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We consider the problem of estimating the policy and transition probability model of a Markov Decision
Process from data (state, action, next state tuples). The transition probability and policy are assumed to
be parametric functions of a sparse set of features associated with the tuples. We propose two regular-
ized maximum likelihood estimation algorithms for learning the transition probability model and policy,

respectively. An upper bound is established on the regret, which is the difference between the average
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reward of the estimated policy under the estimated transition probabilities and that of the original un-
known policy under the true (unknown) transition probabilities. We provide a sample complexity result
showing that we can achieve a low regret with a relatively small amount of training samples. We illus-
trate the theoretical results with a healthcare example and a robot navigation experiment.

© 2020 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Markov Decision Processes (MDPs) provide a framework for
solving dynamic optimization problems under uncertainty. When
the cardinality of the state-action space is small and the transition
probabilities are known, one can easily calculate an optimal policy
using value iteration or policy iteration. However, in most appli-
cations, an MDP has a very large state-action space, and it is not
even realistic to assume knowledge of the model, especially the
transition probabilities for all state-action pairs.

In an increasing number of settings, it has become possible
to collect large amounts of data by observing (state, action, next
state) tuples of an agent who uses an unknown policy. In such
“data-rich” settings, the problem we consider is to learn the (un-
known) original policy used by the agent and also obtain a good
estimate of the transition probabilities. Clearly, and because col-
lecting data is cumbersome and expensive, it is of interest to de-
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velop efficient learning methods that can handle limited data avail-
ability.

The problem we consider has many potential applications. For
instance, in the healthcare domain, disease progression can be
modeled as an MDP with states corresponding to the condition
of the patient and actions associated with physician actions, drugs
prescribed, etc. Typically, one does not have access to good mod-
els of state transitions and computing a good policy requires ex-
ploration, which can be done through expensive clinical trials. Yet,
there is a wealth of information in Electronic Health Records (EHRs),
containing doctors’ prescriptions and patients’ relevant medical in-
formation (demographics, diagnoses, etc). Leveraging this informa-
tion to learn a prescription policy can help homogenize care across
multiple locations and reinforce best practices. In addition, it is
also critical to estimate a disease progression model under various
treatments. Given a policy and a model one could ask many what-
if questions and use a variety of methods to improve the policy.

Another potential example concerns robot navigation, where
the robot’s position and velocity can be seen as a state and the di-
rection of movement and acceleration as an action. Rather than de-
riving an optimal navigation policy using traditional methods that
are subject to the curse of dimensionality, we can leverage data
collected from an expert human operator/driver in order to esti-
mate the unknown policy of the expert.

To achieve the best estimates of transition dynamics and the
associated policy in an MDP from data, we design two regularized
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logistic regression methods. We assume the policy and transition
probabilities are “Boltzmann-type” parametric functions, and the
parameters can be derived using maximum likelihood estimation.
Our proposed algorithm is shown to achieve a regret of 0({/¢)
with Q(log (n)poly(1/e)) samples, where n indicates the number of
adopted features used to represent the policy and poly(-) denotes
a polynomial function. This result implies that by utilizing only a
relatively small amount of training data, the estimated policy per-
forms similarly to the unknown policy whose state-action pairs we
observe. The sample complexity guarantee is more valuable espe-
cially in cases where it is expensive to obtain training samples.

1.1. Related Work

In healthcare applications, using data mining to predict future
states of patients has been studied with a Markov chain model
[12], deep learning [5], and Bayesian networks [17]. However, these
works are not efficient in learning policies. Although some recent
works (including [2,4,20]) develop methods to learn actions from
data, they formulate the problem as a static classification problem
and do not account for the sequential nature of these actions and
their impact on future states. There is substantial work on learning
MDP policies by observing experts’ demonstrations. A survey on
robot learning from demonstrations is studied in [1]. The work in
[15] learns policies for MDPs in continuous spaces, and [22] con-
ducts strategy learning for non-task-oriented conversational sys-
tems. [18] learns an MDP policy from demonstrations in a setting
where side information on task requirements is available. Other
works consider the problem of learning transition probabilities. In
[7], an algorithm for learning the health state transition matrix via
wireless body area networks modeled as Partially Observed MDPs
(POMDPs) is proposed. Another work, [11], learns the transition
functions and obtains an optimal policy through value iteration
that uses the learned transition functions. However, these works
only validate the efficiency of proposed algorithms through experi-
ments without providing any theoretical guarantees. [21] considers
the non-parametric estimation of Markov transition functions and
establishes a convergence guarantee. [8] utilizes Poisson regression
to estimate general conditional distributions. A number of works
[10,14,19] have focused on obtaining an optimal policy while alle-
viating the sensitivity to uncertainty in the underlying transition
probabilities. These methods are not tractable in many MDP ap-
plications, since it can take overwhelming computational effort to
compute an optimal solution due to Bellman’s curse of dimension-
ality.

More closely related to this work, [9] investigates the ques-
tion of learning an MDP policy from data, where the explicit MDP
model is known. Here, we consider a more general situation where
the MDP model is unknown, therefore, both the policy and transi-
tion probabilities need to be estimated from data.

1.2. Contributions

To address the problem of estimating both the agent’s policy
and conditional transition probabilities, we propose two learning
models and an estimation algorithm based on regularized logis-
tic regression. The use of regularization is motivated by a recent
body of work (see [3,4,16] and references therein) which establish
that to render the estimates robust to outliers in the training data
one needs to solve properly regularized empirical loss minimiza-
tion problems.

We characterize the sample complexity of estimating model pa-
rameters. We also derive a bound on the regret, which indicates
the difference between the average reward of the estimated pol-
icy under the estimated transition probabilities and the average
reward of the original policy under the true transition dynamics.

Compared to our earlier work [9], this paper proposes a learning
algorithm that has a solid average reward guarantee even in the
case where the MDP dynamics are unknown. A preliminary confer-
ence version of this work has appeared in [23]. This paper expands
on the preliminary work by establishing a theoretical guarantee on
sample complexity and including two large case numerical studies:
one related to disease progression and another to robot navigation.

We organize the remaining parts of this paper as follows. In
Section 2, we introduce the MDP model and the learning problem
formulation. In Section 3, we present the proposed learning algo-
rithm and the corresponding performance metrics. In Section 4, we
establish the algorithm’s performance on log loss or the distance of
the estimated parameters from the original ones. In Section 5, we
bound the regret of the estimated policy under the estimated MDP
dynamics. In Section 6, we illustrate the theoretical results using
two simulation experiments. Conclusions are in Section 7.

Notational conventions: Matrices and vectors are denoted by
bold letters; uppercase for matrices and lowercase for vectors.
Prime denotes transpose and all vectors are column vectors. For
economy of space, we write X = (X1, ..., xy) for the column vector
X e R™ |Ix||p = (XL, [x;]P)!/P denotes the p-norm of vector x. For
a matrix P, ||P||, denotes the maximum absolute row sum. Sets
are denoted by script letters.

2. Problem Formulation

Consider a finite-state Markov Decision Process (MDP)
(S, A,P,R, ), where S, A are the sets of possible states and
actions, respectively. For any (state, action, next state) tuple (s, a,
q), denote by P(q|s,a) the transition probability from state s to
state q conditional on taking action a. We will use P(-|s, a) to
denote the transition probability vector at state s under action a.
The function R represents the one-step reward of the MDP. The
function w is a policy that maps a state to a probability distri-
bution of actions; specifically, w(als) represents the probability of
adopting action a given state s.

For general MDPs with a large state-action space, we use a class
of parametric (Boltzmann-type) functions to approximate the pol-
icy and conditional transition probabilities:

exp{€'¥(s.a,9))

G ; (1)
Yyen. exp{E Y (s.a.y)}

Pe(qls, a) =

exp{0'¢(s, a)}
Y pea €xp{0'@(s. b)}

where & € RN and 0 e R" are parameters to be learned and A; is
the set of all feasible next states from the current state s. The
kernel functions ¥ :Sx AxS— [0, 1]N and ¢:S x A— [0, 1]"
transform (state, action, next state) tuples (s, a, q) and (state, ac-
tion) pairs (s, a) into corresponding desired features, respectively.
For the sake of brevity, we will use the term transition probabil-
ities & to refer to the conditional transition probabilities induced
by the model (1) with parameter &, and, similarly, we will use the
term policy @ to refer to the policy defined in (2) induced by pa-
rameter 6.

We note that the models in (1) and (2) use a given set of fea-
ture vector functions ¥ and ¢ that encode important aspects of
the raw states and actions. Learning the lower-dimensional mod-
els & and @ is certainly easier than learning the entire mappings
Pg(qls, a) and pg(als). Features ¥ and ¢ may be designed using
intuition about a particular application or obtained more system-
atically using kernel function ideas (see [9, Sec. IV] and the discus-
sion in Section 6.2).

Given an MDP driven by policy # with conditional transi-
tion probabilities PE' the MDP states form a Markov chain. We

He(als) = (2)
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use ME.G to represent its transition matrix, where M&o(q|s) =
Y aea Ma(ﬂ'S)PE((ﬂs, a) for all (state, next state) pairs (s, q). Both
the policy and conditional transition probabilities are Boltzmann-
type, hence, there is a unique stationary distribution nw(s)
of the induced Markov chain. This implies a unique stationary
distribution of state-action pairs (s, a), denoted by 7 q(s.a) =
ﬂg_o(s)ﬂo(ﬂb), based on which we can define the infinite horizon
average reward induced by &, @ as

R(&.0) =) (45 Ngo(s. OR(s, a).
3. Estimating the Policy and Transition Probabilities

Given an observed collection of states and corresponding ac-
tions by an agent, we aim to learn the agent’s policy and the cor-
responding transition probabilities, denoted by #* and &%, respec-
tively. Here, we implicitly assume that both the agent’s policy and
transition probabilities are of the Boltzmann-type (cf. (1) and (2))
but with unknown parameters.

The set of (state, action, next state) tuples driven by policy
0* with conditional transition probabilities &* is denoted by X :=
X(E°,0") ={(s;,a;,q;); i=1,...,m}. Assume that the state-action
pairs {(s;,a;); i=1,...,m} are i.i.d. and sampled from the station-
ary distribution Ng* g+ Given state s; and action g;, the next state
g; is selected based on the conditional transition probability &*.
Therefore, the tuples {(s;, g;, q;)} in the data set X are i.i.d and fol-
low the distribution D ~ Pg- (qls, a)"g*,o* (s,a). Since usually only
a small subset of features are significant in learning appropriate
models, we assume #* and &* are sparse, having r<n and g<N
non-zero elements, respectively. Also, assume that #* and &* are
bounded by K, element-wise.

Due to the probabilistic nature of (1) and (2), we can adopt
Maximum Likelihood (ML) estimation with logistic regression to es-
timate the parameters from data. Given our sparsity assumption
on the models #* and &*, the distance between two sample points
in the feature-label space (¢, a) and (¥, q), respectively, is best
measured using the sparse ¢,, norm which accounts for the most
dominant feature instead of the entire (and potentially irrelevant)
feature vector. This suggests [3], that one needs to use the dual
norm, i.e., an ¢; norm, to regularize the ML estimation problem.
We will introduce this regularization as a constraint in the for-
mulation. Specifically, we formulate the learning problem of con-
ditional transition probabilities as follows:

m
log P« (a:ls:. a: ;
rgréﬁlg?v(; 0g ﬁ(q:lsz,a,) 5
st 1€l < By,

in which BE adjusts the sparsity of the estimated transition proba-
bilities. Similarly, we formulate the policy learning as follows:

m
ma lo a;|s; 4
OeR)"(; gMa( l| 1) ( )
st [|0ll1 < By,

in which By adjusts the sparsity of the estimated policy.

The performance of the ML estimate can be evaluated through a
log-loss metric, which is defined as the expected value of the neg-
ative log-likelihood over the sample distribution. Specifically, for
any parameters € and 0, the log loss of the transition probability
model and the policy are defined as follows:

€ (S) = IE(s,a.q)~D[_ IOgPE (Q|Sa a)],

;(0) = IE(s,a.q)~D[_ lOg Mo (a|5)]

The expectation is taken over the distribution D. Since the explicit
distribution is unknown, we can only observe (state, action, next
state) tuples. Given any data set X, an empirical version of log-
losses can be defined as follows:

.l m
— > (~logPg(ailsi. @),

i=1

éx(§) =

L3 (-~ log g (ails).

i=1

£v(0) =

The empirical log-losses are calculated by the log losses over the
training data set X (§*,0%) and denoted by

EE) 2 ey g (8. CO)2 Ly )(0).

We summarize our algorithms to learn the policy #* and tran-
sition probability model &* in Algorithm 1.

Algorithm 1 Training algorithm to estimate the policy #* (or tran-
sition probabilities &*) from samples X.

Initialization: Fix hyper-parameters C > rK (C > IK) and 0 <y < 1.
Randomly split the whole data set & into two sets X; and &, with
size ym and (1 — y)m respectively. Use X; and X, as training set
and cross-validation set, respectively.

Training phase:

for B=0,1,2,..., C do

solve optimization problem (4) (or (3)) with the training set X;
and right hand side of the constraint equalto B. Let 6 (or &g)
denote the obtained optimal solution.

end for

Validation  phase:
(or &g's) from the

Among the
training phase,

obtained solutions @g's

select the best solu-
tion with the lowest “hold-out” error on the validation
set Ay, ie, A_argmmBE 0.1.. CXz (6g) and set 6= 0; (or
B =argming (o c) éx, (&) and  set E=£;) ., where ly()
(or éx,(-)) denotes the empirical log loss of thepolicy function
(transition probabilities) on the validation set 5.

4. Log-Loss Generalization Guarantees

In this section, we will establish theoretical results on sample
complexity, showing that our estimation algorithm (Algorithm 1)
is guaranteed to achieve high accuracy with relatively few training
samples.

We first relate the difference between log losses of two con-
ditional transition probabilities vectors (policies) to their relative
entropy, or Kullback-Leibler (KL) divergence, which characterizes
the difference between two distributions. The KL divergence of two
conditional transition probability vectors &; and &, at (s, a) is de-
fined as:

D(P;, (Is. @) I, (Is, @)
P, (alx. @)

= Pg (qls.a)log
q

Similarly, the KL divergence between policies #; and 6, at state s
is
g, (als)
o, (als)’
Next, we will define the average KL divergence of the policy

and transition probability model under some sample distribution.
Recall that the stationary distributions of the state and state-action

D(g, (-I5) | g, (-15)) = Zﬂol (als) log ————
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Markov chains are denoted by Teg and Mg g respectively. The av-

erage KL divergence between policies #; and 6, is defined as fol-
lows:

Dg gty l11g,) =D 7 o(S)D(sg, (:15) [l g, (:15)).

and the KL divergence between conditional transition probabilities
&, and &, is defined as

Dg o(Pg, [Pg,) =Y ngg(s. a)D(Pg, (s, a) [Py, (Is, @)).

According to [9], the difference between log losses of two policies
is equal to their Kullback-Leibler (KL) divergence.

Lemma 4.1 ([9]). Let 8 be an estimate of the policy 0, then

£ () — (8) = Dg o (mollpey).

Similarly, we can prove that the difference between log losses
of two transition probability models are equal to their KL diver-
gence. The proof is similar to that for Lemma 4.1 and hence omit-
ted.

Corollary 4.2. Let é be an estimate of the policy &, then
€(§) — €(§) = Dg (Pg[|Py).

In [9], we have obtained a bound of the difference between log
losses of the policy gy and the estimated policy Ry as follows.

Theorem 4.3 ([9]). Given any positive values € >0 and § >0, if the
sample size satisfies the following condition

m= Q((log n) - poly(r, K, C, H, log(1/4), 1/8)),

where H is the maximum number of feasible actions at a state of the
MDP, then with probability at least 1 — 4,

12(8) = £ (0)] =Dy o (g ll ) < &.

This implies that 6 obtained by Algorithm 1 can be arbitrar-
ily close to the unknown policy #*. The function poly(s) denotes
a polynomial function with respect to elements of s. Specifically,
m = Q(H3) in terms of only H.

Similarly, in the following corollary, we bound the difference
between the log losses of the original and estimated conditional
transition probability, Py and P

g

Corollary 4.4. Given any positive values € >0 and § > 0, if the sam-
ple size satisfies the following condition

m= Q((logN) -poly(l, K, C, M, log(1/6), 1/8)),
where M = max; |Ns|, then with probability at least 1 — 6,

le(§) — € (&) = Dg o (P

Pg) <e.

This implies that é obtained by Algorithm 1 can be arbitrarily
close to the original transition probability &, with m = Q(M?) in
terms of only M. The proof is similar to that for Theorem 4.3 and
hence omitted.

5. Bounds on Regret

With the estimated conditional transition probabilities from
Section 3, we are able to compute the average reward of the es-
timated policy by simulating the MDP. A natural question is how
good this simulated average reward is, compared to the average
reward of the original policy under the true MDP dynamics.

In this section, we develop a bound on the regret using the es-
timated policy as opposed to the original policy. Specifically, we
define the regret Reg(X) as

Reg(X) =R(&",0") —R(£.9),

in which @ and é are the estimated policy and estimated condi-
tional transition probabilities from the samples X', respectively. We
need the following preliminary definitions and lemmata.

Definition 1 ([9]). Given a Markov chain with transition proba-
bility matrix MEﬂ induced by policy # and conditional transition
probability parameter £, the fundamental matrix of the Markov
chain is defined as

Zeg= (Agg+emyy) ",

where Agg=1-M;,y. 7, represents the stationary distribution
associated with M§0' and e is the vector with all elements equal
to 1.

Definition 2 ([9]). The group inverse of a square matrix A, denoted
as A* is the unique square matrix satisfying the following condi-
tions

AA*A = A, A*AA* = A, AA* = A*A.

Definition 3 ([9]). Given a matrix B with equal row sums, its er-
godic coefficient is defined as

T(B)= sup

ve=0;|v[=1

1
IVBIl = 5 max 3 by byl (5)
: s

Lemma 5.1. ([6, Lemma 11.6.1]) Consider any two probability vectors
P1. P2 € R It holds that

1 2
D(p:llp2) = m”l’l - p2ll7- (6)

Lemma 5.2 ([9]). Given two stochastic matrices P, and P, (and as-
sociated fundamental matrices Z; and matrices A;=1-P;, i=1,2),
assume mq, and 7, are the corresponding unique stationary distribu-
tions, respectively. Let E = Py — P,, then

1 (7)

where k is a constant that can take one of the following values:
K =1Zz o, OF K = [|AF I, or Kk =1/(1 =T (Py)), o k =T(Zy) =
T(A¥).

Iy — w2l < K ||wLE

Now we are ready to bound the regret of the estimated policy
using the above preliminary definitions and results.

Theorem 5.3. Given any positive values &>0, §>0, assume
Algorithm 1 adopts

Q((log(max(N, n))) - poly(r, I, K,C, M, log(1/8), 1/¢,H)

i.i.d. training samples to learn parameters § and 0. Then, with proba-
bility of at least 1 — 4, the following result holds

IR(E*.0") —R(&,0)| <2/In26Rmax (1 + 2),

in which Rmax = MaXxs g)esx.4 IR(S, @)| and « is a constant value that

depends on the transition probability matrix M; 9 (and its correspond-

ing fundamental matrix Zé,i) and matrix Aé,é ;I*Mé,f))' This con-

stant « can be any of the following: k = |Z; jll. or x = ||A*§9||OO,
ork =1/(1- T(Mé,é))’ or Kk = ‘L'(Zé_a) = ‘L'(A*ga).

Proof. We will first express the regret as the sum of two parts,
and then bound each part separately.
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Reg(X) =R(€".0") —R(.0)
=Y > Ingg(s.a)- Mg 3 OIR(s, a)

=X 0 © 3t @R )
- X Ly (alsRs, 0

= 25:”5*,0* ) Xa:[um (als) — pp(als)IR(s, @)
- ;[”g,a(s) — g g (5)] XH:M(}(MS)R(S, a)

=

D e g ()Y g (als) — py(als)IR(s, a)

N | (8)

S0 58) — T - ()] 5 (@lsIRE. @)

Note that the first term in equation (8) depends on the value
>alig- (als) —/La(als)], which is the learning error in estimating
the policy. The second term depends on |7T§,9(s) — Mg g~ )|,
which is the perturbation error of the stationary distribution of the
Markov chain by applying the estimated policy 8. In the following,
we will bound the two terms separately, and begin with the first
term.

;nw (s) ;w (als) — py(als)IR(s, a)
< ;nw (s) Z | (g (als) — g (als))| - IRGs, @)
<Rmax Z e g (5) Z | (g (als) — g (als))|
=Rmax ;”w N (g Cls) = pa ClsN I (9)

The bound in (9) depends on the difference between the log-loss
of the estimated policy # and that of target policy #*. Based on
Lemma 5.1, we have

D e g ()Y (g (als) — py(als)IR(s, a)

< Ruax Y g ¢ 5/ 200 20D (st (19) 115 15))

< V210 2Rnax - \/Zn‘g*ﬂ*(S)D(ng*(~|S)||IL9('|S))

= \/m max Dﬁ*,0* (,‘Lo*”ﬂé)
< v/2(In2)&Rmax. (10)

The first inequality holds by applying Lemma 5.1 with p; =
Mg (:|s) and p; = ua(-|s) for each state s. The second inequality is
obtained by applying Jensen’s inequality. The final inequality holds
using Theorem 4.3.

Next, we will bound the second term in (8).

D (7 5(8) = g g (5)) D 145 (alsIR(s. @)
< D 1m(8) — e - ()1 D g (als)R(s. @)
< Rmax ) |73.5(8) — g 9 ()] Y iy (als)

= Rmax ) _ |73 4(5) = 7g - (5)| (11)

< Rmaxk ””:S*ﬁ* (Mg*,o* - Mé@)”l (12)

The equality (11) can be obtained since ), ,ua(als) =1 for all s,
and (12) holds by using Lemma 5.2.

For the last term in equation (12), by applying the definition of
the transition probability Mg,o associated with parameters &€ and 6,
we obtain

75 o (Mg g — Mg g) I3
= Z Zﬂﬁ*ﬁ* (s) -
q s
S IPe (@ls. a)py (als) — Py(als. g als)]|
S ATIODIDS
s q a

+ XS 7 g Oty (als) Y [Pe(als.a) - Py (qls.0)|
s a q

Pg(als. )1y (als) — py(als)]

<Y T ()Y |1 (als) — py(als)|
+Z”§*,0" (s,a) Z ‘Pé(q|s, a) — Pg (qls, a)’,
s.a q

in which the last inequality holds by using >, P(qls,a) =1 for all
(s, a). Now, using inequality (), Theorem 4.3 and Corollary 4.4, we
are able to bound (9) as

Z(”é,é(s) — T g (5)) Y 115(als)R(s, a)

< 24/2€In 2k Rmax. (13)

Finally, by combining (10), (13) and (8), we obtain the result of
Theorem 5.3. O

Note that in Theorem 5.3, the regret relies on the constant value
k, which is referred to as the condition number of the estimated
policy under the estimated transition dynamics. The regret mono-
tonically increases with the condition number.

6. Experimental Results

In this section, we illustrate the efficiency of our algorithms
using two examples: a disease progression experiment where we
seek to learn the prescription policy reflected in the data, and a
robot navigation experiment where we learn the robot navigation
policy on a 2-D grid.

6.1. Experimental Settings

6.1.1. A Disease Progression Example

We consider patients with a chronic disease and design an MDP
to model the effect of drugs. We denote the state of the MDP
by s = (s1.53), where sq, s, € {0,1,...,20}. Here, s; denotes the
severity of the disease itself, and s, the severity of the comor-
bidities that the patient may face. The actions in the MDP rep-
resent the various treatments for the patient. Assume there are
two drug types with different treatment effects, one for the main
symptoms of the disease, and another for the comorbidities. The
actions can be denoted by a = (a;, ay), where a; €{0, 1} is a indi-
cator of whether the patient takes the i-th type of drug or not.

We assume that the disease state can only transition from the
current state to neighboring states; specifically, the state differ-
ence z; =S;,1 —St at time t should satisfy |z|; <1 for all s,
St;1 and a;. Furthermore, we assume that the transition probabil-
ity P(s¢;1/st, ar) depends only on the state difference z; = sy, 1 — s¢
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Table 1 - . N ) i.e., when the robot takes an action leading it outside the bound-
Disease state transition probabilities conditioned on actions. ary, it is bounced back in the opposite direction without changing

State Diffz. = (0,0) (0,1) (0,-1) (-1,0) (1,0) its current position.
a = (0.0) 07 01 0.05 0.05 01 The.robot colletcts 1mme.d1§te reward at each grid point and
a, =(1,0) 0.4 0.1 0.05 0.35 0.1 the ultimate goal is to maximize the long-term expected average
a;=(0,1) 0.4 0.1 0.35 0.05 0.1 reward. In this example, given historical trajectories of identical
a=(11 0.2 0.1 03 0.3 0.1 robots driven by the same policy, we are interested in learning
the policy and the unknown transition probabilities from observed
Table 2 (state, action, next state) tuples. We associate source rewards near
Robot transition probability conditioned on actions. the four grid corners as specified below. Grid points (1, 1) and (19,
State Diffz,  (0,0) (0,1) (0,—1) (=1,0) (1, 0) 19.) each have an associated source reward equalito 10, whereas
o <downr 005 005 08 0.05 0.05 grlddpomtsl (1, 119‘2‘ and (19},1 1) }elach have an as;oc“lated (sjgurce r§-
a = “right” 005 005 005 0.05 08 ward equa to. - Assume t.att e source rewards “spread” accord-
a = “up” 0.05 0.8 0.05 0.05 0.05 ing to a Gaussian distribution. The immediate reward at each grid
a, = “left” 0.05 005  0.05 0.8 0.05 point is the superposition of rewards spread from each source to

and action a;. The transition probability matrix (conditioned on all
actions) is shown in Table 1. The MDP is also assumed to have a
bouncing boundary, i.e., when the patient takes an action leading
the state outside of the boundary, the transition is bounced back
without changing the current state.

Consistent with Table 1, if the patient takes none of the two
treatments, i.e., a; = (0, 0), both disease and comorbidity indica-
tors s; and s, will tend to stay the same or become more severe.
The disease severity decreases if the patient uses the type-1 drug,
i.e., a; = (1,0). The comorbidity symptoms are relieved when the
patient takes type-2 drug, i.e., a; = (0, 1). Because of the drug in-
teractions, if both drugs are used together, ie., a; = (1,1), they
have diminished effects compared to being individually used.

When a patient enters a disease state, he/she can collect the
immediate reward associated at the state. Assume doctors (ex-
perts) use a policy to optimize the long-term expected average re-
ward. We wish to learn the prescription policy and disease transi-
tion probabilities from observed tuples of (state, action, next state).

Assume that the best state (0, 0) is associated with reward Ry,
and the associated reward can “spread” according to a Gaussian
distribution, i.e., immediate rewards are defined as follows:
R(s,a) =R(s) =R L e%‘z‘z

’ ‘ov2m '
for all actions a. The parameter o controls the discounting rate of
reward being decreased as the disease state becomes worse. The
parameters are tunable to achieve desirable behaviors [13]. In this
experiment, we set Ry = 30 and o = 10.

6.1.2. A Robot Navigation Example

We also design a robot navigation experiment on a 2-D grid.
The robot’s navigation trajectory is driven by an MDP, where the
state is the current location of the robot, denoted by s = (s1,53),
where sq, s; € {0, 1, ..., 20}. The robot has 4 feasible actions corre-
sponding to its direction of movement, and the action set at each
state is {“up”, “down”, “left”, “right”}.

We assume that the robot can only move from a location to a
neighboring location; specifically, the state difference z; = s;,1 —s¢
at time t should satisfy ||z¢||; <1 for all s;, s;;; and a;. Further-
more, the transition probability P(s;,1|s¢,a:) depends only on the
state difference z; = s;;1 —s; and action a;. The transition proba-
bility matrix (conditioned on all actions) is shown in Table 2. We
assume that the robot’s transition is subject to uncertainty; in par-
ticular, one action may lead the robot to its neighboring grid points
instead of the intended direction. For instance, when the robot
takes action “down”, it will shift to an adjacent grid position be-
low (state difference (0, —1)) with probability 0.8, and to all other
four neighboring positions on the grid with probability 0.05, re-
spectively. The MDP is also assumed to have a bouncing boundary,

this point. Specifically, the immediate reward for state s is:

lis—syll?
R(s.2) = R(s) = 3 Ry, — e~ 5+
v

e 20 s
o2m
for all a and s, where R, specifies the source reward at source s,
and o adjusts the spread rate of the source rewards. We can tune
such a reward function for desirable behavior [13]. In our experi-
ments, o = 1.

6.2. Policy and Transition Probability Learning

Designing appropriate features is essential for our learning al-
gorithm. Following the approach of [9, Sec. IV], the features are
based on a set of representative states. Regarding transition proba-
bilities, we assume

eXp{S/lﬁ(SH] —Sg,ar)} .
D ses EXD{E/W(S —S¢,ar)}

The feature vector is constructed as follows. We select a
set of p representative state differences R = {(iy, ji) : i, jx €

Pg(Ser1lst. ar) =

{-1,0,1}, k=1,..., p} and define feature functions:
1 leGiol® it b —
Vi (z.aby={7z¢ * - Ib=a
0, otherwise,

for k=1,....p and b c A. Then, ¥(z.a) = (Y;(z.a,b); V(i.j) e
R, Yb e A).

Similarly, assume that the original policy has the following
form

exp{f'd(s.a))
Ybea exp{0'é(s. b))

In this case, the feature vector is constructed by selecting a set B
of representative states from the state space and defining features

ne(als) =

Gu(s,a) = Z Pe(qls, a) fu(q), ucebB,
q
where
ful@) = 1 efnugqu2
T Van ‘

Then, the feature vector is ¢(s,a) = (¢u(s,a); Yu e B).
6.3. Performance Evaluation

For the two applications discussed in Sections 6.1.1 and 6.1.2,
we solve the corresponding MDPs using value iteration and ob-
tain an optimal policy. We use this policy to generate (state, ac-
tion, next state) tuples. Given the observed tuples, we will esti-
mate a policy 1g(ac|s;) parameterized by # and an induced tran-
sition probability model Pg(st+1|st,at), parameterized by & using
the feature functions described in Section 6.2.
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Fig. 1. Disease progression example: average rewards v.s. sample size.
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Fig. 2. Robot navigation example: average rewards v.s. sample size.

We compare the average rewards of the following four policies:

—

Optimal policy: obtained from the value iteration algorithm and

used to generate (state, action, next state) tuples.

2. tq-regularized policy: trained using Algorithm 1 using ¢;-
regularized logistic regression.

3. Unregularized policy: trained using Algorithm 1 to solve the lo-
gistic regression problems without regularization.

4, Greedy policy: at each state taking an action which maximizes

the expected immediate reward.

To investigate how training sample size influences the
performance of our proposed algorithm, we implemented
Algorithm 1 using different sample sizes m. For each sample
size, we conduct 10 independent runs, obtain a policy from each
run, and then simulate this policy under the true MDP dynamics
to assess its performance. We average over the 10 runs the per-run
average reward obtained. These averages are plotted Figs. 1 and 2
for the healthcare and robot applications, respectively.

We can see that the ¢;-regularized policy achieves reward that
is closer to the reward achieved by the unknown original pol-
icy, which is consistent with Theorem 5.3. In addition, the ¢4-
regularized policy consistently outperforms the greedy and unreg-
ularized policies, especially in the case of small sample sizes. This
illustrates the benefits of regularization and is consistent with our
related comments in the Introduction.

—— unregularized dynamics
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Fig. 3. Disease progression example: average KL divergence between the true and
estimated conditional transition probabilities.
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Fig. 4. Robot navigation example: average KL divergence between true and esti-
mated conditional transition probabilities.

In addition, we compare two different estimates of the condi-
tional transition probabilities as follows:

1. an ¢4-regularized estimate, where we use Algorithm 1 with the
¢q-regularized logistic regression to learn the conditional tran-
sition probability model; and

2. an unregularized estimate, where we use Algorithm 1 with un-
regularized logistic regression to learn the conditional transi-
tion probability model.

Specifically, we computed the KL-divergence between the true
and estimated conditional transition probabilities D g+ (PE* ||P§) =

e(é) —€(&") as a function of sample size. The KL-divergence re-
sults for the healthcare and robot navigation examples are shown
in Figs. 3 and 4, respectively. The lower KL-divergence is, the bet-
ter the estimate is. Through all different sample sizes in the two
examples, the ¢;-regularized estimate consistently outperforms its
unregularized alternative, and more so in the case of small sam-
ple sizes. In addition, the regularization algorithm achieves accu-
rate estimates with only a very small number of samples, which
validates Corollary 4.4.

Note that even though the original policy and conditional
transition probabilities do not follow the parametric forms in
Egs. (1) and (2), our algorithm is still able to achieve high accu-
racy.

7. Conclusion
This article investigates the problem of learning a policy and

an associated transition probability model in an MDP based
on observed (state, action, next state) tuples. We propose two
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regularized logistic regression models to estimate the true transi-
tion probabilities and original policy. We establish out-of-sample
generalization bounds on log-loss for the policy and transition
probability estimation. Further, we derive an upper bound on
the regret of the estimated policy under the learned transition
probability model. The theoretical results are validated in two
different applications, one involving disease progression and the
other robot navigation. The numerical results show satisfactory
learning of both the policy and transition dynamics and illustrate
the benefits of using robust learning techniques.
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