
114

DISTRIBUTED, STREAMING MACHINE LEARNING

IEEE SIGNAL PROCESSING MAGAZINE | May 2020 | 1053-5888/20©2020IEEE

Shi Pu, Alex Olshevsky, and Ioannis Ch. Paschalidis

We provide a discussion of several recent results which, in
certain scenarios, are able to overcome a barrier in distrib-
uted stochastic optimization for machine learning (ML).

Our focus is the so-called asymptotic network independence
property, which is achieved whenever a distributed method ex-
ecuted over a network of n nodes asymptotically converges to
the optimal solution at a comparable rate to a centralized method
with the same computational power as the entire network. We
explain this property through an example involving the train-
ing of ML models and sketch a short mathematical analysis for
comparing the performance of distributed stochastic gradient
descent (DSGD) with centralized SGD.

Introduction: Distributed optimization
and its limitations
First-order optimization methods, ranging from vanilla gradient de-
scent to Nesterov acceleration and its many variants, have emerged
over the past decade as the principal way to train ML models. There
is a great need for techniques that train such models quickly and
reliably in a distributed fashion over networks where the individual
processors or GPUs may be scattered across the globe and commu-
nicate over an unreliable network, which may suffer from message
losses, delays, and asynchrony (see [1], [2], [29], and [33]).

Unfortunately, what often happens is that the gains
achieved from having many different processors running an
optimization algorithm are squandered by the cost of coor-
dination, shared memory, message losses, and latency. This
effect is especially pronounced when there are many proces-
sors and they are spread across geographically distributed
data centers. As is widely recognized by the distributed sys-
tems community, “throwing” more processors at a problem
will not, after a certain point, result in better performance.

This is typically reflected in the convergence time bounds
obtained for distributed optimization in the literature. The
problem formulation is that one must solve

	 (),argminz f z*
i

i

n

1z Rd
!

=
!
/ � (1)Digital Object Identifier 10.1109/MSP.2020.2975212

Date of current version: 28 April 2020

Asymptotic Network Independence in Distributed Stochastic
Optimization for Machine Learning
Examining distributed and centralized stochastic gradient descent

©ISTOCKPHOTO.COM/HAMSTER3D

Authorized licensed use limited to: University College London. Downloaded on May 24,2020 at 12:51:29 UTC from IEEE Xplore. Restrictions apply.

115IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

over a network of n nodes (see Figure 1 for
an example). Only node i has knowledge of
the function (),f zi and the standard assump-
tion is that, at every step when it is awake,
node i can compute the (stochastic) gradi-
ent of its own local function () .f zi These
functions ()f zi are assumed to be convex.
The problem is how to compute this minimum in a distributed
manner over the network based on peer-to-peer communica-
tion, possible message losses, delays, and asynchrony.

This relatively simple formulation captures a large vari-
ety of learning problems. Suppose each agent i stores train-
ing data points {(,)},x yXi j j= where x Rj

p! are vectors of
features and y Rj ! are the associated responses (either dis-
crete or continuous). We are interested in learning a predic-
tive model (;),h x i parameterized by parameters ,Rd!i so
that (;)h x yj j.i for all j. In other words, we are looking for a
model that fits all of the data throughout the network. This can
be accomplished by empirical risk minimization:

	 (,),argmin c X*
i

i

n

i
1Rd

!i i
=

!i
/ � (2)

where

(,) ((;),)c h x yX
(,)

i i
x y

j j
Xj j i

,i i=
!

/

measures how well the parameter i fits the data at node i, with
((;),)h x yj j, i being a loss function measuring the difference

between (;)h x j i and yj. Much of modern ML is built around
such a formulation, including regression, classification, and
regularized variants [7].

It is also possible that each agent i does not have a static
data set, but instead collects streaming data points (,)~x y Pi i i
repetitively over time, where Pi represents an unknown distri-
bution of (xi, yi). In this case, we can find *i through expected
risk minimization:

	 (),argmin f*
i

i

n

1Rd
!i i

=
!i
/ � (3)

where

() ((;),).f h x yE(,)~i x y i iPi i i,i i=

This article is concerned with the current limitations of
distributed optimization and how to overcome them in cer-
tain scenarios. To illustrate our main concern, let us consider
the distributed subgradient method in the simplest possible
setting, namely, the problem of computing the median of a
collection of numbers in a distributed manner over a fixed
graph. Each agent i in the network holds value ,m 0i 2 and
the global objective is to find the median of , , , .m m mn1 2 f
This can be incorporated in the framework of (1) by choosing

() , .f z z m ii i 6= -

The distributed subgradient method (see [18]) uses subgra-
dients ()s zi of ()f zi at any point z to have agent i update as

 	 () () (()),z k w z k s z k1i ij j k i i
j

n

1

a+ = -
=

/ � (4)

where 0k 2a denotes the step size
at iteration k, and [,]w 0 1ij ! are the
weights agent i assigns to agent j’s solutions:
two agents i and j are able to exchange in-
formation if ,w w 0ij ji 2 (w w 0ij ji= = oth-

erwise). The weights wij are assumed to be symmetric. For
comparison, the centralized subgradient method updates the
solution at iteration k according to

	 () () (()) .z k z k
n

s z k1 1
k j

j

n

1

a+ = -
=

/ � (5)

In Figure 2, we show the performance of algorithm (4) as
a function of the network size n, assuming the agents commu-
nicate over a ring network. As can be clearly seen, when the
network size grows, it takes a longer time for the algorithm to
reach a certain performance threshold.

Clearly this is an undesirable property. Glancing at the fig-
ure, we see that distributing computation over 50 nodes can
result in a convergence time on the order of 107 iterations. Few
practitioners will be enthusiastic about distributed optimiza-
tion if the final effect is vastly increased convergence time.

f2(z)

f1(z)

fi (z)

FIGURE 1. An example of a network. Two nodes are connected if there is an
edge between them.

0 5 10 15 20 25 30 35 40 45 50
Number of Nodes

0

1

2

3

4

5

6

7

8

9

Ti
m

e
to

 R
ea

ch
 P

 A
cc

ur
ac

y

×106

FIGURE 2. The performance of algorithm (4) as a function of the network
size n. The agents communicate over a ring network [see Figure 4(b)] and
choose the Metropolis weights (see the “Setup” section for the defini-
tion). Step sizes / ,k1ka = and mi are evenly distributed in [,] .10 10-
The time k to reach ()/ y kn1 i

n
i1 1 eR =^ h is plotted, where ()y ki =

/ ()k z1 k
i0

1 ,R,=
-^ h and . .0 1e =

This article is concerned
with the current limitations
of distributed optimization
and how to overcome them
in certain scenarios.

Authorized licensed use limited to: University College London. Downloaded on May 24,2020 at 12:51:29 UTC from IEEE Xplore. Restrictions apply.

116 IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

One might hope that this phenomenon, demonstrated for the
problem of median computation and considered here because
it is arguably the simplest problem to which one can apply the
subgradient method, will not hold for the more sophisticated
optimization problems in ML literature. Unfortunately, most
work in distributed optimization replicates
this undesirable phenomenon. Next we give
an extremely brief discussion of known con-
vergence times in the distributed setting (for
a much more extended discussion, we refer
the reader to the recent survey in [17]).

We confine our discussion to the follow-
ing point: most known convergence times in the distributed
optimization literature imply bounds of the form

	 () () (),pTime decentralized Time centralizedG, ,n n# ee � (6)

where ()Time decentralized,n e denotes the time for the de-
centralized algorithm on n nodes to reach e accuracy (error

),1 e and ()Time centralized,n e is the time for the centralized
algorithm, which can query n gradients per time step to reach
the same level of accuracy. The graph (,)G N E= consists of
the set of nodes and edges in the network, denoted by N and

,E respectively. The function ()p G can usually be bounded in
terms of some polynomial in the number of nodes n.

For instance, in the subgradient methods, [17, Corollary 9]
implies that

()

() , ()

,

()
() ,

,

max

max

n
z z G h

z z G

1 0

0

Time decentralized

Time centralized

O

G

O

,

*

,

*

n

i
i

n

n

2
1

2
4

2

2 4

e

e

=

-

=
-

e

e

=

J

L

K
K
KK

e

N

P

O
O
OO

o$

)

.

3/

where (), ()z z0 0i are initial estimates, z* denotes the opti-
mal solution, and G bounds the 2, -norm of the subgradients.
Function ()h G is the inverse of the spectral gap correspond-
ing to the graph and will typically grow with n; hence, when
n is large, () ().p hG G- In particular, if the communication
graphs are 1) path graphs, then () ();p nG O 2= 2) star graphs,
then () ();p nG O 2= or 3) geometric random graphs, then

() ().logp n nG O= The method developed in [20] achieves
()p nG = but, typically, ()p G is at least n2.
By comparing ()Time decentralized,n e and Time ,n e (cen-

tralized), we are keeping the computational power the same in
both cases. Naturally, centralized is always better: anything that
can be done in a decentralized way could be done in a central-
ized way. The question though, is: How much better?

Framed in this way, the polynomial scaling in the quan-
tity ()p G is extremely disconcerting. It is, for example, hard
to argue that an algorithm should be run in a distributed man-
ner with say, ,n 100= if the quantity ()p G in (6) satisfies

() ;p nG 2= that would imply that the distributed variant would
be 10,000-times slower than the centralized one with the same
computational power.

Sometimes ()p G is written as the inverse spectral gap
/ ()1 1 2m- in terms of the second eigenvalue of some matrix.

Because the second-smallest eigenvalue of an undirected
graph Laplacian is approximately ~ /n1 2 away from zero, such
bounds will translate into at least quadratic scalings with n in

the worst case. Over time-varying B-con-
nected graphs, the best-known bounds on

()p G will be cubic in n using the results
in [16].

There are a number of caveats to the
pessimistic argument outlined previously
in this section. For example, in a multiagent

scenario where data sharing is not desirable or feasible, decen-
tralized computation might be the only option available. Gen-
erally speaking, however, fast-growing ()p G will preclude the
widespread applicability of distributed optimization. Indeed,
returning to the back-of-the-envelope calculation mentioned
previously, if a user has to pay a multiplicative factor of 10,000
in convergence speed to use an algorithm, the most likely sce-
nario is that the algorithm will not be used.

There are some scenarios that avoid the pessimistic discus-
sion mentioned previously: for example, when the underlying
graph is an expander, the associated spectral gap is constant
(see [8, Ch. 6] for a definition of these terms as well as an
explanation), and likewise when the graph is a star graph. In
particular, on a random Erdős–Rényi random graph, the quan-
tity ()p G is constant with high probability [17, Corollary 9,
Part 9] . Unfortunately, these are very special cases and may
not always be realistic. A star graph requires a single node
to have the ability to receive and broadcast messages to all
other nodes in the system. On the other hand, an expander
graph may not occur in geographically distributed systems.
By way of comparison, a random graph where nodes are asso-
ciated with random locations, with links between nodes close
together, will not have constant spectral gap and will thus
have (),p G which grows with n [17, Corollary 9, Part 10]. The
Erdős–Rényi graph escapes this because, if we again asso-
ciate nodes with locations, the average link in such a graph
is a “long-range” one, connecting nodes that are geographi-
cally far apart. It is a consequence of Cheeger’s inequality,
that graphs based on connecting nearest neighbors (i.e., where
nodes are regularly spaced in Rd and each node is connected
to a constant number of closest neighbors) will not have con-
stant spectral gap.

Asymptotic network independence in
distributed stochastic optimization
In this article, we provide a discussion of several recent papers
which have obtained that, for a number of settings involving
distributed stochastic optimization, ()p 1G = as long as k is
large enough. In other words, asymptotically, the distributed
stochastic gradient algorithm converges to the optimal solution
at a comparable rate to a centralized algorithm with the same
computational power.

We call this property asymptotic network independence:
it is as if the network is not even there. Asymptotic network

This relatively simple
formulation captures a
large variety of learning
problems.

Authorized licensed use limited to: University College London. Downloaded on May 24,2020 at 12:51:29 UTC from IEEE Xplore. Restrictions apply.

117IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

independence provides an answer to the concerns raised in the
previous section.

We begin by illustrating these results with a simulation
from [21], shown in Figure 3. Here the problem to be solved is
classification using a smooth support vector machine (SVM)
between overlapping clusters of points. The
performance of the centralized algorithm
is shown in orange, and the performance
of the decentralized algorithm is shown in
dark blue. The graph is a ring of 50 nodes,
and the problem being solved is the search
for a support vector classifier. The graph
illustrates the main result, which is that a
network of 50 nodes performs as well in the limit as does a
centralized method with 50 times the computational power of
one node. Indeed, after ~8,000 iterations, the orange and dark
blue lines are nearly indistinguishable.

We note that similar simulations are available for other ML
methods (training neural networks, logistic regression, elastic
net regression, and so on). The asymptotic network indepen-
dence property enables us to efficiently distribute the training
process for a variety of existing learning methods.

The name asymptotic network independence is a slight
misnomer, as we actually do not care whether the asymptotic
performance depends in some complicated way on the net-
work. All we want is for the decentralized convergence rate to
be bounded by O(1) times the convergence rate of the central-
ized method.

The authors in [4]–[6] and [31] gave the first crisp state-
ment of the relationship between centralized and distributed
methods in the setting of distributed optimization of smooth,
strongly convex functions in the presence of noise. Under con-
stant step sizes, the authors in [4]–[6] were the first to show
that, when the step size is sufficiently small, a distributed sto-
chastic gradient method achieves a performance comparable
to that of the centralized method in terms of the steady-state
mean-square error. The step size has to be small enough as a
function of the network topology for this to hold. In [31], the
authors showed that the distributed stochastic gradient algo-
rithm asymptotically achieves a convergence rate comparable
to that of the centralized method, but assuming that all of the
local functions fi have the same minimum. This gives the first
“asymptotic network independence” result.

The work in [22] approximated distributed stochastic gradi-
ent algorithm by stochastic differential equations in continuous
time by assuming a sufficiently small constant step size. It was
shown that the distributed method outperforms a centralized
scheme with synchronization overhead; however, it did not
lead to straightforward algorithmic bounds. In our recent work
[21], we generalized the results to graphs that are time vary-
ing, with delays, message losses, and asynchrony. In a paral-
lel recent work [9], a similar result was demonstrated using a
further compression technique, which allowed nodes to save
on communication.

When the objective functions are not assumed to be convex,
several recent works have obtained asymptotic network inde-

pendence for distributed stochastic gradient methods. In [13]
and [14], a general stochastic approximation setting was con-
sidered with decaying step sizes, and the convergence rates of
centralized and distributed methods were shown to be asymp-
totically the same; the proof proceeded based on certain tech-

nical properties of stochastic approximation
methods. The work in [12] was the first
to show that distributed algorithms could
achieve a speedup like that of a centralized
method when the number of computing
steps is large enough. Such a result was gen-
eralized to the setting of the directed com-
munication networks in [1] for training deep

neural networks, where the push-sum technique was combined
with the standard distributed stochastic gradient scheme.

We remark that in this survey, all of the previously men-
tioned algorithms that enjoy the asymptotic network inde-
pendence property assume smooth objective functions, i.e.,
functions with Lipschitz continuous gradients.

6

5

4

3

2

1

0

–1

–2
0 2 4 6

(a)
0.025

0.02

0.015

0.01

0.005

0
0

2,5
00

5,0
00

7,5
00

10
,00

0

12
,50

0

15
,00

0

17
,50

0

20
,00

0

Iteration (k)
(b)

+1
–1

Edist
Ec

FIGURE 3. A comparison of DSGD and centralized SGD for training an
SVM. (a) A total of 1,000 data points and their labels for SVM classifica-
tion. The data points are randomly generated around 50 cluster centers.
(b) The squared errors and one standard-deviation band for DSGD and
centralized SGD. The performance of the centralized algorithm is shown
in orange, and the performance of the decentralized algorithm is shown
in dark blue. A total of 1,000 Monte Carlo simulations are conducted for
estimating the average performance.

We call this property
asymptotic network
independence: it is as
if the network is not
even there.

Authorized licensed use limited to: University College London. Downloaded on May 24,2020 at 12:51:29 UTC from IEEE Xplore. Restrictions apply.

118 IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

In the next sections, we provide a simple and readable
explanation of the asymptotic network independence phenom-
enon in the context of distributed stochastic optimization over
smooth and strongly convex objective functions. For more
information on the topic of distributed stochastic optimization,
the reader is referred to [10], [15], [23], [24], [28], [30], and [32]
and the references therein.

Setup
We are interested in minimizing (1) over a network of n com-
municating agents. Regarding the objective functions fi, we
make the following standing assumption.

Assumption 1
Each :f RRi

d " is μ-strongly convex with L-Lipschitz con-
tinuous gradients, i.e., for any , ,z z Rd!l

	
() (), ,

() () .

f z f z z z z z

f z f z L z z

i i

i i

2
d d

d d

$

#

G H n- - -

- -

l l l

l l
�

(7)

Under “Assumption 1,” (1) has a unique optimal solution, ,z*
and the function f(z) defined as () / ()()nf z f z1 i

n
i1R= = has the

following contraction property presented in the next section
[26, Lemma 10].

Lemma 1
For any z Rd! and (, /),L0 1!a we have ()z f z z*d #a- -
() .z z1 *an- -

In other words, gradient descent with a small step size
reduces the distance between the current solution and .z*

In the stochastic optimization setting, we assume that at
each iteration k of the algorithm, ()z ki being the input for
agent i, each agent is able to obtain noisy gradient estimates

((), ()),g z k ki i ip which satisfy the following condition.

Assumption 2
For all { , , , }i n1 2 f! and ,k 1$ each random vector ()k Ri

m!p
is independent, and

	

((), ()) (()) () , .

[((), ())] (()),()g z k k z f z k

g z k k f z k z k

k

0for someE

E i i i i i

i i i i i i

i

2 2
,

,i k

i k d

d

2#p v v

p

-

=

p

p

8 B
�

(8)

Stochastic gradients appear, for instance, when the gradient es-
timation of (,)c Xi ii in empirical risk minimization (2) intro-
duces noise from various sources, such as sampling and quan-
tization errors. For another example, when minimizing the
expected risk in (3), where independent data points (xi, yi) are
gathered over time, (, (,)) ((;),)g z x y h x z yi i i z i id ,= is a stochas-
tic, unbiased estimator of (),f zid satisfying the first condition
in (8). The second condition holds for popular problems such
as smooth SVMs, logistic regression, and softmax regression,
assuming the domain of (,)x yi i is bounded.

The algorithm we discuss is the DSGD method adapted
from distributed gradient descent and the diffusion strategy
[3]; note that in [3] this method was called adapt-then-com-
bine. We let each agent i in the network hold a local copy of the
decision vector denoted by ,z Ri

d! and its value at iteration/
time k is written as ().z ki Denote () ((), ())g k g z k ki i i ip= for
short. At each step ,k 0$ every agent i performs the follow-
ing update:

	 () () () ,z k w z k g k1i ij
j

n

j k j
1

a+ = -
=

^ h/ � (9)

where { }ka is a sequence of nonnegative nonincreasing step
sizes. The initial vectors ()z 0i are arbitrary for all i, and

[]wW ij= is a mixing matrix.
DSGD belongs to the class of so-called consensus-based

distributed optimization methods, where different agents
mix their estimates at each iteration to reach a consensus of
the solutions, i.e., () (),z k z ki j. for all i and j in the long run.
To achieve consensus, the following condition is assumed
on the mixing matrix and the communication topology
among agents.

Assumption 3
The graph G of agents is undirected and connected (there exists
a path between any two agents). The mixing matrix W is non-
negative, symmetric, and doubly stochastic, i.e., 1 1W = and

R,1 W 1=
R where 1 is the all-one vector. In addition, wii > 0

for some { , , , }.i n1 2 f!
Some examples of undirected connected graphs are pre-

sented in Figure 4. Because of “Assumption 3,” the mixing
matrix W has an important contraction property.

Lemma 2
Let “Assumption 3” hold, and let 1 n1 2 g$ $m m m= denote
the eigenvalues of the matrix W. Then, ,max 1n2 1m m m= ^ h
and

1 1W #~ ~~ m ~- -r r
FIGURE 4. Examples of undirected connected graphs. (a) A fully
connected graph and (b) ring, (c) star, and (d) tree networks.

(a) (b)

(c) (d)

Authorized licensed use limited to: University College London. Downloaded on May 24,2020 at 12:51:29 UTC from IEEE Xplore. Restrictions apply.

119IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

for all ,Rn d!~ # where R(/ .)n1 1 ~~ =r As a result, when
running a consensus algorithm (which is just (9) without gradi-
ent descent)

	 () (),z k w z k1i ij j
j

n

1

+ =
=

/ � (10)

the speed of reaching consensus is determined by m =
, .max n2m m^ h In particular, if we adopt the so-called lazy

Metropolis rule for defining the weights, the dependency
of m on the network size n is upper bounded by /c n1 2-
for some constant c [20] (See “Lazy Metropolis Rule for
Constructing W.”).

Despite the fact that m may be very close to 1 with large
n, the consensus algorithm (10) enjoys geometric convergence
speed, i.e.,

() () () () .z k
n

z k z
n

z1 0 1 0i j
j

n

i

n
k

i j
j

n

i

n

1

2

1 1

2

1

m- -
== ==

// //

By contrast, the optimal rate of convergence for any stochas-
tic gradient methods is sublinear, asymptotically /k1O^ h (see
[19]). This difference suggests that a consensus based dis-
tributed algorithm for stochastic optimization may match the
centralized methods in the long term: any errors due to con-
sensus will decay at a fast-enough rate so that they ultimately
do not matter.

In the next sections, we discuss and compare the performance
of the centralized SGD method and DSGD. We show that both
methods asymptotically converge at the rate / .n k2 2v n^ h Fur-
thermore, the time needed for DSGD to approach the asymptotic
convergence rate turns out to scale as () ./n 1O 2m-^ h

Centralized SGD
The benchmark for evaluating the performance of DSGD is the
centralized SGD method, which we describe in this section. At
each iteration k, the following update is executed:

	 () () (),z k z k g k1 ka+ = - r � (11)

where step sizes satisfy / ()k1ka n= and () (/)ng k g1 i
n

i1R= =r

((), ()),z k kip i.e., ()g kr is the average of n noisy gradients
evaluated at z(k) (by utilizing n gradients at each iteration, we
are keeping the computational power the same for SGD and
DSGD). As a result, the gradient estimation is more accurate
than using just one gradient. Indeed, from “Assumption 2”
we have

	
() (())

((), ()) (()) .

g k f z k

n
g z k k f z k

n
1

E

E
i

n

i i i

2

2
1

2 2

d

d #p
v

-

= -
=

r8
8

B
B/ �

(12)

We measure the performance of SGD by ()R k =
() ,z k zE * 2

-8 B the expected squared distance between the
solution at time k and the optimal solution. “Theorem 1” char-
acterizes the convergence rate of R(k), which is optimal for
such stochastic gradient methods (see [19] and [27]).

Theorem 1
Under SGD (11), supposing “Assumption 1,” “Assumption 2,”
and “Assumption 3” hold, we have

	 () .R k
n k k

1Ok2

2

2#
n

v + c m � (13)

To compare with the analysis for DSGD later, we briefly de-
scribe how to obtain (13). Note that

() () ()

() (())

(()) () .

R k z k g k z

z k f z k z

f z k g k

1 E

E

E

*

*

k

k

k

2

2

2 2

d

d

a

a

a

+ = - -

= - -

+ -

r

r

8
8

8

B

B
B

For large k, in light of “Lemma 1” and relation (12), we have
the following inequality that relates ()R k 1+ to R(k):

() () () () .R k R k
n k

R k
n k

1 1 1 1 1
k

k2
2 2 2

2

2

2# a n
a v

n

v+ - + = - +` j
� (14)

A simple induction then gives (13).

DSGD
We assume the same step-size policy for DSGD and SGD. To
analyze DSGD starting from (9), define

	 () (),z k
n

z k1
i

i

n

1

=
=

r / � (15)

as the average of all of the iterates in the network. Different
from the analysis for SGD, we are concerned with two error
terms. The first term () ,z k zE * 2

-r8 B called the expected
optimization error, defines the expected squared distance be-
tween ()z kr and .z* The second term () () ,z k z kEi

n
i1

2
R -= r8 B

called the expected consensus error, measures the dissimilari-
ties of individual estimates among all the agents. The average
squared distance between individual iterate ()z ki and the opti-
mum z* is given by

{ (), ()} ,

,

,

,

.

,max deg deg
w

i j
w

i

i j
2

1

1

0

if

if

otherwise

N

ij ij
j

i

Ni

!

= - =
!

Z

[

\

]
]]

]
]

/

Notation: ()deg i denotes the degree (number of “neigh-
bors”) of node i. Correspondingly, Ni is the set of
“neighbors” for agent i.

Lazy Metropolis Rule for Constructing W

Authorized licensed use limited to: University College London. Downloaded on May 24,2020 at 12:51:29 UTC from IEEE Xplore. Restrictions apply.

120 IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

	

() ()

() () .

n
z k z z k z

n
z k z k

1

1

E

E

E * *

i

n

i

i

n

i

1

2 2

1

2

- = -

+ -

=

=

r

r

88

8

BB

B

/

/
�

(16)

Exploring the two terms will provide us with insights into
the performance of DSGD. To simplify notation, denote

() () , () () () , .U k z k z V k z k z k kE E*
i
n

i
2

1
2

6R= - = -=r r8 8B B
Inspired by the analysis for SGD, we first look for

an inequality that bounds U(k), which is analogous to
()z k zE * 2

-8 B in SGD. One such relation turns out to be [25]:

	

() ()
() ()

()
.

U k
k

U k
n
L

k
U k V k

n
L

k
V k

n k

1 1 1 2

1

2

2

2

2 2

2

2

#
n

n n

v

+ - +

+ +

` j
�

(17)

Comparing (17) to (14), we find two additional terms on the
right-hand side of the inequality. Both terms involve the ex-
pected consensus error V(k), thus reflecting the additional dis-
turbances caused by the dissimilarities of solutions. Equation
(17) also suggests that the convergence rate of U(k) cannot be
better than R(k) for SGD, which is expected. Nevertheless, if
V(k) decays fast enough compared to U(k), it is likely that the
two additional terms are negligible in the long run, and we de-
duce that the convergence rate of U(k) is comparable to that of
R(k) for SGD.

This indeed turns out to be the case, as shown in
[25], that () ()/ /V k n k1 1O 2 2# m- ^^ hh for () ./k 1 1O$ m-^ h
Plugging this into (17) leads to the inequality ()U k #

/ ((.) ()/ () / .)n k k1 5 1 1 1 1O2 2 2 2 2i v i n m- + -^ h Therefore,
when () ,/k n 1O 2$ m-^ h we have

() ().
n

z k z
n k

1 1E O*

i

n

i
1

2

2

2
#

n

v-
=

8 B/

In other words, we have the asymptotic network independence
phenomenon: after a transient, DSGD performs comparably to
a centralized SGD method with the same computational power
(e.g., which can query the same number of gradients per step as
that of the entire network).

Numerical illustration
We provide a numerical example to illustrate the asymptotic
network independence property of DSGD. Consider the online
Ridge regression problem

	 () ,argminz f z u z v zE*
,i

i

n

u v i i
1

2 2

z
i i

Rd
t= = - +

R

=
!

` ^ h j8 B/ � (18)

where 02t is a penalty parameter. Each agent i collects
data points in the form of (ui, vi) continuously over time, with
u Ri

d! representing the features and v Ri ! being the ob-
served outputs. Suppose each [,]u 1 1i

d! - is uniformly dis-
tributed and vi is drawn according to ,v u zi i i if= +

Ru where ziu
are predefined parameters uniformly situated in [,]0 10 d and

if are independent Gaussian random variables with mean 0
and variance 1. Given a pair (ui, vi), agent i can compute an
estimated gradient of ()f zi : (, ,) () ,g z u v u z v u z2 2i i i i i i t= - +

R
which is unbiased. Equation (18) has a unique solution z*
given by

	 .z u u n u u zIE E*
u i i

i

n

u i i i
i

n

1

1

1
i it= +

R R

=

-

=

uc m6 6@ @/ /

In the experiments, we consider two instances. In the first
instance, we assume n 50= agents constitute a random network
for DSGD, where every two agents are linked with probability 0.2.
In the second instance, we let n 49= agents form a 7 × 7 grid
network. We use Metropolis weights in both instances. The prob-
lem dimension is set to d 10= and () ,z 0 0i = the zero vector for
all i. The penalty parameter is set to .0 1t = and the step sizes

/ .k5ka = ^ h For both SGD and DSGD, we run the simulations 100
times and average the results to approximate the expected errors.

0 500 1,000 1,500 2,000
(k)
(a)

(k)
(b)

102

100

10–2

10–4

102

×104

100

10–2

10–4

0 2 4 6 8 10 12

zk – z ∗ (SGD)2

zi(k) – z ∗ (DSGD)2

zi(k) – z (k) (DSGD)21
n ∑

n

i = 1

FIGURE 5. The performance comparison between DSGD and SGD for
online Ridge regression. For DSGD, the plots show the iterates generated
by a randomly selected node i from the set { , , , } .n1 2 f The results are
averaged over 100 Monte Carlo simulations. (a) Instance 1 (a random net-
work used for DSGD) and (b) instance 2 (a grid network used for DSGD).

Authorized licensed use limited to: University College London. Downloaded on May 24,2020 at 12:51:29 UTC from IEEE Xplore. Restrictions apply.

121IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

The performance of SGD and DSGD is shown in Figure 5.
We notice that in both instances the expected consensus
error for DSGD converges to 0 faster than the expected opti-
mization error, as predicted from our previ-
ous discussion. Regarding the expected
opt im izat ion er ror, DSGD is slower
than SGD in the first ~800 (respectively,
~4 104#) iterations for random network
(respectively, the grid network). But after
that, their performance is almost indistin-
guishable. The difference in the transient
times is due to the stronger connectivity (or
smaller m) of the random network compared to that of the
grid network.

Conclusions
In this article, we provided a discussion of recent results that
have overcome a barrier in distributed stochastic optimization
methods for ML under certain scenarios. These results estab-
lished an asymptotic network independence property, that is,
asymptotically, the distributed algorithm achieves a conver-
gence rate comparable to that of a centralized algorithm with
the same computational power. We explained the property
using examples of training ML models and provided a short
mathematical analysis.

Along the line of achieving asymptotic network indepen-
dence in distributed optimization, there are various future
research directions, including considering nonconvex objec-
tive functions, reducing communication costs and transient
time, and using exact gradient information. In this section, we
briefly describe these directions.

First, the distributed training of deep neural networks,
the state-of-the-art ML approach in many application areas,
involves minimizing nonconvex objective functions, which are
different from the main objectives considered in this article.
This area is largely unexplored with a few recent works in [1],
[12], [14] and [29].

In distributed algorithms, the costs associated with
communication among the agents are often nonnegligible
and may become the main burden for large networks. It is
therefore important to explore communication-reduction
techniques that do not sacrifice the asymptotic network
independence property. Recent works [1], [9] touched on
this point.

When considering asymptotic network independence for
distributed optimization, an important factor is the transient
time needed to reach the asymptotic convergence rate, as it
may take a long time before the distributed implementation
catches up with the corresponding centralized method. In
fact, as we have shown in the “Setup” section, this transient
time can be a function of the network topology and grows
with the network size. Reducing the transient time is thus a
key future objective.

Finally, although several recent works have established
the asymptotic network independence property in distributed
optimization, they are mainly constrained to using stochastic

gradient information. If the exact gradient is available, can
distributed methods compete with the centralized ones? As
we know, centralized algorithms typically enjoy a faster con-

vergence speed with exact gradients. For
example, plain gradient descent achieves
linear convergence for strongly convex and
smooth objective functions. To the best of the
authors’ knowledge, as of the writing of this
article, with the exception of [11] and [29],
the results on asymptotic network indepen-
dence in this setting are currently lacking.

Acknowledgments
We would like to thank Artin Spiridonoff from Boston Univer-
sity for his kind help in providing Figure 3. The research was
partially supported by the NSF under grants ECCS 1933027,
IIS 1914792, DMS 1664644, and CNS 1645681, the U.S. Of-
fice of Naval Research under grant N00014-19-1-2571, the Na-
tional Institutes of Health under grant 1R01GM135930, and the
Shenzhen Research Institute of Big Data Startup Fund JCYJ-
SP2019090001.

Authors
Shi Pu (pushi@cuhk.edu.cn) received his B.S. degree in
engineering mechanics from Peking University, Beijing,
China, and his Ph.D. degree in systems engineering from
the University of Virginia, Charlottesville, in 2012 and
2016, respectively. He is currently an assistant professor
with the Institute for Data and Decision Analytics, The
Chinese University of Hong Kong, Shenzhen, China. He
was a postdoctoral associate at the University of Florida,
Gainesville, from 2016 to 2017, a postdoctoral scholar at
Arizona State University, Tempe, from 2017 to 2018, and a
postdoctoral associate at Boston University, Massachusetts,
from 2018 to 2019. His research interests include distribut-
ed optimization, network science, machine learning, and
game theory.

Alex Olshevsky (alexols@bu.edu) received his B.S. degree
in applied mathematics and electrical engineering from the
Georgia Institute of Technology, Atlanta, and his Ph.D. degree
in electrical engineering and computer science from the
Massachusetts Institute of Technology, Cambridge. He is
currently an associate professor in the Department of
Electrical and Computer Engineering at Boston University,
Massachusetts. He is a recipient of the National Science
Foundation CAREER Award, the Air Force Office of
Scientific Research Young Investigator Award, the INFORMS
Prize for the best paper on the interface of operations research
and computer science, a SIAM Award for best annual paper
from SIAM Journal on Control and Optimization chosen to
be reprinted in SIAM Review, and an IMIA Award for best
paper on clinical informatics.

Ioannis Ch. Paschalidis (yannisp@bu.edu) received
his Ph.D. degree in electrical engineering and computer
science from the Massachusetts Institute of Technology,
Cambridge, in 1996. He is a professor and data science

Few practitioners will
be enthusiastic about
distributed optimization
if the final effect is
vastly increased
convergence time.

Authorized licensed use limited to: University College London. Downloaded on May 24,2020 at 12:51:29 UTC from IEEE Xplore. Restrictions apply.

122 IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

fellow at Boston University, Massachusetts, and the direc-
tor of the Center for Information and Systems Engineering.
He is a recipient of the National Science Foundation
CAREER Award and several best paper awards. From 2013
to 2019, he was the founding editor-in-chief of IEEE
Transactions on Control of Network Systems. His research
interests lie in the fields of systems and control, networks,
applied probability, optimization, operations research,
computational biology, and medical informatics. He is a
Fellow of the IEEE.

References
[1] M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic gradient push
for distributed deep learning,” in Proc. Int. Conf. Machine Learning, 2019, pp.
344–353.

[2] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, and W. Shi,
“Federated learning of predictive models from federated electronic health records,”
Int. J. Med. Inform., vol. 112, pp. 59–67, Apr. 2018. doi: 10.1016/j.ijmedinf.
2018.01.007.

[3] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed optimi-
zation and learning over networks,” IEEE Trans. Signal Process., vol. 60, no. 8, pp.
4289–4305, 2012. doi: 10.1109/TSP.2012.2198470.

[4] J. Chen and A. H. Sayed, “On the limiting behavior of distributed optimization
strategies,” in Proc. 50th IEEE Annu. Allerton Conf. Communication, Control,
and Computing (Allerton), 2012, pp. 1535–1542. doi: 10.1109/Aller ton.
2012.6483402.

[5] J. Chen and A. H. Sayed, “On the learning behavior of adaptive networks–Part I:
Transient analysis,” IEEE Trans. Inf. Theory, vol. 61, no. 6, pp. 3487–3517, 2015.
doi: 10.1109/TIT.2015.2427360.

[6] J. Chen and A. H. Sayed, “On the learning behavior of adaptive networks–Part
II: Performance analysis,” IEEE Trans. Inf. Theory, vol. 61, no. 6, pp. 3518–3548,
2015. doi: 10.1109/TIT.2015.2427352.

[7] R. Chen and I. C. Paschalidis, “A robust learning approach for regression mod-
els based on distributionally robust optimization,” J. Mach. Learn. Res., vol. 19, no.
1, pp. 517–564, 2018.

[8] R. Durrett, Ed., Random Graph Dynamics, vol. 200. Cambridge, U.K.:
Cambridge Univ. Press, 2007.

[9] A. Koloskova, S. U. Stich, and M. Jaggi, “Decentralized stochastic optimization
and gossip algorithms with compressed communication,” in Proc. Int. Conf.
Machine Learning, pp. 3478–3487, 2019.

[10] G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algorithms for decen-
tralized and stochastic optimization,” Math. Program., vol. 180, nos. 1–2, pp. 1–48,
2017. doi: 10.1007/s10107-018-1355-4.

[11] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method with
network independent step-sizes and separated convergence rates,” IEEE Trans.
Signal Process., vol. 67, no. 17, pp. 4494–4506, 2019. doi: 10.1109/
TSP.2019.2926022.

[12] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can decen-
tralized algorithms outperform centralized algorithms? A case study for decentral-
ized parallel stochastic gradient descent,” in Proc. Advances in Neural Information
Processing Systems, 2017, pp. 5336–5346.

[13] G. Morral, P. Bianchi, and G. Fort, “Success and failure of adaptation-diffusion
algorithms for consensus in multi-agent networks,” in Proc. 53rd IEEE Conf.
Decision and Control, 2014, pp. 1476–1481. doi: 10.1109/CDC.2014.7039609.

[14] G. Morral, P. Bianchi, and G. Fort, “Success and failure of adaptation-diffu-
sion algorithms with decaying step size in multiagent networks,” IEEE Trans.

Signal Process., vol. 65, no. 11, pp. 2798–2813, 2017. doi: 10.1109/TSP.2017.
2666771.

[15] A. Nedić and A. Olshevsky, “Stochastic gradient-push for strongly convex
functions on time-varying directed graphs,” IEEE Trans. Autom. Control, vol. 61,
no. 12, pp. 3936–3947, 2016. doi: 10.1109/TAC.2016.2529285.

[16] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On distributed aver-
aging algorithms and quantization effects,” IEEE Trans. Autom. Control, vol. 54,
no. 11, pp. 2506–2517, 2009. doi: 10.1109/TAC.2009.2031203.

[17] A. Nedić, A. Olshevsky, and M. Rabbat, “Network topology and communica-
tion-computation tradeoffs in decentralized optimization,” Proc. IEEE, vol. 106, no.
5, pp. 953–976, 2018. doi: 10.1109/JPROC.2018.2817461.

[18] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61, 2009. doi:
10.1109/TAC.2008.2009515.

[19] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic
approximation approach to stochastic programming,” SIAM J. Optim., vol. 19, no. 4,
pp. 1574–1609, 2009. doi: 10.1137/070704277.

[20] A. Olshevsky, “Linear time average consensus and distributed optimization on
fixed graphs,” SIAM J. Control Optim., vol. 55, no. 6, pp. 3990–4014, 2017. doi:
10.1137/16M1076629.

[21] A. Olshevsky, I. C. Paschalidis, and A. Spiridonoff, Robust asynchronous
stochastic gradient-push: Asymptotically optimal and network-independent per-
formance for strongly convex functions. 2018. [Online]. Available: arXiv:
1811.03982

[22] S. Pu and A. Garcia, “A flocking-based approach for distributed stochastic opti-
mization,” Oper. Res., vol. 66, no. 1, pp. 267–281, 2017. doi: 10.1287/opre.2017.1666.

[23] S. Pu and A. Garcia, “Swarming for faster convergence in stochastic optimiza-
tion,” SIAM J. Control Optim., vol. 56, no. 4, pp. 2997–3020, 2018. doi:
10.1137/17M1111085.

[24] S. Pu and A. Nedić, Distributed stochastic gradient tracking methods. 2018.
[Online]. Available: arXiv:1805.11454

[25] S. Pu, A. Olshevsky, and I. C. Paschalidis, A sharp estimate on the transient
time of distributed stochastic gradient descent. 2019. [Online]. Available:
arXiv:1906.02702

[26] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed optimiza-
tion,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 1245–1260, 2018. doi:
10.1109/TCNS.2017.2698261.

[27] A. Rakhlin, O. Shamir, and K. Sridharan, “Making gradient descent optimal
for strongly convex stochastic optimization,” in Proc. 29th Int. Conf. Machine
Learning, 2012, pp. 1571–1578.

[28] M. O. Sayin, N. D. Vanli, S. S. Kozat, and T. Basar, “Stochastic subgradient
algorithms for strongly convex optimization over distributed networks,” IEEE
Trans. Netw. Sci. Eng., vol. 4, no. 4, pp. 248–260, 2017. doi: 10.1109/TNSE.
2017.2713396.

[29] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal conver-
gence rates for convex distributed optimization in networks,” J. Mach. Learn. Res.,
vol. 20, no. 159, pp. 1–31, 2019.

[30] B. Sirb and X. Ye, “Decentralized consensus algorithm with delayed and sto-
chastic gradients,” SIAM J. Optim., vol. 28, no. 2, pp. 1232–1254, 2018. doi:
10.1137/16M1081257.

[31] Z. J. Towfic, J. Chen, and A. H. Sayed, “Excess-risk of distributed stochastic
learners,” IEEE Trans. Inf. Theory, vol. 62, no. 10, pp. 5753–5785, 2016. doi:
10.1109/TIT.2016.2593769.

[32] R. Xin, U. A. Khan, and S. Kar, Variance-reduced decentralized stochastic
optimization with gradient tracking. 2019. [Online]. Available: arXiv:1909.11774

[33] B. Ying, K. Yuan, and A. H. Sayed, “Supervised learning under distributed fea-
tures,” IEEE Trans. Signal Process., vol. 67, no. 4, pp. 977–992, 2018. doi: 10.1109/
TSP.2018.2881661.
� SP

Authorized licensed use limited to: University College London. Downloaded on May 24,2020 at 12:51:29 UTC from IEEE Xplore. Restrictions apply.

