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a b s t r a c t 

We consider the problem of estimating the policy and transition probability model of a Markov Decision 

Process from data (state, action, next state tuples). The transition probability and policy are assumed to 

be parametric functions of a sparse set of features associated with the tuples. We propose two regular- 

ized maximum likelihood estimation algorithms for learning the transition probability model and policy, 

respectively. An upper bound is established on the regret, which is the difference between the average 

reward of the estimated policy under the estimated transition probabilities and that of the original un- 

known policy under the true (unknown) transition probabilities. We provide a sample complexity result 

showing that we can achieve a low regret with a relatively small amount of training samples. We illus- 

trate the theoretical results with a healthcare example and a robot navigation experiment. 

© 2020 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Markov Decision Processes (MDPs) provide a framework for

olving dynamic optimization problems under uncertainty. When

he cardinality of the state-action space is small and the transition

robabilities are known, one can easily calculate an optimal policy

sing value iteration or policy iteration. However, in most appli-

ations, an MDP has a very large state-action space, and it is not

ven realistic to assume knowledge of the model, especially the

ransition probabilities for all state-action pairs. 

In an increasing number of settings, it has become possible

o collect large amounts of data by observing (state, action, next

tate) tuples of an agent who uses an unknown policy. In such

data-rich” settings, the problem we consider is to learn the (un-

nown) original policy used by the agent and also obtain a good

stimate of the transition probabilities. Clearly, and because col-

ecting data is cumbersome and expensive, it is of interest to de-
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664644, and CNS-1645681, by the ONR under grant N0 0 014-19-1-2571, by the NIH 
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elop efficient learning methods that can handle limited data avail-

bility. 

The problem we consider has many potential applications. For

nstance, in the healthcare domain, disease progression can be

odeled as an MDP with states corresponding to the condition

f the patient and actions associated with physician actions, drugs

rescribed, etc. Typically, one does not have access to good mod-

ls of state transitions and computing a good policy requires ex-

loration , which can be done through expensive clinical trials. Yet,

here is a wealth of information in Electronic Health Records (EHRs) ,

ontaining doctors’ prescriptions and patients’ relevant medical in-

ormation (demographics, diagnoses, etc). Leveraging this informa-

ion to learn a prescription policy can help homogenize care across

ultiple locations and reinforce best practices. In addition, it is

lso critical to estimate a disease progression model under various

reatments. Given a policy and a model one could ask many what-

f questions and use a variety of methods to improve the policy. 

Another potential example concerns robot navigation, where

he robot’s position and velocity can be seen as a state and the di-

ection of movement and acceleration as an action. Rather than de-

iving an optimal navigation policy using traditional methods that

re subject to the curse of dimensionality, we can leverage data

ollected from an expert human operator/driver in order to esti-

ate the unknown policy of the expert. 

To achieve the best estimates of transition dynamics and the

ssociated policy in an MDP from data, we design two regularized
rved. 

 parametric policies and transition probability models of markov 
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logistic regression methods. We assume the policy and transition

probabilities are “Boltzmann-type” parametric functions, and the

parameters can be derived using maximum likelihood estimation.

Our proposed algorithm is shown to achieve a regret of O ( 
√ 

ε )
with �(log ( n )poly(1/ ε)) samples, where n indicates the number of

adopted features used to represent the policy and poly( · ) denotes
a polynomial function. This result implies that by utilizing only a

relatively small amount of training data, the estimated policy per-

forms similarly to the unknown policy whose state-action pairs we

observe. The sample complexity guarantee is more valuable espe-

cially in cases where it is expensive to obtain training samples. 

1.1. Related Work 

In healthcare applications, using data mining to predict future

states of patients has been studied with a Markov chain model

[12] , deep learning [5] , and Bayesian networks [17] . However, these

works are not efficient in learning policies. Although some recent

works (including [2,4,20] ) develop methods to learn actions from

data, they formulate the problem as a static classification problem

and do not account for the sequential nature of these actions and

their impact on future states. There is substantial work on learning

MDP policies by observing experts’ demonstrations. A survey on

robot learning from demonstrations is studied in [1] . The work in

[15] learns policies for MDPs in continuous spaces, and [22] con-

ducts strategy learning for non-task-oriented conversational sys-

tems. [18] learns an MDP policy from demonstrations in a setting

where side information on task requirements is available. Other

works consider the problem of learning transition probabilities. In

[7] , an algorithm for learning the health state transition matrix via

wireless body area networks modeled as Partially Observed MDPs

(POMDPs) is proposed. Another work, [11] , learns the transition

functions and obtains an optimal policy through value iteration

that uses the learned transition functions. However, these works

only validate the efficiency of proposed algorithms through experi-

ments without providing any theoretical guarantees. [21] considers

the non-parametric estimation of Markov transition functions and

establishes a convergence guarantee. [8] utilizes Poisson regression

to estimate general conditional distributions. A number of works

[10,14,19] have focused on obtaining an optimal policy while alle-

viating the sensitivity to uncertainty in the underlying transition

probabilities. These methods are not tractable in many MDP ap-

plications, since it can take overwhelming computational effort to

compute an optimal solution due to Bellman’s curse of dimension-

ality. 

More closely related to this work, [9] investigates the ques-

tion of learning an MDP policy from data, where the explicit MDP

model is known. Here, we consider a more general situation where

the MDP model is unknown, therefore, both the policy and transi-

tion probabilities need to be estimated from data. 

1.2. Contributions 

To address the problem of estimating both the agent’s policy

and conditional transition probabilities, we propose two learning

models and an estimation algorithm based on regularized logis-

tic regression. The use of regularization is motivated by a recent

body of work (see [3,4,16] and references therein) which establish

that to render the estimates robust to outliers in the training data

one needs to solve properly regularized empirical loss minimiza-

tion problems. 

We characterize the sample complexity of estimating model pa-

rameters. We also derive a bound on the regret, which indicates

the difference between the average reward of the estimated pol-

icy under the estimated transition probabilities and the average

reward of the original policy under the true transition dynamics.
Please cite this article as: T. Xu, H. Zhu and I.Ch. Paschalidis, Learning

decision processes from data, European Journal of Control, https://doi.o
ompared to our earlier work [9] , this paper proposes a learning

lgorithm that has a solid average reward guarantee even in the

ase where the MDP dynamics are unknown. A preliminary confer-

nce version of this work has appeared in [23] . This paper expands

n the preliminary work by establishing a theoretical guarantee on

ample complexity and including two large case numerical studies:

ne related to disease progression and another to robot navigation.

We organize the remaining parts of this paper as follows. In

ection 2 , we introduce the MDP model and the learning problem

ormulation. In Section 3 , we present the proposed learning algo-

ithm and the corresponding performance metrics. In Section 4 , we

stablish the algorithm’s performance on log loss or the distance of

he estimated parameters from the original ones. In Section 5 , we

ound the regret of the estimated policy under the estimated MDP

ynamics. In Section 6 , we illustrate the theoretical results using

wo simulation experiments. Conclusions are in Section 7 . 

Notational conventions : Matrices and vectors are denoted by

old letters; uppercase for matrices and lowercase for vectors.

rime denotes transpose and all vectors are column vectors. For

conomy of space, we write x = (x 1 , . . . , x n ) for the column vector

 ∈ R 
n . ‖ x ‖ p = ( 

∑ n 
i =1 | x i | p ) 1 /p denotes the p -norm of vector x . For

 matrix P , ‖ P ‖ ∞ denotes the maximum absolute row sum. Sets

re denoted by script letters. 

. Problem Formulation 

Consider a finite-state Markov Decision Process (MDP)

(S, A , P , R, μ) , where S, A are the sets of possible states and

ctions, respectively. For any (state, action, next state) tuple ( s , a ,

 ), denote by P (q | s, a ) the transition probability from state s to

tate q conditional on taking action a . We will use P ( · | s , a ) to
enote the transition probability vector at state s under action a .

he function R represents the one-step reward of the MDP. The

unction μ is a policy that maps a state to a probability distri-

ution of actions; specifically, μ( a | s ) represents the probability of

dopting action a given state s . 

For general MDPs with a large state-action space, we use a class

f parametric (Boltzmann-type) functions to approximate the pol-

cy and conditional transition probabilities: 

 ξ(q | s, a ) = 

exp { ξ′ 
ψ (s, a, q ) } ∑ 

y ∈N s exp { ξ′ 
ψ (s, a, y ) } , (1)

θ(a | s ) = 

exp { θ′ 
φ(s, a ) } ∑ 

b∈A exp { θ′ 
φ(s, b) } , (2)

here ξ ∈ R 
N and θ ∈ R 

n are parameters to be learned and N s is

he set of all feasible next states from the current state s . The

ernel functions ψ : S × A × S → [0 , 1] N and φ : S × A → [0 , 1] n

ransform (state, action, next state) tuples ( s , a , q ) and (state, ac-

ion) pairs ( s , a ) into corresponding desired features, respectively.

or the sake of brevity, we will use the term transition probabil-

ties ξ to refer to the conditional transition probabilities induced

y the model (1) with parameter ξ, and, similarly, we will use the

erm policy θ to refer to the policy defined in (2) induced by pa-

ameter θ. 
We note that the models in (1) and (2) use a given set of fea-

ure vector functions ψ and φ that encode important aspects of

he raw states and actions. Learning the lower-dimensional mod-

ls ξ and θ is certainly easier than learning the entire mappings

 ξ(q | s, a ) and μθ( a | s ). Features ψ and φ may be designed using

ntuition about a particular application or obtained more system-

tically using kernel function ideas (see [9, Sec. IV] and the discus-

ion in Section 6.2 ). 

Given an MDP driven by policy θ with conditional transi-

ion probabilities P ξ , the MDP states form a Markov chain. We
 parametric policies and transition probability models of markov 

rg/10.1016/j.ejcon.2020.04.003 
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se M ξ, θ to represent its transition matrix, where M ξ, θ(q | s ) =
 

a ∈A μθ(a | s ) P ξ(q | s, a ) for all (state, next state) pairs ( s , q ). Both

he policy and conditional transition probabilities are Boltzmann-

ype, hence, there is a unique stationary distribution π ξ, θ( s )

f the induced Markov chain. This implies a unique stationary

istribution of state-action pairs ( s , a ), denoted by ηξ, θ(s, a ) =
ξ, θ(s ) μθ(a | s ) , based on which we can define the infinite horizon

verage reward induced by ξ, θ as 

 ( ξ, θ) = 

∑ 

(a,s ) ηξ, θ(s, a ) R (s, a ) . 

. Estimating the Policy and Transition Probabilities 

Given an observed collection of states and corresponding ac-

ions by an agent, we aim to learn the agent’s policy and the cor-

esponding transition probabilities, denoted by θ∗ and ξ∗, respec-
ively. Here, we implicitly assume that both the agent’s policy and

ransition probabilities are of the Boltzmann-type (cf. (1) and (2) )

ut with unknown parameters. 

The set of (state, action, next state) tuples driven by policy
∗ with conditional transition probabilities ξ∗ is denoted by X :=
 ( ξ

∗
, θ

∗
) = { (s i , a i , q i ) ; i = 1 , . . . , m } . Assume that the state-action

airs { (s i , a i ) ; i = 1 , . . . , m } are i.i.d. and sampled from the station-

ry distribution ηξ∗
, θ∗ . Given state s i and action a i , the next state

 i is selected based on the conditional transition probability ξ
∗.

herefore, the tuples {( s i , a i , q i )} in the data set X are i.i.d and fol-

ow the distribution D ∼ P ξ∗ (q | s, a ) ηξ∗
, θ∗ (s, a ) . Since usually only

 small subset of features are significant in learning appropriate

odels, we assume θ∗ and ξ∗ are sparse, having r < n and q < N

on-zero elements, respectively. Also, assume that θ∗ and ξ∗ are

ounded by K , element-wise. 

Due to the probabilistic nature of (1) and (2) , we can adopt

aximum Likelihood (ML) estimation with logistic regression to es-

imate the parameters from data. Given our sparsity assumption

n the models θ∗ and ξ∗, the distance between two sample points

n the feature-label space ( φ, a ) and ( ψ, q ), respectively, is best

easured using the sparse � ∞ norm which accounts for the most

ominant feature instead of the entire (and potentially irrelevant)

eature vector. This suggests [3] , that one needs to use the dual

orm, i.e., an � 1 norm, to regularize the ML estimation problem.

e will introduce this regularization as a constraint in the for-

ulation. Specifically, we formulate the learning problem of con-

itional transition probabilities as follows: 

max 
ξ∈
 N 

m ∑ 

i =1 

log P ξ(q i | s i , a i ) (3) 

.t. ‖ ξ‖ 1 ≤ B ξ, 

n which B ξ adjusts the sparsity of the estimated transition proba-

ilities. Similarly, we formulate the policy learning as follows: 

max 
θ∈R 

n 

m ∑ 

i =1 

log μθ(a i | s i ) (4) 

.t ‖ θ‖ 1 ≤ B θ, 

n which B θ adjusts the sparsity of the estimated policy. 

The performance of the ML estimate can be evaluated through a

og-loss metric, which is defined as the expected value of the neg-

tive log-likelihood over the sample distribution. Specifically, for

ny parameters ξ and θ, the log loss of the transition probability
odel and the policy are defined as follows: 

( ξ) = E (s,a,q ) ∼D [ − log P ξ(q | s, a )] , 

( θ) = E (s,a,q ) ∼D [ − log μθ(a | s )] . 

Please cite this article as: T. Xu, H. Zhu and I.Ch. Paschalidis, Learning

decision processes from data, European Journal of Control, https://doi.o
he expectation is taken over the distribution D. Since the explicit

istribution is unknown, we can only observe (state, action, next

tate) tuples. Given any data set X , an empirical version of log-

osses can be defined as follows: 

ˆ X ( ξ) = 

1 

m 

m ∑ 

i =1 

(− log P ξ(q i | s i , a i )) , 

ˆ X ( θ) = 

1 

m 

m ∑ 

i =1 

(− log μθ(a i | s i )) . 

he empirical log-losses are calculated by the log losses over the

raining data set X ( ξ
∗
, θ

∗
) and denoted by 

ˆ ( ξ) � ˆ εX ( ξ
∗
, θ

∗
) ( ξ) , ˆ ζ ( θ) � 

ˆ ζX ( ξ
∗
, θ

∗
) ( θ) . 

We summarize our algorithms to learn the policy θ∗ and tran-

ition probability model ξ∗ in Algorithm 1 . 

lgorithm 1 Training algorithm to estimate the policy θ∗ (or tran-

ition probabilities ξ∗) from samples X . 

nitialization : Fix hyper-parameters C > rK ( C > lK) and 0 < γ < 1 . 

andomly split the whole data set X into two sets X 1 and X 2 with

ize γm and (1 − γ ) m respectively. Use X 1 and X 2 as training set

nd cross-validation set, respectively. 

raining phase: 

or B = 0 , 1 , 2 , . . . , C do 

olve optimization problem (4) (or (3)) with the training set X 1 

nd right hand side of the constraint equalto B . Let θB (or ξB )
enote the obtained optimal solution. 

nd for 

alidation phase: Among the obtained solutions θB ’s

or ξB ’s) from the training phase, select the best solu-

ion with the lowest “hold-out” error on the validation

et X 2 , i.e, ˆ B = arg min B ∈{ 0 , 1 , ... ,C} ˆ ζX 2 ( θB ) and set ˆ θ = θ ˆ B 
(or

ˆ  = arg min B ∈{ 0 , 1 , ... ,C} ˆ εX 2 ( ξB ) and set ˆ ξ = ξ ˆ B 
) , where ˆ ζX 2 (·)

or ˆ εX 2 (·) ) denotes the empirical log loss of thepolicy function

transition probabilities) on the validation set X 2 . 

. Log-Loss Generalization Guarantees 

In this section, we will establish theoretical results on sample

omplexity, showing that our estimation algorithm ( Algorithm 1 )

s guaranteed to achieve high accuracy with relatively few training

amples. 

We first relate the difference between log losses of two con-

itional transition probabilities vectors (policies) to their relative

ntropy, or Kullback-Leibler (KL) divergence, which characterizes

he difference between two distributions. The KL divergence of two

onditional transition probability vectors ξ1 and ξ2 at ( s , a ) is de-
ned as: 

D (P ξ1 
(·| s, a ) ‖ P ξ2 

(·| s, a )) 
= 

∑ 

q 

P ξ1 
(q | s, a ) log P ξ1 

(q | x, a ) 
P ξ2 

(q | s, a ) . 

imilarly, the KL divergence between policies θ1 and θ2 at state s

s 

 ( μθ1 
(·| s ) ‖ μθ2 

(·| s )) = 

∑ 

a 

μθ1 
(a | s ) log μθ1 

(a | s ) 
μθ2 

(a | s ) . 

Next, we will define the average KL divergence of the policy

nd transition probability model under some sample distribution.

ecall that the stationary distributions of the state and state-action
 parametric policies and transition probability models of markov 

rg/10.1016/j.ejcon.2020.04.003 
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Markov chains are denoted by π ξ, θ and ηξ, θ , respectively. The av-

erage KL divergence between policies θ1 and θ2 is defined as fol-

lows: 

D ξ, θ( μθ1 
‖ μθ2 

) = 

∑ 

s 

πξ, θ(s ) D ( μθ1 
(·| s ) ‖ μθ2 

(·| s )) , 

and the KL divergence between conditional transition probabilities

ξ1 and ξ2 is defined as 

D ξ, θ(P ξ1 
‖ P ξ2 

) = 

∑ 

s,a 

ηξ, θ(s, a ) D 

(
P ξ1 

(·| s, a ) ‖ P ξ2 
(·| s, a ) ). 

According to [9] , the difference between log losses of two policies

is equal to their Kullback-Leibler (KL) divergence. 

Lemma 4.1 ( [9] ) . Let ˆ θ be an estimate of the policy θ, then 

ζ ( ̂  θ) − ζ ( θ) = D ξ, θ( μθ‖ μˆ θ
) . 

Similarly, we can prove that the difference between log losses

of two transition probability models are equal to their KL diver-

gence. The proof is similar to that for Lemma 4.1 and hence omit-

ted. 

Corollary 4.2. Let ˆ ξ be an estimate of the policy ξ, then 

ε( ̂ ξ) − ε( ξ) = D ξ, θ(P ξ‖ P ˆ ξ
) . 

In [9] , we have obtained a bound of the difference between log

losses of the policy μθ∗ and the estimated policy μˆ θ
as follows. 

Theorem 4.3 ( [9] ) . Given any positive values ε > 0 and δ > 0, if the

sample size satisfies the following condition 

m = �
(
( log n ) · poly (r, K, C, H, log (1 /δ) , 1 /ε) 

)
, 

where H is the maximum number of feasible actions at a state of the

MDP, then with probability at least 1 − δ, 

| ζ ( ̂  θ) − ζ ( θ) | = D ξ
∗
, θ

∗ ( μθ
∗‖ μˆ θ

) ≤ ε. 

This implies that ˆ θ obtained by Algorithm 1 can be arbitrar-

ily close to the unknown policy θ∗. The function poly( s ) denotes
a polynomial function with respect to elements of s . Specifically,

m = �(H 
3 ) in terms of only H . 

Similarly, in the following corollary, we bound the difference

between the log losses of the original and estimated conditional

transition probability, P ξ∗ and P ˆ ξ . 

Corollary 4.4. Given any positive values ε > 0 and δ > 0, if the sam-

ple size satisfies the following condition 

m = �
(
( log N) · poly (l, K, C, M, log (1 /δ) , 1 /ε) 

)
, 

where M = max s |N s | , then with probability at least 1 − δ, 

| ε( ̂ ξ) − ε( ξ) | = D ξ
∗
, θ

∗ (P ξ
∗‖ P ˆ ξ

) ≤ ε. 

This implies that ˆ ξ obtained by Algorithm 1 can be arbitrarily

close to the original transition probability ξ∗, with m = �(M 
3 ) in

terms of only M . The proof is similar to that for Theorem 4.3 and

hence omitted. 

5. Bounds on Regret 

With the estimated conditional transition probabilities from

Section 3 , we are able to compute the average reward of the es-

timated policy by simulating the MDP. A natural question is how

good this simulated average reward is, compared to the average

reward of the original policy under the true MDP dynamics. 
Please cite this article as: T. Xu, H. Zhu and I.Ch. Paschalidis, Learning

decision processes from data, European Journal of Control, https://doi.o
In this section, we develop a bound on the regret using the es-

imated policy as opposed to the original policy. Specifically, we

efine the regret Reg (X ) as 

eg (X ) = R ( ξ
∗
, θ

∗
) − R ( ̂ ξ, ̂  θ) , 

n which ˆ θ and ˆ ξ are the estimated policy and estimated condi-

ional transition probabilities from the samples X , respectively. We

eed the following preliminary definitions and lemmata. 

efinition 1 ( [9] ) . Given a Markov chain with transition proba-

ility matrix M ξ, θ induced by policy θ and conditional transition

robability parameter ξ, the fundamental matrix of the Markov

hain is defined as 

 ξ, θ = (A ξ, θ + e π′ 
ξ, θ ) 

−1 , 

here A ξ, θ = I − M ξ, θ, πξ, θ represents the stationary distribution

ssociated with M ξ, θ , and e is the vector with all elements equal

o 1. 

efinition 2 ( [9] ) . The group inverse of a square matrix A , denoted

s A 
# , is the unique square matrix satisfying the following condi-

ions 

A 
# A = A , A 

# AA 
# = A , AA 

# = A 
# A . 

efinition 3 ( [9] ) . Given a matrix B with equal row sums, its er-

odic coefficient is defined as 

(B ) = sup 
v ′ e =0 ;‖ v ‖ 1 =1 

‖ v ′ B ‖ 1 = 

1 

2 
max 
i, j 

∑ 

s 

| b is − b js | . (5)

emma 5.1. ( [6 , Lemma 11.6.1]) Consider any two probability vectors

 1 , p 2 ∈ R 
n . It holds that 

 (p 1 ‖ p 2 ) ≥ 1 

2 ln 2 
‖ p 1 − p 2 ‖ 

2 
1 . (6)

emma 5.2 ( [9] ) . Given two stochastic matrices P 1 and P 2 (and as-

ociated fundamental matrices Z i and matrices A i = I − P i , i = 1 , 2 ),

ssume π1 and π2 are the corresponding unique stationary distribu-

ions, respectively. Let E = P 1 − P 2 , then 

 π1 − π2 ‖ 1 ≤ κ‖ π′ 
1 E ‖ 1 , (7)

here κ is a constant that can take one of the following values:

= ‖ Z 2 ‖ ∞ , or κ = ‖ A 
# 
2 
‖ ∞ , or κ = 1 / (1 − τ (P 2 )) , or κ = τ (Z 2 ) =

(A 
# 
2 
) . 

Now we are ready to bound the regret of the estimated policy

sing the above preliminary definitions and results. 

heorem 5.3. Given any positive values ε > 0, δ > 0, assume

lgorithm 1 adopts 

(( log ( max (N, n ))) · poly (r, l, K, C, M, log (1 /δ) , 1 /ε, H) 

.i.d. training samples to learn parameters ˆ ξ and ˆ θ. Then, with proba-

ility of at least 1 − δ, the following result holds 

 R ( ξ
∗
, θ

∗
) − R ( ̂ ξ, ̂  θ) | ≤ 2 

√ 

ln 2 ε R max (1 + 2 κ) , 

n which R max = max (s,a ) ∈S×A | R (s, a ) | and κ is a constant value that

epends on the transition probability matrix M ˆ ξ, ̂ θ
(and its correspond-

ng fundamental matrix Z ˆ ξ, ̂ θ
and matrix A ˆ ξ, ̂ θ

= I − M ˆ ξ, ̂ θ
). This con-

tant κ can be any of the following: κ = ‖ Z ˆ ξ, ̂ θ
‖ ∞ , or κ = ‖ A 

# 
ˆ ξ, ̂ θ

‖ ∞ ,

r κ = 1 / (1 − τ (M ˆ ξ, ̂ θ
)) , or κ = τ (Z ˆ ξ, ̂ θ

) = τ (A 
# 
ˆ ξ, ̂ θ

) . 

roof. We will first express the regret as the sum of two parts,

nd then bound each part separately. 
 parametric policies and transition probability models of markov 
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i

Reg (X ) = R ( ξ
∗
, θ

∗
) − R ( ̂ ξ, ̂  θ) 

 

∑ 

s 

∑ 

a 

[ ηξ
∗
, θ

∗ (s, a ) − ηˆ ξ, ̂ θ
(s, a )] R (s, a ) 

 

∑ 

s 

πξ
∗
, θ

∗ (s ) 
∑ 

a 

μθ
∗ (a | s ) R (s, a ) 

−
∑ 

s 

πˆ ξ, ̂ θ
(s ) 

∑ 

a 

μˆ θ
(a | s ) R (s, a ) 

 

∑ 

s 

πξ
∗
, θ

∗ (s ) 
∑ 

a 

[ μθ
∗ (a | s ) − μˆ θ

(a | s )] R (s, a ) 

−
∑ 

s 

[ πˆ ξ, ̂ θ
(s ) − πξ

∗
, θ

∗ (s )] 
∑ 

a 

μˆ θ
(a | s ) R (s, a ) 

≤
∣∣∣∣∑ 

s 

πξ
∗
, θ

∗ (s ) 
∑ 

a 

[ μθ
∗ (a | s ) − μˆ θ

(a | s )] R (s, a ) 
∣∣∣∣

 

∣∣∣∣∑ 

s 

[ πˆ ξ, ̂ θ
(s ) − πξ

∗
, θ

∗ (s )] 
∑ 

a 

μˆ θ
(a | s ) R (s, a ) 

∣∣∣∣. (8) 

ote that the first term in equation (8) depends on the value
 

a [ μθ∗ (a | s ) − μˆ θ
(a | s )] , which is the learning error in estimating

he policy. The second term depends on 
∑ 

s | πˆ ξ, ̂ θ
(s ) − πξ∗

, θ∗ (s ) | ,
hich is the perturbation error of the stationary distribution of the

arkov chain by applying the estimated policy ˆ θ. In the following,

e will bound the two terms separately, and begin with the first

erm. ∣∣∣∣∑ 

s 

πξ
∗
, θ

∗ (s ) 
∑ 

a 

[ μθ
∗ (a | s ) − μˆ θ

(a | s )] R (s, a ) 
∣∣∣∣

≤
∑ 

s 

πξ
∗
, θ

∗ (s ) 
∑ 

a 

| (μθ
∗ (a | s ) − μˆ θ

(a | s )) | · | R (s, a ) | 

≤R max 

∑ 

s 

πξ
∗
, θ

∗ (s ) 
∑ 

a 

| (μθ
∗ (a | s ) − μˆ θ

(a | s )) | 

 R max 

∑ 

s 

πξ
∗
, θ

∗ (s ) ‖ ( μθ
∗ (·| s ) − μˆ θ

(·| s )) ‖ 1 . (9) 

he bound in (9) depends on the difference between the log-loss

f the estimated policy ˆ θ and that of target policy θ∗. Based on
emma 5.1 , we have ∣∣∣∣∑ 

s 

πξ
∗
, θ

∗ (s ) 
∑ 

a 

[ μθ
∗ (a | s ) − μˆ θ

(a | s )] R (s, a ) 
∣∣∣∣

≤ R max 

∑ 

s 

πξ
∗
, θ

∗ (s ) 

√ 

2( ln 2) D 

(
μθ

∗ (·| s ) ‖ μˆ θ
(·| s ) )

≤
√ 

2 ln 2 R max ·
√ ∑ 

s 

πξ
∗
, θ

∗ (s ) D 

(
μθ

∗ (·| s ) ‖ μˆ θ
(·| s ) )

= 

√ 

2 ln 2 R max 

√ 

D ξ
∗
, θ

∗ ( μθ
∗‖ μˆ θ

) 

≤
√ 

2( ln 2) ε R max . (10) 

he first inequality holds by applying Lemma 5.1 with p 1 =
θ∗ (·| s ) and p 2 = μˆ θ

(·| s ) for each state s . The second inequality is
btained by applying Jensen’s inequality. The final inequality holds

sing Theorem 4.3 . 

Next, we will bound the second term in (8) . ∣∣∣∣∑ 

s 

(πˆ ξ, ̂ θ
(s ) − πξ

∗
, θ

∗ (s )) 
∑ 

a 

μˆ θ
(a | s ) R (s, a ) 

∣∣∣∣
≤

∑ 

s 

| πˆ ξ, ̂ θ
(s ) − πξ

∗
, θ

∗ (s ) | ∑ 

a 

| μˆ θ
(a | s ) R (s, a ) | 

≤ R max 

∑ 

s 

| πˆ ξ, ̂ θ
(s ) − πξ

∗
, θ

∗ (s ) | ∑ 

a 

μˆ θ
(a | s ) 

= R max 

∑ 

s 

| πˆ ξ, ̂ θ
(s ) − πξ

∗
, θ

∗ (s ) | (11) 
Please cite this article as: T. Xu, H. Zhu and I.Ch. Paschalidis, Learning
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≤ R max κ‖ π′ 
ξ

∗
, θ

∗ (M ξ
∗
, θ

∗ − M ˆ ξ, ̂ θ
) ‖ 1 . (12) 

he equality (11) can be obtained since 
∑ 

a μˆ θ
(a | s ) = 1 for all s ,

nd (12) holds by using Lemma 5.2 . 

For the last term in equation (12) , by applying the definition of

he transition probability M ξ, θ associated with parameters ξ and θ,

e obtain 

‖ π′ 
ξ

∗
, θ

∗ (M ξ
∗
, θ

∗ − M ˆ ξ, ̂ θ
) ‖ 1 

= 

∑ 

q 

∣∣∣∑ 

s 

πξ
∗
, θ

∗ (s ) ·

∑ 

a 

[ P ξ
∗ (q | s, a ) μθ

∗ (a | s ) − P ˆ ξ
(q | s, a ) μˆ θ

(a | s )] 
∣∣∣

≤
∑ 

s 

πξ
∗
, θ

∗ (s ) 
∑ 

q 

∑ 

a 

∣∣∣P ˆ ξ
(q | s, a ) [μθ

∗ (a | s ) − μˆ θ
(a | s ) ]∣∣∣

+ 

∑ 

s 

∑ 

a 

πξ
∗
, θ

∗ (s ) μθ
∗ (a | s ) ∑ 

q 

∣∣∣P ˆ ξ
(q | s, a ) − P ξ

∗ (q | s, a ) 
∣∣∣

≤
∑ 

s 

πξ
∗
, θ

∗ (s ) 
∑ 

a 

∣∣μθ
∗ (a | s ) − μˆ θ

(a | s ) ∣∣
+ 

∑ 

s,a 

πξ
∗
, θ

∗ (s, a ) 
∑ 

q 

∣∣∣P ˆ ξ
(q | s, a ) − P ξ

∗ (q | s, a ) 
∣∣∣, 

n which the last inequality holds by using 
∑ 

q P (q | s, a ) = 1 for all

 s , a ). Now, using inequality (), Theorem 4.3 and Corollary 4.4 , we

re able to bound (9) as ∣∣∣∣∑ 

s 

(πˆ ξ, ̂ θ
(s ) − πξ

∗
, θ

∗ (s )) 
∑ 

a 

μˆ θ
(a | s ) R (s, a ) 

∣∣∣∣
≤ 2 

√ 

2 ε ln 2 κR max . (13) 

inally, by combining (10), (13) and (8) , we obtain the result of

heorem 5.3 . �

Note that in Theorem 5.3 , the regret relies on the constant value

, which is referred to as the condition number of the estimated

olicy under the estimated transition dynamics. The regret mono-

onically increases with the condition number. 

. Experimental Results 

In this section, we illustrate the efficiency of our algorithms

sing two examples: a disease progression experiment where we

eek to learn the prescription policy reflected in the data, and a

obot navigation experiment where we learn the robot navigation

olicy on a 2-D grid. 

.1. Experimental Settings 

.1.1. A Disease Progression Example 

We consider patients with a chronic disease and design an MDP

o model the effect of drugs. We denote the state of the MDP

y s = (s 1 , s 2 ) , where s 1 , s 2 ∈ { 0 , 1 , . . . , 20 } . Here, s 1 denotes the
everity of the disease itself, and s 2 the severity of the comor-

idities that the patient may face. The actions in the MDP rep-

esent the various treatments for the patient. Assume there are

wo drug types with different treatment effects, one for the main

ymptoms of the disease, and another for the comorbidities. The

ctions can be denoted by a = (a 1 , a 2 ) , where a i ∈ {0, 1} is a indi-

ator of whether the patient takes the i -th type of drug or not. 

We assume that the disease state can only transition from the

urrent state to neighboring states; specifically, the state differ-

nce z t = s t+1 − s t at time t should satisfy ‖ z t ‖ 1 ≤1 for all s t ,

 t+1 and a t . Furthermore, we assume that the transition probabil-

ty P (s t+1 | s t , a t ) depends only on the state difference z t = s t+1 − s t 
 parametric policies and transition probability models of markov 
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Table 1 

Disease state transition probabilities conditioned on actions. 

State Diff z t = (0, 0) (0, 1) (0 , −1) (−1 , 0) (1, 0) 

a t = (0 , 0) 0.7 0.1 0.05 0.05 0.1 

a t = (1 , 0) 0.4 0.1 0.05 0.35 0.1 

a t = (0 , 1) 0.4 0.1 0.35 0.05 0.1 

a t = (1 , 1) 0.2 0.1 0.3 0.3 0.1 

Table 2 

Robot transition probability conditioned on actions. 

State Diff z t (0, 0) (0, 1) (0 , −1) (−1 , 0) (1, 0) 

a t = “down” 0.05 0.05 0.8 0.05 0.05 

a t = “right” 0.05 0.05 0.05 0.05 0.8 

a t = “up” 0.05 0.8 0.05 0.05 0.05 

a t = “left” 0.05 0.05 0.05 0.8 0.05 
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and action a t . The transition probability matrix (conditioned on all

actions) is shown in Table 1 . The MDP is also assumed to have a

bouncing boundary, i.e., when the patient takes an action leading

the state outside of the boundary, the transition is bounced back

without changing the current state. 

Consistent with Table 1 , if the patient takes none of the two

treatments, i.e., a t = (0 , 0) , both disease and comorbidity indica-

tors s 1 and s 2 will tend to stay the same or become more severe.

The disease severity decreases if the patient uses the type-1 drug,

i.e., a t = (1 , 0) . The comorbidity symptoms are relieved when the

patient takes type-2 drug, i.e., a t = (0 , 1) . Because of the drug in-

teractions, if both drugs are used together, i.e., a t = (1 , 1) , they

have diminished effects compared to being individually used. 

When a patient enters a disease state, he/she can collect the

immediate reward associated at the state. Assume doctors (ex-

perts) use a policy to optimize the long-term expected average re-

ward. We wish to learn the prescription policy and disease transi-

tion probabilities from observed tuples of (state, action, next state).

Assume that the best state (0, 0) is associated with reward R 0 ,

and the associated reward can “spread” according to a Gaussian

distribution, i.e., immediate rewards are defined as follows: 

R (s , a ) = R (s ) = R 0 
1 

σ
√ 

2 π
e 

−‖ s ‖ 2 
2 σ2 , 

for all actions a . The parameter σ controls the discounting rate of

reward being decreased as the disease state becomes worse. The

parameters are tunable to achieve desirable behaviors [13] . In this

experiment, we set R 0 = 30 and σ = 10 . 

6.1.2. A Robot Navigation Example 

We also design a robot navigation experiment on a 2-D grid.

The robot’s navigation trajectory is driven by an MDP, where the

state is the current location of the robot, denoted by s = (s 1 , s 2 ) ,

where s 1 , s 2 ∈ { 0 , 1 , . . . , 20 } . The robot has 4 feasible actions corre-
sponding to its direction of movement, and the action set at each

state is {“up”, “down”, “left”, “right”}. 

We assume that the robot can only move from a location to a

neighboring location; specifically, the state difference z t = s t+1 − s t 
at time t should satisfy ‖ z t ‖ 1 ≤1 for all s t , s t+1 and a t . Further-

more, the transition probability P (s t+1 | s t , a t ) depends only on the
state difference z t = s t+1 − s t and action a t . The transition proba-

bility matrix (conditioned on all actions) is shown in Table 2 . We

assume that the robot’s transition is subject to uncertainty; in par-

ticular, one action may lead the robot to its neighboring grid points

instead of the intended direction. For instance, when the robot

takes action “down”, it will shift to an adjacent grid position be-

low (state difference (0 , −1) ) with probability 0.8, and to all other

four neighboring positions on the grid with probability 0.05, re-

spectively. The MDP is also assumed to have a bouncing boundary,
Please cite this article as: T. Xu, H. Zhu and I.Ch. Paschalidis, Learning

decision processes from data, European Journal of Control, https://doi.o
.e., when the robot takes an action leading it outside the bound-

ry, it is bounced back in the opposite direction without changing

ts current position. 

The robot collects immediate reward at each grid point and

he ultimate goal is to maximize the long-term expected average

eward. In this example, given historical trajectories of identical

obots driven by the same policy, we are interested in learning

he policy and the unknown transition probabilities from observed

state, action, next state) tuples. We associate source rewards near

he four grid corners as specified below. Grid points (1, 1) and (19,

9) each have an associated source reward equal to 10, whereas

rid points (1, 19) and (19, 1) each have an associated source re-

ard equal to 1. Assume that the source rewards “spread” accord-

ng to a Gaussian distribution. The immediate reward at each grid

oint is the superposition of rewards spread from each source to

his point. Specifically, the immediate reward for state s is: 

 (s , a ) = R (s ) = 

∑ 

v 
R v 

1 

σ
√ 

2 π
e 

−‖ s −s v ‖ 2 
2 σ2 , 

or all a and s , where R v specifies the source reward at source s v 
nd σ adjusts the spread rate of the source rewards. We can tune

uch a reward function for desirable behavior [13] . In our experi-

ents, σ = 1 . 

.2. Policy and Transition Probability Learning 

Designing appropriate features is essential for our learning al-

orithm. Following the approach of [9, Sec. IV] , the features are

ased on a set of representative states. Regarding transition proba-

ilities, we assume 

 ξ(s t+1 | s t , a t ) = 

exp { ξ′ 
ψ (s t+1 − s t , a t ) } ∑ 

s ∈S exp { ξ′ 
ψ (s − s t , a t ) } 

. 

he feature vector is constructed as follows. We select a

et of p representative state differences R = { (i k , j k ) : i k , j k ∈
−1 , 0 , 1 } , k = 1 , . . . , p} and define feature functions: 

 i k , j k 
(z , a , b ) = 

{
1 √ 

2 π
e 

−‖ z −(i k , j k ) ‖ 2 
2 , if b = a , 

0 , otherwise , 

or k = 1 , . . . , p and b ∈ A . Then, ψ (z , a ) = (ψ i, j (z , a , b ) ; ∀ (i, j) ∈
 , ∀ b ∈ A ) . 

Similarly, assume that the original policy has the following

orm 

θ(a | s ) = 

exp { θ′ 
φ(s , a ) } ∑ 

b ∈A exp { θ′ 
φ(s , b ) } . 

n this case, the feature vector is constructed by selecting a set B
f representative states from the state space and defining features 

u (s , a ) = 

∑ 

q 

P ξ(q | s , a ) f u (q ) , u ∈ B, 

here 

f u (q ) = 

1 √ 

2 π
e 

−‖ u −q ‖ 2 
2 . 

hen, the feature vector is φ(s , a ) = (φu (s , a ) ; ∀ u ∈ B) . 

.3. Performance Evaluation 

For the two applications discussed in Sections 6.1.1 and 6.1.2 ,

e solve the corresponding MDPs using value iteration and ob-

ain an optimal policy. We use this policy to generate (state, ac-

ion, next state) tuples. Given the observed tuples, we will esti-

ate a policy μθ( a t | s t ) parameterized by θ and an induced tran-

ition probability model P ξ(s t+1 | s t , a t ) , parameterized by ξ using

he feature functions described in Section 6.2 . 
 parametric policies and transition probability models of markov 
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Fig. 1. Disease progression example: average rewards v.s. sample size. 

Fig. 2. Robot navigation example: average rewards v.s. sample size. 
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Fig. 3. Disease progression example: average KL divergence between the true and 

estimated conditional transition probabilities. 

Fig. 4. Robot navigation example: average KL divergence between true and esti- 

mated conditional transition probabilities. 
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We compare the average rewards of the following four policies:

1. Optimal policy: obtained from the value iteration algorithm and

used to generate (state, action, next state) tuples. 

2. � 1 -regularized policy: trained using Algorithm 1 using � 1 -

regularized logistic regression. 

3. Unregularized policy: trained using Algorithm 1 to solve the lo-

gistic regression problems without regularization. 

4. Greedy policy: at each state taking an action which maximizes

the expected immediate reward. 

To investigate how training sample size influences the

erformance of our proposed algorithm, we implemented

lgorithm 1 using different sample sizes m . For each sample

ize, we conduct 10 independent runs, obtain a policy from each

un, and then simulate this policy under the true MDP dynamics

o assess its performance. We average over the 10 runs the per-run

verage reward obtained. These averages are plotted Figs. 1 and 2

or the healthcare and robot applications, respectively. 

We can see that the � 1 -regularized policy achieves reward that

s closer to the reward achieved by the unknown original pol-

cy, which is consistent with Theorem 5.3 . In addition, the � 1 -

egularized policy consistently outperforms the greedy and unreg-

larized policies, especially in the case of small sample sizes. This

llustrates the benefits of regularization and is consistent with our

elated comments in the Introduction. 
Please cite this article as: T. Xu, H. Zhu and I.Ch. Paschalidis, Learning
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In addition, we compare two different estimates of the condi-

ional transition probabilities as follows: 

1. an � 1 -regularized estimate, where we use Algorithm 1 with the

� 1 -regularized logistic regression to learn the conditional tran-

sition probability model; and 

2. an unregularized estimate, where we use Algorithm 1 with un-

regularized logistic regression to learn the conditional transi-

tion probability model. 

Specifically, we computed the KL-divergence between the true

nd estimated conditional transition probabilities D ξ∗
, θ∗ (P ξ∗‖ P ˆ ξ ) =

( ̂ ξ) − ε( ξ
∗
) as a function of sample size. The KL-divergence re-

ults for the healthcare and robot navigation examples are shown

n Figs. 3 and 4 , respectively. The lower KL-divergence is, the bet-

er the estimate is. Through all different sample sizes in the two

xamples, the � 1 -regularized estimate consistently outperforms its

nregularized alternative, and more so in the case of small sam-

le sizes. In addition, the regularization algorithm achieves accu-

ate estimates with only a very small number of samples, which

alidates Corollary 4.4 . 

Note that even though the original policy and conditional

ransition probabilities do not follow the parametric forms in

qs. (1) and (2) , our algorithm is still able to achieve high accu-

acy. 

. Conclusion 

This article investigates the problem of learning a policy and

n associated transition probability model in an MDP based

n observed (state, action, next state) tuples. We propose two
 parametric policies and transition probability models of markov 
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regularized logistic regression models to estimate the true transi-

tion probabilities and original policy. We establish out-of-sample

generalization bounds on log-loss for the policy and transition

probability estimation. Further, we derive an upper bound on

the regret of the estimated policy under the learned transition

probability model. The theoretical results are validated in two

different applications, one involving disease progression and the

other robot navigation. The numerical results show satisfactory

learning of both the policy and transition dynamics and illustrate

the benefits of using robust learning techniques. 

Declaration of Competing Interest 

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper. 

References 

[1] B.D. Argall , S. Chernova , M. Veloso , B. Browning , A survey of robot learn-
ing from demonstration, Robotics and autonomous systems 57 (5) (2009)

469–483 . 

[2] D. Bertsimas , N. Kallus , A.M. Weinstein , Y.D. Zhuo , Personalized diabetes man-
agement using electronic medical records, Diabetes care 40 (2) (2017) 210–217 .

[3] R. Chen , I.C. Paschalidis , A robust learning approach for regression models
based on distributionally robust optimization, Journal of Machine Learning Re-

search 19 (13) (2018) . 
[4] R. Chen , I.C. Paschalidis , Selecting optimal decisions via distributionally ro-

bust nearest-neighbor regression, in: H. Wallach, H. Larochelle, A. Beygelzimer,

F.d. Buc, E. Fox, R. Garnett (Eds.), Advances in Neural Information Processing
Systems 32 (NeurIPS), pages 748–758, Vancouver, Canada, December, Curran

Associates, Inc., 2019 . 
[5] E. Choi , M.T. Bahadori , A. Schuetz , W.F. Stewart , J. Sun , Doctor AI: Predicting

clinical events via recurrent neural networks, in: Machine Learning for Health-
care Conference, 2016, pp. 301–318 . 

[6] T.A . Cover , J.A . Thomas , Elements of Information Theory, John Wiley & Sons,

2006 . 
[7] T. Geller , Y.B. David , E. Khmelnitsky , I. Ben-Gal , A. Ward , D. Miller , N. Bam-

bos , Learning health state transition probabilities via wireless body area net-
works, in: ICC 2019-2019 IEEE International Conference on Communications

(ICC), pages 1–6, IEEE, 2019 . 
[8] L. Györfi, M. Kohler , Nonparametric estimation of conditional distributions, In-

formation Theory, IEEE Transactions on 53 (06) (2007) 1872–1879 . 
Please cite this article as: T. Xu, H. Zhu and I.Ch. Paschalidis, Learning

decision processes from data, European Journal of Control, https://doi.o
[9] M.K. Hanawal , H. Liu , H. Zhu , I.C. Paschalidis , Learning policies for Markov
decision processes from data, IEEE Transactions on Automatic Control 64 (6)

(2019) 2298–2309 . 
[10] G. Iyengar , Robust dynamic programming, Math. Operations Research 30 (2)

(2005) 1–21 . 
[11] D. Kent , S. Banerjee , S. Chernova , Learning sequential decision tasks for

robot manipulation with abstract Markov decision processes and demonstra-
tion-guided exploration, in: 2018 IEEE-RAS 18th International Conference on

Humanoid Robots (Humanoids), pages 1–8, IEEE, 2018 . 

[12] Y.-Y. Liu , H. Ishikawa , M. Chen , G. Wollstein , J.S. Schuman , J.M. Rehg , Longitu-
dinal modeling of glaucoma progression using 2-dimensional continuous-time

hidden Markov model, in: International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention, Springer, 2013, pp. 4 4 4–451 . 

[13] L. Matignon , G.J. Laurent , N.L. Fort-Piat , Reward function and initial values:
better choices for accelerated goal-directed reinforcement learning, in: Inter-

national Conference on Artificial Neural Networks, pages 840–849, Springer,

2006 . 
[14] A. Nilim , L.E. Ghaoui , Robust solutions to Markov decision problems with un-

certain transition matrices, Operations Research 53 (5) (2005) 780–798 . 
[15] S. Paternain , J.A. Bazerque , A. Small , A. Ribeiro , Learning policies for Markov

decision processes in continuous spaces, in: 2018 IEEE Conference on Decision
and Control (CDC), pages 4751–4758, IEEE, 2018 . 

[16] S. Shafieezadeh-Abadeh , P.M. Esfahani , D. Kuhn , Distributionally robust logis-

tic regression, in: Advances in Neural Information Processing Systems, pages
1576–1584, 2015 . 

[17] J. Weiss , S. Natarajan , D. Page , Multiplicative forests for continuous-time
processes, in: Advances in Neural Information Processing Systems, 2012,

pp. 458–466 . 
[18] M. Wen , I. Papusha , U. Topcu , Learning from demonstrations with high-level

side information, in: Proceedings of the Twenty-Sixth International Joint Con-

ference on Artificial Intelligence, 2017 . 
[19] W. Wiesemann , D. Kuhn , B. Rustem , Robust Markov decision processes, Math-

ematics of Operations Research 38 (1) (2013) 153–183 . 
20] T. Xu , I.C. Paschalidis , Learning models for writing better doctor prescriptions,

in: Proceedings of the European Control Conference pages, 2454–2459, 2019 .
Naples, Italy, June 25–28 

[21] S. Yakowitz , Nonparametric estimation of Markov transition functions, Ann.

Statist. 7 (3) (1979) 671–679 . 05 
22] Z. Yu , Z. Xu , A.W. Black , A. Rudnicky , Strategy and policy learning for non–

task-oriented conversational systems, in: Proceedings of the 17th annual meet-
ing of the special interest group on discourse and dialogue, pages 404–412,

2016 . 
23] H. Zhu , T. Xu , I.C. Paschalidis , Learning parameterized prescription policies and

disease progression dynamics using Markov decision processes, in: American

Control Conference, pages 3438–3443, Philadelphia, Pennsylvania, July 10–12,
2019 . 
 parametric policies and transition probability models of markov 

rg/10.1016/j.ejcon.2020.04.003 

http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0001
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0001
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0001
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0001
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0001
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0002
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0002
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0002
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0002
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0002
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0003
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0003
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0003
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0004
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0004
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0004
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0005
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0005
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0005
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0005
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0005
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0005
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0006
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0006
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0006
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0007
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0007
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0007
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0007
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0007
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0007
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0007
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0007
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0008
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0008
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0008
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0009
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0009
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0009
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0009
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0009
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0010
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0010
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0011
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0011
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0011
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0011
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0012
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0012
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0012
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0012
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0012
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0012
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0012
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0013
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0013
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0013
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0013
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0014
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0014
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0014
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0015
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0015
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0015
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0015
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0015
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0016
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0016
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0016
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0016
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0017
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0017
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0017
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0017
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0018
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0018
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0018
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0018
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0019
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0019
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0019
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0019
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0020
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0020
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0020
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0020
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0021
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0021
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0021
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0022
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0022
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0022
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0022
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0022
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0023
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0023
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0023
http://refhub.elsevier.com/S0947-3580(19)30531-X/sbref0023
https://doi.org/10.1016/j.ejcon.2020.04.003

	Learning parametric policies and transition probability models of markov decision processes from data
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Problem Formulation
	3 Estimating the Policy and Transition Probabilities
	4 Log-Loss Generalization Guarantees
	5 Bounds on Regret
	6 Experimental Results
	6.1 Experimental Settings
	6.1.1 A Disease Progression Example
	6.1.2 A Robot Navigation Example

	6.2 Policy and Transition Probability Learning
	6.3 Performance Evaluation

	7 Conclusion
	Declaration of Competing Interest
	References


