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Abstract

In this paper, we first investigate the quality of aerial air pollu-

tion measurements and characterize the main error sources of

drone-mounted gas sensors. To that end, we build ASTRO+, an

aerial-ground pollution monitoring platform, and use it to collect

a comprehensive dataset of both aerial and reference air pollution

measurements. We show that the dynamic airflow caused by drones

affects temperature and humidity levels of the ambient air, which

then affect the measurement quality of gas sensors. Then, in the

second part of this paper, we leverage the effects of weather condi-

tions on pollution measurements’ quality in order to design a UAV

mission planning algorithm that adapts the trajectory of the drones

while taking into account the quality of aerial measurements. We

evaluate our mission planning approach based on a VOC pollution

dataset and show a high performance improvement that is due to

the fine characterization of the measurement errors.

CCS Concepts

• Computer systems organization→ Embedded and cyber phys-

ical systems; • Networks→ Network algorithms.

1 Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, are

used in many environmental applications and especially air pol-

lution monitoring, which requires high spatial resolution sensing

[13]. Indeed, whether the objective is to perform a full mapping

of pollution concentrations or to characterize a specific pollution

plume in case of a gas leak, drones offer better spatial resolution

compared to static and car-mounted sensing solutions [1]. How-

ever, due to their power constraints, drones are limited in terms of

sensing resources and require efficient mission planning in order

to perform measurements at the most informative sensing loca-

tions within their restricted flight time [4]. The performance of

UAV mission planning algorithms highly depends on the quality

of aerial sensing since low quality measurements may lead to poor

predictions of the most informative sensing locations [7].

Evaluation of pollution aerial measurements’ quality. In

this paper, we first investigate the quality of aerial measurements
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of air pollution and characterize the main error sources of drone-

mounted gas sensors. Although the quality of aerial pollution mea-

surements has been studied previously [5, 15], such work provides

only a qualitative evaluation and do not quantify the amount of

error that is due to the main error sources, which are identified to

be mainly caused by the airflow generated from the drones’ pro-

pellers and the vibrations of the drones. In contrast, we conduct a

comprehensive measurement campaign of both aerial and ground

data in order to quantify the multi-factor non-homogeneous pollu-

tion sensing errors. We show that the dynamic airflow caused by

drones affects first temperature and humidity levels of the ambient

air, which then affect the measurement quality of gas sensors.

Without loss of generality, we focus on measuring Volatile Or-

ganic Compound (VOC) pollutants, which provide a strong sig-

nature of both industrial and traffic emissions. We build ASTRO+,

which is an aerial-ground air pollution monitoring platform where

ground sensors provide reference measurements and drones are

equipped with temperature, humidity and wind velocity sensors

in addition to light-weight pollution sensors. We collect a compre-

hensive dataset of both aerial and ground measurements and use

it to characterize the impact of weather conditions on the qual-

ity of drone-mounted pollution sensors. We show that VOC aerial

measurements can be inferred with up to 88% accuracy based on

humidity and temperature levels of the ambient air.

Robust UAV mission planning. In the second part of this pa-

per, we leverage these discovered effects of weather conditions on

pollution measurements’ quality in order to design a UAV mission

planning algorithm that adapts the trajectory of the drones while

taking into account the quality of aerial measurements that is in-

ferred from weather conditions. Compared to most existing work

[2, 8, 17ś19], we consider the dynamic nature of aerial sensing

errors and do not rely on static error values that are provided by

manufacturers.

After a training phase prior to the flight mission in order to char-

acterize the impact of temperature, humidity and wind velocity on

aerial measurements of pollution concentrations, our mission plan-

ning approach operates in 2 phases: UAVs are first sent to uniformly

distributed locations in order to learn the spatial correlations of air

pollution concentrations; Then in the second phase, these spatial

correlations are used together with the inferred aerial measure-

ments’ quality in order to optimize the subsequent measurement

locations of the drones. We evaluate our optimization approach

based on our dataset of VOC measurements and show a high per-

formance improvement that is due to the fine characterization of

the measurement errors.
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Related work
Characterization of the quality of pollution aerialmea-

surements. Due to the non-instantaneous response time of pol-

lution sensors, rotatory wing UAVs are preferred over fixed wing

drones when performing air pollution data collection. However,

when propellers are spinning, air pollution measurements are af-

fected and their errors need to be properly characterized. Existing

work focuses mainly on the qualitative evaluation of these errors.

For instance, some prior work performs multiple experimental

flights in an urban area and then correlates drone measurements

with the proximity to traffic sources [5]. This work showed the high

noise level in pollution measurements and the need of a proper

characterization of measurement errors. Other prior work proposes

to characterize the airflow generated by the propellers of the drones

and use the wind velocity level as a qualitative indicator of pol-

lution measurements’ errors [10, 12, 15]. In contrast, we infer the

measurements’ errors by co-locating drones and ground sensors

and then extracting the correlations between pollution data and

wind in addition to temperature and humidity.

UAV mission planning for environmental mapping. Mo-

bile sensors’ mission planning for environmental monitoring in

general and air pollutionmapping in particular has been extensively

studied in the literature [2, 8, 17ś19]. Most existing work relies on

the spatial correlation of air pollution concentrations: that is, closer

locations have higher probability of being at the same concentra-

tion level [3]. Based on that, the uncertainty of pollution estimation

at unmeasured locations is formulated as a function of the spatial

correlations of the measurements. The optimized sensing mission

plan (i.e. the optimal set of sensing way-points) is then obtained by

minimizing the uncertainty of pollution estimations at unmeasured

locations. In contrast, we propose to couple the pollution spatial

correlations with a fine characterization of aerial measurements’

quality in the optimization process of UAV mission planning.

2 ASTRO+: Aerial-Ground air pollution

monitoring platform

2.1 Overview
ASTRO+ is an environmental sensing platform that includes two

main sensing technologies: ground reference sensors and aerial

sensing using drones. We focus on measuring Volatile Organic

Compounds (VOCs), which provide a good signature of both traffic

and industry related air pollution. For reference ground sensing, we

selected Defiant’s FROG-5000, which uses gas chromatography to

measure the 4 major VOC pollutants (Benzene, Toluene, Ethylben-

zene and Xylene) at the ppb level. Because reference measurement

sensors like the FROG-4000 are heavy and cannot be deployed eas-

ily on drones, we use Photo Ionization Detection (PID) VOC sensors

for aerial measurements. PID sensors can weigh as little as 100𝑔

and provide fast response measurements compared to other light-

weight sensing solutions such as electrochemical sensors. After

careful analysis of existing PID sensors, we selected ION Science’s

miniPID2 VOC sensor, which has limited temperature and humidity

effects compared to other sensors in the market.

2.2 Architecture of ASTRO+
ASTRO+ includes 3 layers: sensing, data storage and a third layer

for data visualization and user notification. Data that is collected by

both drones (PID sensors) and ground sensors (Gas chromatography

in addition to PID) is sent over WiFi to an Internet-hosted database.

The database is connected to a mobile app and a web service that

allow community users to visualize both real-time measurements

and historical data. In addition to rawmeasurements of both ground

sensors and last dronemissions, the mobile app also indicates the air

quality based on EPA’s air pollution thresholds. In addition to data

visualization, users can subscribe to SMS and E-mail notifications

in order to be informed in real-time about pollution peak levels.

2.3 UAV system
We build our UAV-based sensing system as an extension of our

ASTRO platform [11]. ASTRO is a UAV network platform that is

Autonomous and Tetherless in the sense that drones form an in-

frastructureless wireless network and don’t need a base station to

make their sensing decisions. Thanks to using carbon fiber light-

weight frames, ASTRO drones allow up to 15min flight time and up

to 1.5kg of payload. ASTRO also uses hardware components that

are widely used within the open-source community, namely the

Pixhawk flight controller to manage the avionics part and the Rasp-

berry Pi as a companion computer in order to manage the network

communication part.

We extend ASTRO by deploying lightweight VOC, temperature,

humidity and wind sensors while offering low-noise measurements.

This is achieved by first locating the sensors right next to the center

of the drone in order to minimize turbulence effects that are caused

by the propellers [15]. In addition to that, we isolate the power

source of the environmental sensors from the flight controller and

companion computer battery in order tomaintain the stability of the

input voltage of the sensors. Drone measurements are performed

once per second. In terms of resolution, temperature values are

reported within ±1° Celsius, relative humidity is reported within

±1% and VOC measurements are reported at the ppb level.

3 Evaluation of aerial sensing errors

In this section, we use the aerial and reference ground sensors of

ASTRO+ to analyze the quality of aerial measurements of VOCs.

Prior work suggested that the dynamic airflow created by drones’

propellers and drone vibrations affects the quality of the measure-

ments. However, it is not previously known how these dynamics

affect the sensing mechanism of drone-mounted pollution sensors.

Indeed, the main light-weight gas sensing technologies (photo-

ionization-based and electrochemical sensors) can be easily affected

by changes in weather conditions such as temperature and humid-

ity but not necessarily the airflow and wind velocity [9]. In this

section, we propose a fine characterization of these effects using

an experimentally collected dataset.

3.1 Experimental scenario
We performed multiple data collection experiments in Milby

Park (Houston, Texas), a residential neighborhood that is highly

exposed to both traffic pollution (facing a highway) and industrial

pollution (located within less than 2 miles of 3 chemical plants).

We collected in different locations and times during February 2020

more than 1, 000 measurements of both ground reference data and

aerial data of VOC pollution concentrations in addition to aerial

data of temperature, relative humidity and wind velocity. Each

measurement was performed while having the drone hovering at
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uniformly distributed locations in order to characterize the spatial

correlations of air pollution concentrations. Then, these spatial cor-

relations are used together with the inferred aerial measurements’

quality in order to optimize the following measurement locations

of the drones. The optimal measurement locations of each drone

are obtained by minimizing the overall variance of the interpolated

concentrations’ errors while taking into account the aerial sensing

constraints (the dynamic sensing error and the response time of

pollution sensors, the speed of the drone and the drone’s battery

capacity).

4.2 Air pollution mapping
Before getting into the details of our UAV mission planning pro-

cess, we first present the mathematical formulation that allows us

to estimate pollution concentrations at unmeasured locations given

a set of space locations with a limited number of measurements. We

focus on the optimal linear interpolation method, which is the most

used air pollution data interpolation technique in the literature [16].

Without loss of generality, and due to the relatively short flight

time of drones, we focus on the case of pollution concentrations

that change only in space and not in time.

Let 𝒑 be a vector of l discrete points approximating the space

in 2D or 3D. i.e. 𝒑 = [𝑝1, 𝑝2, ..., 𝑝𝑙 ]
𝑇 where 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ). We use

g ∈ R𝑙 to denote the unknown ground truth timely-static pollution

concentrations at the 𝑙 points of space. i.e. g = [𝑔1, 𝑔2, ..., 𝑔𝑙 ]
𝑇

where 𝑔𝑖 is the pollution concentration at point 𝑖 . Let 𝒛 ∈ R𝑛 be

a set of measurements performed at 𝑛 different locations in space

𝒑. i.e. 𝒛 = [𝑧1, 𝑧2, ..., 𝑧𝑛]
𝑇 where 𝑧𝑖 is measurement number 𝑖 . In

order to map measurements to space locations, we define a matrix

𝐻 ∈ R𝑛×𝑙 where each matrix element ℎ𝑖 𝑗 is a Boolean set to 1 if

measurement number 𝑖 is performed at point 𝑗 . Let 𝜃𝑖 be the error

of measurement 𝑧𝑖 with respect to ground truth 𝑔𝑖 . We denote the

variance of sensing error 𝜃𝑖 using 𝑟𝑖 , which can be inferred based

on co-located measurements of temperature, humidity and wind

velocity as demonstrated in the previous section of this paper. In

addition, we assume that 𝜃𝑖 has a zero mean as this is usually the

case when pollution sensors are properly calibrated.We also assume

that pollution measurement errors are uncorrelated because they

mainly depend on the electronics of the sensing mechanism. Hence,

the covariance matrix of sensing errors, 𝑅 ∈ R𝑛×𝑛 , is a diagonal

matrix.

Air pollution concentrations𝑔𝑖 are inherently correlated in space

[16]. We denote the spatial correlation matrix of pollution concen-

trations by 𝐵 ∈ R𝑙×𝑙 . Each matrix element 𝑏𝑖 𝑗 reflects for space

locations 𝑖 and 𝑗 the probability of being at the same concentration

level.
Using the measurement vector 𝒛 and the matrix 𝐻 defining mea-

surement locations, our objective is to obtain an estimation vector

𝒄 ∈ R𝑙 by interpolating pollution concentrations at unmeasured
locations. In the case of optimal linear interpolation [6], 𝒄 is defined
in matrix form as

𝒄 =𝑊 𝒛

such that 𝒄 is a linear combination of the collected measurements.
The interpolation weights are defined by the matrix𝑊 , which is
calculated as in [6]

𝑊 = 𝐵𝐻𝑇 (𝑅 +𝐻𝐵𝐻𝑇 )−1 (1)

and is a function of sensing quality defined by matrix 𝑅 in addition
to the spatial correlation matrix of pollution concentrations 𝐵. Let
𝜂𝑖 denote the interpolated concentrations’ errors with respect to
the unknown ground truth value at each point 𝑖 (i.e. 𝜼 = 𝒄 −𝒈). The
covariance matrix of 𝜼 (denoted 𝐹 ) is calculated as in [6]

𝐹 = (𝐼𝑙 − 𝐵𝐻𝑇 (𝑅 +𝐻𝐵𝐻𝑇 )−1𝐻 )𝐵, (2)

where 𝐼𝑙 is the identity matrix. Based on 𝐹 , we define the overall

mapping error of a given interpolated map 𝒄 corresponding to a

given measurements’ vector 𝒛 as∑
𝑖∈[1,𝑙 ]

𝑐𝛼𝑖 × 𝑓𝑖𝑖 ,

where 𝛼 is a parameter used to emphasize the interpolation error

at polluted locations compared to the slightly polluted ones.

4.3 Mission planning process
We consider a mobile sensing system consisting of 𝑚 drones

that are equipped with air pollution sensors which are used to col-

lect measurements 𝒛 within the monitoring region 𝒑. In order to

quantify the covariance matrix of pollution measurements’ errors

𝑅, drones are also equipped with temperature, humidity and wind

sensors. This allows us to infer on-the-fly 𝑟𝑖 , the error variance of

each already collected measurement 𝑧𝑖 in addition to inferring the

measurement error variance at future mission locations by interpo-

lating the already collected temperature, humidity and wind data.

The measurement error inference is obtained based on a training

phase that is performed prior to the pollution mapping mission by

co-locating drones and reference sensors as shown in Section 3.

Because of the response time of pollution sensors, drones need to

hover for a time Tℎ𝑜𝑣𝑒𝑟 in order to obtain a pollution measurement

at a given space point [9]. In addition to the hover time constraint,

we assume that drones travel at a constant speed 𝑣 . Based on that,

we calculate the travel times between each pair of points (𝑖, 𝑗) that

we denote by T𝑡𝑟𝑎𝑣𝑒𝑙 (𝑖, 𝑗). In addition, let T𝑓 𝑙𝑖𝑔ℎ𝑡 be the maximum

flight time of each drone, which mainly depends on the weight of

the drone, the capacity of the battery and the drone speed 𝑣 .

In terms of communication, we assume that drones remain con-

nected to the base station when travelling within the monitoring

region 𝒑. This is usually the case in urban environments and indus-

trial areas. In addition, we assume that the communication delay

between the drones and the base station is minimal compared to

the measurement hover time of the drones, which could be as high

as 30𝑠 [9].

Our mission planning approach operates in two phases: a learn-

ing phase and an optimization phase. The objective of the first phase

is to learn the spatial correlation matrix of pollution concentrations

𝐵. In the second phase, we define and solve an optimization model

while relying on spatial correlations 𝐵 and non-homogeneous mea-

surements’ quality 𝑅 in order to guide the drones to the locations

that allow us to get a vector 𝒄 of estimated concentrations with

a corresponding covariance matrix 𝐹 where the mapping quality

defined in the previous section (
∑
𝑖∈[1,𝑙 ] 𝑐

𝛼
𝑖 × 𝑓𝑖𝑖 ) is minimized.

Phase 1: Initialization phase. Our objective in phase 1 is to

characterize the spatial correlations of pollution concentrations by

estimating the matrix 𝐵. To that end, we perform 𝑛0 measurements

that are uniformly distributed in the monitoring region. We first

divide the monitoring region into𝑚 sub-regions having the same
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surface area. Each drone is then sent to one of these sub-regions

and performs 𝑛0/𝑚 uniformly distributed measurements. Note that

𝑛0 is a parameter that should be chosen carefully depending on the

size of the monitoring region. At the end of phase 1, the obtained

pollution measurements, denoted by 𝒛
0, in addition to the inferred

measurements’ quality matrix 𝑅, are sent over to the base station.

Based on that data, the base station performs the characterization of

the spatial correlations as explained later in Section 4.4 and mission

planning decisions as explained in Section 4.5.

Phase 2: Optimization phase. Our objective in phase 2 is to

use the obtained 𝐵 matrix in order to find the best way-points

where drones should perform their measurements while taking

into account flight time constraints. The optimization algorithm

is run at the base station at the end of the initialization phase. As

a result, each drone gets the optimal mission plan with respect to

the current characterization of pollution spatial correlations. Each

drone follows then the provided mission plan and each performed

measurement is sent right away to the base station. The latter uses

the new data in order to refine the characterization of pollution

spatial correlations at a specific rate. The new characterization of

spatial correlations is then used to refine the optimal mission plans

of the drones and this process continues until no more data could

be performed. At the end, the base station uses the full set of the

obtained measurements combined with the inferred sensing quality

and the final characterization of pollution spatial correlations in

order to calculate the final interpolated concentrations 𝒄 .

4.4 Robust spatial correlation characterization
Given a set of already collected measurements 𝒛

0 ∈ R𝑛0 in
addition to online inferred measurements’ quality 𝑅, our aim is to
estimate the pollution spatial correlations 𝐵. We recall that each
matrix element 𝑏𝑖 𝑗 corresponds to the correlation between the
unknown ground truth concentrations𝑔𝑖 and𝑔 𝑗 . In order to estimate
the pollution spatial correlation between each pair of locations 𝑖
and 𝑗 , we first define as 𝐷 (𝑖, 𝑗) the set of sampled location pairs
that are within a Euclidean distance close to the distance between
locations 𝑖 and 𝑗 . Mathematically, the set 𝐷 (𝑖, 𝑗) can be written as

𝐷 (𝑖, 𝑗) = {(𝑎,𝑏) | 𝑧𝑎, 𝑧𝑏 ∈ 𝒛
0
& ∥𝑝𝑎 − 𝑝𝑏 ∥ = ∥𝑝𝑖 − 𝑝 𝑗 ∥ ± Δ}.

Based on 𝐷 (𝑖, 𝑗), we estimate the 𝑏𝑖 𝑗 spatial correlation as

𝑏𝑖 𝑗 = 𝑐𝑜𝑟𝑟
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This provides a robust estimation of 𝑐𝑜𝑟𝑟 (𝑔𝑖 , 𝑔 𝑗 ) while taking into

account measurement errors by normalizing the measurements

within each pair of points (𝑎, 𝑏) using their respective error’s vari-

ance 𝑟𝑎 and 𝑟𝑏 . The outcome of this normalization process is that

low-quality measurements (i.e., pairs (𝑎, 𝑏) where either 𝑟𝑎 or 𝑟𝑏 is

high) become less involved in the final estimated correlations 𝑏𝑖 𝑗
whereas high-quality measurements (i.e., pairs (𝑎, 𝑏) where both

𝑟𝑎 and 𝑟𝑏 are low) are emphasized.

4.5 Robust mission planning optimization
Using the obtained characterization of spatial correlations 𝐵 and

the inferred measurements quality matrix 𝑅, our objective is to
find the best locations that offer the best interpolation of pollution
concentrations. In addition, we ensure that the selected locations

can be sampled with the𝑚 drones subject to their remaining flight
time T𝑓 𝑙𝑖𝑔ℎ𝑡 . We determine for each drone the best ordered set of

sampling points by solving the following optimization model:

Minimize
∑

𝑖∈[1,𝑙 ]

𝑐𝛼𝑖 × 𝑓𝑖𝑖

Subject to Eq.(1), Eq.(2) and flight constraints

The objective function ensures the minimization of the overall

variance of estimated concentration errors 𝑓𝑖𝑖 , 𝑖 ∈ [1, 𝑙] while

emphasizing the interpolation error at polluted locations compared

to the slightly polluted ones. The minimization of the interpolation

error’s variance is performed with respect to the matrix𝐻 , which is

the main decision variable in the optimization process and defines

the best aerial sensing locations. In order to take into account the

aerial sensing requirements, we constrain the sensing locations so

that they are ordered in a way that takes into account the necessary

sampling hover time in addition to drone travel times when moving

from one location to another.

We solve our mission planning optimization model using com-

mercial optimization solvers (IBM CPLEX) in the case of small

monitoring regions. In order to scale our approach to large regions,

we propose to solve the optimization model to get only a partial

mission plan for each drone and then update the mission plans as

the drones are flying.

4.6 Experimental evaluation
Dataset:We evaluate our mission planning approach using a

set of 30 pollution maps of aerial and ground measurements of VOC

pollutants collected in February 2020 using our sensing platform

ASTRO+. We also use as input the collected absolute humidity maps

in order to infer online VOC sensing errors since absolute humidity

is highly correlated with aerial measurements’ quality as shown

in section 3. Each collected data map corresponds to a grid of 34

data points (𝑙 = 34) within the Milby Park residential neighborhood

(Houston, Texas).

Flight constraints: We assume that drones fly high enough to

avoid obstacles and that their flight speed is fixed at 2𝑚/𝑠 for safety

reasons. We set the hover time of each drone to 10𝑠 since we are

focusing on VOC sensors, which have an acceptable response time

that is usually within few seconds. We consider flight times of up

to 30min where the first 10min are reserved to the initialization

phase of our mission planning approach. This allows us to perform

6 uniformly distributed initial measurements (𝑛0 = 6), which is nec-

essary for an initial characterization of pollution spatial correlations

matrix 𝐵.

Performance metric: We simulate our mission planning ap-

proach while using the aerial data maps each time a drone sample

is performed. Then we evaluate the quality of the output of each

simulation by comparing the final interpolated map of aerial data to

the corresponding reference ground map. We use the relative RMSE

as a performance metric to evaluate the percentage of interpolation

error of each environmental sensing mission.

Performance benchmarks: We compare the results of our ro-

bust mission planning to the following baselines:

• Omniscient planning: this is the best mission planning that

could be obtained while relying on the real drift of aerial

measurements (assumed to be hypothetically known). Given

a number of sampling locations to optimize, we perform an
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