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We provide a discussion of several recent results which, in 
certain scenarios, are able to overcome a barrier in distrib-
uted stochastic optimization for machine learning (ML). 

Our focus is the so-called asymptotic network independence 
property, which is achieved whenever a distributed method ex-
ecuted over a network of n nodes asymptotically converges to 
the optimal solution at a comparable rate to a centralized method 
with the same computational power as the entire network. We 
explain this property through an example involving the train-
ing of ML models and sketch a short mathematical analysis for 
comparing the performance of distributed stochastic gradient 
descent (DSGD) with centralized SGD.

Introduction: Distributed optimization  
and its limitations
First-order optimization methods, ranging from vanilla gradient de-
scent to Nesterov acceleration and its many variants, have emerged 
over the past decade as the principal way to train ML models. There 
is a great need for techniques that train such models quickly and 
reliably in a distributed fashion over networks where the individual 
processors or GPUs may be scattered across the globe and commu-
nicate over an unreliable network, which may suffer from message 
losses, delays, and asynchrony (see [1], [2], [29], and [33]).

Unfortunately, what often happens is that the gains 
achieved from having many different processors running an 
optimization algorithm are squandered by the cost of coor-
dination, shared memory, message losses, and latency. This 
effect is especially pronounced when there are many proces-
sors and they are spread across geographically distributed 
data centers. As is widely recognized by the distributed sys-
tems community, “throwing” more processors at a problem 
will not, after a certain point, result in better performance.

This is typically reflected in the convergence time bounds 
obtained for distributed optimization in the literature. The 
problem formulation is that one must solve
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over a network of n nodes (see Figure 1 for 
an example). Only node i has knowledge of 
the function ( ),f zi  and the standard assump-
tion is that, at every step when it is awake, 
node i can compute the (stochastic) gradi-
ent of its own local function ( ) .f zi  These 
functions ( )f zi  are assumed to be convex. 
The problem is how to compute this minimum in a distributed 
manner over the network based on peer-to-peer communica-
tion, possible message losses, delays, and asynchrony. 

This relatively simple formulation captures a large vari-
ety of learning problems. Suppose each agent i stores train-
ing data points {( , )},x yXi j j=  where x Rj

p!  are vectors of 
features and y Rj !  are the associated responses (either dis-
crete or continuous). We are interested in learning a predic-
tive model ( ; ),h x i  parameterized by parameters ,Rd!i  so 
that ( ; )h x yj j.i  for all j. In other words, we are looking for a 
model that fits all of the data throughout the network. This can 
be accomplished by empirical risk minimization:
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measures how well the parameter i  fits the data at node i, with 
( ( ; ), )h x yj j, i  being a loss function measuring the difference 

between ( ; )h x j i  and yj. Much of modern ML is built around 
such a formulation, including regression, classification, and 
regularized variants [7].

It is also possible that each agent i does not have a static 
data set, but instead collects streaming data points ( , )~x y Pi i i  
repetitively over time, where Pi  represents an unknown distri-
bution of (xi, yi). In this case, we can find *i  through expected 
risk minimization:
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where

( ) ( ( ; ), ).f h x yE( , )~i x y i iPi i i,i i=

This article is concerned with the current limitations of 
distributed optimization and how to overcome them in cer-
tain scenarios. To illustrate our main concern, let us consider 
the distributed subgradient method in the simplest possible 
setting, namely, the problem of computing the median of a 
collection of numbers in a distributed manner over a fixed 
graph. Each agent i in the network holds value ,m 0i 2  and 
the global objective is to find the median of , , , .m m mn1 2 f  
This can be incorporated in the framework of (1) by choosing

( ) , .f z z m ii i 6= -

The distributed subgradient method (see [18]) uses subgra-
dients ( )s zi  of ( )f zi  at any point z to have agent i update as

 	  ( ) ( ) ( ( )),z k w z k s z k1i ij j k i i
j
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where 0k 2a  denotes the step size 
at iteration k, and [ , ]w 0 1ij !  are the 
weights agent i assigns to agent j’s solutions: 
two agents i and j are able to exchange in-
formation if ,w w 0ij ji 2  (w w 0ij ji= =  oth-

erwise). The weights wij  are assumed to be symmetric. For 
comparison, the centralized subgradient method updates the 
solution at iteration k according to
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In Figure 2, we show the performance of algorithm (4) as 
a function of the network size n, assuming the agents commu-
nicate over a ring network. As can be clearly seen, when the 
network size grows, it takes a longer time for the algorithm to 
reach a certain performance threshold.

Clearly this is an undesirable property. Glancing at the fig-
ure, we see that distributing computation over 50 nodes can 
result in a convergence time on the order of 107 iterations. Few 
practitioners will be enthusiastic about distributed optimiza-
tion if the final effect is vastly increased convergence time.

f2(z)

f1(z)

fi (z)

FIGURE 1. An example of a network. Two nodes are connected if there is an 
edge between them.

0 5 10 15 20 25 30 35 40 45 50
Number of Nodes

0

1

2

3

4

5

6

7

8

9

Ti
m

e 
to

 R
ea

ch
 P

 A
cc

ur
ac

y

×106

FIGURE 2. The performance of algorithm (4) as a function of the network 
size n. The agents communicate over a ring network [see Figure 4(b)] and 
choose the Metropolis weights (see the “Setup” section for the defini-
tion). Step sizes / ,k1ka =  and mi are evenly distributed in [ , ] .10 10-  
The time k to reach ( )/ y kn1 i

n
i1 1 eR =^ h  is plotted, where ( )y ki =

/ ( )k z1 k
i0

1 ,R,=
-^ h  and . .0 1e =  

This article is concerned 
with the current limitations 
of distributed optimization 
and how to overcome them 
in certain scenarios.
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One might hope that this phenomenon, demonstrated for the 
problem of median computation and considered here because 
it is arguably the simplest problem to which one can apply the 
subgradient method, will not hold for the more sophisticated 
optimization problems in ML literature. Unfortunately, most 
work in distributed optimization replicates 
this undesirable phenomenon. Next we give 
an extremely brief discussion of known con-
vergence times in the distributed setting (for 
a much more extended discussion, we refer 
the reader to the recent survey in [17]).

We confine our discussion to the follow-
ing point: most known convergence times in the distributed 
optimization literature imply bounds of the form

	   ( ) ( ) ( ),pTime decentralized Time centralizedG, ,n n# ee � (6)

where ( )Time decentralized,n e  denotes the time for the de-
centralized algorithm on n nodes to reach e  accuracy (error 

),1 e  and ( )Time centralized,n e  is the time for the centralized 
algorithm, which can query n gradients per time step to reach 
the same level of accuracy. The graph ( , )G N E=  consists of 
the set of nodes and edges in the network, denoted by N  and 

,E  respectively. The function ( )p G  can usually be bounded in 
terms of some polynomial in the number of nodes n.

For instance, in the subgradient methods, [17, Corollary 9] 
implies that
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where ( ), ( )z z0 0i  are initial estimates, z*  denotes the opti-
mal solution, and G bounds the 2, -norm of the subgradients. 
Function ( )h G  is the inverse of the spectral gap correspond-
ing to the graph and will typically grow with n; hence, when 
n is large, ( ) ( ).p hG G-  In particular, if the communication 
graphs are 1) path graphs, then ( ) ( );p nG O 2=  2) star graphs, 
then ( ) ( );p nG O 2=  or 3) geometric random graphs, then 

( ) ( ).logp n nG O=  The method developed in [20] achieves 
( )p nG =  but, typically, ( )p G  is at least n2.
By comparing ( )Time decentralized,n e  and Time ,n e (cen-

tralized), we are keeping the computational power the same in 
both cases. Naturally, centralized is always better: anything that 
can be done in a decentralized way could be done in a central-
ized way. The question though, is: How much better?

Framed in this way, the polynomial scaling in the quan-
tity ( )p G  is extremely disconcerting. It is, for example, hard 
to argue that an algorithm should be run in a distributed man-
ner with say, ,n 100=  if the quantity ( )p G  in (6) satisfies 

( ) ;p nG 2=  that would imply that the distributed variant would 
be 10,000-times slower than the centralized one with the same 
computational power.

Sometimes ( )p G  is written as the inverse spectral gap 
/ ( )1 1 2m-  in terms of the second eigenvalue of some matrix. 

Because the second-smallest eigenvalue of an undirected 
graph Laplacian is approximately ~ /n1 2  away from zero, such 
bounds will translate into at least quadratic scalings with n in 

the worst case. Over time-varying B-con-
nected graphs, the best-known bounds on 

( )p G  will be cubic in n using the results 
in [16].

There are a number of caveats to the 
pessimistic argument outlined previously 
in this section. For example, in a multiagent 

scenario where data sharing is not desirable or feasible, decen-
tralized computation might be the only option available. Gen-
erally speaking, however, fast-growing ( )p G  will preclude the 
widespread applicability of distributed optimization. Indeed, 
returning to the back-of-the-envelope calculation mentioned 
previously, if a user has to pay a multiplicative factor of 10,000 
in convergence speed to use an algorithm, the most likely sce-
nario is that the algorithm will not be used.

There are some scenarios that avoid the pessimistic discus-
sion mentioned previously: for example, when the underlying 
graph is an expander, the associated spectral gap is constant 
(see [8, Ch. 6] for a definition of these terms as well as an 
explanation), and likewise when the graph is a star graph. In 
particular, on a random Erdős–Rényi random graph, the quan-
tity ( )p G  is constant with high probability [17, Corollary 9, 
Part 9] . Unfortunately, these are very special cases and may 
not always be realistic. A star graph requires a single node 
to have the ability to receive and broadcast messages to all 
other nodes in the system. On the other hand, an expander 
graph may not occur in geographically distributed systems. 
By way of comparison, a random graph where nodes are asso-
ciated with random locations, with links between nodes close 
together, will not have constant spectral gap and will thus 
have ( ),p G  which grows with n [17, Corollary 9, Part 10]. The 
Erdős–Rényi graph escapes this because, if we again asso-
ciate nodes with locations, the average link in such a graph 
is a “long-range” one, connecting nodes that are geographi-
cally far apart. It is a consequence of Cheeger’s inequality, 
that graphs based on connecting nearest neighbors (i.e., where 
nodes are regularly spaced in Rd  and each node is connected 
to a constant number of closest neighbors) will not have con-
stant spectral gap.

Asymptotic network independence in  
distributed stochastic optimization
In this article, we provide a discussion of several recent papers 
which have obtained that, for a number of settings involving 
distributed stochastic optimization, ( )p 1G =  as long as k is 
large enough. In other words, asymptotically, the distributed 
stochastic gradient algorithm converges to the optimal solution 
at a comparable rate to a centralized algorithm with the same 
computational power.

We call this property asymptotic network independence: 
it is as if the network is not even there. Asymptotic network 

This relatively simple 
formulation captures a 
large variety of learning 
problems.
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independence provides an answer to the concerns raised in the 
previous section.

We begin by illustrating these results with a simulation 
from [21], shown in Figure 3. Here the problem to be solved is 
classification using a smooth support vector machine (SVM) 
between overlapping clusters of points. The 
performance of the centralized algorithm 
is shown in orange, and the performance 
of the decentralized algorithm is shown in 
dark blue. The graph is a ring of 50 nodes, 
and the problem being solved is the search 
for a support vector classifier. The graph 
illustrates the main result, which is that a 
network of 50 nodes performs as well in the limit as does a 
centralized method with 50 times the computational power of 
one node. Indeed, after ~8,000 iterations, the orange and dark 
blue lines are nearly indistinguishable.

We note that similar simulations are available for other ML 
methods (training neural networks, logistic regression, elastic 
net regression, and so on). The asymptotic network indepen-
dence property enables us to efficiently distribute the training 
process for a variety of existing learning methods.

The name asymptotic network independence is a slight 
misnomer, as we actually do not care whether the asymptotic 
performance depends in some complicated way on the net-
work. All we want is for the decentralized convergence rate to 
be bounded by O(1) times the convergence rate of the central-
ized method. 

The authors in [4]–[6] and [31] gave the first crisp state-
ment of the relationship between centralized and distributed 
methods in the setting of distributed optimization of smooth, 
strongly convex functions in the presence of noise. Under con-
stant step sizes, the authors in [4]–[6] were the first to show 
that, when the step size is sufficiently small, a distributed sto-
chastic gradient method achieves a performance comparable 
to that of the centralized method in terms of the steady-state 
mean-square error. The step size has to be small enough as a 
function of the network topology for this to hold. In [31], the 
authors showed that the distributed stochastic gradient algo-
rithm asymptotically achieves a convergence rate comparable 
to that of the centralized method, but assuming that all of the 
local functions fi have the same minimum. This gives the first 
“asymptotic network independence” result.  

The work in [22] approximated distributed stochastic gradi-
ent algorithm by stochastic differential equations in continuous 
time by assuming a sufficiently small constant step size. It was 
shown that the distributed method outperforms a centralized 
scheme with synchronization overhead; however, it did not 
lead to straightforward algorithmic bounds. In our recent work 
[21], we generalized the results to graphs that are time vary-
ing, with delays, message losses, and asynchrony. In a paral-
lel recent work [9], a similar result was demonstrated using a 
further compression technique, which allowed nodes to save 
on communication.

When the objective functions are not assumed to be convex, 
several recent works have obtained asymptotic network inde-

pendence for distributed stochastic gradient methods. In [13] 
and [14], a general stochastic approximation setting was con-
sidered with decaying step sizes, and the convergence rates of 
centralized and distributed methods were shown to be asymp-
totically the same; the proof proceeded based on certain tech-

nical properties of stochastic approximation 
methods. The work in [12] was the first 
to show that distributed algorithms could 
achieve a speedup like that of a centralized 
method when the number of computing 
steps is large enough. Such a result was gen-
eralized to the setting of the directed com-
munication networks in [1] for training deep 

neural networks, where the push-sum technique was combined 
with the standard distributed stochastic gradient scheme.

We remark that in this survey, all of the previously men-
tioned algorithms that enjoy the asymptotic network inde-
pendence property assume smooth objective functions, i.e., 
functions with Lipschitz continuous gradients.
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FIGURE 3. A comparison of DSGD and centralized SGD for training an 
SVM. (a) A total of 1,000 data points and their labels for SVM classifica-
tion. The data points are randomly generated around 50 cluster centers. 
(b) The squared errors and one standard-deviation band for DSGD and 
centralized SGD. The performance of the centralized algorithm is shown 
in orange, and the performance of the decentralized algorithm is shown 
in dark blue. A total of 1,000 Monte Carlo simulations are conducted for 
estimating the average performance. 
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In the next sections, we provide a simple and readable 
explanation of the asymptotic network independence phenom-
enon in the context of distributed stochastic optimization over 
smooth and strongly convex objective functions. For more 
information on the topic of distributed stochastic optimization, 
the reader is referred to [10], [15], [23], [24], [28], [30], and [32] 
and the references therein. 

Setup
We are interested in minimizing (1) over a network of n com-
municating agents. Regarding the objective functions fi, we 
make the following standing assumption.

Assumption 1
Each :f RRi

d "  is μ-strongly convex with L-Lipschitz con-
tinuous gradients, i.e., for any , ,z z Rd!l

	
( ) ( ), ,

( ) ( ) .

f z f z z z z z
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(7)

Under “Assumption 1,” (1) has a unique optimal solution, ,z*  
and the function f(z) defined as ( ) / ( )( )nf z f z1 i

n
i1R= =  has the 

following contraction property presented in the next section 
[26, Lemma 10]. 

Lemma 1 
For any z Rd!  and ( , / ),L0 1!a  we have ( )z f z z*d #a- -  
( ) .z z1 *an- -  

In other words, gradient descent with a small step size 
reduces the distance between the current solution and .z*

In the stochastic optimization setting, we assume that at 
each iteration k of the algorithm, ( )z ki  being the input for 
agent i, each agent is able to obtain noisy gradient estimates 

( ( ), ( )),g z k ki i ip  which satisfy the following condition.

Assumption 2
For all { , , , }i n1 2 f!  and ,k 1$  each random vector ( )k Ri

m!p  
is independent, and
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Stochastic gradients appear, for instance, when the gradient es-
timation of ( , )c Xi ii  in empirical risk minimization (2) intro-
duces noise from various sources, such as sampling and quan-
tization errors. For another example, when minimizing the 
expected risk in (3), where independent data points (xi, yi) are 
gathered over time, ( , ( , )) ( ( ; ), )g z x y h x z yi i i z i id ,=  is a stochas-
tic, unbiased estimator of ( ),f zid  satisfying the first condition 
in (8). The second condition holds for popular problems such 
as smooth SVMs, logistic regression, and softmax regression, 
assuming the domain of ( , )x yi i  is bounded.

The algorithm we discuss is the DSGD method adapted 
from distributed gradient descent and the diffusion strategy 
[3]; note that in [3] this method was called adapt-then-com-
bine. We let each agent i in the network hold a local copy of the 
decision vector denoted by ,z Ri

d!  and its value at iteration/
time k is written as ( ).z ki  Denote ( ) ( ( ), ( ))g k g z k ki i i ip=  for 
short. At each step ,k 0$  every agent i performs the follow-
ing update:

	 ( ) ( ) ( ) ,z k w z k g k1i ij
j

n

j k j
1

a+ = -
=

^ h/ � (9)

where { }ka  is a sequence of nonnegative nonincreasing step 
sizes. The initial vectors ( )z 0i  are arbitrary for all i, and 

[ ]wW ij=  is a mixing matrix.
DSGD belongs to the class of so-called consensus-based 

distributed optimization methods, where different agents 
mix their estimates at each iteration to reach a consensus of 
the solutions, i.e., ( ) ( ),z k z ki j.  for all i and j in the long run. 
To achieve consensus, the following condition is assumed 
on the mixing matrix and the communication topology 
among agents.

Assumption 3
The graph G  of agents is undirected and connected (there exists 
a path between any two agents). The mixing matrix W is non-
negative, symmetric, and doubly stochastic, i.e., 1 1W =  and 

R,1 W 1=
R  where 1 is the all-one vector. In addition, wii > 0  

for some { , , , }.i n1 2 f!  
Some examples of undirected connected graphs are pre-

sented in Figure 4. Because of “Assumption 3,” the mixing 
matrix W has an important contraction property.

Lemma 2
Let “Assumption 3” hold, and let 1 n1 2 g$ $m m m=  denote 
the eigenvalues of the matrix W. Then, ,max 1n2 1m m m= ^ h  
and

1 1W #~ ~~ m ~- -r r
FIGURE 4. Examples of undirected connected graphs. (a) A fully  
connected graph and (b) ring, (c) star, and (d) tree networks.

(a) (b)

(c) (d)
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for all ,Rn d!~ #  where R( / .)n1 1 ~~ =r  As a result, when 
running a consensus algorithm (which is just (9) without gradi-
ent descent)

	 ( ) ( ),z k w z k1i ij j
j

n

1

+ =
=

/ � (10)

the speed of reaching consensus is determined by m = 
, .max n2m m^ h  In particular, if we adopt the so-called lazy 

Metropolis rule for defining the weights, the dependency 
of m  on the network size n is upper bounded by /c n1 2-  
for some constant c [20] (See “Lazy Metropolis Rule for 
Constructing W.”).

Despite the fact that m  may be very close to 1 with large 
n, the consensus algorithm (10) enjoys geometric convergence 
speed, i.e.,

( ) ( ) ( ) ( ) .z k
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By contrast, the optimal rate of convergence for any stochas-
tic gradient methods is sublinear, asymptotically /k1O^ h (see 
[19]). This difference suggests that a consensus based dis-
tributed algorithm for stochastic optimization may match the 
centralized methods in the long term: any errors due to con-
sensus will decay at a fast-enough rate so that they ultimately 
do not matter.

In the next sections, we discuss and compare the performance 
of the centralized SGD method and DSGD. We show that both 
methods asymptotically converge at the rate / .n k2 2v n^ h  Fur-
thermore, the time needed for DSGD to approach the asymptotic 
convergence rate turns out to scale as ( ) ./n 1O 2m-^ h

Centralized SGD 
The benchmark for evaluating the performance of DSGD is the 
centralized SGD method, which we describe in this section. At 
each iteration k, the following update is executed:

	 ( ) ( ) ( ),z k z k g k1 ka+ = - r � (11)

where step sizes satisfy / ( )k1ka n=  and ( ) ( / )ng k g1 i
n

i1R= =r

( ( ), ( )),z k kip  i.e., ( )g kr  is the average of n noisy gradients 
evaluated at z(k) (by utilizing n gradients at each iteration, we 
are keeping the computational power the same for SGD and 
DSGD). As a result, the gradient estimation is more accurate 
than using just one gradient. Indeed, from “Assumption 2” 
we have

	
( ) ( ( ))
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(12)

We measure the performance of SGD by ( )R k = 
( ) ,z k zE * 2

-8 B  the expected squared distance between the 
solution at time k and the optimal solution. “Theorem 1” char-
acterizes the convergence rate of R(k), which is optimal for 
such stochastic gradient methods (see [19] and [27]).

Theorem 1
Under SGD (11), supposing “Assumption 1,” “Assumption 2,” 
and “Assumption 3” hold, we have

	 ( ) .R k
n k k

1Ok2

2

2#
n

v + c m � (13)

To compare with the analysis for DSGD later, we briefly de-
scribe how to obtain (13). Note that
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For large k, in light of “Lemma 1” and relation (12), we have 
the following inequality that relates ( )R k 1+  to R(k):

( ) ( ) ( ) ( ) .R k R k
n k

R k
n k

1 1 1 1 1
k

k2
2 2 2

2

2

2# a n
a v

n

v+ - + = - +` j
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A simple induction then gives (13).

DSGD 
We assume the same step-size policy for DSGD and SGD. To 
analyze DSGD starting from (9), define

	 ( ) ( ),z k
n

z k1
i

i

n

1

=
=

r / � (15)

as the average of all of the iterates in the network. Different 
from the analysis for SGD, we are concerned with two error 
terms. The first term ( ) ,z k zE * 2

-r8 B  called the expected 
optimization error, defines the expected squared distance be-
tween ( )z kr  and .z*  The second term ( ) ( ) ,z k z kEi

n
i1

2
R -= r8 B  

called the expected consensus error, measures the dissimilari-
ties of individual estimates among all the agents. The average 
squared distance between individual iterate ( )z ki  and the opti-
mum z*  is given by
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Notation: ( )deg i  denotes the degree (number of “neigh-
bors”) of node i. Correspondingly, Ni  is the set of 
“neighbors” for agent i. 
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Exploring the two terms will provide us with insights into 
the performance of DSGD. To simplify notation, denote 

( ) ( ) , ( ) ( ) ( ) , .U k z k z V k z k z k kE E*
i
n

i
2

1
2

6R= - = -=r r8 8B B
Inspired by the analysis for SGD, we first look for 

an inequality that bounds U(k), which is analogous to 
( )z k zE * 2

-8 B in SGD. One such relation turns out to be [25]:
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Comparing (17) to (14), we find two additional terms on the 
right-hand side of the inequality. Both terms involve the ex-
pected consensus error V(k), thus reflecting the additional dis-
turbances caused by the dissimilarities of solutions. Equation 
(17) also suggests that the convergence rate of U(k) cannot be 
better than R(k) for SGD, which is expected. Nevertheless, if 
V(k) decays fast enough compared to U(k), it is likely that the 
two additional terms are negligible in the long run, and we de-
duce that the convergence rate of U(k) is comparable to that of 
R(k) for SGD.

This indeed turns out to be the case, as shown in 
[25], that ( ) ( )/ /V k n k1 1O 2 2# m- ^^ hh  for ( ) ./k 1 1O$ m-^ h  
Plugging this into (17) leads to the inequality ( )U k #  

/ (( . ) ( )/ ( ) / .)n k k1 5 1 1 1 1O2 2 2 2 2i v i n m- + -^ h  Therefore, 
when ( ) ,/k n 1O 2$ m-^ h  we have
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In other words, we have the asymptotic network independence 
phenomenon: after a transient, DSGD performs comparably to 
a centralized SGD method with the same computational power 
(e.g., which can query the same number of gradients per step as 
that of the entire network).

Numerical illustration
We provide a numerical example to illustrate the asymptotic 
network independence property of DSGD. Consider the online 
Ridge regression problem

	 ( ) ,argminz f z u z v zE*
,i

i

n

u v i i
1

2 2

z
i i

Rd
t= = - +

R

=
!

` ^ h j8 B/ � (18)

where 02t  is a penalty parameter. Each agent i collects 
data points in the form of (ui, vi) continuously over time, with 
u Ri

d!  representing the features and v Ri !  being the ob-
served outputs. Suppose each [ , ]u 1 1i

d! -  is uniformly dis-
tributed and vi is drawn according to ,v u zi i i if= +

Ru  where ziu  
are predefined parameters uniformly situated in [ , ]0 10 d  and 

if  are independent Gaussian random variables with mean 0 
and variance 1. Given a pair (ui, vi), agent i can compute an 
estimated gradient of ( )f zi : ( , , ) ( ) ,g z u v u z v u z2 2i i i i i i t= - +

R  
which is unbiased. Equation (18) has a unique solution z*  
given by 
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In the experiments, we consider two instances. In the first 
instance, we assume n 50=  agents constitute a random network 
for DSGD, where every two agents are linked with probability 0.2. 
In the second instance, we let n 49=  agents form a 7 × 7 grid 
network. We use Metropolis weights in both instances. The prob-
lem dimension is set to d 10=  and ( ) ,z 0 0i =  the zero vector for 
all i. The penalty parameter is set to .0 1t =  and the step sizes 

/ .k5ka = ^ h  For both SGD and DSGD, we run the simulations 100 
times and average the results to approximate the expected errors.
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FIGURE 5. The performance comparison between DSGD and SGD for 
online Ridge regression. For DSGD, the plots show the iterates generated 
by a randomly selected node i from the set { , , , } .n1 2 f  The results are 
averaged over 100 Monte Carlo simulations. (a) Instance 1 (a random net-
work used for DSGD) and (b) instance 2 (a grid network used for DSGD). 
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The performance of SGD and DSGD is shown in Figure 5. 
We notice that in both instances the expected consensus 
error for DSGD converges to 0 faster than the expected opti-
mization error, as predicted from our previ-
ous discussion. Regarding the expected 
opt im izat ion er ror, DSGD is slower 
than SGD in the first ~800  (respectively, 
~4 104# ) iterations for random network 
(respectively, the grid network). But after 
that, their performance is almost indistin-
guishable. The difference in the transient 
times is due to the stronger connectivity (or 
smaller m) of the random network compared to that of the 
grid network.

Conclusions
In this article, we provided a discussion of recent results that 
have overcome a barrier in distributed stochastic optimization 
methods for ML under certain scenarios. These results estab-
lished an asymptotic network independence property, that is, 
asymptotically, the distributed algorithm achieves a conver-
gence rate comparable to that of a centralized algorithm with 
the same computational power. We explained the property 
using examples of training ML models and provided a short 
mathematical analysis.

Along the line of achieving asymptotic network indepen-
dence in distributed optimization, there are various future 
research directions, including considering nonconvex objec-
tive functions, reducing communication costs and transient 
time, and using exact gradient information. In this section, we 
briefly describe these directions.

First, the distributed training of deep neural networks, 
the state-of-the-art ML approach in many application areas, 
involves minimizing nonconvex objective functions, which are 
different from the main objectives considered in this article. 
This area is largely unexplored with a few recent works in [1], 
[12], [14] and [29].

In distributed algorithms, the costs associated with 
communication among the agents are often nonnegligible 
and may become the main burden for large networks. It is 
therefore important to explore communication-reduction 
techniques that do not sacrifice the asymptotic network 
independence property. Recent works [1], [9] touched on 
this point.

When considering asymptotic network independence for 
distributed optimization, an important factor is the transient 
time needed to reach the asymptotic convergence rate, as it 
may take a long time before the distributed implementation 
catches up with the corresponding centralized method. In 
fact, as we have shown in the “Setup” section, this transient 
time can be a function of the network topology and grows 
with the network size. Reducing the transient time is thus a 
key future objective.

Finally, although several recent works have established 
the asymptotic network independence property in distributed 
optimization, they are mainly constrained to using stochastic 

gradient information. If the exact gradient is available, can 
distributed methods compete with the centralized ones? As 
we know, centralized algorithms typically enjoy a faster con-

vergence speed with exact gradients. For 
example, plain gradient descent achieves 
linear convergence for strongly convex and 
smooth objective functions. To the best of the 
authors’ knowledge, as of the writing of this 
article, with the exception of [11] and [29], 
the results on asymptotic network indepen-
dence in this setting are currently lacking.
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