $), p(x, £) in (8) with their discrete approx-
imations (10) yields a system of linear equations of order (2nu+np)ne. The coefficient
matrix has a Kronecker-product structure,

ll€
(12) J="G;®7),

1=1

where G; refers to the “stochastic matrix”

(G/lij — (iplipilpj)p, 1 —1,... T,
with i1 = 1, in(f) = 76-1;1 = 2,... ,nv + I, where the scalar 7 is chosen so that
(VHp =1, and
F?y BxT P P (O

13 = BYr L PToPw oo -2 T
Bx 0 0 0 0
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where some of the block entries in (13) depend on whether Newton or Picard iteration
is used, with s A, + AT, + kF== = A, + AT, + kP,™, = kP", = kP"
for the Newton iteration and Fxx = Ai + Ni, Ffv = Ai + Ni, Fxy =0, Ffx = 0 for
Picard iteration. We denote the matrices of (12) and (13) derived from the Newton

iteration and the Picard iteration by Jjv, and Jp, Jyp, respectively. Here, Ai is a
symmetric matrix defined as
(14)
= [ w(V<> + Vtr-),  [Aillj = f - —(V<Pj e V<py), I=2,...,n,, + 1,
JD Jp 7

Ni is a discrete convection operator, which depends on the coefficient u) of the current
velocity estimate and is derived from the convection term, c(u, Su, v),

[NiJij = [ (ur V")0i,
JD

Wxx, Wxy, Wyx, and Wjfv are matrices representing weak derivatives of the current
velocity estimate in the x and y directions, which are derived from c{8u\u,\7), for
example,

\W2vjij = 7D ©%-

and Bx and By make up a discrete divergence operator,

If the number of gPC polynomial terms in (10) is larger than the number of terms

in (2) (he.,, > nu+ 1), we simply set {Aj}2n +2 as matrices containing only zeros
so that for Newton iteration Fxx = Ni + Wxx, Fyv = Ni + Wyv and for Picard
iteration Fi = Ni for l=nv+2,.._, nj.

The discrete system of equations to be solved at each iteration then has the form
(16) = -f"

where J = JN or Jp as appropriate, evaluated at the nth discrete iterate un =
[T ... (W"™)T]T 6 RQnu+"p)nf with u"” as in (11), and rn is the discrete version of
the residual (7) evaluated at un.

2.3. Nonlinear iteration. For the nonlinear iteration, we consider a hybrid
Picard-Newton strategy. An initial approximation for the nonlinear solution is com-
puted by solving the parameterized Stokes equations,

-V -i/(z, H)Vu(z, 6) + Vp(%, ) = /(%, (),
V-u(z,f) =0.

The discrete Stokes operator, which is obtained from the stochastic Galerkin dis-
cretization as shown in section 2.2, is

Jrv+1 )
(17) Do Gio<gr Si

Ast — 7S
\ I=1
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where

I e 2,00 5Tl ~t~ 1

B 0

with {Aj}~"l defined in (14) and B defined in (15). After this initial computa-
tion, updates to the solution are computed by first solving mp Picard systems with
coefficient matrix Jp and then using Newton’s method with coefficient matrix

to compute the solution. The Newton iteration is performed until a certain stop-
ping criteria is satisfied, i.e., either the nonlinear residual norm meets a relative error
tolerance eni or a maximal number mn of Newton steps is performed. Algorithm |
summarizes the hybrid nonlinear iteration method.

Algorithm 1 Nonlinear iteration - the hybrid approach

. compute an approximate solution of Astwst = bat in (17)

2: set an initial approximate for the Navier-Stokes problem u° := ust
3. for k= 0,...,mp —1 do {Picard iteration}

4 solve jp Suk = —f/%

5. update uk+! = uk + Suk

6: end for

7. while k& < mn and ||ff¢[2 > eni||r°]2 do {Newton iteration}

8 solve  Suk =—f%

9:  update uk+! = uk + Suk

10: end while* 3

At each nonlinear iteration step, the update Sun is computed by solving (16).
The order of the system (2nu + np)n™ grows fast as the number of random vari-
ables used to parameterize the random viscosity increases. Even for a moderate-
dimensional stochastic Navier-Stokes problem, solving a sequence of linear systems
of order (2nu + np)n” can be computationally prohibitive. To address this issue, we
present an efficient variant of nonlinear iteration using the Kronecker-product struc-
ture in the following sections. See [26] for adaptive strategies for switching from Picard
iteration to Newton’s method, and [17] for an alternative approach of hybridizing Pi-
card iteration and Newton’s method.

3. Low-rank Newton—Krylov method. In this section, we outline the for-
malism in which the solutions to (16) can be efficiently approximated by low-rank
objects while not losing much accuracy and we show how solvers are adjusted within
this formalism.

3.1. Approximation in low rank. In order to develop a low-rank variant of
Algorithm 1, we begin by introducing some concepts to define the rank of computed
quantities. Let X = [$i,'1* ,xn2| G RniXn2 and x = /xf, 111 ,x™2]r G R'11"2, where
Xi GRni fori = 1,...,n2. That is, x can be constructed by rearranging the elements
of X, and vice versa. Suppose X has rank ax. Then two mathematically equivalent
expressions for X and x are given by

(13)

Zi G K™ fori = 1,..., as. The representation of X and its rank is standard matrix
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notation; we also use ax to refer to the rank of the corresponding vector x.

With this definition of rank, our goal is to inexpensively find a low-rank approx-
imate solution uk satisfying Il4fcll2 < eni||f0]|2 for small enough eni. To achieve this
goal, we approximate updates Suk in low-rank form using a low-rank variant of the
GMRES method, which exploits the Kronecker product structure in the system ma-
trix as in (12) and (17). In the following section, we present the solutions u (and Su)
in the formats of (18) together with matrix and vector operations that are essential
for developing the low-rank GMRES method.

3.2. Solution coefficients in Kronecker-product form. We seek separate
low-rank approximations of the horizontal and vertical velocity solutions and the
pressure solution. With the representation shown in (18), the solution coefficient
vector u € $>(2n«+np)ns| which consists of the coefficients of the velocity and pressure
solutions (10), has an equivalent matricized representation U = [UxT, UyT, PT|T 6
JR@2nu+"p)xT\ where [7= = E and P =
[pi,....pnt] 6 MnPxn«. The components admit the following representations:

ctax &ux
(19) = (YYWHIN < ux ="2wi Ovf
AN — A A ANA o«»
20) 1™ _ yowr
i=1 =l
21) = (yp)(wp)"
i=l i=1

where Vx = [vf... vx x|, Wx = [wf ... wf x], is the rank of ux and Ux, and the
same interpretation can be applied to uv and p.

3.2.1. Matrix operations. In this section, we introduce essential matrix op-
erations used by the low-rank GMRES methods, using the representations shown
in (19)—~(21). First, consider the matrix-vector product with the system matrix (12)
and vectors (19) (21),

22) -

The expression (22) has the equivalent matricized form ~UnGYj, which can be
evaluated using the componentwise representation of P) as in (13), for example,

(23)
-FxxnVxn(GIWx'n) T+FxynVyn(GIWvn) T+BxTVpn(GIWp'n)T-
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Equivalently, in the Kronecker-product structure, the matrix-vector product (23) up-
dates each set of solution coefficients as follows:

n(
(24) (G, 8 F=")u=""+ (G, 8 F""")u«"") + (Gi 8 F=")p", ("-velocity)
=1
ns
(25) (G, 8 + (G, 8 + (Gi 8 FM)p", (y-velocity)
(26) (Gi 8 B=)u=""+ (Gi 8 (pressure)

where each matrix-vector product can be performed by exploiting the Kronecker-
product structure, for example,

nf  cx-ux

27) ~G( 8 G 8FAN"Z ®~=EIZ ®
1=1 1=1 i=l 1=1 i=l

The matrix-vector product shown in (24)-(26) requires O(2nu+np+n”) flops, whereas
(22) requires O((2nu + np)n”) flops. Thus, as the problem size grows, the additive
form of the former count grows much less rapidly than the multiplicative form of (22).

The addition of two vectors ux and uv can also be efficiently performed in the
Kronecker-product structure,

OLux auV aux +0t"Uy
(28) ux +uv = wf8vf+F,wfOovf= ¥ Wi®Vi
=l =l i=I
where vi = vf, Wi = wf fori = 1,....,aax, and Uy = vf, Wi = wf for i = +

L. .., Chu + (Xuly
Inner products can be performed with similar efficiencies. Consider two vectors
x\ and x2, whose matricized representations are

"/\1/\"

(29) Xi = A) =

/\3/\ ' /\3/\

We consider the Frobenius inner product [19] between X\ and X2, (X7, X2)F, as
= trace((MZM)MZN) +trace((MH)NM2N) +Hrace((yi3%™M)NM3N),

where trace(A') is defined as a sum of the diagonal entries of the matrix X. An
efficient implementation of this inner product does not use the trace formulas, but
instead constructs ¥j = YyEy, Zj = forj =1,2,3, and

(Xi,X2)F = sum (Vi o Z-j +sum \¥Y2 0 Z” +sum (Y3 0 Z7y

where Y o Z is the element-wise (Hadamard) matrix product and the sum is over all
matrix elements. We used this construction in our implementation.

Although the matrix-vector product and the sum, as described in (27) and (28),
can be performed efficiently, the results of (27) and (28) are represented by n”a”x
terms and a.ax + aay terms, respectively, which typically causes the ranks of the
computed quantities to be higher than the inputs for the computations and potentially
undermines the efficiency of the solution method. To resolve this issue, a truncation
operator will be used to modify the result of matrix-vector products and sums and
force the ranks of quantities used to be small.
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3.2.2. Truncation of Ux,n, Uv,n and Pn. Consider the velocity and the pres-
sure represented in a matrix form as in (19)—(21). The best a-rank approximation of
a matrix can be found by using the singular value decomposition (SVD) [14, 18]. We
define a truncation operator for a given matrix U = VWT whose rank is an,

Tetru,c - UNU,

where the rank of U is larger than the rank of U (i.e., au 3> a”). The truncation
operator TCtunc compresses U to U such that \U — U\\F < etrunc||f/||f where | * IIF
is the Frobenius norm. To achieve this goal, the singular value decomposition of
U can be computed (i.e., U = VDWT where D = diag(di,..., dn) is the diagonal
matrix of singular values)l. *Eeftting {Dj} and {u),} denote the singular vectors, the
approximation is U ~ Y”=i ViiioJ with fijj = dii\ and the truncation rank aQ is
determined by the condition

(30) Jdu0+i i -dn < Etrunc \Jd| + wm+<]%.

3.3. Low-rank GMRES method. We describe the low-rank GMRES method
(IrGMRES) with a generic linear system 4Ax = b. The method follows the standard
Arnold! iteration used by GMRES [25]: construct a set of basis vectors {uj}]’8” by
applying the linear operator 4 to basis vectors, i.e., Wj = Avj forj = 1,..., mgm,
and orthogonalizing the resulting vector Wj with respect to previously generated basis
vectors In the low-rank GMRES method [2], iterates, basis vectors  and
intermediate quantities w,; are represented in terms of the factors of their matricized
representations (so that X in (18) would be represented using Y and Z without
explicit construction of X), and matrix operations such as matrix-vector products are
performed as described in section 3.2.1. As pointed out in section 3.2.1, these matrix
operations typically tend to increase the rank of the resulting quantity, and this is
resolved by interleaving the truncation operator 7" with the matrix operations. The
low-rank GMRES method computes a new iterate by solving

(31) i b ACD + Vi f)112

and constructing a new iterate X| = xo + hmgm/3 where X0 is an initial guess. Due to
truncation, the basis vectors {uj} are not orthogonal and span(I*rlgm), where Vingin =
[’1... vmKm], is not a Krylov subspace, so that (31) must be solved explicitly rather
than exploiting Hessenberg structure as in standard GMRES. Algorithm 2 summarizes
the IrGMRES method. We will use this method to solve the linear system of (16).

3.4. Preconditioning. We also use preconditioning to speed up convergence of
the I'rGMRES method. For this, we consider a right-preconditioned system

=-f",

where Mn is the preconditioner and MnSun = Sun such that JnSun = —fn. We
consider an approximate mean-based preconditioner [22], which is derived from the

1In computing the singular value decomposition, we follow the approach used in [10] where, based
on complexity analysis of costs, one can adaptively choose a method to compute the SVD of U either
by computing QR decompositions of the factors V' = QyRv and W = QOwR-w, and computing the
SVD of /Ry Ras in [14], or by computing the SVD of U directly when that is less expensive.
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Algorithm 2 IrGMRES(mgm) (Restarted low-rank GMRES method)

l: set the initial solution XQ

2. for k=0, 1, ... do

3 r¥*m.:=b- Axk

4 if Ikgmh/lI"h< Egmres or [[r"m|]2 > then
5: return xk

6 end if

7 V\ := Tetiunc (?’gm)

8 Vi '('Vibtll2

99 foryj=1,,.., TOgm do

10: Wj := Avj

11 solve (V?Vj)a = V" Wj where V) = [t>i,..., Vj]
12: ~j'+1 = Tetrunc —

13: yi+l = 112

14 end for

15: solve I _ _ -~~~ EFare—x << W,- = [%h,...,
16:  Xk+1 := Tetrunc (xk + fimgm/3)

17: end for

matrix Gi ® Ji associated with the mean ul of the random viscosity (2),

where
A ?
M] A 0 N AA 3_ Arp (Picard iteration)
o AN+ Arp + (Newton iteration)

For approximating the action of the inverse, (MJ1) 1, we choose the boundary-adjusted
least-squares commutator (LSC) preconditioning scheme [9],

Mg = BF™Bl « (BH~IBI )(BM~IFIH-1B! )~1(BM~IB1),

where M* is the diagonal of the velocity mass matrix and H =

where D is a diagonal scaling matrix deemphasizing contributions near the boundary.
During the iteration, the action of the inverse of the preconditioner (32) can be applied
to a vector in a manner analogous to (24)-(26).

4. Inexact nonlinear iteration. As outlined in Algorithm 1, we use the hybrid
approach, employing a few steps of Picard iteration followed by Newton iteration,
and the linear systems (Lines 4 and 8 in Algorithm 1) are solved using IrGMRES
(Algorithm 2). We extend the hybrid approach to an inexact variant based on an
inexact Newton algorithm, in which the accuracy of the approximate linear system
solution is tied to the accuracy of the nonlinear iterate (see e.g., [13] and references
therein). That is, when the nonlinear iterate is far from the solution, the linear systems
may not have to be solved accurately. Thus, a sequence of iterates un+/ := un + Sun
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is computed where 6un satisfies

|J"S5un + 1|2 < egmres||rn||2, (Jp for Picard iteration),
where the [IrGMRES stopping tolerance (egmres of Algorithm 2) is given by

(33) Cgmres := Pgmres | P" 112]

where 0 < pgmres < 1. With this strategy, the system (22) is solved with increased
accuracy as the error becomes smaller, leading to savings in the average cost per step
and, as we will show, with no degradation in the asymptotic convergence rate of the
nonlinear iteration.

In addition, in Algorithms | and 2, the truncation operator 7(tru[lc is used for the
low-rank approximation of the nonlinear iterate (he., truncating ux, uv, and p at lines
5 and 9 in Algorithm 1) and updates (be., truncating Sux, 5uv, and Sp at lines 7, 12,
and 16 in Algorithm 2). As the IrGMRES stopping tolerance is adaptively determined
by the criterion (33), we also choose the value of the truncation tolerances etrUnc,soi and
etrunc com adaptively. For truncating the nonlinear iterate, the truncation tolerance
for the iterate e”runc sol is chosen based on the nonlinear iteration stopping tolerance,

etrunc,sol — Pnl”nl?

where 0 < pnl < 1. For truncating the updates (or corrections), the truncation toler-
ance for the correction e(runc corr is adaptively chosen based on the stopping tolerance
of the linear solver,

Arunc,corr = Ptrunc,PCgmres, (&* the nth Picard Step),
4Lnc,corr == Ptnmc.NE"mna, (&* the nth Newton Step),

where 0 < Ptrunc.p, Ptrunc.N < 1. Thus, for computing nth update Sun, we set etrunc =
etounc,corr in Algorithm 2. The complete computation is shown in Algorithm 3.

Algorithm 3 Inexact nonlinear iteration with adaptive tolerances
1: Set €trunc,sol = diil"nl
2: compute an approximate solution of Astust = bst using Algorithm 2
3: set an initial guess for the Navier-Stokes problem u° := ust
4 for k=0,...,mp—1 do {Picard iteration}

S: Set £gmres = Pgmresll'f"lbi and etmnc,corr = Ptrunc,P 117112
6. solve Jp 6uk = —f% using Algorithm 2
= update
8: end for
9. while ||rf¢|2 > eni||r°||2 do {Newton iteration}
10: Set £gmres = Pgmres|lh 1125 and Ctrunc,corr = Ptrunc,N [|Pfc |2
1. solve  Suk — —7% using Algorithm 2
12.  update =

13: end while

5. Numerical results. In this section, we present the results of numerical ex-
periments on a model problem, flow around a square obstacle in a channel, for which
the details are depicted in Figure 1. The domain has length 12 and height 2, and it
contains a square obstacle centered at (2,0) with sides of length .25.
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FIG. 1. Spatial domain and finite element discretization

For the numerical experiments, we define the random viscosity (2) using a stochas-
tic expansion with Vi(x) = y/X

(34) vix, i) =ill + av ™2 y/\

i=1

where {£*} are uncorrelated random variables with zero mean and unit variance, v
and a2 are the mean and the variance of v{x,Q, and {(A", z>j(z))} are eigenpairs
of the eigenvalue problem associated with a covariance kernel C(x,y). We consider
two types of covariance kernel: absolute difference exponential (AE) and squared
difference exponential (SE), which are defined via

(35) CAE(x,y) =exp N 3, CSE(a;,y) =exp N {yn

where x = (x\,X2) and y = (yi, J/2) are points in the spatial domain, and / is a correla-
tion length.2 We assume that & (fori = 1,..., nv) follows a uniform distribution over
[—V3, V3]. With this choice, 7 = 1 in (14). For the mean of the viscosity, we consider
several choices, ull = 1S0’ TBol, which correspond to Re0 = {100,200,300}. We
will also refer to the coefficient of variation (CoV), the relative size of the standard
deviation with respect to the mean,

(36) Coy = —.

144

To ensure the positivity of the random field, we check 79 *1 — XpCoy) > 0, which

holds for all benchmark problems tested. In most experiments, we use a truncated
stochastic expansion of (34) with the largest five eigenvalues (nv = 5). For construct-
ing the finite-dimensional approximation space S = span({V>t(£)}T=i) in the parame-
ter domain, we use orthogonal polynomials {Vi(£)}"=i °ftotal degree dtot = 3, which
results in = 56. The orthogonal polynomials associated with uniform random vari-
ables are Legendre polynomials.For the spatial discretization, Taylor-Hood elements
are used on a stretched grid, which results in {6320, 6320, 1640} degrees of freedom
in {ux, uy,p}, respectively (i.e., nu = 6320 and np = 1640.) The implementation

is based on the Incompressible Flow and Iterative Solver Software (IFISS) package
8, 27]. '

5.1. Low-rank inexact nonlinear iteration. In this section, we compare the
results obtained from the low-rank inexact nonlinear iteration with those obtained
from other methods, the exact and the inexact nonlinear iteration with full rank
solutions, and the Monte Carlo method. Default parameter settings are listed in

2Note that the expansion (34) has covariance given by <©2C where C is one of the functions in
(35).
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-a— Full rank, Exact Full rank, Exact
-0— Full rank, Inexact O  Full rank, Inexact
-*— Low rank(10-5), Inexact Low rank(10-5), Inexact
Low rank(10-6), Inexact Low rank(10-6), Inexact
-0"— Low rank(10-7), Inexact €- Low rank(10-7), Inexact
Low rank(10 Inexact Low rank(10-8), Inexact
1 2 3 4 5 6 7
k (step counts for the nonlinear iteration) k (step counts for the nonlinear iteration)
(a) CoV = 1% and [ = 32 (b) CoV =5% and | = |

FIG. 2. Convergence of both exact and inexact nonlinear iterations (full-rank) and the low-rank
inexact nonlinear iteration.

Table 1, where the truncation tolerances only apply to the low-rank method. Unless
otherwise specified, the linear system is solved using a restarted version of low-rank
GMRES, IrGMRES(20), which generates 20 basis vectors at each GMRES cycle.

TABLE |
Tolerances and adaptive parameters.

Nonlinear iteration stopping tolerance £nl = 10-5
GMRES tolerance (Stokes) Cgmres = 10 *
GMRES tolerances (Picard and Newton) egmres = dginrcs||c" 2 (pgmres = 10 B)
Truncation tolerance for solutions etrunc,sol — Pnlenl (Pnl — 10 )
Truncation tolerance for corrections etrunc.corr = PtruncCgmres (Ptrunc = 10 )

We first examine the convergence behavior of the inexact nonlinear iteration for
two model problems characterized by Reo = 100, CoV = 1%, [ = 32 and Re0 = 100,
CoV = 5%, | = 1. Also, the SE covariance kernel in (35) is considered for both
problems. We compute a full-rank solution using the exact nonlinear iteration
(ggmres = 10°“12 and no truncation) until the nonlinear iterate reaches the nonlinear
stopping tolerance, enl = 10~8. Then we compute another full-rank solution using the
inexact nonlinear iteration (i.e., adaptive choice of £gmres as shown in Table 1 and no
truncation). Lastly, we compute a low-rank approximate solution using the low-rank
inexact nonlinear iteration (i.e., adaptive choices of e" res and e"runCiCorr as shown in
Table 1 and for varying etruncsoi = {10-5,10°6,10-7,10-8}). Figure 2 shows the
convergence behavior of the three methods. We use a hybrid approach, in which the
first step corresponds to the Stokes problem (line 2 of Algorithm 3), the 2nd-5th steps
correspond to the Picard iteration (line 4-8 of Algorithm 3, and mp = 4), and the 6th-
7th steps correspond to the Newton iteration (line 9-13 of Algorithm 3). The choice
of mp = 4 (number of Picard steps) was derived from our empirical observation (also
made in [28]) that with this choice the following Newton iteration always converged.
We also allowed a maximal number of Newton steps mn = 4, which was not reached
in any of the experiments. Figure 2 confirms that the inexact nonlinear iteration is
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x10%4

xI(T3

FI1G. 3. Mean and variances of full-rank velocity solutions ux (x, £), uy(ctczrzc pressure
solution p(x, 5) for Reo = 100, CoV = 1%, and | = 32.

FIG. 4. Difference between the means and variances of the full-rank and the low-rank solutions
for Reg = 100, CoV = 1%, and | = 32.

as effective as the exact nonlinear iteration. The low-rank inexact nonlinear iteration
behaves similarly up to the 6th nonlinear step but when the truncation tolerances
are large, etrtUnc,sol = {10-5,1CT6} in Figure 2a and etrUnc,soi = {l0-5,1CT6,1CT7} in
Figure 2b, it fails to produce a nonlinear solution satisfying eni = 10-8.

Figure 3 shows means and variances of the components of the full-rank solution
of the problem with Reo = 100, CoV = 1%, and [/ — 32, given by

(37) Aht* = E[uz], Huv # S8 = E[p],
(38) = E[(tia — /4,x)2], =E[(uy - Vuwz. al =E[(p - itp)]

These quantities are easily computed by exploiting the orthogonality of basis functions
in the gPC expansion. Figure 4 shows the differences in the means and variances of the
solutions computed using the full-rank and the low-rank inexact nonlinear iteration.
Let us denote the full-rank and low-rank horizontal velocity solutions by ux'ixM and
ux’Xr, with analogous notation for the vertical velocity and the pressure. Thus, the
differences in the means and the variances are

vy — — /4%,  Vp — /4.1 full — N = fIpfull — fIplr,

Vo = aux’full ~ Vo — _ Owl/dr, Vo = O'pfull — (T*ir.
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Figure 4 shows these differences, normalized by graph norms ||V/2ufuii| + |/V»u|l f°r
the means and | V<72full] + ||<72full| for the variances, where ||Vu|| = (/D Vu : Vudx)i

and |p|| = (fDp2dx)i. Figure 4 shows that the normalized differences in the mean
and the variance are of order 10-10 to 10-9 and 10-12 to 10_1°, respectively, i.e.,
the errors in low-rank solutions are considerably smaller than the magnitude of the
truncation tolerances etrunc,soi, etrunc.corr (see Table 1). This outcome is typical of our
experience. For example, in another experiment with CoV = 5% and | = I, the
normalized differences in the mean and the variance are of order 10-9 to 10~8 and
10"n to 10"9.

5.2. Characteristics of the Galerkin solution. In this section, we examine
various properties of the Galerkin solutions, with emphasis on comparison of the
low-rank and full-rank versions of these solutions and development of an enhanced
understanding of the relation between the Galerkin solution and the polynomial chaos
basis. We use the same experimental settings studied above, and describe the result
mainly with the model problem with CoV = 1% and [ = 32.

We begin by comparing the Galerkin solution with the solution of the parame-
terized discrete system via Monte Carlo simulation. For the latter approach, spatial
discretization of the Navier-Stokes equations (1), using the same Taylor-Hood ele-
ment described in Section 2.2, produces a deterministic parameterized nonlinear alge-
braic system whose finite element velocity {u"\(x, £), uh(x, £))T and pressure Ph(x, £)
solutions for £ comprise discrete approximations to solutions of the parameterized
system (1). We can use these discrete solutions to estimate probability density func-
tions (PDFs) at a specific point in the spatial domain. For Monte Carlo simulation,
we solve TTMC = 25000 such deterministic systems associated with nuc realizations
{£7}fe=1 1'l the parameter space. Using the MATLAB function ksdensity, the PDFs
of (ME(X,E), uh(xft), Ph(x, £)) are estimated at the spatial point with coordinates
(3.6436, 0), where the variance of u”\(x, £) is large (see Figure 3). The results are
shown in Figure 5, where the same sampling points are used with the Galerkin
solutions and the Monte Carlo simulation of the parameterized discrete system. They
indicate that the PDF estimate of the Galerkin solution is virtually identical to that
obtained from Monte Carlo simulation of the parameterized discrete system, and there
is essentially no difference between the low-rank and full-rank results.

MC MC MG
SG(full rank) SG(full rank) SG(full rank)
SG(low rank) SG(low rank) SG(low rank)
-le-4  -Se-4
FI1G. 5. Estimated, PDFs of the velocities and the pressure ph(0 oi, the point

Next, we explore some characteristics of the Galerkin solution, focusing on the
horizontal velocity solution; the observations made here also hold for the other com-
ponents of the solution. Given the coefficients of the discrete velocity solution in
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1
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-15 ‘ t ! ! .
1 10 20 30 40 50

J (gPC index)
F1G. 6. Norms of the gPC coefficients ||«fH] for Reo = 100, CoV = 1%, and | = 32.

matricized form, Ux, the velocity solution is then approximated by

where <F(z) = [<>i(z),... ,<Pux)]T and ~() = [-ji(£),... ,N{(£)]T- Consider in
particular the component of this expression corresponding to the jth column of Ux,

so that this (jtli) column ux = [Ux]j corresponds to the coefficient of the jth poly-
nomial basis function ipj. Figure 6 plots the values of the coefficients ||sfHa- (This
data is computed with Reo = 100, CoV = 1%, and SE covariance kernel with [ = 32.)
Note that the gPC indices {j} are in one-to-one correspondence with multi-indices
d@g) = (di(j),..., dnu(j)), where the element of the multi-index indicates the degree
of univariate Legendre polynomial. The multi-indices {d(j) }"j=| are ordered using
the graded lexicographic order [33, Chapter 5.2]. In Figure 6, the blue square is as-
sociated with the zeroth-order gPC component (d(1)), the red circles are associated
with the first-order gPC components ({d(j)}®=2), and so on. Let us focus on three
gPC components associated only with £1: {ip2(0 = li(£1), = (1), ™22(6) =
~a(Ci)}, where, for j = 2,7,22, the multi-indices are d(2) = (1,0,0,0,0), d(7) =
(2,0,0,0,0), and d(22) — (3,0,0,0,0). Figure 6 confirms that the gPC components
{"2(6),77(0,"22(0} associated with the input variable £1, which has the highest
impact on the input (34), also have the highest impact in the output.

We continue the examination of this data in Figure 7 (left), which shows two-
dimensional mesh plots of the 2nd through 7th columns of Ux. These images show
that these coefficients are either symmetric with respect to the horizontal axis, or re-
flectionally symmetric (equal in magnitude but of opposite sign), and (as also revealed
in Figure 6), they tend to have smaller values as the index j is increased.

We now look more closely at features of the factors of the low-rank approximate so-
lution and compare these with those of the (unfactored) full-rank solution. In the low-
rank format, the discrete solution is represented using factors ("“T(x)Vx)('f’T(f) Wx)T.
Let us introduce a concise notation for the approximation of ux(x, £),

i=1
where (2) = [(f(2),.... (@] and 8™, () = [(0),..., 97, (D] with  (z) =
[(fiT{x)Vx]i and Of(£) = [\VT(£)Wx))i for i = 1,... ,aax. Figure 7 (right) shows the
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xI(T4

F1G. 7. Plots of coefficients of gPC components 2-7 of ux(x,£) (left) and coefficients vf" of
Of(5) fori = 2,...,7 (right) for Reo = 100, CoV = 1%, and | = 32.

1 47
F1G. 8. Heat maps of (WX)T for CoV = 1% and | = 32 (left) and CoV = 5% and | =1 (right).

coefficients of the ith random variable #f(£). As opposed to the gPC coefficients of
the full-rank solution, the norms of the coefficients v/ of Of(£) decrease monotonically
as the index i increases. This is a consequence of the fact that the ordering for 6f(£)
comes from the singular values of Ux. Figure 7 (right) shows the 2nd-7tli columns of
Vx. Figure 7 shows that the coefficients v/ of 6f(£) are comparable to the coefficients
uf of the gPC components. Each pair of components in the following parenthesized
collection is similar: (u2,v2), (n3,v3), (u7, -u4), (u4, -v7), (us,v5), and (u6,-v0).
Figure 8 shows a “heat map” of (WX)7, where values of the elements in Wx are
represented as colors and the map shows that a very few elements of W are dominant
and a sum of those elements is close to 1. Using the fact that Of(£) = '$'r(6)uf: the
figure shows how (9f(£) is represented in terms of 'F(£). For the case CoV = [% and
[ = 32 shown on the left, Wx tends to act as a permutation matrix. In particular,
many dominant elements of Wx are located in its diagonal, with value approximately
1, which results in #f(£) ~ +i/>(£) (e.g., i = 1,2,3, 5, 6,8). For the fourth column of
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Wx, the most dominant entry is the seventh with value close to —1, which results in
0f(£) ~ —4}7("). As shown in Figure 6, VrtC) has a larger contribution than most
other gPC components, and 0f(£), which consists mainly of “y(C)) has a smaller index
in the new solution representation. For the case of ColV = 5% and / = | depicted on
the right side of Figure 8, the dominant modes determined from the SVD, i.e., 6f(£)
for small i. tend to correspond to multiple gPC components with larger contributions;
for example,

5.3. Computational costs. In this section, we assess the costs of the low-
rank inexact nonlinear iteration under various experimental settings: two types of
covariance kernels (35), varying CoV (36), and varying Reg. In addition, for various
values of these quantities, we investigate the decay of the eigenvalues A, used to
define the random viscosity (34) and their influence on the rank of solutions. All
numerical experiments are performed on an Intel 3.1 GHz 17 CPU, 16 GB RAM using
MatrLaB R2016b and costs are measured in terms of CPU wall time (in seconds).
For larger CoV and Reo, we found the solver to be more effective using the slightly
smaller truncation tolerance ptrunc = 10-1'S and used this choice for all experiments
described below. (Other adaptive tolerances are those shown as in Table 1.) This
change had little impact on results for small Col and RBQ.

Figure 9 shows the 50 largest eigenvalues A, of the eigenvalue problems associated
with the SE covariance kernel and the AE covariance kernel (35) with [ = 8, CoV =

F1G. 9. Eigenvalue decay of the AE and the SE covariance kernels.

SE

vy, AE

—p, AE
SE, low rank
-6— SE, full rank
AE, low rank
v— AE, full rank

(a) Computational cost of full-rank computa- (b) Ranks of the low-rank approximate solu-

tion and low-rank approximation tions

F1G. 10. Computational costs and ranks for varying correlation lengths with SE and AE co-
variance kernel.



LOW-RANK APPROXIMATION FOR THE NAVIER-STOKES EQUATIONS 19

1%, and Reo = 100. The eigenvalues of the SE covariance kernel decay much more
rapidly than those of the AE covariance kernel. Because we choose a fixed number of
terms n,, = 5, the random viscosity derived from the SE covariance kernel retains a
smaller variance.

CoV = 1%, full rank CoF=1%
CoV — 5%, low rank 10— CoV = 5%
V— CoV — 5%, full rank CoV = 10%

-0— CoV — 10%, low rank
-e— CW = 10%, full rank

(a) Computational cost of full-rank computa- (b) Ranks of ux
tion and low-rank approximation

-V— CoV = 1% CW = 1%
-e— CoF = 5%
CoF =10%
(¢) Ranks of uy (d) Ranks of p

F1G. 11. Computational costs and ranks for varying correlation lengths and varying CoV with
Reo = 100.

Figure 10a shows the computational costs (in seconds) needed for computing
the full-rank solutions and the low-rank approximate solutions using the inexact
nonlinear iteration for the two covariance kernels and a set of correlation lengths,
I =1{1,2,4,8,16,32}. Figure 10b shows the ranks of the low-rank approximate so-
lutions that satisfy the nonlinear stopping tolerance efnl = 10-5. Again, Re0 = 100
and CoV = 1%. For this benchmark problem, 4 Picard iterations and | Newton
iteration are enough to generate a nonlinear iterate satisfying the stopping tolerance
eni- It can be seen from Figure 10a that in all cases the use of low rank methods
reduces computational cost. Moreover, as the correlation length becomes larger, the
ranks of the corrections and the nonlinear iterates become smaller. As a result, the
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low-rank method achieves greater computational savings for the problems with larger
correlation length.

Next, we examine the performances of the low-rank approximation method for
varying CoV, which is defined in (36). In this experiment, we fix the value of Reo =
100 and the variance ay is controlled. We consider the SE covariance kernel.

-G— Reo=100, full rank
Re0=200, low rank -G—Reo =200
-V— Reo0=200, full rank Reo — 300

-0— Reo=300, low rank

— Reo=300, full rank

8 14
(a) Computational cost of full-rank computation (b) Ranks of ux
and low-rank approximation
1V— Reo = 100
-0— Reo = 200 ——Reo = 200
— Reo = 300
(¢) Ranks of uy (d) Ranks ofp

F1G. 12. Computational costs and ranks for varying correlation lengths and varying Reo

Figure 11 shows the performances of the full-rank and the low-rank methods for
varying CoV = {1%, 5%, 10%}. We use Algorithm 3 with 4 Picard steps, followed
by several Newton steps until convergence. For CoV = {1%, 5%}, one Newton step
is required for convergence and, for Col = 10%, two Newton steps are required.
Figure 11a shows the computational costs. For CoV = {1%, 5%}, the computational
benefits of using the low-rank approximation methods are pronounced whereas, for
CoV = 10%, the performances of the two approaches are essentially the same for
shorter correlation lengths. Indeed, for higher CoV, the ranks of solutions u (see
Figures 1lb-11d) as well as updates Suk at Newton steps become close to the full
rank (n* = 56).
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low rank  -0— full rani low rank  Q— full rank
low rank low rank  -V— full rank
-0— low rank -0— low rank  $— full rank

(a) Computational costs for varying total degree  (b) Computational cost for varying number of
dtot in the gPC expansion random variables n,,

10—, =9,4.

(¢) Ranks of ux (d) Ranks of uy

(e) Ranks ofp

F1G. 13. Computational costs and ranks for varying total degrees of the gPC expansion dtot and
number of random variables n,,
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Next, we study the benchmark problems with varying mean viscosity with SE
covariance kernel and CoV = 1%. As the mean viscosity decreases, Rel grows, and
the nonlinear problem tends to become harder to solve, and for the larger Reynolds
numbers Reo = 200 or 300, we use more Picard steps (5 or 6, respectively) before
switching to Newton’s method.

Figure 12 shows the performances of the low-rank methods for varying Reynolds
number, Re0 = {100, 200,300}. For Re0 = 200, after 5 Picard steps, one Newton step
leads to convergence (and 6 Picard steps and one Newton step for Rel = 300). As
the figures 12b-12d show, the ranks of the solutions increase slightly as the Reynolds
number becomes larger and, thus, for all Reo tested here, the low-rank method demon-
strates notable computational savings (with ColV = 1%). Note that overall computa-
tional costs in Figure 12a increase as the Reynolds number becomes larger because (1)
the number of nonlinear steps required to converge increases as the Reynolds number
increases and (2) to solve each linearized systems, typically more IrGMRES cycles are
required for the problems with higher Reynolds number.

Finally, we study how the total degree dtot of the gPC basis and the number of
random variables nv effect the performance of the low-rank methods. In these tests,
we used the SE covariance kernel, ColV = 5%, and Re0 = 100; Algorithm 3 with 4
Picard steps followed by one Newton step led to convergence.

Figure 13 shows performance results for dtot = 3,4 and 5 and n,, = 5,7 and 9.
For these choices of dtot, we fixed nu = 5, which results in nj = 56,126 and 252.
For varying n,,, we fixed dtot = 3, which results in = 56,120 and 220. Figure
13a shows that the benefits of the low-rank methods are enhanced as dtot increases;
this is because increasing dtot has small impact on the ranks of the low-rank solutions
(Figures 13c-13e). Similarly the increases in n,, does not greatly affect the ranks of the
solutions (Figures 13c-13e). (Note in particular that as either dfot or nv is increased,
the ranks of the solutions increase less dramatically than ng.) The effectiveness of
low-rank methods is enhanced as n,, grows (Figure 13b).

6. Conclusion. In this study, we have developed the inexact low-rank nonlinear
iteration for the solutions of the Navier-Stokes equations with uncertain viscosity in
the stochastic Galerkin context. At each step of the nonlinear iteration, the solution
ofthe linear system is inexpensively approximated in low rank format using the tensor
variant of the GMRES method. We examined the effect of the truncation on the accu-
racy of the low-rank approximate solutions by comparing those solutions to the ones
computed using exact, inexact nonlinear iterations in full rank and the Monte Carlo
method. Then we explored the efficiency of the proposed method with a set of bench-
mark problems for various settings of uncertain viscosity. The numerical experiments
demonstrated that the low-rank nonlinear iteration achieved significant computational
savings for the problems with smaller Col” and larger correlation lengths. The ex-
periments also showed that the mean Reynolds number does not significantly affect
the rank of the solution and the low-rank nonlinear iteration achieves computational
savings for varying Reynolds number for small Col and large correlation lengths.
Lastly, the experiments showed that the low-rank nonlinear iteration performs better
for problems with larger total degree in the gPC expansion and for larger numbers of
random variables.

Acknowledgement. This paper describes objective technical results and analysis.
Any subjective views or opinions that might be expressed in the paper do not nec-
essarily represent the views of the U.S. Department of Energy or the United States
Government. Sandia National Laboratories is a multimission laboratory managed



LOW-RANK APPROXIMATION FOR THE NAVIER-STOKES EQUATIONS 23
and operated by National Technology and Engineering Solutions of Sandia, LLC., a

wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

REFERENCES

—
—

. BABUSKA, R. TEMPONE, AND G. E. ZOURARIS, Galerkin finite element approximations of
stochastic elliptic partial differential equations, SIAM Journal on Numerical Analysis, 42
(2004), pp. 800-825.

[2] J. BALLAN! AND L. GRASEDYCK, 4 projection method to solve linear systems in tensor format,
Numerical Linear Algebra with Applications, 20 (2013), pp. 27-43.
[3] P. BENNER, S. DOLGOV, A. ONWUNTA, AND M. STOLL, Solving optimal control problems
governed by random Navier-Stokes equations using low-rank methods, arXiv preprint
arXiv: 1703.06097, (2017).
[4] P. BENNER, A. ONWUNTA, AND M. STOLL, Low-rank solution of unsteady diffusion equations
with stochastic coefficients, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015),
pp. 622-649.
[5] R. S. DEMBO, S. C. EISENSTAT, AND T. STEIHAUG, Inexact Newton methods, SIAM Journal on
Numerical Analysis, 19 (1982), pp. 400-408.
[6] S. DOLGOV, B. N. KHOROMSKIJ, A. LITVINENKO, AND H. G. MATTHIES, Polynomial chaos
expansion of random coefficients and the solution of stochastic partial differential equations
in the tensor train format, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015),
pp. 1109-1135.
[71 H. C. ELMAN AND D. FURNIVAL, Solving the stochastic steady-state diffusion problem using
multigrid, IMA Journal of Numerical Analysis, 27 (2007), pp. 675-688.
[8] H. C. ELMAN, A. RAMAGE, AND D. J. SILVESTER, IFISS: A computational laboratory for
investigating incompressible flow problems, SIAM Review, 56 (2014), pp. 261-273.
[9] H. C. ELMAN, D. J. SILVESTER, AND A. J. WATHEN, Finite Elements and Fast Iterative Solvers:
with Applications in Incompressible Fluid Dynamics, Oxford University Press (UK), 2014.
[10] H. C. ELMAN AND T. SU, A low-rank multigrid method for the stochastic steady-state diffusion
problem, STAM Journal on Matrix Analysis and Applications, 39 (2018), pp. 492-509.
[11] M. ESPIG, W. HACKBUSCH, A. LITVINENKO, H. G. MATTHIES, AND P. WAHNERT, Efficient
low-rank approximation of the stochastic Galerkin matrix in tensor formats, Computers
& Mathematics with Applications, 67 (2014), pp. 818-829.
[12] R. G. GHANEM AND P. D. SPANOS, Stochastic Finite Elements: A Spectral Approach, Dover,
2003.
[13] C. KELLEY, [lterative Methods for Linear and Nonlinear Equations, Society for Industrial and
Applied Mathematics, 1995.
[14] D. KRESSNER AND C. TOBLER, Low-rank tensor Krylov subspace methods for parametrized
linear systems, SIAM Journal on Matrix Analysis and Applications, 32 (2011), pp. 1288-
1316.
[15] O. P. LE MATURE AND O. M. KNIO, Spectral Methods for Uncertainty Quantification: with
Applications to Computational Fluid Dynamics, Springer, 2010.
[16] K. LEE AND H. C. ELMAN, 4 preconditioned low-rank projection method with a rank-reduction
scheme for stochastic partial differential equations, SIAM Journal on Scientific Computing,
39 (2017), pp. S828-S850.
[17] K. LusT AND D. ROOSE, An adaptive Newton-Picard algorithm with subspace iteration for
computing periodic solutions, SIAM Journal on Scientific Computing, 19 (1998), pp. 1188-
1209.
[18] H. G. MATTHIES AND E. ZANDER, Solving stochastic systems with low-rank tensor compression,
Linear Algebra and its Applications, 436 (2012), pp. 3819-3838.
[19] C. D. MEYER, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.
[20] A. Nouy, 4 generalized spectral decomposition technique to solve a class of linear stochastic
partial differential equations, Computer Methods in Applied Mechanics and Engineering,
196 (2007), pp. 4521-4537.
[21] 1. V. OSELEDETS, Tensor-train decomposition, SIAM Journal on Scientific Computing, 33
(2011), pp. 2295-2317.
[22] C. E. POWELL AND H. C. ELMAN, Block-diagonal preconditioning for spectral stochastic finite-
element systems, IMA Journal of Numerical Analysis, 29 (2009), pp. 350-375.

[23] €. E. POWELL AND D. J. SILVESTER, Preconditioning steady-state Navier-Stokes equations with

random data, SIAM Journal on Scientific Computing, 34 (2012), pp. A2482-A2506.



24

(24]

[25]

[26]

[27]

[28]

(29]

[30]

B1]

32]

[33]

(34]

K. LEE, H. C. ELMAN, AND B. SOUSEDIK

E. ROSSEEL AND S. VANDEWALLE, Iterative solvers for the stochastic finite element method,
SIAM Journal on Scientific Computing, 32 (2010), pp. 372-397.

Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7
(1986), pp. 856-869.

H. V. SANDS, T. BOONEN, H. DE GERSEM, F. HENROTTE, AND K. HAMEYER, Accelerating non-
linear time-harmonic problems by a hybrid Picard-Newt.on approach, in Proceedings - 10th
International IGTE Symposium on Numerical Field Calculation in Electrical Engineering,
Verl. der Techn. Univ., September 2002, pp. 342-347.

D. J. SILVESTER, H. C. ELMAN, AND A. RAMAGE, Incompressible Flow and Iterative Solver
Software (IFISS) version 3.4, August 2015. http://uww.manchester.ac.uk/ifiss/.

B. SOUSEDIK AND H. C. ELMAN, Stochastic Galerkin methods for the steady-state Navier-Stokes
equations, Journal of Computational Physics, 316 (2016), pp. 435-452.

B. SOUSEDIK, R. G. GHANEM, AND E. T. PHIPPS, Hierarchical Schur complement precondi-
tioner for the stochastic Galerkin finite element methods, Numerical Linear Algebra with
Applications, 21 (2014), pp. 136-151.

M. STOLL AND T. BREITEN, A4 low-rank in time approach to PDE-constrained optimization,
SIAM Journal on Scientific Computing, 37 (2015), pp. B1-B29.

L. TAMELLINI, O. LE MAITRE, AND A. NOUY, Model Reduction Based on Proper Generalized
Decomposition for the Stochastic Steady Incompressible Navier-Stokes Equations, SIAM
Journal on Scientific Computing, 36 (2014), pp. A1089-A1117.

E. ULLMANN, H. C. ELMAN, AND O. G. ERNST, Efficient iterative solvers for stochastic Galerkin
discretizations of log-transformed random diffusion problems, SIAM Journal on Scientific
Computing, 34 (2012), pp. A659-A682.

D. XIU, Numerical Methods for Stochastic Computations: a Spectral Method Approach, Prince-
ton University Press, 2010.

D. Xiu AND G. E. KARNIADAKIS, The Wiener-Askey polynomial chaos for stochastic differential
equations, SIAM Journal on Scientific Computing, 24 (2002), pp. 619-644.



