A macroelement stabilization for mixed finite element/finite volume
discretizations of multiphase poromechanics

Julia T. Camargo®*, Joshua A. White?, Ronaldo I. Borja®

“Department of Civil and Environmental Engineering, Stanford University, United States
bAtmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, United States

Abstract

Strong coupling between geomechanical deformation and multiphase fluid flow appears in a variety of geoscience
applications. A common discretization strategy for these problems is a continuous Galerkin finite element scheme for
the momentum balance equations and a finite volume scheme for the mass balance equations. When applied within a
fully-implicit solution strategy, however, this discretization is not intrinsically stable. In the limit of small time steps
or low permeabilities, spurious oscillations in the piecewise-constant pressure field, i.e. checkerboarding, may be
observed. Further, eigenvalues associated with the spurious modes will control the conditioning of the matrices and
can dramatically degrade the convergence rate of iterative linear solvers. Here, we propose a stabilization technique in
which the balance of mass equations are supplemented with stabilizing flux terms on a macroelement basis. The addi-
tional stabilization terms are dependent on a stabilization parameter. We identify an optimal value for this parameter
using an analysis of the eigenvalue distribution of the macroelement Schur complement matrix. The resulting method
is simple to implement and preserves the underlying sparsity pattern of the original discretization. Another appealing
feature of the method is that mass is exactly conserved on macroelements, despite the addition of artificial fluxes. The
efficacy of the proposed technique is demonstrated with several numerical examples.
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1. Introduction

In a variety of applications, it is useful to model the hydromechanical behavior of porous media infiltrated by
one or more fluids—e.g. in geotechnical engineering [1-20], hydrocarbon recovery [21-30], and geologic carbon
storage [31-33]. Precise models should account for the tight interaction between solid deformation and fluid flow. The
conceptual framework for modeling this coupled behavior is well established [34, 35], with Biot’s work [36] providing
a sound theoretical foundation. Computational methods for poromechanics, however, still pose many interesting
challenges. In particular, this work focuses on numerical instabilities that may arise due to the discretization spaces
chosen for the coupled fields.

As a representative problem, we consider a model in which an elastic solid skeleton is saturated with two im-
miscible fluids. We present the multiphase formulation for its relevance in many geoscience applications, though
the single-phase formulation is a straightforward sub-case. The behavior of the porous system is governed by a mo-
mentum balance equation for the mixture and mass balance equations for each of the fluids. A fully-implicit time
integration strategy is adopted, where all unknown fields are updated simultaneously in a monolithic manner [37, 38].
A variety of finite-element and finite-volume based discretization strategies may be applied to these equations, each
with their own advantages [39-54]. Of specific interest here is a frequent choice: continuous trilinear interpolation
for the displacement unknowns and element-wise constant fields for the pressure and saturation unknowns. Such
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an interpolation results, for example, when applying a continuous Galerkin finite element scheme to the momentum
balance equation, and a finite volume scheme to the mass balance equations [38, 40, 44, 46].

This discretization works well in a variety of practical cases. The chosen interpolation spaces, however, can be
problematic. In the limit of small time steps or low permeabilities, undrained deformation can occur. The fluid
mass balance equations impose an incompressibility constraint on the deformation field. Like many other constrained
problems—e.g. Stokes flow, incompressible elasticity, or contact problems [55]—these divergence constraints can
create numerical instabilities if the discrete approximations for the field variables do not satisfy the Ladyzhenskaya-
Babuska-Brezzi (LBB or inf-sup) condition [56, 57]. Unfortunately, the combination explored here is not intrinsically
LBB-stable. As a result spurious oscillations, i.e. checkerboarding, may be observed in the pressure field. A less
obvious, but equally important, symptom is a degradation in the convergence rate of iterative linear solvers. Near-zero
eigenvalues associated with spurious modes will control the conditioning of the system matrices, leading to poorly
conditioned systems and increased iteration counts. This latter issue can persist in regimes where checkerboarding is
not visually apparent, and may thus go unnoticed by practitioners.

These instabilities may be treated with a carefully-designed perturbation to the constraint equations. The goal is to
remove instabilities while maintaining an accurate approximation of the underlying PDEs. This is the basic rationale
behind many stabilization techniques, including the Brezzi and Pitkédranta scheme [58], the Galerkin Least-Squares
approach [59], and the Polynomial Pressure Projection technique [60]. Various stabilization schemes have been pro-
posed that devote particular attention to constant pressure elements [61-65], starting with early work in [66]. In [64]
the idea of penalizing the pressure jump across inter-elements boundaries was introduced. An important modifica-
tion of this method, the Local Pressure Jump (LPJ) stabilization, was developed in [65] based on the macroelement
concept. These schemes were primarily developed for fluid mechanics problems. Since then, many stabilization
schemes have been successfully applied to poromechanics with single-phase flow [52, 67-73]. However, the study of
stabilization procedures addressing multiphase problems is still incipient, with just a few studies available [74, 75].

This paper proposes a new stabilization technique in which the balance of mass equations are supplemented with
stabilizing flux terms. The resulting technique mimics the LPJ stabilization [65, 76, 77] in its basic design, but with
suitable extensions to handle the multiphase and poromechanical system of interest here. The additional stabilization
terms are dependent on a stabilization parameter that must be well chosen to suppress instabilities while not com-
promising solution accuracy. We identify an optimal value for this parameter using an analysis of the eigenvalue
distribution of the macroelement Schur complement matrix. The resulting method is simple to implement and pre-
serves the underlying sparsity pattern of the original discretization. Another appealing feature of the method is that
mass is exactly conserved on macroelements.

We remark that the goal of this work is to “fix* a widely-used discretization technique, but it is certainly not
the only pathway to stable solutions. For example, significant work has been invested over the years on finding
intrinsically inf-sup stable interpolation spaces—e.g. [39, 49, 51, 78]. Alternatively, another viable strategy is to
avoid the monolithic system altogether, and rather solve the coupled PDEs in a partitioned way using a sequential
implicit approach [40, 44, 47]. In this case, no saddle-point structure will ever appear. Unfortunately, the convergence
rate and clock time of a sequential scheme is generally worse than a well-designed monolithic scheme [37]. To exploit
efficient and scalable monolithic solvers [38, 79, 80] we therefore prefer to address the stability problem head on.

The paper is organized as follows. The governing equations and discretization scheme are introduced in Sections 2
and 3. In Section 4 we examine the behavior of this model in the undrained limit, in order to identify the source of
spurious modes. To fix this deficiency, our stabilization scheme is detailed in Section 5. The resulting approach both
treats spurious pore pressure oscillations and improves the conditioning of the system matrices. This is demonstrated
through numerical examples presented in Section 6. Finally, concluding remarks are given in Section 7.

2. Governing Equations

We consider a multiphase poroelastic problem in which two immiscible fluids fill the voids of the porous, de-
formable solid skeleton. We focus on a displacement-saturation-pressure formulation, ignoring dynamic and non-
isothermal effects. We further neglect capillary forces, meaning, the wetting and non-wetting fluid phases have equal
pressure inside the pore. This simplification is common in many reservoir-scale simulations [81] and, in fact, the
inclusion of capillarity would not change the stabilization scheme derived here.
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The porous medium occupies a domain Q € R? over time interval 7 = (0,T]. The unknown fields are the
displacement of the solidu : Q X I — R3, the wetting fluid saturation s : Q X 7 — R, and the fluid pressure
p : Qx I — R. The initial/boundary value problem is governed by a linear momentum balance for the mixture and
two mass balance equations for the wetting (w) and non-wetting (o) fluids, respectively:

V-o' =bVp+pg=0 inQx7, (1a)
my,+V-w,—q,=0 inQx171, (1b)
m,+V-w,—q, =0 inQxI. (1¢)

In Eq. (1a), the effective Cauchy stress depends on the symmetric gradient of the displacement field as
o’ =C: V', 2

where C is the drained elasticity tensor. Biot’s coefficient b = 1 — K;,/K; may be calculated from Kj,, the drained
skeleton bulk modulus, and Kj, the intrinsic bulk modulus of the solid phase. The mixture density p is related to the
individual phase densities—denoted by p, for £ = {w, o} and p,—via the relationship

p = =95+ dpws + ¢p,(1 = 5) 3
where ¢ is the porosity. Porosity changes are related to solid deformation and fluid pressure changes as

e LoD

b= bV
¢ Kdr

“

which introduces a coupling between the momentum and mass balance equations. Each fluid phase requires a density
model p/(p), such as the simple linear model

pPe =.02

1 0
1+E(P—P)} &)

with phase bulk modulus K, and reference density p? at a reference pressure p°.
In Eq. (1b) and Eq. (1c), m, is the mass per unit volume for the fluid phase ¢ = {w, o}, with

My, = PPy, (6a)
my = ¢po(1 — ). (6b)

The source terms g, are used to model well sources for injection and production of fluids, using a Peaceman well
model [82, 83]. The mass flux w, = (p,v,) is linked to the pore pressure field via the generalized Darcy’s law as

Ve =—Aek - V(p + pg2). @)

The constitutive relation in (7) defines the volumetric flux v, using the phase mobility A, = k,¢/u¢, the viscosity u,, and
the relative permeability k,,. Specific relationships for viscosity u; = u.(p) and relative permeability k,, = k,¢(s) must
be defined for the fluids and porous medium under consideration. Additionally, k represents the absolute permeability
tensor, g the gravitational acceleration, and z the elevation above a datum.

The domain boundary I' is decomposed into regions where Dirichlet and Neumann boundary conditions are spec-

ified, denoted by I' = I'? UTY for the momentum balance and " = F? U F}V for the mass balances. These divisions
follow the overlap restriction [? N TY =T jl? N Fi}’ = (. Specifically,

u=0 onFEXI, (8a)
o-n=t onTN x T, (8b)
p=p on rj?xf, (8¢c)
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Figure 1: Example mesh with nodal and cell-centered degrees-of-freedom. Each element is assigned to a parent macroelement.

s=7 onTP x 1, (8d)
w,-n=0 on r? x I, (8e)
W, -n=0 onT}Y x 1, (8f)

where the boundary conditions prescribing displacement (8a), total traction (8b), pore pressure (8c), wetting phase
saturation (8d), wetting phase mass flux (8¢) and non-wetting phase mass flux (8f) are given. Here, n denotes the
outer normal vector. Homogeneous conditions on the displacement and external fluxes were chosen here to simplify
some notations below, but these can be easily relaxed.

Initial conditions are specified as

u(x, 0) = up(x) x,1He(@Qxt=0), (9a)
s(x,0) = so(x) xnDe@Qxt=0), (9b)
P, 0) = po(x) (x,1) e (@Qx1=0). %)

Note that the single-phase poromechanics model arises as a subcase of these general equations if one fixes either
s(x,t) = 0 or s(x,7) = 1. In this case, only one mass balance equation is required.

Clearly a number of modeling and constitutive assumptions are embedded in the formulation described above,
but it remains a useful approximation for many subsurface applications. This formulation also contains many of the
salient mathematical features that may be encountered in other models used in practice.

3. Discrete Formulation

Figure 1 illustrates the basic geometry under consideration. The domain Q is partitioned into a computational
mesh 77 made of non-overlapping elements {K;} such that Q = U?z”] K;. Every element face f is assigned a unique
unit normal vector ny. For our stabilization procedure, we further assume that these elements may be grouped into
macroelements {M;} consisting of patches of eight hexahedra in 3D or four quadrilaterals in 2D. This configuration is
readily achieved by beginning with a coarse version of the mesh and applying one level of structured refinement. We
remark that for unstable elements, the effects of numerical instabilities are more pronounced for Cartesian grids and
cubic elements [84, 85]. The extension of the basic method to fully-unstructured grids is discussed later.

The discretization of the governing equations (1) is obtained using a mixed finite-element/finite-volume approach.
An extensive description of this formulation is presented in [38]. Here, we briefly summarize the key components,
but refer the interested reader there for a more complete exposition.

Time integration relies on a fully implicit backward Euler scheme, with the time interval 7 divided into ny,
subintervals of length Az = (¢, — t,-1). We will use the notation Ax = (x,, — x,,—1) for other time-differenced quantities
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as well. For the spatial discretization, we introduce the specific spaces

Q= {v| v e [COQ)P,v=00nT?, v € [Q(K)]® VK € 'rh}, (10a)
P =gl g € L*(Q).qx € Po(K) YK e T"}, (10b)

where C°(Q) and L*(Q) are the space of continuous and square Lebesgue-integrable functions on Q, respectively.
Q1 (K) denotes the space of d-linear functions (trilinear in 3D or bilinear in 2D) and Py(K) the space of constant
functions on a given element K.

The discrete weak form of (1) reads: Find {u,, s,, p,} € @ X £ X P such that for time stepn = {1,...,n,,}

Ru=stv:O'I’IdQ—fV-vbpndQ—fv~p,,ng—f v-t,dlC =0 Vv € Q, (11a)
Q Q Q I
R, = — f YAm, dQ + At Y [YIFL, + At f W dQ =0 Yy e P, (11b)
Q 4 Q
f%rf
R,,:—fXAm,,dQ+AtZ[[/\{]]F{;,,+Atf)(q,,,nd£2:0 Yy € P, (11c)
Q farn Q
7

where {v, , y} are discrete test functions. The symbol [-] denotes the jump of a quantity across face f in 7. For an
internal face, [x] = (xjiz — x|k ). with x| and yx the restriction of y on cells K and L sharing f, respectively. For a

face belonging to the domain boundary, the jump expression reduces to [x] = —xix . The term F { , denotes a discrete
mass flux, i.e. F { W ff Wen - By dA. These are computed using a standard two-point flux approximation scheme, with
upwinding of the phase density and mobility [86]:

Fl = —p 52! (I p] + ol 8lI21). (12)

Here, Y/ is the transmissibility coefficient for the face, which is computed knowing the mesh geometry and perme-
ability. The jump in the elevation datum should be understood as the difference in the z—coordinate of the respective
cell centroids.

The unknown fields are interpolated as

w0 = > X, (13a)
i=1

520 = > @i(X)5 ), (13b)
j=1

Pa®) = ) @ X)pins (13¢)
k=1

with {#;} and {¢;} bases for Q and P, respectively. {u; ,} are nodal values of the displacement components, while {s;,}
and {py,} are cell-centered values for the saturation and pressure fields. An identical basis is introduced for the test
functions.

The fully discrete system of equations at time ¢, is then obtained by introducing these bases into the weak form
Egs. (11a)-(11c) and applying the standard finite element procedure. This leads to a set of algebraic equations for the
unknown degrees-of-freedom {u;,}, {s;,} and {p,}. These degrees-of-freedom are assembled in an algebraic vector
X, = {Uy, Sy, Px}. The nonlinear system of equations is assembled in a residual vector

r

ry (xn’xn—l) = r;i =0. (14’)
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The nonlinearity of the system here results from nonlinear constitutive behavior embedded in the relative permeability
relationship k,¢(s). Furthermore, this formulation is general enough to accommodate other nonlinear constitutive
relationships for the various solid and fluid components. A Newton iteration scheme is used to solve this system,
which requires the linearization of the three-field problem. The linearized problem is defined by a Jacobian system
with a 3 X 3 block structure of the form

Au A Aplfou] [
Asu Ass Asp 0s|=— r}i ) (15)
A Ay Ayl 6P ¢4

where A% = ork /0x,, is the Jacobian matrix, with éu, §s, and op the Newton search directions for each field. The
superscript k stands for the Newton iteration count. Full expressions for each elemental sub-vector of r and sub-
matrix of A are reported in [38]. We note that the solution of this linear system is typically the most expensive
component of a fully-implicit code, and good solver performance is therefore essential.

4. Incompressibility

It may not be immediately apparent that the system (15) may be subjected to an inf-sup condition on its solvability.
Indeed, for many problem configurations the discrete system is perfectly well-posed. Instabilities can arise, however,
when two conditions are satisfied:

1. during undrained loading, i.e. as either k — 0 or At — 0;
2. when the solid and fluid phases approach incompressibility, i.e. K; — oo and K, — oo for £ = {w, 0}.

Note that it is sufficient to merely approach these limits, a situation that occurs frequently in practice. This is partic-
ularly true at early simulation times, when small time steps At are often required to resolve rapidly evolving solution
fields. Liquid and solid compressibilities are also often small for many geologic systems.

To highlight the origin of difficulties, we first revisit the continuum governing equations assuming the conditions
above are exactly satisfied. In this case, several relationships simplify, in particular

b=1, (16a)
¢=V-u, (16b)
Os = Pw=po =0, (16¢)
wy, =w, =0, (16d)
qw =¢qo =0. (16e)

We set g, = 0 here under the assumption that these source terms represent wells, which cannot inject when perme-
ability goes to zero. The mass balance equations (1b)-(1c) reduce to

0
5 @9 =0 (17a)
0
5 @1 - =0 (17b)

Adding these two equations implies ¢ = 0, and therefore § = 0. The reduced system of governing equations is
therefore

V-o! -Vp+pg=0 inQx7I, (18a)
V-u=0 inQxJ71, (18b)
with s(x,7) = sp(x). We observe that under these conditions the solid deformation field must satisfy a divergence

constraint condition, while the saturation field becomes fixed in time at its initial conditions. This result is physically
intuitive. If the fluids can neither flow nor compress, they will not allow the solid skeleton to deform volumetrically,

6
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nor is there a mechanism for saturations to evolve. The result is a two-field problem only in displacement and
pressure. With some additional manipulations one can show that this set of governing equations is equivalent to
Stokes’ equations.

It is also instructive to perform the same exercise for the algebraic system (15). When phase compressibility is
zero and undrained conditions are reached, the Jacobian matrix becomes

A;u AZp
A*=|AT, A, (19)
A, A

with the following expressions for the individual blocks:

[Auly = f vy C:V'plav (20a)
Q
Al =- fQV ne'dv (20b)
[Azu]u = —Pw f Sn‘piv : ”jdv (20c)
Q
[A* ] - f (1= )¢V - fav (20d)
f ¢¢'ldv (20e)
= po f pe'p'dv (20f)
Q
Now imagine that we add the third block row to the second, scaled by their (constant) densities. We observe that
1 * * Tx
_Asu A - Aup (21a)
Pw Po
1 * 1 *
_Ass + _Aps =0 (21b)
Pw Po

We may therefore identify a sub-system for displacements and pressures that is uncoupled from the saturation field,

up
One would arrive at the same system through a direct discretization of the reduced governing equations above. It is
clear that this matrix is in saddle-point form, and that the spaces chosen for the pressure and displacement fields must
satisfy an inf-sup compatibility condition to ensure B* has full rank. For our chosen interpolation, however, this is
not the case. As the incompressible limit is approached, B*—and equivalently, A*—may contain near-singular modes

that can express as spurious oscillations in the pressure field.

5. Stabilized Formulation

As a fix for this difficulty, we propose a simple modification to the way the discrete fluxes are treated in Eqgs.
(11b)—(11c). As described earlier, the mesh is decomposed into macroelements. Let I'y; denotes the union of all faces
f that lie interior to any macroelement. That is, any two cells connected across a face f € I'jy; are members of the
same parent macroelement.

For any face in I'y;, we augment the physical flux with an additional stabilization flux G? . For a given time
increment At, we replace

AtF] « MF] +G]  VfeTy (23)

7
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where for each phase the stabilization flux is a function of an inter-element jump [Ap] across the face, scaled by
particular constants,

Gl = -, [Ap] with o, = 7 V¢ [p,s]", (24a)
G) = —a)[Ap] with o) =7V [p,(1 - 9] (24b)

These artificial fluxes will be used to control spurious pressure modes associated with non-physical pressure jumps
across faces. Here, 7 is a stabilization parameter and V, is the volume of the child element in the macroelement. The
remaining terms are the upwinded density and phase saturation for the respective phases. Note that these are lagged
in time to simplify the linearization, as a lagged approximation of these quantities is usually sufficient for stabilization
purposes. We will discuss the choice of stabilization constant below, which is critical to success.

This flux form is quite similar to the physical flux computation Eq. (12), so it may be readily added to an existing
face-based assembly loop. Any addition of artificial fluxes, however, will break the element-wise mass conservation
property of the underlying finite volume scheme. Because these artificial fluxes are only added to internal faces of the
macroelement, however, exact mass conservation is still preserved on the macroelement level.

When assembled, these flux terms add additional entries to two blocks of the system matrix,

Au Aus Aup
A=A, Ay Asp + Csp P (25)

Api Aps App +Cpp

where the stabilizing entries are assembled face-wise for any f € I’y as
! PR
[Cop; = —arl 1¢ M1, (262)
f g i i
[Con ], =~ TN, (26b)

In the incompressible limit, these contributions will not vanish, so that

A A
A=A, A5 Cg,l. 27)
A;;u A;;_) CPP

In practice, we always solve the three-field problem. However, it is instructive to apply the same reduction proce-
dure as before for the incompressible limit. This leads to a reduced system

A: A
* nn up
=[x ] (28>
where 1 {
C=—C,,+—C,,. 29)
pw T pe

Thus, the original saddle-point system is modified so that new entries appear in the lower-right-hand block. For each
face f € I'y, this matrix contains contributions

[CI, = —V* [ Tl¢’ 1. (30)

Because of the macroelement construction, the resulting matrix is extremely sparse. In 3D, it is block-diagonal with
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Figure 2: Single macroelement patch test geometry in 2D, with one pressure in each cell and two displacement components at the
central node. The 3D macroelement is similar, involving eight pressures and three displacement components.

one 8 x 8 block C,, for each macroelement in the mesh, with entries

[ 3 -1 -1 -1
-1 3 -1 -1
-1 3 -1 -1
Cy = —-1V° _i b3 3 _i , (€25
-1 -1 3 -1
-1 -1 3 -1
-1 -1 -1 3]

where V¢ is the average volume of the child elements in the macroelement. Note that in our mesh geometry, V¢ = A/d/
for any face interior to the macroelement, with A/ the face area and d/ the distance between the centroids of the
neighboring cells. By construction, this pattern preserves the underlying two-point flux approximation (TPFA) stencil
adopted in the original finite volume scheme, and will not cause any fill-in. Note that the matrices Cy, and C,, will
have the same sparsity pattern as C, though their entries are weighted by the local saturation and densities at the faces.

For the reduced system, the stabilization contribution C has a very similar form to the Local Pressure Jump (LPJ)
stabilization as originally formulated for solving the Stokes equation [65]. Indeed, this basic idea of using inter-
element pressure jumps to control spurious modes inspired the method proposed here. There are two key differences
for the multiphase poromechanics application, however:

1. In the three-field formulation, a separate contribution is made to each mass balance equation, weighted by
appropriate phase density and saturation;
2. The optimal stabilization constant 7 will differ due to the nature of the underlying equations.

We still have to address this question of what is an appropriate value for the stabilization parameter 7. As proposed in
[76], good candidates for 7 can be determined by examining the spectrum of the Schur complement matrix,

_ AT pAx—1 px
S=ATALIAY ~C,

uu

(32)

which corresponds to a further block reduction of B* to a pressure-only system. We focus on a patch test involving a
single macroelement, with rigid and impermeable boundary conditions (Figure 2). If stability can be demonstrated for
a single macroelement, theoretical results in [87, 88] prove stability for discretizations on arbitrary grids constructed
by “gluing together” stable macroelements.

The resulting Schur-complement is rank deficient without stabilization. In 3D, there are eight pressure unknowns
in the cells but only three displacement components at the central node. Similar to [77], the eigenvalues and eigen-
vectors of this system may be readily computed. Let the cells have edge lengths A, Ay, and &,. The element volume
is V = hyhyh,, and each face has area A, = h.h,, Ay, = hyh;, or A, = h,h;. The resulting eigenvalues are

e =0 (33a)
e =e3=e, =4VT (33b)
es =6Vt (33¢)
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Table 1: Simulation parameters used in the three single-phase Barry-Mercer examples.

Symbol  Parameter Drained Undrained Modified  Units
At Time step 6.14x 107 10 102 S
T Final time 1.54x 102 1074 102
b Biot coefficient 1 1 1 -
E Young’s modulus  10° 10° 2.5 Pa
v Poisson ratio 0.1 0.1 0.25 -
k Permeability 1073 107° 107" m?
e Viscosity 1073 1073 1073 Pa-s
P Density 10° 10° 10° kg/m®
9A%,
e =V |21+ (33d)
16 (A2,(1 + 2G) + A2G + A%G)
9A2.
e;=V|2t+ (33e)
16(A2,G + A2(1+2G) + ALG)
9A§z
eg =V |27+ (33f)
16 (A2 G+ALG+ A2+ 2G))

Xy

where A and G are the two Lamé parameters characterizing the elastic mechanical response.

When no stabilization is applied to the macroelement, that is when 7 = 0, five out of eight eigenvalues are
zero. The null eigenvectors include one constant pressure mode (associated to e¢;) and four spurious pressure modes
(associated to e;—es). The constant mode is expected here since the boundary conditions only determine the pressure
solution up to an arbitrary constant. We see that for T > 0, the stabilization will remove the spurious pressure modes
from the null space of S. Unfortunately, the choice of 7 will also impact the physical modes associated with eg—es.

For stability, all eigenvalues must remain bounded away from zero except for the constant mode e;. Taking 7 too
large, however, will corrupt the physical solution and compromise the approximation. A good choice to balance these
competing priorities is to choose a 7 that minimizes the condition number «(S) = enax/emin. Considering a regular
cube with equal sides i, = h, = h, = h, the minimal condition number is retrieved for any stabilization parameter T

10
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lying within the range
9 9

<7< .
64 (1 +4G) 32(1+4G)
Figure 3 illustrates how the condition number « varies depending on the stabilization parameter. We can see that the

condition number attains its minimal value of x = 3/2 within the range prescribed in Eq.(34). Within this range,
neither extremal eigenvalue actually depends on 7. Therefore, a reasonable choice for the stabilization parameter is

(34)

. 9

T = m (35)

In order to explore the sensitivity of numerical solutions to this constant, it is convenient to present results in terms of
the ratio ¢ = 7/7%, i.e. the ratio of a given stabilization 7 to the recommended value 7*, with ¢ = 1 being “optimal”.

We emphasize that the recommended value here is based on the analysis of a homogeneous, isotropic macroele-
ment. It therefore only depends on two elastic constants. Depending on the user’s needs, a more precise analysis may
lead to a stabilization constant that additionally depends on the Biot coefficient, fluid compressibilities, macroelement
heterogeneity, and so forth. For example, when b < 1 a better estimate is 7 = b>7*. In the case of elasto-plasticity,
the mechanical constants should be updated whenever the tangent moduli change. For an anisotropic or highly-
heterogeneous mechanical model, the appropriate moduli could be taken into account when computing the Schur
complement matrix Eq. 32. For highly-distorted macroelements, the analytical analysis is likely overly demanding
and a numerical eigen-decomposition approach may be preferred. The basic roadmap for deriving these more com-
plicated stabilizations, nevertheless, remains the same.

On the other hand, the inclusion of anisotropic permeability or a multi-point flux approximation stencil would
have no impact on the proposed stabilization scheme. The purpose of the stabilization is to fix the saddle point system
that arises when kAt — 0. Since we are interested in the limit state when this term vanishes, the structure of the flux
discretization makes no difference. Similarly, the inclusion of capillary pressure will impact the overall governing
formulation, but the incompressible limit analysis of Section 4 would nearly remain the same. The only difference
is that the fluid pressure serving as the Lagrange multiplier in the reduced system would be the effective pressure p
arising from the chosen multiphase effective stress decomposition. We would arrive at the same stabilization, with the
constant only depending on mechanical properties.

In summary, the proposed stabilization method consists of adding the artificial flux terms in Eq. (24) to all
macroelement-interior faces, weighted by the stabilization constant recommended in Eq. (35). We remark that for
meshes for which a macroelement decomposition is not possible, the proposed stabilization could alternatively be
added to every internal face in the mesh, mimicking a global pressure jump stabilization technique. This would add
stability to the discretization, though the appealing property of exact mass conservation on macroelements would be
lost.

6. Numerical Examples

We begin with a few single-phase examples (s = 1) to demonstrate the performance of the method in a simpler
setting. We remark that in the completely undrained limit, the governing equations formally reduce to the Stokes
system, and the stabilization technique here exactly mimicks the classic local pressure jump (LPJ) stabilization [65].
We therefore refer the reader to [65] and [77] for additional examples on the efficacy of the LPJ approach for Stokes
problems. Below, we instead choose to focus on some classic poromechanical test problems. We conclude the section
with a full multiphase demonstration for a benchmark reservoir simulation problem. These numerical experiments
were implemented using Geocentric, a simulation framework for computational geomechanics that relies heavily on
finite element infrastructure from the deal.ii library [89].

6.1. Single-phase Examples

For the single-phase examples, we consider several variants of Barry and Mercer’s problem for a two-dimensional,
poroelastic medium [90]. Parameter values are summarized in Table 1. The first test illustrates that the proposed stabi-
lization scheme does not compromise solution accuracy under drained conditions, when no instabilities are expected.
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Figure 4: Geometry and boundary conditions for the Barry-Mercer problem.
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Figure 5: Pressure plot along the vertical line x = 0.25 for the drained Barry-Mercer problem at f = 7/2 using the stabilized
formulation.
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unstabilized (¢ = 0) and stabilized (¢ = 1) formulations.

Two subsequent examples confirm the effectiveness of the scheme in suppressing spurious pressure oscillations under
undrained conditions.

6.1.1. Drained Barry-Mercer
Barry and Mercer [90] provide an analytical solution for a two dimensional problem. The problem setup consists
of a square domain Q = [0, 1] x [0, 1] subjected to a periodic point source given as

gu(D) =286 (X —xp)sin(Br)  with B =(1+2G) g (36)

Here, A and G denote the two elastic Lamé parameters, while « and y are the isotropic absolute permeability and
viscosity, respectively. The point source is located at xo = (0.25, 0.25), and 6(+) indicates a Dirac function. All sides of
the computational domain are constrained with zero pressure and zero tangential displacement boundary conditions,
as depicted in Figure 4. The simulation parameters provided in Table 1 (drained conditions) are the same as those
used in [42, 50, 91, 92]. Note that the time step and final time correspond to a normalized time 7 = 8¢ of Af = 27/100
and 7 = 7/2, respectively.

Figure 5 shows the resulting pressure profile at the final time along a vertical line through the source point. Both
the analytical solution and the numerical solution for different mesh refinements are shown. Good agreement between
the exact and computed results is also indicated by Figure 6, which shows convergence behavior of the L,-error for the
pressure solution for both the stabilized and unstabilized formulations. One observes a linear and essentially identical
error behavior for both, indicating that the macroelement stabilization does not compromise solution accuracy in
regimes where it is not strictly needed.

6.1.2. Undrained Barry-Mercer

The goal of this example is to show the effectiveness of proposed stabilization scheme in treating non-physical
pressure oscillations. These spurious pressure oscillations appear in the limit of low permeability or fast loading rates.
As in [50, 91, 92], we use the same simulation parameters as the previous section, but we decrease the value of the
permeability to x = 10~ m? and perform only one time step of Az = 107 s.

Figure 7 shows the pressure contour plot for the uniformly discretized domain with Ah = 1/16. The pressure
field exhibits mild oscillations close to the source-point. These oscillations are eliminated when using the proposed
stabilization technique.
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Figure 7: Pressure distribution for the undrained Barry-Mercer problem.
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Figure 8: Computed condition numbers of S’ for the undrained Barry-Mercer problem for various stabilization values 7 = c7*.
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Figure 9: Krylov iterations to convergence as a function of mesh refinement and stabilization constant 7 = ¢7* for the undrained
Barry-Mercer problem.

It is also interesting to examine the conditioning of the stabilized system and its impact on iterative solver perfor-
mance. To do so, we define a scaled Schur-complement matrix,

s’ =Q"' (ALALA, - C) (37)
where Q is the mass matrix on the pressure space. For the Py space, this is a diagonal matrix with entries corresponding
to the element volumes. The inverse of this diagonal matrix introduces a volume scaling that allows eigenvalues to be
properly compared across different mesh refinement levels.

Figure 8 presents the condition number of the S’ for various choices of stabilization constant. The minimum is
achieved close to the recommended value 7" that was inferred from the single macroelement analysis. Furthermore,
the removal of near-singular modes from the system matrix has a dramatic impact on iterative solver performance. Fig-
ure 9 presents the number of Krylov iterations to convergence needed for different mesh refinements. For low values
of the stabilization constant, the near-singular modes cause a dramatic degradation in the linear solver performance.

6.1.3. Modified Undrained Barry-Mercer

This last variant of the Barry Mercer’s problem tests the efficacy of the stabilization when even more severe
pressure oscillations are present. The setup is based on [45], where the only difference with the previous setup is that
the source point is switched from rate-controlled to pressure-controlled. The applied pressure p; varies according to

Ps(t) = pmax sin(?), (38)

with pnax = 1. The other simulation parameters follow [45] and are listed in Table 1. An exact solution is not available
in this case. However, at early times (t = 0.01 s) we can infer that the whole domain should have zero pressure except
for the cell where the pressure is enforced. Figure 10 illustrates the solution obtained from the unstabilized and
the stabilized scheme for a domain discretized with cell size Ak = 1/16. To explore the solution sensitivity to the
stabilization constant, we present pressure contours for several values of 7 smaller and larger than the derived estimate.
As expected, the stabilization considering T = 7* eliminates the wild oscillations, and appears to be the threshold value
necessary to do so. At T = 0.17*, pervasive oscillations remain. At 7 = 7* some very slight oscillations remain near
the injector if one looks closely, but overall solution quality is quite good. Taking a larger 7 may smooth these last
overshoots, but one eventually runs the risk of compromising solution quality with an overly diffusive method.

Table 2 reports the extremal eigenvalues and condition number of the S’ for solutions with and without stabi-
lization. One observes that as the mesh is refined the minimal eigenvalue and the condition number converge to
an asymptotic value different than zero and infinity, respectively, only when using the stabilized scheme. Figure 11
presents the condition number of the S’ matrix as a function of the stabilization constant. Once again, the minimimal
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Figure 10: Pressure distribution for the modified undrained Barry and Mercer’s problem, showing solution sensitivity to the
stabilization constant.
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Table 2: Extremal eigenvalues of the scaled Schur complement matrix for the modified undrained Barry-Mercer problem. Mini-
mum and maximum eigenvalues as well as the condition number are presented as a function of mesh refinement. Two cases are
considered: using (a) an unstabilized scheme and (b) the proposed stabilization.

(@1=0
Number ‘ Condition
of cells €min emax  umber (émax/€min)
8x8 2.51e-03 0.330 131.56
16x16 535e-04 0.333 621.85
32x32 1.19e-04 0.333 2799.72
b)yr=1
Number ‘ Condition
of cells ~ ¢min emax humber (emax/€min)
8x8 0.222 0.539 2.421
16x16 0224 0.546 2.437
32x32 0.225 0.548 2.438
108
8 102}
§
S
=
§ 1w0'f
(0] L L L L
1010‘3 1072 107! 10° 10° 102
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Figure 11: Computed condition numbers of S’ for the modified undrained Barry-Mercer problem for various stabilization values
T=cT.
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condition number is attained when 7 = 7*. Figure 12 shows the resulting improvement in Krylov convergence.

6.2. Multiphase Example

Lastly, we consider a multiphase poromechanics example. The test problem is based on the staircase benchmark
problem originally presented in [38]. Figure 13 provides an illustration of the problem geometry. The domain contains
two regions, a high-permeability channel and a low-permeability host rock. The high-permeability channel winds its
way in a spiral, staircase fashion from an upper injection well to a lower production well. This spiral geometry is
obviously artificial, but it introduces very strong coupling between the displacement, pressure, and saturation fields.
Water is injected at the upper well, while both fluids may be produced from the lower well. The wells are located in
the center of the corner grid blocks and have bottom-hole pressure (BHP) control. The injector (producer) is ramped
up to 5 MPa (-5 MPa) overpressure over one day, and then held at a constant pressure. All problem parameters
are given in Table 3. We have set the fluids to be incompressible to accentuate any instabilities in the formulation.
Specifics regarding the well control, relative permeability model, and mechanical boundary conditions may be found
in [38]. At the beginning of the simulation, the initial time step is At = 0.0001 day. This time step is then doubled
every step until a maximum time step of Az = 1 day is reached. We begin with such a small time step to ensure that
the full range of drainage conditions is covered, from undrained to drained. Small time steps are the most problematic
from a stability point of view. The whole simulation is run for 100 days.

Figure 14 presents pressure and saturation snapshots for this simulation, using both an unstabilized and stabilized
formulation (with 7 = 7%). At the first time step (+ = 0.0001 day) checkerboard oscillations are apparent in the pressure
field for the unstabilized formulations. Note that we have truncated the colorbar, cutting off the peak pressures, in order
to accentuate these oscillations visually. The stabilization successfully suppresses this checkerboarding. At the end
of the simulation (# = 100 day), we see that the stabilized and unstabilized formulations produce essentially identical
results. The addition of the artificial flux terms does not compromise overall solution quality, with the saturation field
being advected the same distance along the high-perm channel in both cases.

It is interesting to examine the linear solver behavior at early times in the simulation (Figure 15). At each Newton
step of the nonlinear solver, a preconditioned GMRES iteration is used to solve the Jacobian system. The precon-
ditioner we use is the multistage preconditioner described in [38], which in general provides excellent convergence
behavior for this class of problem. In the first day of simulation time, however, we see a substantial degradation in
solver performance using the unstabilized formulation. This is a direct results of the presence of near-singular modes,
to which Krylov-based solvers are extremely sensitive. With the addition of stabilization, however, this problem is
completely removed and GMRES once again exhibits excellent convergence. Later in the simulation, as At grows,
the physical fluxes between elements grow and even the unstabilized formulation becomes intrinsically stable. As a
result, we see the solver convergence behavior merge at later times for the two formulations.

7. Conclusion

In this work, we have presented a stabilized formulation for Q; — Py discretizations of single- and multiphase
poromechanics. The stabilization is achieved by adding artificial flux terms to faces interior to macroelements. We
have also identified an appropriate value for the stabilization parameter based on an eigenvalue analysis of an incom-
pressible macroelement patch test. The stabilization is easy to implement in existing codes, and does not change the
underlying sparsity pattern of the finite volume stencil. While exact mass conservation on individual elements is sac-
rificed, exact mass conservation on macroelements is retained. We have demonstrated, through a number of single and
multiphase examples, that the method is effective in practice. It can suppress spurious oscillations and also prevent
unwanted degradation in iterative solver convergence in the presence of near-singular modes. The latter is a critical
issue for large-scale simulations of geosystems.

While the discussion here has been limited to Q; — Py discretizations, a similar approach can likely be used
for other unstable interpolation pairs involving piecewise constant pressure approximations—e.g. on more general
hexahedral or tetrahedral meshes.
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Figure 12: Krylov iterations as a function of the mesh refinement and the stabilization constant for the modified undrained Barry
Mercer problem.

Figure 13: Problem geometry for the multiphase poromechanics example. Grey region corresponds to a high-permeability channel,
which spirals in a “staircase” fashion from the upper injection well (blue triangle) to the lower production well (red triangle). Blue
region is a low-permeability zone.
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Table 3: Simulation parameters used in the multiphase example.

Parameter Units Value
Porosity:

High-perm zone - 0.20

Low-perm zone - 0.05
Permeability:

High-perm zone mD 1000

Low-perm zone mD 1
Relative perm:

Residual wetting sat. - 0.2

Residual non-wetting sat. — 0.2
Wetting Fluid:

Reference density kg/m? 1035

Bulk modulus MPa S

Viscosity cP 0.3
Non-wetting Fluid:

Reference density kg/m? 863

Bulk modulus MPa o

Viscosity cP 3.0
Rock:

Young’s modulus MPa 5000

Biot coefficient - 1

Grain density kg/m? 2650
Well control:

Injection ABHP MPa 5

Production ABHP MPa =5

Ramp time day 1

Well radius m 0.1524

Skin factor - 0
Time-stepping:

Initial Az day 0.0001

Maximum At day 1

End time day 100
Solver tolerances:

Newton - 107°

Krylov - 10710
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(c) Colorbar is saturation in decimals at # = 100 day for the unstabilized (left) and stabilized (right) formulations.

Figure 14: Comparison of unstabilized and stabilized formulations for the multiphase example. The stabilization suppresses
checkerboarding at early simulation times (a), but does not otherwise compromise solution quality at late times (b-c).
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