Reliable and Energy-Aware Fixed-Priority
(m,k)-Deadlines Enforcement with Standby-Sparing

Linwei Niu
Department of Math and Computer Science
West Virginia State University
Institute, WV, U.S.A.
Iniu@wvstateu.edu

Abstract—For real-time computing systems, energy efficiency,
Quality of Service, and fault tolerance are among the major de-
sign concerns. In this work, we study the problem of reliable and
energy-aware fixed-priority (m,k)-deadlines enforcement with
standby-sparing. The standby-sparing systems adopt a primary
processor and a spare processor to provide fault tolerance
for both permanent and transient faults. In order to reduce
energy consumption for such kind of systems, we proposed a
novel scheduling scheme under the QoS constraint of (m,k)-
deadlines. The evaluation results demonstrate that our proposed
approach significantly outperformed the previous research in
energy conservation while assuring (m,k)-deadlines and fault
tolerance for real-time systems.

Index Terms—energy conservation, fault tolerance, standby-
sparing, (m,k)-deadlines, fixed-priority scheduling

I. INTRODUCTION

With the advance of CMOS technology, energy conserva-
tion has been a critical design issue for real-time embedded
systems. On the other hand, fault tolerance has also been a
major concern in the design of pervasive computing systems as
system fault(s) could occur anytime [1]. Generally, computing
system faults can be classified into permanent faults and
transient faults [2]. Permanent faults could be caused by
hardware failure or permanent damage in processing unit(s)
whereas transient faults are mainly due to temporary factors
such as electromagnetic interference and cosmic ray radiations.

In recent years plenty of works (e.g. [3], [4]) have been
reported in conserving energy for fault-tolerant real-time sys-
tems. Many of them has focused on dealing with transient
faults. A widely adopted strategy is to use software re-
dundancy, i.e., to reserve recovery jobs, whenever possible,
for the jobs subject to transient faults. For mission critical
applications such as nuclear plant control systems, permanent
faults need to be dealt with by all means to avoid system
failure. Otherwise catastrophical consequences could occur.
To address this issue, solutions adopting hardware redundancy
are required. Among them the standby-sparing technique has
recently gained much attention in research community [5]-[9].
Generally, the standby-sparing makes use of the redundancy
of processing units in multicore/multiprocessor systems. More
specifically, a standby-sparing system consists of two proces-
sors, a primary one and a spare one, executing in parallel. For
each real-time job executed in the primary processor, there

D,

/
(@

7
/

1(\\ > MNTAN)
(@) () 7
NSNS C

Dakai Zhu
Department of Computer Science
University of Texas at San Antonio

San Antonio, TX, U.S.A.
dakai.zhu@utsa.edu

is a corresponding backup job reserved for it in the spare
processor [7]. As such, whenever a permanent fault occurs
to the primary or the spare processor, the other one can still
continue without causing system failure. Moreover, it is not
hard to see that the backup tasks/jobs in the spare processor
can also help tolerate transient faults for their corresponding
main tasks/jobs in the primary processor.

In a standby-sparing system, the execution of the main
jobs in the primary processor and their corresponding backup
jobs in the spare processor might need to be overlapped with
each other. Thus the total energy consumption could be quite
considerable. Regarding that, some recent works have been
reported to reduce energy (e.g. [S]-[7], [9]). The main idea
is to try to let the executions of the main jobs and their cor-
responding backup jobs be shifted away as much as possible
such that, once the main jobs are completed successfully, their
corresponding backup jobs could be canceled early, thereby
saving energy in the spare processor. With that in mind,
in [7], [8], approaches based on dual priority scheme were
proposed for standby-sparing fixed-priority real-time systems.
Their works are mainly focused on hard real-time systems.

In most real-time applications such as multimedia or time-
critical communication systems, occasional deadline missings
are acceptable so long as the user perceived quality of service
(QoS) can be assured at certain levels. For such kind of
systems, the existing techniques solely based on hard real-
time constraints are insufficient in dealing with energy con-
servation under fault tolerance and more advanced techniques
incorporating the QoS model are desired.

A widely known deterministic QoS model is the (m,k)
model [10]. To ensure the (m,k)-deadlines, Ramanathan er
al. [11] proposed to partition the jobs into mandatory ones
and optional ones. The mandatory ones must be completed
successfully whereas the other ones could be optionally exe-
cuted when necessary.

In this paper, we study the problem of reliable and
energy-aware fixed-priority (m,k)-deadlines enforcement with
standby-sparing. To the best of our knowledge, this is the
first work to combine (m, k)-deadlines and standby-sparing to
achieve better energy efficiency for real-time applications.

The rest of the paper is organized as follows. Section II
presents the preliminaries. Section III presents the motivations.

CUILL

7O N\T7

{)
)

il

D

. T‘
Primary 20
Processor: ‘
20
: vl
Spare ! 20
Processor:
T, l
10 20

(b)
Fig. 1. (a) The schedule for the main task t; and backup task ’r’z in the primary
processor under the preference oriented scheme [8]; (b) The schedule for the
backup task ‘Cl and main task T, in the spare processor under the preference
oriented scheme [8].

Section IV presents our proposed approach. In Section V and
Section VI, we present our evaluation results and conclusions.

II. PRELIMINARIES
A. System models

The real-time system considered in this paper contains n
independent periodic tasks, 7 = {t1,%2,--*,T,}, scheduled
according to the fixed-priority (FP) scheme. Without loss of
generality, we assume that T; has a lower priority than 7; if
J > i. Each task contains an infinite sequence of periodically
arriving instances called jobs. Task T; is characterized using
five parameters, i.e., (P, D;, C;, m;, k;). P, D; (< P), and
C; represent the period, the deadline, and the worst case
execution time (WCET) for 71;, respectively. A pair of integers,
ie, (mk;) (0 <m; <k;), are used to represent the (m,k)-
constraint for task T; which requires that, among any k;
consecutive jobs, at least m; jobs are executed successfully.
The j™ job of task T; is represented with Jij and we use r;j,
ci j(: C;), and d; ;j to represent its release time, execution time,
and absolute deadline, respectively. Note that, when J;; is an
optional job, we also use O;; to represent it when necessary.

The system consists of two identical processors which are
denoted as primary processor and spare processor, respectively.
For the purpose of tolerating permanent/transient faults, each
mandatory job of a task t; has two duplicate copies running in
the primary and the spare processors in the same time frame.
Whenever a permanent fault in encountered in either processor,
the other one will take over the whole system (to continue as
normal). For convenience, we call each task T; (or mandatory
job J;;) running in the primary processor main task/job and
its corresponding copy running in the spare processor backup
task/job, denoted as 1:; (or];)

The processor power when running a job is denoted as Py
which consists of both dynamic power and static power. Al-
though dynamic power can be reduced effectively by dynamic
voltage scaling (DVS) techniques, the efficiency of DVS in
reducing the overall energy is becoming seriously degraded
with the dramatic increase in static power (mainly due to
leakage) with the shrinking of IC technology size. Dynamic
power down (DPD), on the other hand, is more effective in
controlling the static power when the processor is not in use.
With that in mind, in this paper we assume that, when the
processors is busy, it always consumes P,.. Without loss of

71
o/ WWW.VETY
Joll Il W W W o .

)/
<4

M

}W Jl\»/Q>/o &/\\/

) demited

T
Primary ! 8 10 13 15 20
Processor: demoted J22 re-selected as optional job
T
20 3 10 13 20
(a)
backup jobs dropped
T Fee A Nl
Spare ' 5 10 15 20
Processor:
T, | T rl
0 10 20
(b)

Fig. 2. (a) The schedule for the main tasks t; and T, in the primary processor
based on the greedy execution of the optional jobs; (b) The backup jobs (for
the original mandatory jobs in (a)) in the spare processor are dropped.

generality, we normalize P, to 1 and assume that one unit
of energy will be consumed for a processor to execute a job
for one time unit. When no job is pending for execution, the
processors can be put into low-power state with DPD if the
idle interval length is larger than the break even time 7p, [7].

B. Fault Model

Similar to the standby-sparing systems in [6], [7], the system
we considered can tolerate both permanent and transient faults.
With the redundancy of the processing units, our system can
tolerate at least one permanent fault in the primary or the spare
processor. For transient faults which can occur anytime during
the task execution, we assume they can be detected at the end
of a job’s execution using sanity (or consistency) checks [12]
and the overhead for detection can be integrated into the job’s
execution time. Whenever a main job encounters transient
fault(s), its backup job needs to be executed to completion.

III. MOTIVATIONS

Our goal is to reduce the overall energy consumption for
standby-sparing systems under the (m,k) requirement. To
assure the (m,k)-deadlines, a widely adopted strategy is to
judiciously partition the jobs into mandatory jobs and optional
jobs [13]. A well-known partitioning method is called the
deeply red pattern (or R-pattern) [14]. According to R-pattern,
the pattern 7;; for job J;;, i.e., the j™ job of a task T;, is defined
by:

TE,‘]‘:{

where “1” represents the mandatory job and “0” represents the
optional job.

From the above system models, to provide fault tolerance,
all mandatory jobs based on R-pattern need to have two dupli-
cate copies running in the primary and the spare processors,
respectively. It is not hard to see that, due to the overlapped
executions between them, one way to save energy is to let each
mandatory job in the primary processor be finished as soon as
possible and its backup job in the spare processor be executed
as late as possible such that, once the main job is completed
successfully, its backup job can be canceled immediately. To
achieve this goal, in [7] Mohammad et. al proposed to run the
main tasks in the primary processor according to regular FP
scheme and the backup tasks on the spare processor according

“]”
“0’1

if 1 <jmod ki < mj
otherwise

j:],2737... M

m and hit

- demoted mandatory jobs re-executed as
selected optional jobs

13

Primary
Processor:

(a)
canceled
s o 3 I R T
spare 1 5 10 15 20 25
Processor:'
T, | BB]
0 4 8 12 16 20 24
(b)

Fig. 3. (a) The schedule for the main tasks T, = (5,2.5,2,2,4), 1, =
(4,4,2,2,4) in the primary processor under the greedy execution of the
optional jobs; (b) The schedule for the backup jobs in the spare processor.

to the dual priority scheme. Their approach is based on the
concept of “promotion time” (denoted as Y;), calculated as
followed:

Yi=D;—R; 2

where R; is the worst case response time of task 7;.

By applying dual priority, each backup job from backup
task ‘c; in the spare processor could be procrastinated by Y;
time units such that the overlapped executions between the
main job and its backup job could be reduced, thereby saving
energy. The energy reduction could be further boosted by
adopting the preference oriented scheduling scheme in [8].
Generally their approach is quite efficient in reducing energy
consumption for hard real-time systems. However, for soft
real-time applications with (m,k)-deadlines, there still exist
opportunities to reduce the energy further by exploring the
flexibility of executing jobs under (m,k)-deadlines to avoid
executing duplicate copies of the mandatary jobs on two
processors whenever possible. This could be illustrated in the
following example.

Given a task set of two tasks, i.e., T = (5,4,3,2,4), T =
(10,10,3,1,2), to be executed in a standby-sparing system.
From equation (2), the promotion times Y; and Y» for tasks
71 and T, are calculated as 1 and 1, respectively. By applying
the preference oriented approach in [8] to the mandatory jobs,
main task T; and backup task 1/2 will be scheduled in the
primary processor (with ’l:/2 scheduled under dual priority)
while main task T, and backup task ‘l:,1 will be scheduled in
the spare processor (with ‘c’l scheduled under dual priority).
The schedules for them are shown in Figure 1(a) and (b),
respectively. As a result, the total active energy consumption
within the hyper period [0,20] is 15 units.

Note that in the above example, there are still significant
overlapped time between the executions of all mandatory jobs
and their corresponding backup jobs, incurring much more
energy consumption. On the other hand, due to the existence
of the optional jobs, we can explore the possibility of executing
them adaptively and adjusting the pattern dynamically, thereby
saving more energy, which is shown in Figure 2. As seen
in Figure 2(a) and (b), under dynamic patterns, the first job
of task T, is determined and scheduled as an optional job,
represented as Oy, instead of mandatory because it can still

77
) —~\
o [WWW.VE
Dol il W W W o VLY
U (o4

el aYe

‘y Jl\&/ijgﬁjﬂ\/

o, 0n, [, domgred ‘
r %4 P Pl el |
Primary 5 10 15 20 25
Processor: 0, 0,, I
T2
0 4 8 12 16 20 24
(a)
‘]h‘ dem te@
plt Ly e e |4 |
Spare 5 .10 15 20 25
Processor: Iy
T, | m | - |
0 4 8 12 16 20 24

(b)
Fig. 4. (a) The schedule for the main tasks T, = (5,2.5,2,2,4), 1, =
(4,4,2,2,4) in the primary processor based on the selective execution of the
optional jobs; (b) The schedule for the backup tasks ‘c/] and 1:’2 in the spare
processor based on the selective execution of the optional jobs.

tolerate one more deadline missingl. Once Oy is executed
and completed successfully, its next mandatary job, i.e., Jao,
can be demoted to optional and the backup job for it can
simply be dropped to save energy. After O2; was completed
(at time ¢ = 3), since Oj1; did not have enough time space
to be finished before its deadline, to save energy, O;; will
not be invoked at all. Instead, its next optional job, i.e., Oj2
will be invoked at time t = 5, following the same rationale
as O;. Note that, in the schedule in Figure 2(a), although
some mandatory jobs such as Ji3 and J5; had been demoted to
optional, they were re-selected (as optional jobs) for execution
again to help demote/drop more mandatory/backup jobs in the
future. As a result the total active energy consumption within
the hyper period [0,20] is reduced to 12 units, which is 20%
lower than that in Figure 1.

It is not hard to see that in Figure 2 the fault tolerance capa-
bility of the standby-sparing system is preserved as whenever
some optional job(s) failed, the next mandatory job (and the
backup job for it) can still be invoked and executed timely.

From the above example we can see that, by executing
optional jobs and adjusting the job patterns dynamically, there
is great potential for energy saving because for optional jobs,
no backup jobs need to executed for them and the successful
completion of the optional jobs can help demote/drop some
mandatory jobs and their backup jobs. Moreover, when those
mandatory jobs are demoted, their time budget could be
utilized to execute more optional jobs. However, although
seems reasonable, there could still be problems with it. For
example, due to the “greedy” manner in which the optional
jobs are executed, it might execute an excessive number of
optional jobs for some systems with modest workload, which
could affect the overall energy efficiency adversely. Even
we limit the execution of the optional jobs to be in the
primary processor only, this problem might still not be avoided
effectively. This could be illustrated with another example as
followed.

Consider another task set of two tasks, ie, T4 =
(5,2.5,2,2,4), 1o = (4,4,2,2,4). Figure 3 shows the schedule
based on the greedy approach. As can be seen, for task 7y,

!Although Oy is also determined as an optional job, we chose to execute
0y first because, starting from Oy, task T; can still tolerate two deadlines
missings, therefore is regarded as more flexible (less urgent) than Oa;.

m and hit

De

the execution of optional job Op; caused mandatory job J;3
(and its backup job) to be demoted/dropped. But later on, Ji3
was re-selected for execution as an optional job. Following
the same rationale, four jobs in total were executed for task
T; before time r = 25. The situation for task T, is similar. As a
result, the total active energy consumption under this schedule
is 20 units.

However, if we follow a different schedule as shown in
Figure 4, the energy efficiency can be improved. As can
be seen, in this case for both tasks T; and 7T, we only
schedule their optional jobs which can tolerate just one more
deadline missing (such as O, and Oj;) while skipping the
other optional jobs (for example, O;; and O,;). Moreover,
to make the workload of the optional jobs distribute more
evenly in two processors, we let the selected optional jobs of
each task be executed in the primary processor and the spare
processor alternatively. For example, for O, and O , we
let them be executed in the primary processor. Once O, and
Oy are finished, the flexibility degrees of the future jobs will
be updated correspondingly, based on which the jobs could
be selected for execution again (for example, Ji3 and J;3,
which will be executed in the spare processor). The total active
energy consumption before time ¢ = 25 is reduced to 14 units,
which is 30% lower than that in Figure 3.

As shown in the above example, the greedy approach is not
necessarily most energy efficient while executing the optional
jobs selectively is more promising in saving energy. Moreover,
to better utilize the system computing power, in the latter case
we can let the selected optional jobs of each task be executed
in both the primary and the spare processors alternatively,
which could help distribute their workload more evenly in
two processors such that the selected optional jobs could have
better chance to be scheduled successfully. Following these
rationales, in next section we will propose a new approach
which, instead of executing all optional jobs in one processor
greedily, will execute them in both the primary and spare
processors in a selective way.

IV. OUR APPROACH

In this section, we will present our new approach based
on selective execution of the optional jobs. The following
definition would be very useful in presenting our algorithm.

Definition 1: The flexibility degree of a job J;, denoted
as FD(J;), is defined as the number of consecutive deadline
missings that task T; (which J; belongs to) can still tolerate
starting from J;.

Based on the concept of flexibility degree, our selective
approach works according to the following principles: (i) The
optional jobs could be executed in either the primary or the
spare processor, but only the optional jobs with flexibility
degree of 1 will be selected for execution; (if) The eligible
optional jobs to be executed either under the main tasks
in the primary processor or under the backup tasks in the
spare processor, but not both for the same optional job (as
an optional job does not have backup job). Regarding that,
to make the workload of the eligible optional jobs distribute

77
1[/\‘0 vv,v

AVVAR 7/@WT 1/\\/\)
L ,/o[/l/ V J

\\ / (I
VV o V W/

NANSH

more evenly in two processors, we let the selected optional
jobs from the same task be executed in the primary processor
and in the spare processor alternatively, just as in the schedule
in Figure 4.

The salient part of our selective approach is presented in
Algorithm 1.

As shown in Algorithm 1, for both the primary and the spare
processors, two job ready queues are maintained for each of
them: a mandatory job queue (MJQ) and an optional job queue
(0OJQ). Upon arrival, the current job of task t; (denoted as J;)
is determined as mandatory job or optional job based on its
flexibility degree. It is determined as mandatory only if its
flexibility degree is O and as optional otherwise. Note that,
since all mandatory jobs must have backup jobs for them,
we let the mandatory jobs of all main tasks be put in the
mandatory job queue (MJQ) of the primary processor while
their corresponding backup jobs be put in the MJQ of the
spare processor. Unlike the mandatory jobs, the optional jobs
do not have backup jobs for them. So only the optional jobs
with flexibility degree of 1 are selected as eligible jobs (other
optional jobs are skipped). Moreover, the selected optional
jobs of each task are put into the OJQ of the primary processor
and the OJQ of the spare processor alternatively. The jobs in
MIJQ always have higher priorities than those in OJQ.

Algorithm 1 The selective approach (Selective-App)

1: For either the primary processor or the spare processor:

2: if MJQ is not empty then

3: If in primary processor, run jobs in MJQ under FP scheme;
Whenever a main job is completed successfully, cancel its
backup job in the other processor immediately.

4: If in spare processor, run jobs in MJQ under FP scheme with
job arrival times revised according to Equation (3);

5: else if OJQ is not empty then

6: Select J; in OJQ and run it following the FP scheme;

7

8

if J; is executed successfully then
Updated the flexibility degree of the next job of the same
task;
9: end if
10: else
11: feur = the current time;
12: t, = the earliest release time of all jobs in MJQ;

13 if (1, — teur) > Tpe then

14: Shut down the processor and set the wake-up timer to be
([a —teur);

15: end if

16: end if

Note that, during runtime, once an optional job is completed
successfully, it will be counted as an effective job and the flexi-
bility degree of the next job should be updated correspondingly
(lines 7-8).

In addition, to facilitate saving energy for running the
backup jobs in the spare processor when necessary, the ex-
ecutions of all backup jobs in the spare processor should be
postponed as late as possible. To achieve this goal, some off-
line analysis could be done based on the following definitions:

Definition 2: Time t is called the postponed release time,
denoted as 7, of a backup job J; in the spare processor and

.com and http:

1 J

S

7. IF
WWWWW VEeTrvnc)
I W W W o ¥V ‘D] \], ”17 (V)

m

) ()

710 1720 30
T,
0 4 15 30
(b)

Fig. 5.
tasks T =
the backup jobs based on the postponed release times calculated
according to equation (3).

(a) The original schedule of the backup jobs for the main
(10,10,3,2,3), 12 = (15,15,8,1,2); (b) The schedule of

is calculated as:

Fi=ri+6; 3

where 0; is calculated with Equation (5).

Definition 3: Time ¢ is called a J;j-inspecting point for job
J,‘j, denoted as]T(J[j), ift:d,‘j ortc {fk] | k <iand rij <
< dl‘j}.

Definition 4: The job release postponement interval, de-
noted as 0;;, for any backup job J; ; of task ‘c; is defined as

k<i

0;; = max{(t — (cij+ Z

dk]>rijvikl<f

cu) = rij) | T€ IP(J;)} @)
Definition 5: The task release postponement interval, de-
noted as 0;, for any ask 7; is defined as

LCM y<i(kyPy)

C— mi i<
6; = min{0;; | j < 2 }

&)

The calculation of 6; can be done off-line based on static
R-pattern. Note that since the postponed release times of the
higher priority jobs will be used as the inspecting points for
the lower priority jobs, the release postponement intervals for
the backup tasks should be calculated in descending order of
the priority levels. Each time when ; is calculated, the release
time of all backup jobs of task ‘t; should be revised based on
equation (3) before advancing to the next priority level. When
all 0; are calculated, if for any task r;, 0; is less than R;, we
can always set 0; to be R; safely.

As an example of calculating the postponed release time 7;
and the release postponement interval 0;, let’s consider a task
set of two tasks, i.e., T = (10,10,3,2,3), 1, = (15,15,8,1,2),
the original schedule of the backup jobs in the spare processor
with non-postponed release time is shown in Figure 5(a).
To calculate 7q1, i.e., the postponed release time of the first
backup job in ’c/l (represented as J;l), there is only one
inspecting point for it, i.e., f = 10. Based on equation (4),
011 = 10—3 —0="7. Similarly, 8;, can be calculated as 7
as well. So according to equation (5), 6; = 7. After that, the
release time of all backup jobs of task 1’1 should be revised
according to equation (3), as shown in Figure 5(b). Next,
to calculate 6,; for the first job of 1/2 (represented as J;l),
according to definition (3), there are two inspecting points for
it, i.e., 15 and 7, based on its deadline and the postponed
release times of the jobs in ‘cl]. Then according to equation
(4), 621 = max{15—(8+3)—0,7—(84+0)—0} = 4. Slnce
for this particular example, there is only one backup job in 12
within its hyper period (LCM<>(ksP;) = 30) 0, = 4. After
that the release times of all backup jobs in ’cz are postponed

<
\\\\/ ers H 0° AVYanY 7@W7f41
) \V \R]B_) J/ ol \/ vV A O—%/ \w U

4

O

\\/\\/o \\/\

by 4 time units according to equation (3). The schedule based
on the postponed release times of all jobs within the first
hyper period is shown in Figure 5(b). It is not hard to see that
under this postponed schedule all backup jobs can meet their
deadlines. Note that, for this particular example, the release
postponement interval calculated for task ’c,z, i.e. , 0, is much
larger than the promotion time of ‘c,z calculated according to
equation (2), i.e. , Yo =1.

The complexity of Algorithm 1 mainly comes from schedul-
ing the optional jobs in the primary and the spare processors.
Since at anytime there are at most n optional jobs in the OJQ,
its complexity is O(n). Moreover, to ensure that the (m,k)-
deadlines be satisfied, we have the following theorem (the
proof is provided in the Appendix part):

Theorem 1: Let task set 7 be scheduled with Algorithm 1.
The (m, k)-deadlines for T can be ensured if 7 is schedulable
under R-pattern.

V. EVALUATION

Three different approaches are studied. In the first approach,
the task sets are statically partitioned with R-patterns, and the
mandatory jobs in the primary and the spare processors are
executed concurrently without procrastination. We refer this
approach as (MKSSsr) and use its results as the reference. The
second approach (MKSSpp) also determines the mandatory
jobs based on the static R-patterns and the mandatory jobs are
scheduled with the preference oriented scheme based on dual
priority, similar to that used in [8] (but without applying DVS).
The third approach (MKSSseiecrive) 1S our selective approach
proposed in Section IV based on selective execution of the
optional jobs on both the primary and the spare processors. We
assume the processor shut-down break even time Tj, = 1ms.

The periodic task set in our experiments consists of five to
ten tasks with the periods randomly chosen in the range of
[5, 50]ms. The m; and k; for the (m,k)-deadlines were also
randomly generated such that k; is uniformly distributed be-
tween 2 to 20, and 0 < m; < k;. The worst case execution time
(WCET) of a task was assumed to be uniformly distributed
and the total (m,k)-utilization, ie., }; k’ € was divided into
intervals of length 0.1 each of which contains at least 20
task sets schedulable or at least 5000 task sets generated. We
conducted three sets of tests.

In the first set, we check the energy performance when no
fault occurred within the hyper period. The results are shown
in Figure 6(a).

From Figure 6(a), one can immediately see that, by adopt-
ing dynamic patterns, MKSSeecrive can achieve much better
energy efficiency than the others adopting static patterns,
i.e., MKSSsy and MKSSpp, in all utilization intervals. The
maximal energy reduction by MKSS;.iecrive OVer MKSSpp can
be around 28%. The main reason is that, in this scenario,
by executing the optional jobs, MKSSseiecrive can help drop
duplicate executions of the mandatory jobs in two proces-
sors significantly. Moreover, with adaptive optional job selec-
tion/execution strategy, i.e., by only executing optional job of

JUL s V J

m and http://www.verypdf.com

D

H/@ *V)

)

(a)

(b)

0 MKSS-ST B MKSS-DP OMKSS-ST B MKSS-DP 0 MKSS-ST B MKSS-DP
B MKSS-selective B MKSS: B MKSS-
100 100 100
O 80 O 8 O 8
> > >
o o o
2 2 g
@ @ o
c c c
w w w
60 60 60
5 40 5 40 5 40
z 0.0- 0.1- 0.2- 0.3- 04- 05- 0.6- z 0.0- 0.1- 0.2- 03- 04- 05- 06- 2 0.0- 0.1- 0.2- 03- 04- 05- 06-
0.1 0.2 03 04 0.5 06 0.7 0.1 0.2 03 04 0.5 06 0.7 0.1 0.2 03 04 05 0.6 07
(m,k)-Utilization (m,k)-Utilization (m,k)-Utilization
(c)

Fig. 6. The energy comparisons for systems under: (a) no fault occurred; (b) permanent fault; (c) permanent and transient faults.

each task with flexibility degree of 1 and letting them be ex-
ecuted in two different processors alternatively, MKSSserective
can avoid executing excessive number of the optional jobs.
In addition, by letting the backup jobs be delayed with
the postponed release times, MKSSse/ecrive Can accommodate
larger pools of eligible optional jobs for selection, which also
gives more chance for the optional jobs to be selected and
scheduled successfully, therefore minimizing the necessity of
running mandatory jobs effectively.

In the second set, we assumed the system is subject to
permanent fault only which could occur at most once. The
results are shown in Figure 6(b).

As seen in Figure 6(b), the energy reduction by our new
approaches, i.e., MKSSeiociive Subject to permanent fault is
similar to the case when no fault ever occurred. Compared
to MKSSpp, the energy saving by MKSSseiecrive can be up to
22% for the same reasons as above.

In the third set, we assumed the system could be subject to
both permanent fault and transient faults. The transient fault
model is similar to that in [1] by assuming Poisson distribution
with an average fault rate of 107°. The results were shown in
Figure 6(c).

As seen, the energy saving by our new approaches, i.e.,
MKSSseiective in this scenario is similar to that in the previous
cases. The maximal energy reduction by MKSSseiecrive OVEr
MKSSpp can be up to 16%, thanks to the adaptive executions
of the optional jobs under dynamic pattern adjustment.

VI. CONCLUSION

Energy consumption, QoS, and fault tolerance are among
the most critical factors in real-time systems design. In this
paper, we presented a novel approach to reduce the energy
consumption while assuring (m,k)-deadlines and fault tol-
erance in standby-spare systems. As shown, the proposed
approach outperformed the previous research significantly in
energy conservation while ensuring the (m,k)-deadlines and
fault tolerance for fixed-priority real time applications.

ACKNOWLEDGE*

This work is supported in part by NSF under project HRD-
1800403.
REFERENCES

[1]1 D. Zhu, R. Melhem, and D. Mosse, “The effects of energy management
on reliability in real-time embedded systems,” in /CCAD, 2004.

[2] B. P. R. J. J. Srinivasan, A. S.V. and C.-K. Hu, “Ramp: A model
for reliability aware microprocessor design,” IBM Research Report,
RC23048, 2003.

V\o
‘// ol

piy <4

\ 7 AT ~\
Version, htt

\»/

[3] D. Zhu, “Reliability-aware dynamic energy management in depend-
able embedded real-time systems,” ACM Trans. Embed. Comput. Syst.,
vol. 10, pp. 26:1-26:27, January 2011.

Y. wen Zhang, H. zhen Zhang, and C. Wang, “Reliability-aware low
energy scheduling in real time systems with shared resources,” Micro-
processors and Microsystems, vol. 52, pp. 312 — 324, 2017.

A. Ejlali, B. M. Al-Hashimi, and P. Eles, “Low-energy standby-sparing
for hard real-time systems,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 31, no. 3, pp. 329-342,
March 2012.

M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware standby-sparing
technique for periodic real-time applications,” in /CCD, 2011.

——, “Energy-aware standby-sparing for fixed-priority real-time task
sets,” Sustainable Computing: Informatics and Systems, vol. 6, pp. 81 —
93, 2015.

R. Begam, Q. Xia, D. Zhu, and H. Aydin, “Preference-oriented fixed-
priority scheduling for periodic real-time tasks,” J. Syst. Archit., vol. 69,
no. C, pp. 1-14, Sep. 2016.

Y. wen Zhang, “Energy-aware mixed partitioning scheduling in standby-
sparing systems,” Computer Standards and Interfaces, vol. 61, pp. 129
- 136, 2019.

M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment
technique for streams with (m,k)-firm deadlines,” IEEE Transactions
on Computes, vol. 44, pp. 1443-1451, Dec 1995.

P. Ramanathan, “Overload management in real-time control applications
using (m,k)-firm guarantee,” IEEE Trans. on Paral. and Dist. Sys.,
vol. 10, no. 6, pp. 549-559, Jun 1999.

D. K. Pradhan, Ed., Fault-tolerant Computing: Theory and Techniques;
Vol. 2. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1986.

G. Quan and X. Hu, “Enhanced fixed-priority scheduling with (m k)-firm
guarantee,” in RTSS, 2000, pp. 79-88.

G. Koren and D. Shasha, “Skip-over: Algorithms and complexity for
overloaded systems that allow skips,” in RTSS, 1995.

APPENDIX

Proof: The correctness of the release postponement interval 6; for
each backup task ’C;- (and its individual backup jobs) is guaranteed by
equation (4) and (5) because according to (4) and the definition of
Jij-inspecting point in Section IV, the completion time of any backup
job will not go beyond its deadline.

The worst case scenario of Algorithm 1 happens when at certain
time point ¢, in both the primary and spare processors, the optional
jobs of each task are either not selected for execution or not
completed successfully. Then the next m; jobs of each task T; should
be designated as mandatory jobs consecutively in order to meet the
(m,k)-constraint. Let r, be the earliest arrival time of all upcoming
mandatory jobs after time ¢. If we shift left all other tasks such that
the arrival time of the next upcoming mandatory job of each task
coincides with r,, it is easy to see that after such kind of shifting the
task set will become harder to be schedulable than the original one
as the work demand that is required to be finished before any job
deadline after ¢ will not be decreased. On the other hand, it is easy
to see that the situation of the shifted task set after 7 is the same as
when all tasks are released synchronously at time O under R-pattern.

The situation for the backup jobs in the spare processor is the same
if we replace the release time(s) above with the postponed release
time(s) of the backup jobs. The conclusion of Theorem 1 follows. O

[4]

[5]

[10]

[11]

[12]
[13]

[14]

] Iy 1.0
5% W Wervaoc comm ama L\ﬁ N 7AW AW ARVARNY/=SaWsaYe f @
WWW.VEI wl‘\u\%\)N Al l NP/ WWW. VETYPAL.C

