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Abstract—For real-time computing systems, energy efficiency,
Quality of Service, and fault tolerance are among the major de-
sign concerns. In this work, we study the problem of reliable and
energy-aware fixed-priority (m,k)-deadlines enforcement with
standby-sparing. The standby-sparing systems adopt a primary
processor and a spare processor to provide fault tolerance
for both permanent and transient faults. In order to reduce
energy consumption for such kind of systems, we proposed a
novel scheduling scheme under the QoS constraint of (m,k)-
deadlines. The evaluation results demonstrate that our proposed
approach significantly outperformed the previous research in
energy conservation while assuring (m,k)-deadlines and fault
tolerance for real-time systems.

Index Terms—energy conservation, fault tolerance, standby-
sparing, (m,k)-deadlines, fixed-priority scheduling

I. INTRODUCTION

With the advance of CMOS technology, energy conserva-

tion has been a critical design issue for real-time embedded

systems. On the other hand, fault tolerance has also been a

major concern in the design of pervasive computing systems as

system fault(s) could occur anytime [1]. Generally, computing

system faults can be classified into permanent faults and

transient faults [2]. Permanent faults could be caused by

hardware failure or permanent damage in processing unit(s)

whereas transient faults are mainly due to temporary factors

such as electromagnetic interference and cosmic ray radiations.

In recent years plenty of works (e.g. [3], [4]) have been

reported in conserving energy for fault-tolerant real-time sys-

tems. Many of them has focused on dealing with transient

faults. A widely adopted strategy is to use software re-

dundancy, i.e., to reserve recovery jobs, whenever possible,

for the jobs subject to transient faults. For mission critical

applications such as nuclear plant control systems, permanent

faults need to be dealt with by all means to avoid system

failure. Otherwise catastrophical consequences could occur.

To address this issue, solutions adopting hardware redundancy

are required. Among them the standby-sparing technique has

recently gained much attention in research community [5]–[9].

Generally, the standby-sparing makes use of the redundancy

of processing units in multicore/multiprocessor systems. More

specifically, a standby-sparing system consists of two proces-

sors, a primary one and a spare one, executing in parallel. For

each real-time job executed in the primary processor, there

is a corresponding backup job reserved for it in the spare

processor [7]. As such, whenever a permanent fault occurs

to the primary or the spare processor, the other one can still

continue without causing system failure. Moreover, it is not

hard to see that the backup tasks/jobs in the spare processor

can also help tolerate transient faults for their corresponding

main tasks/jobs in the primary processor.

In a standby-sparing system, the execution of the main

jobs in the primary processor and their corresponding backup

jobs in the spare processor might need to be overlapped with

each other. Thus the total energy consumption could be quite

considerable. Regarding that, some recent works have been

reported to reduce energy (e.g. [5]–[7], [9]). The main idea

is to try to let the executions of the main jobs and their cor-

responding backup jobs be shifted away as much as possible

such that, once the main jobs are completed successfully, their

corresponding backup jobs could be canceled early, thereby

saving energy in the spare processor. With that in mind,

in [7], [8], approaches based on dual priority scheme were

proposed for standby-sparing fixed-priority real-time systems.

Their works are mainly focused on hard real-time systems.

In most real-time applications such as multimedia or time-

critical communication systems, occasional deadline missings

are acceptable so long as the user perceived quality of service

(QoS) can be assured at certain levels. For such kind of

systems, the existing techniques solely based on hard real-

time constraints are insufficient in dealing with energy con-

servation under fault tolerance and more advanced techniques

incorporating the QoS model are desired.

A widely known deterministic QoS model is the (m,k)
model [10]. To ensure the (m,k)-deadlines, Ramanathan et

al. [11] proposed to partition the jobs into mandatory ones

and optional ones. The mandatory ones must be completed

successfully whereas the other ones could be optionally exe-

cuted when necessary.

In this paper, we study the problem of reliable and

energy-aware fixed-priority (m,k)-deadlines enforcement with

standby-sparing. To the best of our knowledge, this is the

first work to combine (m,k)-deadlines and standby-sparing to

achieve better energy efficiency for real-time applications.

The rest of the paper is organized as follows. Section II

presents the preliminaries. Section III presents the motivations.
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Fig. 1. (a) The schedule for the main task τ1 and backup task τ
′

2 in the primary
processor under the preference oriented scheme [8]; (b) The schedule for the

backup task τ
′

1 and main task τ2 in the spare processor under the preference
oriented scheme [8].

Section IV presents our proposed approach. In Section V and

Section VI, we present our evaluation results and conclusions.

II. PRELIMINARIES

A. System models

The real-time system considered in this paper contains n

independent periodic tasks, T = {τ1,τ2, · · · ,τn}, scheduled

according to the fixed-priority (FP) scheme. Without loss of

generality, we assume that τ j has a lower priority than τi if

j > i. Each task contains an infinite sequence of periodically

arriving instances called jobs. Task τi is characterized using

five parameters, i.e., (Pi, Di, Ci, mi, ki). Pi, Di (≤ Pi), and

Ci represent the period, the deadline, and the worst case

execution time (WCET) for τi, respectively. A pair of integers,

i.e., (mi,ki) (0 < mi < ki), are used to represent the (m,k)-
constraint for task τi which requires that, among any ki

consecutive jobs, at least mi jobs are executed successfully.

The jth job of task τi is represented with Ji j and we use ri j,

ci j(= Ci), and di j to represent its release time, execution time,

and absolute deadline, respectively. Note that, when Ji j is an

optional job, we also use Oi j to represent it when necessary.

The system consists of two identical processors which are

denoted as primary processor and spare processor, respectively.

For the purpose of tolerating permanent/transient faults, each

mandatory job of a task τi has two duplicate copies running in

the primary and the spare processors in the same time frame.

Whenever a permanent fault in encountered in either processor,

the other one will take over the whole system (to continue as

normal). For convenience, we call each task τi (or mandatory

job Ji j) running in the primary processor main task/job and

its corresponding copy running in the spare processor backup

task/job, denoted as τ
′

i (or J
′

i j).

The processor power when running a job is denoted as Pact

which consists of both dynamic power and static power. Al-

though dynamic power can be reduced effectively by dynamic

voltage scaling (DVS) techniques, the efficiency of DVS in

reducing the overall energy is becoming seriously degraded

with the dramatic increase in static power (mainly due to

leakage) with the shrinking of IC technology size. Dynamic

power down (DPD), on the other hand, is more effective in

controlling the static power when the processor is not in use.

With that in mind, in this paper we assume that, when the

processors is busy, it always consumes Pact . Without loss of
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Fig. 2. (a) The schedule for the main tasks τ1 and τ2 in the primary processor
based on the greedy execution of the optional jobs; (b) The backup jobs (for
the original mandatory jobs in (a)) in the spare processor are dropped.

generality, we normalize Pact to 1 and assume that one unit

of energy will be consumed for a processor to execute a job

for one time unit. When no job is pending for execution, the

processors can be put into low-power state with DPD if the

idle interval length is larger than the break even time Tbe [7].

B. Fault Model

Similar to the standby-sparing systems in [6], [7], the system

we considered can tolerate both permanent and transient faults.

With the redundancy of the processing units, our system can

tolerate at least one permanent fault in the primary or the spare

processor. For transient faults which can occur anytime during

the task execution, we assume they can be detected at the end

of a job’s execution using sanity (or consistency) checks [12]

and the overhead for detection can be integrated into the job’s

execution time. Whenever a main job encounters transient

fault(s), its backup job needs to be executed to completion.

III. MOTIVATIONS

Our goal is to reduce the overall energy consumption for

standby-sparing systems under the (m,k) requirement. To

assure the (m,k)-deadlines, a widely adopted strategy is to

judiciously partition the jobs into mandatory jobs and optional

jobs [13]. A well-known partitioning method is called the

deeply red pattern (or R-pattern) [14]. According to R-pattern,

the pattern πi j for job Ji j, i.e., the jth job of a task τi, is defined

by:

πi j =

{

“1” if 1 ≤ j mod ki ≤ mi

“0” otherwise j = 1,2,3, · · ·
(1)

where “1” represents the mandatory job and “0” represents the

optional job.

From the above system models, to provide fault tolerance,

all mandatory jobs based on R-pattern need to have two dupli-

cate copies running in the primary and the spare processors,

respectively. It is not hard to see that, due to the overlapped

executions between them, one way to save energy is to let each

mandatory job in the primary processor be finished as soon as

possible and its backup job in the spare processor be executed

as late as possible such that, once the main job is completed

successfully, its backup job can be canceled immediately. To

achieve this goal, in [7] Mohammad et. al proposed to run the

main tasks in the primary processor according to regular FP

scheme and the backup tasks on the spare processor according
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Fig. 3. (a) The schedule for the main tasks τ1 = (5,2.5,2,2,4), τ2 =
(4,4,2,2,4) in the primary processor under the greedy execution of the
optional jobs; (b) The schedule for the backup jobs in the spare processor.

to the dual priority scheme. Their approach is based on the

concept of “promotion time” (denoted as Yi), calculated as

followed:

Yi = Di −Ri (2)

where Ri is the worst case response time of task τi.

By applying dual priority, each backup job from backup

task τ
′

i
in the spare processor could be procrastinated by Yi

time units such that the overlapped executions between the

main job and its backup job could be reduced, thereby saving

energy. The energy reduction could be further boosted by

adopting the preference oriented scheduling scheme in [8].

Generally their approach is quite efficient in reducing energy

consumption for hard real-time systems. However, for soft

real-time applications with (m,k)-deadlines, there still exist

opportunities to reduce the energy further by exploring the

flexibility of executing jobs under (m,k)-deadlines to avoid

executing duplicate copies of the mandatary jobs on two

processors whenever possible. This could be illustrated in the

following example.

Given a task set of two tasks, i.e., τ1 = (5,4,3,2,4), τ2 =
(10,10,3,1,2), to be executed in a standby-sparing system.

From equation (2), the promotion times Y1 and Y2 for tasks

τ1 and τ2 are calculated as 1 and 1, respectively. By applying

the preference oriented approach in [8] to the mandatory jobs,

main task τ1 and backup task τ
′

2 will be scheduled in the

primary processor (with τ
′

2 scheduled under dual priority)

while main task τ2 and backup task τ
′

1 will be scheduled in

the spare processor (with τ
′

1 scheduled under dual priority).

The schedules for them are shown in Figure 1(a) and (b),

respectively. As a result, the total active energy consumption

within the hyper period [0,20] is 15 units.

Note that in the above example, there are still significant

overlapped time between the executions of all mandatory jobs

and their corresponding backup jobs, incurring much more

energy consumption. On the other hand, due to the existence

of the optional jobs, we can explore the possibility of executing

them adaptively and adjusting the pattern dynamically, thereby

saving more energy, which is shown in Figure 2. As seen

in Figure 2(a) and (b), under dynamic patterns, the first job

of task τ2 is determined and scheduled as an optional job,

represented as O21, instead of mandatory because it can still
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Fig. 4. (a) The schedule for the main tasks τ1 = (5,2.5,2,2,4), τ2 =
(4,4,2,2,4) in the primary processor based on the selective execution of the

optional jobs; (b) The schedule for the backup tasks τ
′

1 and τ
′

2 in the spare
processor based on the selective execution of the optional jobs.

tolerate one more deadline missing1. Once O21 is executed

and completed successfully, its next mandatary job, i.e., J22,

can be demoted to optional and the backup job for it can

simply be dropped to save energy. After O21 was completed

(at time t = 3), since O11 did not have enough time space

to be finished before its deadline, to save energy, O11 will

not be invoked at all. Instead, its next optional job, i.e., O12

will be invoked at time t = 5, following the same rationale

as O21. Note that, in the schedule in Figure 2(a), although

some mandatory jobs such as J13 and J22 had been demoted to

optional, they were re-selected (as optional jobs) for execution

again to help demote/drop more mandatory/backup jobs in the

future. As a result the total active energy consumption within

the hyper period [0,20] is reduced to 12 units, which is 20%

lower than that in Figure 1.

It is not hard to see that in Figure 2 the fault tolerance capa-

bility of the standby-sparing system is preserved as whenever

some optional job(s) failed, the next mandatory job (and the

backup job for it) can still be invoked and executed timely.

From the above example we can see that, by executing

optional jobs and adjusting the job patterns dynamically, there

is great potential for energy saving because for optional jobs,

no backup jobs need to executed for them and the successful

completion of the optional jobs can help demote/drop some

mandatory jobs and their backup jobs. Moreover, when those

mandatory jobs are demoted, their time budget could be

utilized to execute more optional jobs. However, although

seems reasonable, there could still be problems with it. For

example, due to the “greedy” manner in which the optional

jobs are executed, it might execute an excessive number of

optional jobs for some systems with modest workload, which

could affect the overall energy efficiency adversely. Even

we limit the execution of the optional jobs to be in the

primary processor only, this problem might still not be avoided

effectively. This could be illustrated with another example as

followed.

Consider another task set of two tasks, i.e., τ1 =
(5,2.5,2,2,4), τ2 = (4,4,2,2,4). Figure 3 shows the schedule

based on the greedy approach. As can be seen, for task τ1,

1Although O11 is also determined as an optional job, we chose to execute
O21 first because, starting from O11, task τ1 can still tolerate two deadlines
missings, therefore is regarded as more flexible (less urgent) than O21.
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the execution of optional job O11 caused mandatory job J13

(and its backup job) to be demoted/dropped. But later on, J13

was re-selected for execution as an optional job. Following

the same rationale, four jobs in total were executed for task

τ1 before time t = 25. The situation for task τ2 is similar. As a

result, the total active energy consumption under this schedule

is 20 units.

However, if we follow a different schedule as shown in

Figure 4, the energy efficiency can be improved. As can

be seen, in this case for both tasks τ1 and τ2, we only

schedule their optional jobs which can tolerate just one more

deadline missing (such as O12 and O22) while skipping the

other optional jobs (for example, O11 and O21). Moreover,

to make the workload of the optional jobs distribute more

evenly in two processors, we let the selected optional jobs of

each task be executed in the primary processor and the spare

processor alternatively. For example, for O12 and O22 , we

let them be executed in the primary processor. Once O12 and

O22 are finished, the flexibility degrees of the future jobs will

be updated correspondingly, based on which the jobs could

be selected for execution again (for example, J13 and J
′

23,

which will be executed in the spare processor). The total active

energy consumption before time t = 25 is reduced to 14 units,

which is 30% lower than that in Figure 3.

As shown in the above example, the greedy approach is not

necessarily most energy efficient while executing the optional

jobs selectively is more promising in saving energy. Moreover,

to better utilize the system computing power, in the latter case

we can let the selected optional jobs of each task be executed

in both the primary and the spare processors alternatively,

which could help distribute their workload more evenly in

two processors such that the selected optional jobs could have

better chance to be scheduled successfully. Following these

rationales, in next section we will propose a new approach

which, instead of executing all optional jobs in one processor

greedily, will execute them in both the primary and spare

processors in a selective way.

IV. OUR APPROACH

In this section, we will present our new approach based

on selective execution of the optional jobs. The following

definition would be very useful in presenting our algorithm.

Definition 1: The flexibility degree of a job Ji, denoted

as FD(Ji), is defined as the number of consecutive deadline

missings that task τi (which Ji belongs to) can still tolerate

starting from Ji.

Based on the concept of flexibility degree, our selective

approach works according to the following principles: (i) The

optional jobs could be executed in either the primary or the

spare processor, but only the optional jobs with flexibility

degree of 1 will be selected for execution; (ii) The eligible

optional jobs to be executed either under the main tasks

in the primary processor or under the backup tasks in the

spare processor, but not both for the same optional job (as

an optional job does not have backup job). Regarding that,

to make the workload of the eligible optional jobs distribute

more evenly in two processors, we let the selected optional

jobs from the same task be executed in the primary processor

and in the spare processor alternatively, just as in the schedule

in Figure 4.

The salient part of our selective approach is presented in

Algorithm 1.

As shown in Algorithm 1, for both the primary and the spare

processors, two job ready queues are maintained for each of

them: a mandatory job queue (MJQ) and an optional job queue

(OJQ). Upon arrival, the current job of task τi (denoted as Ji)

is determined as mandatory job or optional job based on its

flexibility degree. It is determined as mandatory only if its

flexibility degree is 0 and as optional otherwise. Note that,

since all mandatory jobs must have backup jobs for them,

we let the mandatory jobs of all main tasks be put in the

mandatory job queue (MJQ) of the primary processor while

their corresponding backup jobs be put in the MJQ of the

spare processor. Unlike the mandatory jobs, the optional jobs

do not have backup jobs for them. So only the optional jobs

with flexibility degree of 1 are selected as eligible jobs (other

optional jobs are skipped). Moreover, the selected optional

jobs of each task are put into the OJQ of the primary processor

and the OJQ of the spare processor alternatively. The jobs in

MJQ always have higher priorities than those in OJQ.

Algorithm 1 The selective approach (Selective-App)

1: For either the primary processor or the spare processor:
2: if MJQ is not empty then
3: If in primary processor, run jobs in MJQ under FP scheme;

Whenever a main job is completed successfully, cancel its
backup job in the other processor immediately.

4: If in spare processor, run jobs in MJQ under FP scheme with
job arrival times revised according to Equation (3);

5: else if OJQ is not empty then
6: Select Ji in OJQ and run it following the FP scheme;
7: if Ji is executed successfully then
8: Updated the flexibility degree of the next job of the same

task;
9: end if

10: else
11: tcur = the current time;
12: t

′

a = the earliest release time of all jobs in MJQ;

13: if (t
′

a − tcur) > Tbe then
14: Shut down the processor and set the wake-up timer to be

(t
′

a − tcur);
15: end if
16: end if

Note that, during runtime, once an optional job is completed

successfully, it will be counted as an effective job and the flexi-

bility degree of the next job should be updated correspondingly

(lines 7-8).

In addition, to facilitate saving energy for running the

backup jobs in the spare processor when necessary, the ex-

ecutions of all backup jobs in the spare processor should be

postponed as late as possible. To achieve this goal, some off-

line analysis could be done based on the following definitions:

Definition 2: Time t is called the postponed release time,

denoted as r̃i, of a backup job J
′

i in the spare processor and
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Fig. 5. (a) The original schedule of the backup jobs for the main
tasks τ1 = (10,10,3,2,3), τ2 = (15,15,8,1,2); (b) The schedule of
the backup jobs based on the postponed release times calculated
according to equation (3).

is calculated as:

r̃i = ri +θi (3)

where θi is calculated with Equation (5).

Definition 3: Time t is called a Ji j-inspecting point for job

Ji j, denoted as I P (Ji j), if t = di j or t ∈ {r̃kl | k < i and ri j <

r̃kl < di j}.

Definition 4: The job release postponement interval, de-

noted as θi j, for any backup job J
′

i j of task τ
′

i is defined as

θi j = max{(t̄ − (ci j +
k<i

∑
dkl>ri j ,r̃kl<t̄

ckl)− ri j) | t̄ ∈ I P (J
′

i j)} (4)

Definition 5: The task release postponement interval, de-

noted as θi, for any ask τ
′

i is defined as

θi = min{θi j | j ≤
LCMq≤i(kqPq)

Pi

} (5)

The calculation of θi can be done off-line based on static

R-pattern. Note that since the postponed release times of the

higher priority jobs will be used as the inspecting points for

the lower priority jobs, the release postponement intervals for

the backup tasks should be calculated in descending order of

the priority levels. Each time when θi is calculated, the release

time of all backup jobs of task τ
′

i should be revised based on

equation (3) before advancing to the next priority level. When

all θi are calculated, if for any task τ
′

i, θi is less than Ri, we

can always set θi to be Ri safely.

As an example of calculating the postponed release time r̃i

and the release postponement interval θi, let’s consider a task

set of two tasks, i.e., τ1 = (10,10,3,2,3), τ2 = (15,15,8,1,2),
the original schedule of the backup jobs in the spare processor

with non-postponed release time is shown in Figure 5(a).

To calculate r̃11, i.e., the postponed release time of the first

backup job in τ
′

1 (represented as J
′

11), there is only one

inspecting point for it, i.e., t̄ = 10. Based on equation (4),

θ11 = 10− 3− 0 = 7. Similarly, θ12 can be calculated as 7

as well. So according to equation (5), θ1 = 7. After that, the

release time of all backup jobs of task τ
′

1 should be revised

according to equation (3), as shown in Figure 5(b). Next,

to calculate θ21 for the first job of τ
′

2 (represented as J
′

21),

according to definition (3), there are two inspecting points for

it, i.e., 15 and 7, based on its deadline and the postponed

release times of the jobs in τ
′

1. Then according to equation

(4), θ21 = max{15− (8 + 3)− 0,7− (8 + 0)− 0} = 4. Since

for this particular example, there is only one backup job in τ
′

2

within its hyper period (LCMq≤2(kqPq) = 30), θ2 = 4. After

that the release times of all backup jobs in τ
′

2 are postponed

by 4 time units according to equation (3). The schedule based

on the postponed release times of all jobs within the first

hyper period is shown in Figure 5(b). It is not hard to see that

under this postponed schedule all backup jobs can meet their

deadlines. Note that, for this particular example, the release

postponement interval calculated for task τ
′

2, i.e. , θ2, is much

larger than the promotion time of τ
′

2 calculated according to

equation (2), i.e. , Y2 = 1.

The complexity of Algorithm 1 mainly comes from schedul-

ing the optional jobs in the primary and the spare processors.

Since at anytime there are at most n optional jobs in the OJQ,

its complexity is O(n). Moreover, to ensure that the (m,k)-
deadlines be satisfied, we have the following theorem (the

proof is provided in the Appendix part):

Theorem 1: Let task set T be scheduled with Algorithm 1.

The (m,k)-deadlines for T can be ensured if T is schedulable

under R-pattern.

V. EVALUATION

Three different approaches are studied. In the first approach,

the task sets are statically partitioned with R-patterns, and the

mandatory jobs in the primary and the spare processors are

executed concurrently without procrastination. We refer this

approach as (MKSSST ) and use its results as the reference. The

second approach (MKSSDP) also determines the mandatory

jobs based on the static R-patterns and the mandatory jobs are

scheduled with the preference oriented scheme based on dual

priority, similar to that used in [8] (but without applying DVS).

The third approach (MKSSselective) is our selective approach

proposed in Section IV based on selective execution of the

optional jobs on both the primary and the spare processors. We

assume the processor shut-down break even time Tbe = 1ms.

The periodic task set in our experiments consists of five to

ten tasks with the periods randomly chosen in the range of

[5, 50]ms. The mi and ki for the (m,k)-deadlines were also

randomly generated such that ki is uniformly distributed be-

tween 2 to 20, and 0 < mi < ki. The worst case execution time

(WCET) of a task was assumed to be uniformly distributed

and the total (m,k)-utilization, i.e., ∑i
miCi
kiPi

, was divided into

intervals of length 0.1 each of which contains at least 20

task sets schedulable or at least 5000 task sets generated. We

conducted three sets of tests.

In the first set, we check the energy performance when no

fault occurred within the hyper period. The results are shown

in Figure 6(a).

From Figure 6(a), one can immediately see that, by adopt-

ing dynamic patterns, MKSSselective can achieve much better

energy efficiency than the others adopting static patterns,

i.e., MKSSST and MKSSDP, in all utilization intervals. The

maximal energy reduction by MKSSselective over MKSSDP can

be around 28%. The main reason is that, in this scenario,

by executing the optional jobs, MKSSselective can help drop

duplicate executions of the mandatory jobs in two proces-

sors significantly. Moreover, with adaptive optional job selec-

tion/execution strategy, i.e., by only executing optional job of
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Fig. 6. The energy comparisons for systems under: (a) no fault occurred; (b) permanent fault; (c) permanent and transient faults.

each task with flexibility degree of 1 and letting them be ex-

ecuted in two different processors alternatively, MKSSselective

can avoid executing excessive number of the optional jobs.

In addition, by letting the backup jobs be delayed with

the postponed release times, MKSSselective can accommodate

larger pools of eligible optional jobs for selection, which also

gives more chance for the optional jobs to be selected and

scheduled successfully, therefore minimizing the necessity of

running mandatory jobs effectively.

In the second set, we assumed the system is subject to

permanent fault only which could occur at most once. The

results are shown in Figure 6(b).

As seen in Figure 6(b), the energy reduction by our new

approaches, i.e., MKSSselective subject to permanent fault is

similar to the case when no fault ever occurred. Compared

to MKSSDP, the energy saving by MKSSselective can be up to

22% for the same reasons as above.

In the third set, we assumed the system could be subject to

both permanent fault and transient faults. The transient fault

model is similar to that in [1] by assuming Poisson distribution

with an average fault rate of 10−6. The results were shown in

Figure 6(c).

As seen, the energy saving by our new approaches, i.e.,

MKSSselective in this scenario is similar to that in the previous

cases. The maximal energy reduction by MKSSselective over

MKSSDP can be up to 16%, thanks to the adaptive executions

of the optional jobs under dynamic pattern adjustment.

VI. CONCLUSION

Energy consumption, QoS, and fault tolerance are among

the most critical factors in real-time systems design. In this

paper, we presented a novel approach to reduce the energy

consumption while assuring (m,k)-deadlines and fault tol-

erance in standby-spare systems. As shown, the proposed

approach outperformed the previous research significantly in

energy conservation while ensuring the (m,k)-deadlines and

fault tolerance for fixed-priority real time applications.

ACKNOWLEDGE*

This work is supported in part by NSF under project HRD-
1800403.

REFERENCES

[1] D. Zhu, R. Melhem, and D. Mosse, “The effects of energy management
on reliability in real-time embedded systems,” in ICCAD, 2004.

[2] B. P. R. J. J. Srinivasan, A. S.V. and C.-K. Hu, “Ramp: A model
for reliability aware microprocessor design,” IBM Research Report,

RC23048, 2003.

[3] D. Zhu, “Reliability-aware dynamic energy management in depend-
able embedded real-time systems,” ACM Trans. Embed. Comput. Syst.,
vol. 10, pp. 26:1–26:27, January 2011.

[4] Y. wen Zhang, H. zhen Zhang, and C. Wang, “Reliability-aware low
energy scheduling in real time systems with shared resources,” Micro-

processors and Microsystems, vol. 52, pp. 312 – 324, 2017.
[5] A. Ejlali, B. M. Al-Hashimi, and P. Eles, “Low-energy standby-sparing

for hard real-time systems,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 31, no. 3, pp. 329–342,
March 2012.

[6] M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware standby-sparing
technique for periodic real-time applications,” in ICCD, 2011.

[7] ——, “Energy-aware standby-sparing for fixed-priority real-time task
sets,” Sustainable Computing: Informatics and Systems, vol. 6, pp. 81 –
93, 2015.

[8] R. Begam, Q. Xia, D. Zhu, and H. Aydin, “Preference-oriented fixed-
priority scheduling for periodic real-time tasks,” J. Syst. Archit., vol. 69,
no. C, pp. 1–14, Sep. 2016.

[9] Y. wen Zhang, “Energy-aware mixed partitioning scheduling in standby-
sparing systems,” Computer Standards and Interfaces, vol. 61, pp. 129
– 136, 2019.

[10] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment
technique for streams with (m,k)-firm deadlines,” IEEE Transactions

on Computes, vol. 44, pp. 1443–1451, Dec 1995.
[11] P. Ramanathan, “Overload management in real-time control applications

using (m,k)-firm guarantee,” IEEE Trans. on Paral. and Dist. Sys.,
vol. 10, no. 6, pp. 549–559, Jun 1999.

[12] D. K. Pradhan, Ed., Fault-tolerant Computing: Theory and Techniques;

Vol. 2. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1986.
[13] G. Quan and X. Hu, “Enhanced fixed-priority scheduling with (m,k)-firm

guarantee,” in RTSS, 2000, pp. 79–88.
[14] G. Koren and D. Shasha, “Skip-over: Algorithms and complexity for

overloaded systems that allow skips,” in RTSS, 1995.

APPENDIX

Proof: The correctness of the release postponement interval θi for

each backup task τ
′

i (and its individual backup jobs) is guaranteed by
equation (4) and (5) because according to (4) and the definition of
Ji j-inspecting point in Section IV, the completion time of any backup
job will not go beyond its deadline.

The worst case scenario of Algorithm 1 happens when at certain
time point t, in both the primary and spare processors, the optional
jobs of each task are either not selected for execution or not
completed successfully. Then the next mi jobs of each task τi should
be designated as mandatory jobs consecutively in order to meet the
(m,k)-constraint. Let re be the earliest arrival time of all upcoming
mandatory jobs after time t. If we shift left all other tasks such that
the arrival time of the next upcoming mandatory job of each task
coincides with re, it is easy to see that after such kind of shifting the
task set will become harder to be schedulable than the original one
as the work demand that is required to be finished before any job
deadline after t will not be decreased. On the other hand, it is easy
to see that the situation of the shifted task set after t is the same as
when all tasks are released synchronously at time 0 under R-pattern.

The situation for the backup jobs in the spare processor is the same
if we replace the release time(s) above with the postponed release
time(s) of the backup jobs. The conclusion of Theorem 1 follows. ✷
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